1
|
Yang S, Penna V, Lavine KJ. Functional diversity of cardiac macrophages in health and disease. Nat Rev Cardiol 2025; 22:431-442. [PMID: 39743564 DOI: 10.1038/s41569-024-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2- macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2+ macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell-cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Kolk MZH, Ruipérez-Campillo S, Allaart CP, Wilde AAM, Knops RE, Narayan SM, Tjong FVY. Multimodal explainable artificial intelligence identifies patients with non-ischaemic cardiomyopathy at risk of lethal ventricular arrhythmias. Sci Rep 2024; 14:14889. [PMID: 38937555 PMCID: PMC11211323 DOI: 10.1038/s41598-024-65357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
The efficacy of an implantable cardioverter-defibrillator (ICD) in patients with a non-ischaemic cardiomyopathy for primary prevention of sudden cardiac death is increasingly debated. We developed a multimodal deep learning model for arrhythmic risk prediction that integrated late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI), electrocardiography (ECG) and clinical data. Short-axis LGE-MRI scans and 12-lead ECGs were retrospectively collected from a cohort of 289 patients prior to ICD implantation, across two tertiary hospitals. A residual variational autoencoder was developed to extract physiological features from LGE-MRI and ECG, and used as inputs for a machine learning model (DEEP RISK) to predict malignant ventricular arrhythmia onset. In the validation cohort, the multimodal DEEP RISK model predicted malignant ventricular arrhythmias with an area under the receiver operating characteristic curve (AUROC) of 0.84 (95% confidence interval (CI) 0.71-0.96), a sensitivity of 0.98 (95% CI 0.75-1.00) and a specificity of 0.73 (95% CI 0.58-0.97). The models trained on individual modalities exhibited lower AUROC values compared to DEEP RISK [MRI branch: 0.80 (95% CI 0.65-0.94), ECG branch: 0.54 (95% CI 0.26-0.82), Clinical branch: 0.64 (95% CI 0.39-0.87)]. These results suggest that a multimodal model achieves high prognostic accuracy in predicting ventricular arrhythmias in a cohort of patients with non-ischaemic systolic heart failure, using data collected prior to ICD implantation.
Collapse
Affiliation(s)
- Maarten Z H Kolk
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Samuel Ruipérez-Campillo
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Computer Science (D-INFK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, Zurich, Switzerland
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1118, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Reinoud E Knops
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Fleur V Y Tjong
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands.
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Lu MK, Huo YN, Tai BY, Lin CY, Yang HY, Tsai CS. Ziprasidone triggers inflammasome signaling via PI3K-Akt-mTOR pathway to promote atrial fibrillation. Biomed Pharmacother 2024; 175:116649. [PMID: 38692059 DOI: 10.1016/j.biopha.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Second-generation antipsychotics increase the risk of atrial fibrillation. This study explores whether the atypical antipsychotic ziprasidone triggers inflammasome signaling, leading to atrial arrhythmia. METHODS Electromechanical and pharmacological assessments were conducted on the rabbit left atria (LA). The patch-clamp technique was used to measure ionic channel currents in single cardiomyocytes. Detection of cytosolic reactive oxygen species production was performed in atrial cardiomyocytes. RESULTS The duration of action potentials at 50 % and 90 % repolarization was dose-dependently shortened in ziprasidone-treated LA. Diastolic tension in LA increased after ziprasidone treatment. Ziprasidone-treated LA showed rapid atrial pacing (RAP) triggered activity. PI3K inhibitor, Akt inhibitor and mTOR inhibitor abolished the triggered activity elicited by ziprasidone in LA. The NLRP3 inhibitor MCC950 suppressed the ziprasidone-induced post-RAP-triggered activity. MCC950 treatment reduced the reverse-mode Na+/Ca2+ exchanger current in ziprasidone-treated myocytes. Cytosolic reactive oxygen species production decreased in ziprasidone-treated atrial myocytes after MCC950 treatment. Protein levels of inflammasomes and proinflammatory cytokines, including NLRP3, caspase-1, IL-1β, IL-18, and IL-6 were observed to be upregulated in myocytes treated with ziprasidone. CONCLUSIONS Our findings suggest ziprasidone induces atrial arrhythmia, potentially through upregulation of the NLRP3 inflammasome and enhancement of reactive oxygen species production via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Ming-Kun Lu
- Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan, ROC; Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan, Taiwan, ROC
| | - Yen-Nien Huo
