1
|
Pires-Ferreira D, Reil D, Tang Q, Blackwood M, Gallagher T, Keeler AM, Chichester JA, Vyhnal KK, Lindborg JA, Benson J, Fu D, Flotte TR, Gruntman AM. Limb Perfusion Delivery of a rAAV1 Alpha-1 Antitrypsin Vector in Non-Human Primates Is Safe but Insufficient for Therapy. Genes (Basel) 2024; 15:1188. [PMID: 39336779 PMCID: PMC11431094 DOI: 10.3390/genes15091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES α-1 antitrypsin (AAT) deficiency is an inherited, genetic condition characterized by reduced serum levels of AAT and increased risk of developing emphysema and liver disease. AAT is normally synthesized primarily in the liver, but muscle-targeting with a recombinant adeno-associated virus (rAAV) vector for α-1 antitrypsin (AAT) gene therapy has been used to minimize liver exposure to the virus and hepatotoxicity. Clinical trials of direct intramuscular (IM) administration of rAAV1-hAAT have demonstrated its overall safety and transgene expression for 5 years. However, the failure to reach the therapeutic target level after 100 large-volume (1.5 mL) IM injections of maximally concentrated vector led us to pursue a muscle-targeting approach using isolated limb perfusion. This targets the rAAV to a greater muscle mass and allows for a higher total volume (and thereby a higher dose) than is tolerable by multiple direct IM injections. Limb perfusion has been shown to be feasible in non-human primates using the rAAV1 serotype and a ubiquitous promoter expressing an epitope-tagged AAT matched to the host species. METHODS In this study, we performed a biodistribution and preclinical safety study in non-human primates with a clinical candidate rAAV1-human AAT (hAAT) vector at doses ranging from 3.0 × 1012 to 1.3 × 1013 vg/kg, bracketing those used in our clinical trials. RESULTS We found that limb perfusion delivery of rAAV1-hAAT was safe and showed a biodistribution pattern similar to previous studies. However, serum levels of AAT obtained with high-dose limb perfusion still reached only ~50% of the target serum levels. CONCLUSIONS Our results suggest that clinically effective AAT gene therapy may ultimately require delivery at doses between 3.5 × 1013-1 × 1014 vg/kg, which is within the dose range used for approved rAAV gene therapies. Muscle-targeting strategies could be incorporated when delivering systemic administration of high-dose rAAV gene therapies to increase transduction of muscle tissues and reduce the burden on the liver, especially in diseases that can present with hepatotoxicity such as AAT deficiency.
Collapse
Affiliation(s)
- Debora Pires-Ferreira
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
| | - Darcy Reil
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
| | - Qiushi Tang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
| | - Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
| | - Thomas Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jessica A. Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin K. Vyhnal
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (K.K.V.); (J.A.L.); (J.B.)
| | - Jane A. Lindborg
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (K.K.V.); (J.A.L.); (J.B.)
| | - Janet Benson
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (K.K.V.); (J.A.L.); (J.B.)
| | - Dongtao Fu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alisha M. Gruntman
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (D.P.-F.); (D.R.); (Q.T.); (M.B.); (T.G.); (A.M.K.)
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Yasser M, Ribback S, Evert K, Utpatel K, Annweiler K, Evert M, Dombrowski F, Calvisi DF. Early Subcellular Hepatocellular Alterations in Mice Post Hydrodynamic Transfection: An Explorative Study. Cancers (Basel) 2023; 15:cancers15020328. [PMID: 36672277 PMCID: PMC9857294 DOI: 10.3390/cancers15020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Hydrodynamic transfection (HT) or hydrodynamic tail vein injection (HTVi) is among the leading technique that is used to deliver plasmid genes mainly into the liver of live mice or rats. The DNA constructs are composed of coupled plasmids, while one contains the gene of interest that stably integrate into the hepatocyte genome with help of the other consisting sleeping beauty transposase system. The rapid injection of a large volume of DNA-solution through the tail vein induces an acute cardiac congestion that refluxed into the liver, mainly in acinus zone 3, also found through our EM study. Although, HT mediated hydrodynamic force can permeabilizes the fenestrated sinusoidal endothelium of liver, but the mechanism of plasmid incorporation into the hepatocytes remains unclear. Therefore, in the present study, we have hydrodynamically injected 2 mL volume of empty plasmid (transposon vector) or saline solution (control) into the tail vein of anesthetized C57BL/6J/129Sv mice. Liver tissue was resected at different time points from two animal group conditions, i.e., one time point per animal (1, 5, 10-20, 60 min or 24 and 48 hrs after HT) or multiple time points per animal (0, 1, 2, 5, 10, 20 min) and quickly fixed with buffered 4% osmium tetroxide. The tissues fed with only saline solution was also resected and fixed in the similar way. EM evaluation from the liver ultrathin sections reveals that swiftly after 1 min, the hepatocytes near to the central venule in the acinus zone 3 shows cytoplasmic membrane-bound vesicles. Such vesicles increased in both numbers and size to vacuoles and precisely often found in the proximity to the nucleus. Further, EM affirm these vacuoles are also optically empty and do not contain any electron dense material. Although, some of the other hepatocytes reveals sign of cell damage including swollen mitochondria, dilated endoplasmic reticulum, Golgi apparatus and disrupted plasma membrane, but most of the hepatocytes appeared normal. The ultrastructural findings in the mice injected with empty vector or saline injected control mice were similar. Therefore, we have interpreted the vacuole formation as nonspecific endocytosis without specific interactions at the plasma membrane.
Collapse
Affiliation(s)
- Mohd Yasser
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Silvia Ribback
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
- Correspondence:
| | - Katja Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Kirsten Utpatel
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Katharina Annweiler
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Matthias Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Frank Dombrowski
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Diego F. Calvisi
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Gernoux G, Guilbaud M, Devaux M, Journou M, Pichard V, Jaulin N, Léger A, Le Duff J, Deschamps JY, Le Guiner C, Moullier P, Cherel Y, Adjali O. AAV8 locoregional delivery induces long-term expression of an immunogenic transgene in macaques despite persisting local inflammation. Mol Ther Methods Clin Dev 2021; 20:660-674. [PMID: 33718516 PMCID: PMC7907542 DOI: 10.1016/j.omtm.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
Adeno-associated virus (AAV) vectors are considered efficient vectors for gene transfer, as illustrated by recent successful clinical trials targeting retinal or neurodegenerative disorders. However, limitations as host immune responses to AAV capsid or transduction of limited regions must still be overcome. Here, we focused on locoregional (LR) intravenous perfusion vector delivery that allows transduction of large muscular areas and is considered to be less immunogenic than intramuscular (IM) injection. To confirm this hypothesis, we injected 6 cynomolgus monkeys with an AAV serotype 8 (AAV8) vector encoding for the highly immunogenic GFP driven by either a muscle-specific promoter (n = 3) or a cytomegalovirus (CMV) promoter (n = 3). We report that LR delivery allows long-term GFP expression in the perfused limb (up to 1 year) despite the initiation of a peripheral transgene-specific immune response. The analysis of the immune status of the perfused limb shows that LR delivery induces persisting inflammation. However, this inflammation is not sufficient to result in transgene clearance and is balanced by resident regulatory T cells. Overall, our results suggest that LR delivery promotes persisting transgene expression by induction of Treg cells in situ and might be a safe alternative to IM route to target large muscle territories for the expression of secreted therapeutic factors.