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Buh-Yuan Tai
- Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan, ROC
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsiang-Yu Yang
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC; Division of Experimental Surgery Center, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Kolk MZH, Ruipérez-Campillo S, Alvarez-Florez L, Deb B, Bekkers EJ, Allaart CP, Van Der Lingen ALCJ, Clopton P, Išgum I, Wilde AAM, Knops RE, Narayan SM, Tjong FVY. Dynamic prediction of malignant ventricular arrhythmias using neural networks in patients with an implantable cardioverter-defibrillator. EBioMedicine 2024; 99:104937. [PMID: 38118401 PMCID: PMC10772563 DOI: 10.1016/j.ebiom.2023.104937] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and internally validated a dynamic machine learning (ML) model and neural network that extracted features from longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular arrhythmias. METHODS A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007 and 2021 in two academic hospitals was performed. Variational autoencoders (VAEs), which combine neural networks with variational inference principles, and can learn patterns and structure in data without explicit labelling, were trained to encode the mean ECG waveforms from the limb leads into 16 variables. Supervised dynamic ML models using these latent ECG representations and clinical baseline information were trained to predict malignant ventricular arrhythmias treated by the ICD. Model performance was evaluated on a hold-out set, using time-dependent receiver operating characteristic (ROC) and calibration curves. FINDINGS 2942 patients (61.7 ± 13.9 years, 25.5% female) were included, with a total of 32,129 ECG recordings during a mean follow-up of 43.9 ± 35.9 months. The mean time-varying area under the ROC curve for the dynamic model was 0.738 ± 0.07, compared to 0.639 ± 0.03 for a static (i.e. baseline-only model). Feature analyses indicated dynamic changes in latent ECG representations, particularly those affecting the T-wave morphology, were of highest importance for model predictions. INTERPRETATION Dynamic ML models and neural networks effectively leverage routinely collected longitudinal ECG recordings for personalised and updated predictions of malignant ventricular arrhythmias, outperforming static models. FUNDING This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T).
Collapse
Affiliation(s)
- Maarten Z H Kolk
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Samuel Ruipérez-Campillo
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHz), Gloriastrasse 35, Zurich, Switzerland; ITACA Institute, Universtitat Politècnica de València, Camino de Vera S/n, Valencia, Spain
| | - Laura Alvarez-Florez
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Brototo Deb
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Erik J Bekkers
- Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam UMC, Location VU Medical Center, De Boelelaan 1118, Amsterdam, the Netherlands
| | | | - Paul Clopton
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Reinoud E Knops
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Fleur V Y Tjong
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Pereira Filho HG, Samesima N, Madaloso BA, de Oliveira Tobias NMM, Facin M, Pastore CA. Modified moving average methodology applied to the treadmill stress testing analysis of microvolt T-wave alternans. Sci Rep 2022; 12:22454. [PMID: 36575194 PMCID: PMC9794681 DOI: 10.1038/s41598-022-26535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Sudden cardiac death is impactful. There has been an increase in the search for tools capable of identifying individuals who are most susceptible, such as the microvolt T-wave alternans. This study aims to analyze the applicability of the modified moving average methodology to obtain the microvolt T-wave alternans using treadmill specific protocols. Medical records of patients during the period August 2006-December 2014 were retrospectively analyzed. Five hundred and thirty nine exams were then included, divided into groups according to the protocol and updating factor used: Ellestad factor 8 or 32, Naughton factor 8 or 32. The topics for analysis were the alternans behavior, noise and confirmation according to the groups of leads analyzed (frontal, transversal and orthogonal planes). The greater microvolt T-wave alternans was found during the stress phase in most of the tests. Group Naughton 8 presented lower noise in this phase for the transverse and orthogonal planes (p = 0.0082 and p < 0.0001), with greater confirmation of frontal and orthogonal planes in comparison with group Ellestad 8 (p = 0.0002 and 0.0008). The results indicate the viability of simultaneous performance of the stress test and measurement of the T wave alternans with Naughton protocol with 1/8 updating factor.