Collapse
Affiliation(s)
- Gwladys Gernoux
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Mickaël Guilbaud
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Marie Devaux
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Malo Journou
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Virginie Pichard
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Nicolas Jaulin
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Adrien Léger
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Johanne Le Duff
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | | | - Caroline Le Guiner
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Philippe Moullier
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Yan Cherel
- INRA UMR 703, PAnTher, ONIRIS, 44307 Nantes, France
| | - Oumeya Adjali
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| |
Collapse
|
5
|
Le Guen YT, Le Gall T, Midoux P, Guégan P, Braun S, Montier T. Gene transfer to skeletal muscle using hydrodynamic limb vein injection: current applications, hurdles and possible optimizations. J Gene Med 2020; 22:e3150. [PMID: 31785130 DOI: 10.1002/jgm.3150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
Hydrodynamic limb vein injection is an in vivo locoregional gene delivery method. It consists of administrating a large volume of solution containing nucleic acid constructs in a limb with both blood inflow and outflow temporarily blocked using a tourniquet. The fast, high pressure delivery allows the musculature of the whole limb to be reached. The skeletal muscle is a tissue of choice for a variety of gene transfer applications, including gene therapy for Duchenne muscular dystrophy or other myopathies, as well as for the production of antibodies or other proteins with broad therapeutic effects. Hydrodynamic limb vein delivery has been evaluated with success in a large range of animal models. It has also proven to be safe and well-tolerated in muscular dystrophy patients, thus supporting its translation to the clinic. However, some possible limitations may occur at different steps of the delivery process. Here, we have highlighted the interests, bottlenecks and potential improvements that could further optimize non-viral gene transfer following hydrodynamic limb vein injection.
Collapse
Affiliation(s)
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, France
| | - Philippe Guégan
- Laboratoire de chimie des polymères, Sorbonne Université, CNRS UMR 8232, UPMC Paris 06, F-75005, Paris, France
| | - Serge Braun
- AFM Telethon, 1 rue de l'Internationale, BP59, 91002 Evry, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France
| |
Collapse
|
6
|
Gruntman AM, Gernoux G, Tang Q, Ye GJ, Knop DR, Wang G, Benson J, Coleman KE, Keeler AM, Mueller C, Chicoine LG, Chulay JD, Flotte TR. Bridging from Intramuscular to Limb Perfusion Delivery of rAAV: Optimization in a Non-human Primate Study. Mol Ther Methods Clin Dev 2019; 13:233-242. [PMID: 30828586 PMCID: PMC6383191 DOI: 10.1016/j.omtm.2019.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 02/04/2023]
Abstract
Phase 1 and phase 2 gene therapy trials using intramuscular (IM) administration of a recombinant adeno-associated virus serotype 1 (rAAV1) for replacement of serum alpha-1 antitrypsin (AAT) deficiency have shown long-term (5-year) stable transgene expression at approximately 2% to 3% of therapeutic levels, arguing for the long-term viability of this approach to gene replacement of secreted serum protein deficiencies. However, achieving these levels required 100 IM injections to deliver 135 mL of vector, and further dose escalation is limited by the scalability of direct IM injection. To further advance the dose escalation, we sought to bridge the rAAV-AAT clinical development program to regional limb perfusion, comparing two methods previously established for gene therapy, peripheral venous limb perfusion (VLP) and an intra-arterial push and dwell (IAPD) using rAAV1 and rAAV8 in a non-human primate (rhesus macaque) study. The rhesus AAT transgene was used with a c-myc tag to enable quantification of transgene expression. 5 cohorts of animals were treated with rAAV1-IM, rAAV1-VLP, rAAV1-IAPD, rAAV8-VLP, and rAAV8-IAPD (n = 2-3), with a dose of 6 × 1012 vg/kg. All methods were well tolerated clinically. Potency, as determined by serum levels of AAT, of rAAV1 by the VLP method was twice that observed with direct IM injection; 90 μg/mL with VLP versus 38 μg/mL with direct IM injection. There was an approximately 25-fold advantage in estimated vector genomes retained within the muscle tissue with VLP and a 5-fold improvement in the ratio of total vector genomes retained within muscle as compared with liver. The other methods were intermediate in the potency and retention of vector genomes. Examination of muscle enzyme (CK) levels indicated rAAV1-VLP to be equally safe as compared with IM injection, while the IAPD method showed significant CK elevation. Overall, rAAV1-VLP demonstrates higher potency per vector genome injected and a greater total vector retention within the muscle, as compared to IM injection, while enabling a much greater total dose to be delivered, with equivalent safety. These data provide the basis for continuation of the dose escalation of the rAAV1-AAT program in patients and bode well for rAAV-VLP as a platform for replacement of secreted proteins.
Collapse
Affiliation(s)
- Alisha M. Gruntman
- University of Massachusetts Medical School, Worcester, MA 01655, USA
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Gwladys Gernoux
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Qiushi Tang
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Guo-Jie Ye
- Applied Genetic Technologies Corp., Alachua, FL 32615, USA
| | - Dave R. Knop
- Applied Genetic Technologies Corp., Alachua, FL 32615, USA
| | - Gensheng Wang
- Lovelace Respiratory Research Institute, Albuquerque, NM 87106, USA
| | - Janet Benson
- Lovelace Respiratory Research Institute, Albuquerque, NM 87106, USA
| | - Kristen E. Coleman
- Powell Gene Therapy Center Toxicology Core, University of Florida, Gainesville, FL 32610, USA
| | - Allison M. Keeler
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Christian Mueller
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Louis G. Chicoine
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | | | - Terence R. Flotte
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
7
|
Complete correction of hemophilia B phenotype by FIX-Padua skeletal muscle gene therapy in an inhibitor-prone dog model. Blood Adv 2019; 2:505-508. [PMID: 29500218 DOI: 10.1182/bloodadvances.2017015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/01/2018] [Indexed: 01/31/2023] Open
Abstract
Key Points
Skeletal muscle–directed expression of FIX-Padua resulted in complete correction of HB phenotype in an inhibitor-prone dog model. Long-term immune tolerance to FIX is sustained over years upon multiple challenges with recombinant FIX protein in 2 HB models.
Collapse
|
8
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Duan D. Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 2016; 21:16-25. [PMID: 27459604 PMCID: PMC5138077 DOI: 10.1016/j.coviro.2016.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
For diseases like muscular dystrophy, an effective gene therapy requires bodywide correction. Systemic viral vector delivery has been attempted since early 1990s. Yet a true success was not achieved until mid-2000 when adeno-associated virus (AAV) serotype-6, 8 and 9 were found to result in global muscle transduction in rodents following intravenous injection. The simplicity of the technique immediately attracts attention. Marvelous whole body amelioration has been achieved in rodent models of many diseases. Scale-up in large mammals also shows promising results. Importantly, the first systemic AAV-9 therapy was initiated in patients in April 2014. Recent studies have now begun to reveal molecular underpinnings of systemic AAV delivery and to engineer new AAV capsids with superior properties for systemic gene therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, The University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Gene therapy as a treatment for neuromuscular disease has significantly advanced over the past decade. In the present review, the progress of adeno-associated viruses (AAV) vector-mediated gene therapy for Duchenne muscular dystrophy (DMD) during the past year is highlighted. RECENT FINDINGS Modulating the immune response to AAV vector capsid or the transgene has helped to increase stable transduction efficiency. Full-length dystrophin expression via gene editing with targeted nucleases may ultimately be an ideal treatment option. Also genes with homologues function may ameliorate many aspects of the DMD pathophysiology. SUMMARY The work during the past year has increased our understanding of AAV vector-mediated therapy and has also validated new approaches to treat DMD. The results will aid in the design of both preclinical and clinical trials.
Collapse
|
11
|
Gruntman AM, Flotte TR. Delivery of Adeno-Associated Virus Gene Therapy by Intravascular Limb Infusion Methods. HUM GENE THER CL DEV 2015; 26:159-64. [PMID: 26357010 PMCID: PMC4606036 DOI: 10.1089/humc.2015.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) can be delivered to the skeletal muscle of the limb (pelvic or thoracic) by means of regional intravascular delivery. This review summarizes the evolution of this technique to deliver rAAV either via the arterial blood supply or via the peripheral venous circulation. The focus of this review is on applications in large animal models, including preclinical studies. Based on this overview of past research, we aim to inform the design of preclinical and clinical studies.
Collapse
Affiliation(s)
- Alisha M. Gruntman
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Terence R. Flotte
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
- Microbiology & Physiologic Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
12
|
Nichols TC, Whitford MH, Arruda VR, Stedman HH, Kay MA, High KA. Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs. HUM GENE THER CL DEV 2015; 26:5-14. [PMID: 25675273 DOI: 10.1089/humc.2014.153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (<1% FIX) provide well-characterized phenotypes and genotypes in which a species-specific transgene can be expressed in a mixed genetic background. Correction of the hemophilic coagulopathy by sustained expression of FIX, reduction of bleeding events, and a comprehensive assessment of the humoral and cell-mediated immune responses to the expressed transgene and recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches.
Collapse
Affiliation(s)
- Timothy C Nichols
- 1 Francis Owen Blood Research Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC 27516
| | | | | | | | | | | |
Collapse
|
13
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
14
|
Nichols T, Whitford MH, Arruda VR, Stedman HH, Kay MA, High KA. Translational Data from AAV-Mediated Gene Therapy of Hemophilia B in Dogs. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
15
|
Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, Wary C, Matot B, Larcher T, Guigand L, Dutilleul M, Domenger C, Allais M, Beuvin M, Moraux A, Le Duff J, Devaux M, Jaulin N, Guilbaud M, Latournerie V, Veron P, Boutin S, Leborgne C, Desgue D, Deschamps JY, Moullec S, Fromes Y, Vulin A, Smith RH, Laroudie N, Barnay-Toutain F, Rivière C, Bucher S, Le TH, Delaunay N, Gasmi M, Kotin RM, Bonne G, Adjali O, Masurier C, Hogrel JY, Carlier P, Moullier P, Voit T. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 2014; 22:1923-35. [PMID: 25200009 PMCID: PMC4429735 DOI: 10.1038/mt.2014.151] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.
Collapse
Affiliation(s)
- Caroline Le Guiner
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Généthon, Evry, France
| | | | - Laurent Servais
- Institut de Myologie, Service of Clinical Trials and Databases, Paris, France
| | - Yan Cherel
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Virginie Francois
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Jean-Laurent Thibaud
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
- UPR de Neurobiologie, Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort, France
| | - Claire Wary
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Béatrice Matot
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Thibaut Larcher
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Lydie Guigand
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Maeva Dutilleul
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Claire Domenger
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Marine Allais
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Maud Beuvin
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
| | - Amélie Moraux
- Institut de Myologie, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Johanne Le Duff
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Marie Devaux
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Nicolas Jaulin
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Mickaël Guilbaud
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | | | | | | | | | - Jack-Yves Deschamps
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Sophie Moullec
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Yves Fromes
- Atlantic Gene Therapies, Centre de Boisbonne, ONIRIS, Nantes, France
| | - Adeline Vulin
- Research Institute, Center for Gene Therapy, Nationwide Childrens Hospital, Columbus, Ohio, USA
| | - Richard H Smith
- Laboratory of Molecular Virology and Gene Therapy, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | - Robert M Kotin
- Laboratory of Molecular Virology and Gene Therapy, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Gisèle Bonne
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| | - Oumeya Adjali
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | - Jean-Yves Hogrel
- Institut de Myologie, Neuromuscular Physiology and Evaluation Laboratory, Paris, France
| | - Pierre Carlier
- Institut de Myologie, Laboratoire RMN, AIM & CEA, Paris, France
| | - Philippe Moullier
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Généthon, Evry, France
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Thomas Voit
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie Paris 6 UPMC-INSERM UMR 974, CNRS FRE 3617, Paris, France
| |
Collapse
|
16
|
McFall ER, Murray LM, Lunde JA, Jasmin BJ, Kothary R, Parks RJ. A reduction in the human adenovirus virion size through use of a shortened fibre protein does not enhance muscle transduction following systemic or localised delivery in mice. Virology 2014; 468-470:444-453. [PMID: 25243333 DOI: 10.1016/j.virol.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
Abstract
We have investigated whether reducing the overall size of adenovirus (Ad), through use of a vector containing a shortened fibre, leads to enhanced distribution and dissemination of the vector. Intravenous or intraperitoneal injection of Ad5SlacZ (12 nm fibre versus the normal Ad5 37 nm fibre) or Ad5SpKlacZ (shortened fibre with polylysine motif in the H-I loop of fibre knob domain) led to similar levels of lacZ expression compared to Ad5LlacZ (native Ad5 fibre) in the liver of treated animals, but did not enhance extravasation into the tibialis anterior muscle. Direct injection of the short-fibre vectors into the tibialis anterior muscle did not result in enhanced spread of the vector through muscle tissue, and led to only sporadic transgene expression in the spinal cord, suggesting that modifying the fibre length or redirecting viral infection to a more common cell surface receptor does not enhance motor neuron uptake or retrograde transport.