Collapse
Affiliation(s)
- Horacio Gomes Pereira Filho
- grid.11899.380000 0004 1937 0722Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Unidade de Eletrocardiografia, Sao Paulo, SP 05403-900 Brazil
| | - Nelson Samesima
- grid.11899.380000 0004 1937 0722Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Unidade de Eletrocardiografia, Sao Paulo, SP 05403-900 Brazil
| | - Bruna Affonso Madaloso
- grid.11899.380000 0004 1937 0722Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Unidade de Eletrocardiografia, Sao Paulo, SP 05403-900 Brazil
| | - Nancy Maria Martins de Oliveira Tobias
- grid.11899.380000 0004 1937 0722Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Unidade de Eletrocardiografia, Sao Paulo, SP 05403-900 Brazil
| | - Mirella Facin
- grid.11899.380000 0004 1937 0722Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Unidade de Eletrocardiografia, Sao Paulo, SP 05403-900 Brazil
| | - Carlos Alberto Pastore
- grid.11899.380000 0004 1937 0722Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Unidade de Eletrocardiografia, Sao Paulo, SP 05403-900 Brazil
| |
Collapse
|
6
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
7
|
Kulkarni K, Stavrakis S, Elkholey K, Singh JP, Parks KA, Armoundas AA. Microvolt T-Wave Alternans Is Modulated by Acute Low-Level Tragus Stimulation in Patients With Ischemic Cardiomyopathy and Heart Failure. Front Physiol 2021; 12:707724. [PMID: 34366894 PMCID: PMC8343129 DOI: 10.3389/fphys.2021.707724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Aims: Microvolt T-wave alternans (TWA), an oscillation in T-wave morphology of the electrocardiogram (ECG), has been associated with increased susceptibility to ventricular tachy-arrhythmias, while vagus nerve stimulation has shown promising anti-arrhythmic effects in in vivo and ex vivo animal studies. We aimed to examine the effect of non-invasive, acute low-level tragus stimulation (LLTS) on TWA in patients with ischemic cardiomyopathy and heart failure. Methods: 26 patients with ischemic cardiomyopathy (left ventricular ejection fraction <35%) and chronic stable heart failure, previously implanted with an automatic implantable cardioverter defibrillator (ICD) device with an atrial lead (dual chamber ICD or cardiac resynchronization therapy defibrillator), were enrolled in the study. Each patient sequentially received, (1) Sham LLTS (electrode on tragus, but no stimulation delivered) for 5 min; (2) Active LLTS at two different frequencies (5 and 20 Hz, 15 min each); and (3) Active LLTS, during concomitant atrial pacing at 100 bpm at two different frequencies (5 and 20 Hz, 15 min each). LLTS was delivered through a transcutaneous electrical nerve stimulation device (pulse width 200 μs, frequency 5/20 Hz, amplitude 1 mA lower than the discomfort threshold). TWA burden was assessed using continuous ECG monitoring during sham and active LLTS in sinus rhythm, as well as during atrial pacing. Results: Right atrial pacing at 100 bpm led to significantly heightened TWA burden compared to sinus rhythm, with or without LLTS. Acute LLTS at both 5 and 20 Hz, during sinus rhythm led to a significant rise in TWA burden in the precordial leads (p < 0.05). Conclusion: Acute LLTS results in a heart-rate dependent increase in TWA burden.