Collapse
Affiliation(s)
- Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lyndsay M Murray
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - John A Lunde
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
17
|
Childers MK, Joubert R, Poulard K, Moal C, Grange RW, Doering JA, Lawlor MW, Rider BE, Jamet T, Danièle N, Martin S, Rivière C, Soker T, Hammer C, Van Wittenberghe L, Lockard M, Guan X, Goddard M, Mitchell E, Barber J, Williams JK, Mack DL, Furth ME, Vignaud A, Masurier C, Mavilio F, Moullier P, Beggs AH, Buj-Bello A. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014; 6:220ra10. [PMID: 24452262 DOI: 10.1126/scitranslmed.3007523] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.
Collapse
Affiliation(s)
- Martin K Childers
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Campus Box 358056, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kanefuji T, Yokoo T, Suda T, Abe H, Kamimura K, Liu D. Hemodynamics of a hydrodynamic injection. Mol Ther Methods Clin Dev 2014; 1:14029. [PMID: 26015971 PMCID: PMC4362352 DOI: 10.1038/mtm.2014.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
The hemodynamics during a hydrodynamic injection were evaluated using cone beam computed tomography (CBCT) and fluoroscopic imaging. The impacts of hydrodynamic (5 seconds) and slow (60 seconds) injections into the tail veins of mice were compared using 9% body weight of a phase-contrast medium. Hydrodynamically injected solution traveled to the heart and drew back to the hepatic veins (HV), which led to liver expansion and a trace amount of spillover into the portal vein (PV). The liver volumes peaked at 165.6 ± 13.3% and 165.5 ± 11.9% of the original liver volumes in the hydrodynamic and slow injections, respectively. Judging by the intensity of the CBCT images at the PV, HV, right atrium, liver parenchyma (LP), and the inferior vena cava (IVC) distal to the HV conjunction, the slow injection resulted in the higher intensity at PV than at LP. In contrast, a significantly higher intensity was observed in LP after hydrodynamic injection in comparison with that of PV, suggesting that the liver took up the iodine from the blood flow. These results suggest that the enlargement speed of the liver, rather than the expanded volume, primarily determines the efficiency of hydrodynamic delivery to the liver.
Collapse
Affiliation(s)
- Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Yokoo
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Abstract
Duchenne muscular dystrophy (DMD) is an inherited, progressive muscle wasting disorder caused by mutations in the dystrophin gene. An increasing variety of approaches are moving towards clinical testing that all aim to restore dystrophin production and to enhance or preserve muscle mass. Gene therapy methods are being developed to replace the defective dystrophin gene or induce dystrophin production from mutant genes. Stem cell approaches are being developed to replace lost muscle cells while also bringing in new dystrophin genes. This review summarizes recent progress in the field with an emphasis on clinical applications.
Collapse
|
20
|
Hemodynamics of a hydrodynamic injection. Mol Ther Methods Clin Dev 2014. [PMID: 26015971 DOI: 10.1038/mtm.2014.29.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hemodynamics during a hydrodynamic injection were evaluated using cone beam computed tomography (CBCT) and fluoroscopic imaging. The impacts of hydrodynamic (5 seconds) and slow (60 seconds) injections into the tail veins of mice were compared using 9% body weight of a phase-contrast medium. Hydrodynamically injected solution traveled to the heart and drew back to the hepatic veins (HV), which led to liver expansion and a trace amount of spillover into the portal vein (PV). The liver volumes peaked at 165.6 ± 13.3% and 165.5 ± 11.9% of the original liver volumes in the hydrodynamic and slow injections, respectively. Judging by the intensity of the CBCT images at the PV, HV, right atrium, liver parenchyma (LP), and the inferior vena cava (IVC) distal to the HV conjunction, the slow injection resulted in the higher intensity at PV than at LP. In contrast, a significantly higher intensity was observed in LP after hydrodynamic injection in comparison with that of PV, suggesting that the liver took up the iodine from the blood flow. These results suggest that the enlargement speed of the liver, rather than the expanded volume, primarily determines the efficiency of hydrodynamic delivery to the liver.
Collapse
|
21
|
PCR-based detection of gene transfer vectors: application to gene doping surveillance. Anal Bioanal Chem 2013; 405:9641-53. [DOI: 10.1007/s00216-013-7264-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/03/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022]
|
22
|
Abstract
Gene therapy products for the treatment of genetic diseases are currently in clinical trials, and one of these, an adeno-associated viral (AAV) product, has recently been licensed. AAV vectors have achieved positive results in a number of clinical and preclinical settings, including hematologic disorders such as the hemophilias, Gaucher disease, hemochromatosis, and the porphyrias. Because AAV vectors are administered directly to the patient, the likelihood of a host immune response is high, as shown by human studies. Preexisting and/or recall responses to the wild-type virus from which the vector is engineered, or to the transgene product itself, can interfere with therapeutic efficacy if not identified and managed optimally. Small-scale clinical studies have enabled investigators to dissect the immune responses to the AAV vector capsid and to the transgene product, and to develop strategies to manage these responses to achieve long-term expression of the therapeutic gene. However, a comprehensive understanding of the determinants of immunogenicity of AAV vectors, and of potential associated toxicities, is still lacking. Careful immunosurveillance conducted as part of ongoing clinical studies will provide the basis for understanding the intricacies of the immune response in AAV-mediated gene transfer, facilitating safe and effective therapies for genetic diseases.
Collapse
|
23
|
Abstract
Advances in understanding of the molecular basis of myocardial dysfunction, together with the development of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. Multiple components of cardiac contractility, including the Beta-adrenergic system, the calcium channel cycling pathway, and cytokine mediated cell proliferation, have been identified as appropriate targets for gene therapy. The development of efficient and safe vectors such as adeno-associated viruses and polymer nanoparticles has provided an opportunity for clinical application for gene therapy. The recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) has the potential to open a new era for gene therapy in the treatment of heart failure.
Collapse
Affiliation(s)
- Charbel Naim
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
24
|
Abstract
Advances in understanding the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, make gene-based therapy a promising treatment option for heart conditions. Cardiovascular gene therapy has benefitted from recent advancements in vector technology, design, and delivery modalities. There is a critical need to explore new therapeutic approaches in heart failure, and gene therapy has emerged as a viable alternative. Advances in understanding of the molecular basis of myocardial dysfunction, together with the development of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. The recent successful and safe completion of a phase 2 trial targeting the cardiac sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA2a) has the potential to open a new era for gene therapy for heart failure.
Collapse
Affiliation(s)
- Roger J Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1030, New York, New York 10029, USA.
| |
Collapse
|
25
|
Sabatino DE, Arruda VR. Muscle Gene Therapy for Hemophilia. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2012; Suppl 1:S1-010. [PMID: 24883231 PMCID: PMC4038336 DOI: 10.4172/2157-7412.s1-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle-directed gene therapy for hemophilia is an attractive strategy for expression of therapeutic levels of clotting factor as evident from preclinical studies and an early phase clinical trial. Notably, local FIX expression by AAV-mediated direct intramuscular injection to skeletal muscle persists for years. Development of intravascular delivery of AAV vector approaches to skeletal muscle resulted in vector in widespread areas of the limb and increased expression of FIX in hemophilia B dogs. The use of FIX variants with improved biological activity may provide the opportunity to increase the efficacy of these approaches. Studies for hemophilia A are less developed at this point, but utilizing transgenes that improve hemostasis independent of FIX and FVIII has potential therapeutic application for both hemophilia A and B. Continuous monitoring of humoral and T cell responses to the transgene and AAV capsid in human trials will be critical for the translation of these promising approaches for muscle gene therapy for hemophilia.
Collapse
Affiliation(s)
- Denise E. Sabatino
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valder R. Arruda
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Ni W, Le Guiner C, Moullier P, Snyder RO. Development and utility of an internal threshold control (ITC) real-time PCR assay for exogenous DNA detection. PLoS One 2012; 7:e36461. [PMID: 22570718 PMCID: PMC3343023 DOI: 10.1371/journal.pone.0036461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/06/2012] [Indexed: 12/28/2022] Open
Abstract
Sensitive and specific tests for detecting exogenous DNA molecules are useful for infectious disease diagnosis, gene therapy clinical trial safety, and gene doping surveillance. Taqman real-time PCR using specific sequence probes provides an effective approach to accurately and quantitatively detect exogenous DNA. However, one of the major challenges in these analyses is to eliminate false positive signals caused by either non-targeted exogenous or endogenous DNA sequences, or false negative signals caused by impurities that inhibit PCR. Although multiplex Taqman PCR assays have been applied to address these problems by adding extra primer-probe sets targeted to endogenous DNA sequences, the differences between targets can lead to different detection efficiencies. To avoid these complications, a Taqman PCR-based approach that incorporates an internal threshold control (ITC) has been developed. In this single reaction format, the target sequence and ITC template are co-amplified by the same primers, but are detected by different probes each with a unique fluorescent dye. Sample DNA, a prescribed number of ITC template molecules set near the limit of sensitivity, a single pair of primers, target probe and ITC probe are added to one reaction. Fluorescence emission signals are obtained simultaneously to determine the cycle thresholds (Ct) for amplification of the target and ITC sequences. The comparison of the target Ct with the ITC Ct indicates if a sample is a true positive for the target (i.e. Ct less than or equal to the ITC Ct) or negative (i.e. Ct greater than the ITC Ct). The utility of this approach was demonstrated in a nonhuman primate model of rAAV vector mediated gene doping in vivo and in human genomic DNA spiked with plasmid DNA.
Collapse
Affiliation(s)
- Weiyi Ni
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | | | - Philippe Moullier
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Laboratoire de Thérapie Génique, INSERM UMR1089, IRT UN, Nantes, France
| | - Richard O. Snyder
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Laboratoire de Thérapie Génique, INSERM UMR1089, IRT UN, Nantes, France
- Center of Excellence for Regenerative Health Biotechnology, University of Florida, Alachua, Florida, United States of America
| |
Collapse
|
27
|
Abstract
Congestive heart failure accounts for half a million deaths per year in the United States. Despite its place among the leading causes of morbidity, pharmacological and mechanic remedies have only been able to slow the progression of the disease. Today's science has yet to provide a cure, and there are few therapeutic modalities available for patients with advanced heart failure. There is a critical need to explore new therapeutic approaches in heart failure, and gene therapy has emerged as a viable alternative. Recent advances in understanding of the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, have placed heart failure within reach of gene-based therapy. The recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a), along with the start of more recent phase 1 trials, opens a new era for gene therapy for the treatment of heart failure.
Collapse
Affiliation(s)
- Lisa Tilemann
- Cardiovascular Research Center, Mount Sinai Medical Center, New York, NY 10029, USA
| | | | | | | |
Collapse
|
28
|
Stedman HH, Byrne BJ. Signs of progress in gene therapy for muscular dystrophy also warrant caution. Mol Ther 2012; 20:249-51. [PMID: 22297820 DOI: 10.1038/mt.2011.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hansell H Stedman
- Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
29
|
AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther 2011; 19:1582-90. [PMID: 21792180 DOI: 10.1038/mt.2011.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver "pre-event" cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans.
Collapse
|
30
|
Abstract
Vector transport across the endothelium has long been regarded as one of the central "bottlenecks" in gene therapy research, especially as it pertains to the muscular dystrophies where the target tissue approaches half of the total body mass. Clinical studies of gene therapy for hemophilia B revealed the limitations of the intramuscular route, compelling an aggressive approach to the study of scale-independent circulatory means of vector delivery. The apparent permeability of the microvasculature in small animals suggests that gravitational and/or inertial effects on the circulation require progressive restriction of fluid and solute flow across the capillary wall with increasing body size. To overcome this physiological restriction, we initially used a combined surgical and pharmacological approach to temporarily alter permeability within the isolated pelvic limb. Although this was successful, new information about the cell and molecular biology of histamine-induced changes in microvascular permeability suggested an alternative approach, which substituted pressure-induced transvenular extravasation. Here we outline the details of our surgical approaches in the rat. We also discuss the modifications that are appropriate for the dog.
Collapse
|
31
|
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12:341-55. [PMID: 21499295 DOI: 10.1038/nrg2988] [Citation(s) in RCA: 686] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.
Collapse
Affiliation(s)
- Federico Mingozzi
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5th Floor CTRB, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
32
|
Abstract
BACKGROUND Cure, or improvement of disease phenotype, has been a long-term goal in the treatment of haemophilia. An obvious strategy for achieving this goal is the use of gene therapy. OBJECTIVES This paper summarises prior and current clinical trials of gene therapy for haemophilia A and B, and briefly describes additional strategies in pre-clinical development. RESULTS AND CONCLUSIONS Approximately 50 human subjects with severe haemophilia A or B have been enrolled in seven different trials of gene therapy. These have used plasmids, retroviral, adenoviral, and AAV vectors, directed to autologous fibroblasts, skeletal muscle, liver, and other target cell types accessed by intravenous injection of vector. Four separate trials have used AAV vectors, three of these targeting liver. Data from animal models suggest that several different gene replacement strategies may eventually yield long-term expression of factor at therapeutic levels, and that in situ correction of gene defects in hepatocytes may eventually be a therapeutic option.