Collapse
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Stavros Stavrakis
- Heart Rhythm Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Khaled Elkholey
- Heart Rhythm Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, United States
| | - Kimberly A Parks
- Cardiology Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
8
|
Kulkarni K, Singh JP, Parks KA, Katritsis DG, Stavrakis S, Armoundas AA. Low-Level Tragus Stimulation Modulates Atrial Alternans and Fibrillation Burden in Patients With Paroxysmal Atrial Fibrillation. J Am Heart Assoc 2021; 10:e020865. [PMID: 34075778 PMCID: PMC8477868 DOI: 10.1161/jaha.120.020865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Low‐level tragus stimulation (LLTS) has been shown to significantly reduce atrial fibrillation (AF) burden in patients with paroxysmal AF. P‐wave alternans (PWA) is believed to be generated by the same substrate responsible for AF. Hence, PWA may serve as a marker in guiding LLTS therapy. We investigated the utility of PWA in guiding LLTS therapy in patients with AF. Methods and Results Twenty‐eight patients with AF were randomized to either active LLTS or sham (earlobe stimulation). LLTS was delivered through a transcutaneous electrical nerve stimulation device (pulse width 200 μs, frequency 20 Hz, amplitude 10–50 mA), for 1 hour daily over a 6‐month period. AF burden over 2‐week periods was assessed by noninvasive continuous ECG monitoring at baseline, 3 months, and 6 months. A 5‐minute control ECG for PWA analysis was recorded during all 3 follow‐up visits. Following the control ECG, an additional 5‐minute ECG was recorded during active LLTS in all patients. At baseline, acute LLTS led to a significant rise in PWA burden. However, active patients receiving chronic LLTS demonstrated a significant reduction in both PWA and AF burden after 6 months (P<0.05). Active patients who demonstrated an increase in PWA burden with acute LLTS showed a significant drop in AF burden after 6 months of chronic LLTS. Conclusions Chronic, intermittent LLTS resulted in lower PWA and AF burden than did sham control stimulation. Our results support the use of PWA as a potential marker for guiding LLTS treatment of paroxysmal AF.
Collapse
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research Center Massachusetts General Hospital Boston MA
| | - Jagmeet P Singh
- Cardiology Division Cardiac Arrhythmia Service Massachusetts General Hospital Boston MA
| | | | | | - Stavros Stavrakis
- Heart Rhythm Institute University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Antonis A Armoundas
- Cardiovascular Research Center Massachusetts General Hospital Boston MA.,Institute for Medical Engineering and Science Massachusetts Institute of TechnologyCambridge MA
| |
Collapse
|
9
|
Kulkarni K, Walton RD, Armoundas AA, Tolkacheva EG. Clinical Potential of Beat-to-Beat Diastolic Interval Control in Preventing Cardiac Arrhythmias. J Am Heart Assoc 2021; 10:e020750. [PMID: 34027678 PMCID: PMC8483541 DOI: 10.1161/jaha.121.020750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Life‐threatening ventricular arrhythmias and sudden cardiac death are often preceded by cardiac alternans, a beat‐to‐beat oscillation in the T‐wave morphology or duration. However, given the spatiotemporal and structural complexity of the human heart, designing algorithms to effectively suppress alternans and prevent fatal rhythms is challenging. Recently, an antiarrhythmic constant diastolic interval pacing protocol was proposed and shown to be effective in suppressing alternans in 0‐, 1‐, and 2‐dimensional in silico studies as well as in ex vivo whole heart experiments. Herein, we provide a systematic review of the electrophysiological conditions and mechanisms that enable constant diastolic interval pacing to be an effective antiarrhythmic pacing strategy. We also demonstrate a successful translation of the constant diastolic interval pacing protocol into an ECG‐based real‐time control system capable of modulating beat‐to‐beat cardiac electrical activity and preventing alternans. Furthermore, we present evidence of the clinical utility of real‐time alternans suppression in reducing arrhythmia susceptibility in vivo. We provide a comprehensive overview of this promising pacing technique, which can potentially be translated into a clinically viable device that could radically improve the quality of life of patients experiencing abnormal cardiac rhythms.