Collapse
Affiliation(s)
- K A High
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
33
|
Goyenvalle A, Seto JT, Davies KE, Chamberlain J. Therapeutic approaches to muscular dystrophy. Hum Mol Genet 2011; 20:R69-78. [PMID: 21436158 DOI: 10.1093/hmg/ddr105] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic disorders characterized by muscle weakness and wasting. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy, and although the molecular mechanisms of the disease have been extensively investigated since the discovery of the gene in 1986, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies, RNA-based technology and pharmacological approaches. While the proof of principle has been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense-mediated exon skipping has shown encouraging results and holds promise for the treatment of dystrophic muscle. Here, we summarize the recent progress in therapeutic approaches to muscular dystrophies, with an emphasis on gene therapy and exon skipping for DMD.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
34
|
Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping. Gene Ther 2011; 18:709-18. [DOI: 10.1038/gt.2011.19] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Himeda CL, Chen X, Hauschka SD. Design and testing of regulatory cassettes for optimal activity in skeletal and cardiac muscles. Methods Mol Biol 2011; 709:3-19. [PMID: 21194018 DOI: 10.1007/978-1-61737-982-6_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes. Since the relative importance of many control elements varies among different anatomical muscles, we are aiming to tailor these cassettes for high-level expression in cardiac muscle, and in fast and slow skeletal muscles. With the achievement of efficient intravascular gene delivery to isolated limbs, selected muscle groups, and heart in large animal models, the design of cassettes optimized for activity in different muscle types is now a practical goal. In this protocol, we outline the key steps involved in the design of regulatory cassettes for optimal activity in skeletal and cardiac muscle, and testing in mature muscle fiber cultures. The basic principles described here can also be applied to engineering tissue-specific regulatory cassettes for other cell types.
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
36
|
Odom GL, Banks GB, Schultz BR, Gregorevic P, Chamberlain JS. Preclinical studies for gene therapy of Duchenne muscular dystrophy. J Child Neurol 2010; 25:1149-57. [PMID: 20498332 DOI: 10.1177/0883073810371006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The muscular dystrophies are a diverse group of genetic disorders without an effective treatment. Because they are caused by mutations in various genes, the most direct way to treat them involves correcting the underlying gene defect (ie, gene therapy). Such a gene therapy approach involves delivering a therapeutic gene cassette to essentially all the muscles of the body in a safe and efficacious manner. The authors describe gene delivery methods using vectors derived from adeno-associated virus that are showing great promise in preclinical studies for treatment of Duchenne muscular dystrophy. It is hoped that variations on these methods might be applicable for most, if not all, of the different types of muscular dystrophy.
Collapse
Affiliation(s)
- Guy L Odom
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195-7720, USA
| | | | | | | | | |
Collapse
|
37
|
Sun B, Li S, Bird A, Koeberl DD. Hydrostatic isolated limb perfusion with adeno-associated virus vectors enhances correction of skeletal muscle in Pompe disease. Gene Ther 2010; 17:1500-5. [PMID: 20686508 PMCID: PMC2988075 DOI: 10.1038/gt.2010.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the inherited deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. We hypothesized that hydrostatic isolated limb perfusion (ILP) administration of an adeno-associated virus (AAV) vector containing a muscle specific promoter could achieve relatively higher transgene expression in the hindlimb muscles of GAA-knockout (GAA-KO) mice, in comparison with intravenous (IV) administration. ILP adminstration of AAV2/8 vectors encoding alkaline phosphatase or human GAA transduced skeletal muscles of the hindlimb widely, despite the relatively low number of vector particles administered (1×1011), and IV administration of an equivalent vector dose failed to transduce skeletal muscle detectably. Similarly, ILP administration of fewer vector particles of the AAV2/9 vector encoding human GAA (3×1010) transduced skeletal muscles of the hindlimb widely and significantly reduced glycogen content to, in comparison with IV administration. The only advantage for IV administration was moderately high level transduction of cardiac muscle, which demonstrated compellingly that ILP administration sequestered vector particles within the perfused limb. Reduction of glycogen storage in the extensor digitorum longus demonstrated the potential advantage of ILP-mediated delivery of AAV vectors in Pompe disease, because type II myofibers are resistant to enzyme replacement therapy. Thus, ILP will enhance AAV transduction of multiple skeletal muscles while reducing the required dosages in terms of vector particle numbers.
Collapse
Affiliation(s)
- B Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
38
|
Hegge JO, Wooddell CI, Zhang G, Hagstrom JE, Braun S, Huss T, Sebestyén MG, Emborg ME, Wolff JA. Evaluation of hydrodynamic limb vein injections in nonhuman primates. Hum Gene Ther 2010; 21:829-42. [PMID: 20163248 PMCID: PMC2938361 DOI: 10.1089/hum.2009.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/14/2010] [Indexed: 11/12/2022] Open
Abstract
The administration route is emerging as a critical aspect of nonviral and viral vector delivery to muscle, so as to enable gene therapy for disorders such as muscular dystrophy. Although direct intramuscular routes were used initially, intravascular routes are garnering interest because of their ability to target multiple muscles at once and to increase the efficiency of delivery and expression. For the delivery of naked plasmid DNA, our group has developed a hydrodynamic, limb vein procedure that entails placing a tourniquet over the proximal part of the target limb to block all blood flow and injecting the gene vector rapidly in a large volume so as to enable the gene vector to be extravasated and to access the myofibers. The present study was conducted in part to optimize the procedure in preparation for a human clinical study. Various injection parameters such as the effect of papaverine preinjection, tourniquet inflation pressure and duration, and rate of injection were evaluated in rats and nonhuman primates. In addition, the safety of the procedure was further established by determining the effect of the procedure on the neuromuscular and vascular systems. The results from these studies provide additional evidence that the procedure is well tolerated and they provide a foundation on which to formulate the procedure for a human clinical study.
Collapse
Affiliation(s)
| | | | - Guofeng Zhang
- Department of Pediatrics and Department of Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705
- Present address: Roche Madison, Madison, WI 53711
| | | | - Serge Braun
- Association Française contre les Myopathies, 91002 Evry, France
| | | | | | - Marina E. Emborg
- Department of Medical Physics, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Jon A. Wolff
- Department of Pediatrics and Department of Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705
- Present address: Roche Madison, Madison, WI 53711
| |
Collapse
|
39
|
Haurigot V, Mingozzi F, Buchlis G, Hui DJ, Chen Y, Basner-Tschakarjan E, Arruda VR, Radu A, Franck HG, Wright JF, Zhou S, Stedman HH, Bellinger DA, Nichols TC, High KA. Safety of AAV factor IX peripheral transvenular gene delivery to muscle in hemophilia B dogs. Mol Ther 2010; 18:1318-29. [PMID: 20424599 PMCID: PMC2911254 DOI: 10.1038/mt.2010.73] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/01/2010] [Indexed: 12/11/2022] Open
Abstract
Muscle represents an attractive target tissue for adeno-associated virus (AAV) vector-mediated gene transfer for hemophilia B (HB). Experience with direct intramuscular (i.m.) administration of AAV vectors in humans showed that the approach is safe but fails to achieve therapeutic efficacy. Here, we present a careful evaluation of the safety profile (vector, transgene, and administration procedure) of peripheral transvenular administration of AAV-canine factor IX (cFIX) vectors to the muscle of HB dogs. Vector administration resulted in sustained therapeutic levels of cFIX expression. Although all animals developed a robust antibody response to the AAV capsid, no T-cell responses to the capsid antigen were detected by interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISpot). Interleukin (IL)-10 ELISpot screening of lymphocytes showed reactivity to cFIX-derived peptides, and restimulation of T cells in vitro in the presence of the identified cFIX epitopes resulted in the expansion of CD4(+)FoxP3(+)IL-10(+) T-cells. Vector administration was not associated with systemic inflammation, and vector spread to nontarget tissues was minimal. At the local level, limited levels of cell infiltrates were detected when the vector was administered intravascularly. In summary, this study in a large animal model of HB demonstrates that therapeutic levels of gene transfer can be safely achieved using a novel route of intravascular gene transfer to muscle.
Collapse
Affiliation(s)
- Virginia Haurigot
- Division of Hematology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Arruda VR, Stedman HH, Haurigot V, Buchlis G, Baila S, Favaro P, Chen Y, Franck HG, Zhou S, Wright JF, Couto LB, Jiang H, Pierce GF, Bellinger DA, Mingozzi F, Nichols TC, High KA. Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood 2010; 115:4678-88. [PMID: 20335222 PMCID: PMC2890180 DOI: 10.1182/blood-2009-12-261156] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 03/09/2010] [Indexed: 11/20/2022] Open
Abstract
Muscle represents an important tissue target for adeno-associated viral (AAV) vector-mediated gene transfer of the factor IX (FIX) gene in hemophilia B (HB) subjects with advanced liver disease. Previous studies of direct intramuscular administration of an AAV-FIX vector in humans showed limited efficacy. Here we adapted an intravascular delivery system of AAV vectors encoding the FIX transgene to skeletal muscle of HB dogs. The procedure, performed under transient immunosuppression (IS), resulted in widespread transduction of muscle and sustained, dose-dependent therapeutic levels of canine FIX transgene up to 10-fold higher than those obtained by intramuscular delivery. Correction of bleeding time correlated clinically with a dramatic reduction of spontaneous bleeding episodes. None of the dogs (n = 14) receiving the AAV vector under transient IS developed inhibitory antibodies to canine FIX; transient inhibitor was detected after vector delivery without IS. The use of AAV serotypes with high tropism for muscle and low susceptibility to anti-AAV2 antibodies allowed for efficient vector administration in naive dogs and in the presence of low- but not high-titer anti-AAV2 antibodies. Collectively, these results demonstrate the feasibility of this approach for treatment of HB and highlight the importance of IS to prevent immune responses to the FIX transgene product.
Collapse
Affiliation(s)
- Valder R Arruda
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Katz MG, Swain JD, White JD, Low D, Stedman H, Bridges CR. Cardiac gene therapy: optimization of gene delivery techniques in vivo. Hum Gene Ther 2010; 21:371-80. [PMID: 19947886 PMCID: PMC2865214 DOI: 10.1089/hum.2009.164] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/30/2009] [Indexed: 11/13/2022] Open
Abstract
Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods--including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques--with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity.
Collapse
Affiliation(s)
- Michael G Katz
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Gregorevic P, Schultz BR, Allen JM, Halldorson JB, Blankinship MJ, Meznarich NA, Kuhr CS, Doremus C, Finn E, Liggitt D, Chamberlain JS. Evaluation of vascular delivery methodologies to enhance rAAV6-mediated gene transfer to canine striated musculature. Mol Ther 2009; 17:1427-33. [PMID: 19471246 PMCID: PMC2788962 DOI: 10.1038/mt.2009.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/23/2009] [Indexed: 11/09/2022] Open
Abstract
A growing body of research supports the development of recombinant adeno-associated viral (rAAV) vectors for delivery of gene expression cassettes to striated musculature as a method of treating severe neuromuscular conditions. However, it is unclear whether delivery protocols that achieve extensive gene transfer in mice can be adapted to produce similarly extensive gene transfer in larger mammals and ultimately patients. Consequently, we sought to investigate methodological modifications that would facilitate rAAV-mediated gene transfer to the striated musculature of canines. A simple procedure incorporating acute (i) occlusion of limb blood flow, (ii) exsanguination via compression bandage, and (iii) vector "dwell" time of <20 minutes, markedly enhanced the transduction of limb muscles, compared with a simple bolus limb infusion of vector. A complementary method whereby vector was infused into the jugular vein led to efficient transduction of cardiomyocytes and to a lesser degree the diaphragm. Together these methods can be used to achieve transgene expression in heart, diaphragm, and limb muscles of juvenile dogs using rAAV6 vectors. These results establish that rAAV-mediated gene delivery is a viable approach to achieving systemic transduction of striated musculature in mammals approaching the dimensions of newborn humans.
Collapse
Affiliation(s)
- Paul Gregorevic
- Department of Neurology, University of Washington, Seattle, Washington 98195-7720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The muscular dystrophies are a heterogeneous group of over 40 disorders that are characterised by muscle weakness and wasting. The most common are Duchenne muscular dystrophy and Becker muscular dystrophy, which result from mutations within the gene encoding dystrophin; myotonic dystrophy type 1, which results from an expanded trinucleotide repeat in the myotonic dystrophy protein kinase gene; and facioscapulohumeral dystrophy, which is associated with contractions in the subtelomeric region of human chromosome 1. Currently the only treatments involve clinical management of symptoms, although several promising experimental strategies are emerging. These include gene therapy using adeno-associated viral, lentiviral and adenoviral vectors and nonviral vectors, such as plasmid DNA. Exon-skipping and cell-based therapies have also shown promise in the effective treatment and regeneration of dystrophic muscle. The availability of numerous animal models for Duchenne muscular dystrophy has enabled extensive testing of a wide range of therapeutic approaches for this type of disorder. Consequently, we focus here on the therapeutic developments for Duchenne muscular dystrophy as a model of the types of approaches being considered for various types of dystrophy. We discuss the advantages and limitations of each therapeutic strategy, as well as prospects and recent successes in the context of future clinical applications.
Collapse
|
44
|
Wang Z, Chamberlain JS, Tapscott SJ, Storb R. Gene therapy in large animal models of muscular dystrophy. ILAR J 2009; 50:187-98. [PMID: 19293461 DOI: 10.1093/ilar.50.2.187] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The muscular dystrophies are a group of genetically and phenotypically heterogeneously inherited diseases characterized by progressive muscle wasting, which can lead to premature death in severe forms such as Duchenne muscular dystrophy (DMD). In many cases they are caused by the absence of proteins that are critical components of the dystrophin-glycoprotein complex, which links the cytoskeleton and the basal lamina. There is no effective treatment for these disorders at present, but several novel strategies for replacing or repairing the defective gene are in development, with early encouraging results from animal models. We review these strategies, which include the use of stem cells of different tissue origins, gene replacement therapies mediated by various viral vectors, and transcript repair treatments using exon skipping strategies. We comment on their advantages and on limitations that must be overcome before successful application to human patients. Our focus is on studies in a clinically relevant large canine model of DMD. Recent advances in the field suggest that effective therapies for muscular dystrophies are on the horizon. Because of the complex nature of these diseases, it may be necessary to combine multiple approaches to achieve a successful treatment.
Collapse
Affiliation(s)
- Zejing Wang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center in Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
45
|
Kamimura K, Suda T, Xu W, Zhang G, Liu D. Image-guided, lobe-specific hydrodynamic gene delivery to swine liver. Mol Ther 2009; 17:491-499. [PMID: 19156134 PMCID: PMC2680706 DOI: 10.1038/mt.2008.294] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 12/08/2008] [Indexed: 02/07/2023] Open
Abstract
Image-guided, lobe-specific hydrodynamic gene delivery to liver was assessed in pigs. The procedure involved image-guided insertion of a balloon catheter to the hepatic vein of the selected lobe from the jugular vein and hydrodynamic injection of plasmid DNA using a newly developed computer-controlled injection device. We demonstrated that the impact of the procedure was regional with minimal effects on neighboring lobes. Level of gene expression resulted from the procedure was 10(7) relative light units (RLU)/mg in the targeted lobes and 10(2)-10(5) RLU/mg in the nontargeted lobes 4 hours after hydrodynamic injection of pCMV-Luc plasmids. Occlusion of blood flow in the inferior vena cava (IVC) or IVC plus portal vein (PV) was effective in elevating hydrodynamic pressure in the targeted vasculature but did not enhance gene delivery efficiency. Physiological examination on pigs with IVC occlusion revealed transient decreases of blood pressure and respiration rate. Removal of occlusion from IVC resulted in a rapid and transient increase in heart rate. Occlusion of the PV and hepatic vein showed no effect on physiological and cardiac activities. No major changes in serum composition were observed. These results suggest that (i) image-guided, lobe-specific hydrodynamic procedure is effective for regional gene delivery to liver, (ii) blockade in IVC should be avoided for hydrodynamic gene delivery to the liver, and (iii) clinical application of hydrodynamic gene delivery to liver is feasible.
Collapse
Affiliation(s)
- Kenya Kamimura
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
46
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN, Duan D. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 2008; 16:1944-52. [PMID: 18827804 DOI: 10.1038/mt.2008.207] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The success of many gene therapy applications hinges on efficient whole body transduction. In the case of muscular dystrophies, a therapeutic vector has to reach every muscle in the body. Recent studies suggest that vectors based on adeno-associated virus (AAV) are capable of body-wide transduction in rodents. However, translating this finding to large animals remains a challenge. Here we explored systemic gene delivery with AAV serotype-9 (AAV-9) in neonatal dogs. Previous attempts to directly deliver AAV to adult canine muscle have yielded minimal transduction due to a strong cellular immune response. However, in neonatal dogs we observed robust skeletal muscle transduction throughout the body after a single intravenous injection. Importantly, systemic transduction was achieved in the absence of pharmacological intervention or immune suppression and it lasted for at least 6 months (the duration of study). We also observed several unique features not predicted by murine studies. In particular, cardiac muscle was barely transduced in dogs. Many muscular dystrophy patients can be identified by neonatal screening. The technology described here may lead to an effective early intervention in these patients.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Miyagi N, Rao VP, Ricci D, Du Z, Byrne GW, Bailey KR, Nakai H, Russell SJ, McGregor CGA. Efficient and durable gene transfer to transplanted heart using adeno-associated virus 9 vector. J Heart Lung Transplant 2008; 27:554-60. [PMID: 18442723 DOI: 10.1016/j.healun.2008.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/14/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In this investigation we studied the efficacy and durability of recombinant adeno-associated virus serotype 9 (rAAV9) vector-mediated gene transfer to the transplanted rat heart. METHODS A rAAV9-CMV-lacZ vector diluted in cold (4 degrees C) University of Wisconsin solution was used to perfuse the rat coronary vasculature for 20 minutes prior to syngeneic heterotopic transplantation. Perfusion experiments (six groups, n = 3/group) were performed without rAAV9 and at four separate doses ranging from 2 x 10(9) to 2 x 10(12) viral genomes/ml. The transplanted heart was recovered 10 days or 3 months after transplantation and expression of lacZ assessed by histology, enzyme-linked immunoassay and real-time reverse transcript-polymerase chain reaction (RT-PCR). In a final group (n = 3), rAAV9 was administered systemically to compare the cardiac transduction efficiency and viral distribution to other organs. RESULTS Transduction efficiency of perfused virus correlated with vector dose (p < 0.0001), with myocardial transduction ranging up to 71.74% at the highest dose. Cardiac expression of lacZ was equivalent at 10 days and 3 months. There was no evidence of viral gene transfer to other organs after heart transplantation. CONCLUSIONS Our findings demonstrate efficient and durable rAAV9-mediated gene transfer to the transplanted heart after ex vivo perfusion and suggest that AAV9 is a promising vector for cardiac gene therapy.
Collapse
Affiliation(s)
- Naoto Miyagi
- William J. von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The recently developed hydrodynamic delivery method makes it possible to deliver DNA and RNA into parenchyma cells by intravascular injection of nucleic acid-containing solution. While this procedure is effective in rodents, it is difficult to perform in large animals, because manual control while delivering the injection cannot be sufficiently reliable for achieving a just-right hydrodynamic pressure in targeted tissue. In order to overcome this problem, we have developed a computer-controlled injection device that uses real-time intravascular pressure as a regulator. Using the new injection device, and mouse liver as the model organ, we demonstrated continuous injection at a single pressure and different pressures, and also serial (repeated) injections at intervals of 250 ms, by programming the computer according to the need. When assessed by reporter plasmids, the computer-controlled injection device exhibits gene delivery efficiency similar to that of conventional hydrodynamic injection. The device is also effective in gene delivery to kidney and muscle cells in rats, with plasmids or adenoviral vectors as gene carriers. Successful gene delivery to liver and kidney was also demonstrated in pigs, with the computer-controlled injection being combined with image-guided catheterization. These results represent a significant advance in in vivo gene delivery research, with potential for use in gene therapy in humans.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
50
|
Toromanoff A, Chérel Y, Guilbaud M, Penaud-Budloo M, Snyder RO, Haskins ME, Deschamps JY, Guigand L, Podevin G, Arruda VR, High KA, Stedman HH, Rolling F, Anegon I, Moullier P, Le Guiner C. Safety and efficacy of regional intravenous (r.i.) versus intramuscular (i.m.) delivery of rAAV1 and rAAV8 to nonhuman primate skeletal muscle. Mol Ther 2008; 16:1291-1299. [PMID: 18461055 DOI: 10.1038/mt.2008.87] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/02/2008] [Indexed: 11/09/2022] Open
Abstract
We developed a drug-free regional intravenous (r.i.) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (i.m.) delivery of the same dose of vector. We show that r.i. delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After i.m., muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although r.i. delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that r.i. is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.
Collapse
Affiliation(s)
- Alice Toromanoff
- INSERM UMR 649, CHU Nantes, Faculté de Médecine, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|