Collapse
Affiliation(s)
- Kanchan Kulkarni
- IHU-LIRYC, Electrophysiology and Heart Modeling InstituteFondation Bordeaux Université Pessac, Bordeaux France.,Centre de Recherche Cardio-Thoracique de Bordeaux University of Bordeaux France.,Centre de Recherche Cardio-Thoracique de Bordeaux INSERM Bordeaux France
| | - Richard D Walton
- IHU-LIRYC, Electrophysiology and Heart Modeling InstituteFondation Bordeaux Université Pessac, Bordeaux France.,Centre de Recherche Cardio-Thoracique de Bordeaux University of Bordeaux France.,Centre de Recherche Cardio-Thoracique de Bordeaux INSERM Bordeaux France
| | - Antonis A Armoundas
- Cardiovascular Research Center Massachusetts General Hospital Boston MA.,Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA
| | - Elena G Tolkacheva
- Department of Biomedical Engineering University of Minnesota-Twin Cities Minneapolis MN
| |
Collapse
|
10
|
Blatter LA, Kanaporis G, Martinez-Hernandez E, Oropeza-Almazan Y, Banach K. Excitation-contraction coupling and calcium release in atrial muscle. Pflugers Arch 2021; 473:317-329. [PMID: 33398498 PMCID: PMC7940565 DOI: 10.1007/s00424-020-02506-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023]
Abstract
In cardiac muscle, the process of excitation-contraction coupling (ECC) describes the chain of events that links action potential induced myocyte membrane depolarization, surface membrane ion channel activation, triggering of Ca2+ induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store to activation of the contractile machinery that is ultimately responsible for the pump function of the heart. Here we review similarities and differences of structural and functional attributes of ECC between atrial and ventricular tissue. We explore a novel "fire-diffuse-uptake-fire" paradigm of atrial ECC and Ca2+ release that assigns a novel role to the SR SERCA pump and involves a concerted "tandem" activation of the ryanodine receptor Ca2+ release channel by cytosolic and luminal Ca2+. We discuss the contribution of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ release channel as an auxiliary pathway to Ca2+ signaling, and we review IP3 receptor-induced Ca2+ release involvement in beat-to-beat ECC, nuclear Ca2+ signaling, and arrhythmogenesis. Finally, we explore the topic of electromechanical and Ca2+ alternans and its ramifications for atrial arrhythmia.
Collapse
Affiliation(s)
- L A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA.
| | - G Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - E Martinez-Hernandez
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - Y Oropeza-Almazan
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - K Banach
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
11
|
Orini M, Yanni J, Taggart P, Hanson B, Hayward M, Smith A, Zhang H, Colman M, Jones G, Jie X, Dobrzynski H, Boyett MR, Lambiase PD. Mechanistic insights from targeted molecular profiling of repolarization alternans in the intact human heart. Europace 2020; 21:981-989. [PMID: 30753421 PMCID: PMC6545501 DOI: 10.1093/europace/euz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/17/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
AIMS Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| | - Joseph Yanni
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, UK
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, UK
| | - Martin Hayward
- Department of Cardiothoracic Surgery, The Heart Hospital, University College London Hospitals, London, UK
| | - Andrew Smith
- Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| | - Henggui Zhang
- Division of Cardiovascular Science, University of Manchester, Manchester, UK.,School of Physics and Astronomy, University of Manchester, Manchester, UK
| | | | - Gareth Jones
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Xiao Jie
- Institute of Cardiovascular Science, University College London, London, UK
| | - Halina Dobrzynski
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Mark R Boyett
- Division of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Electrophysiology, Barts Heart Centre at St Bartholomew's Hospital, London, UK
| |
Collapse
|
12
|
Merchant FM, Sayadi O, Sohn K, Weiss EH, Puppala D, Doddamani R, Singh JP, Heist EK, Owen C, Kulkarni K, Armoundas AA. Real-Time Closed-Loop Suppression of Repolarization Alternans Reduces Arrhythmia Susceptibility In Vivo. Circ Arrhythm Electrophysiol 2020; 13:e008186. [PMID: 32434448 DOI: 10.1161/circep.119.008186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Repolarization alternans (RA) has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death. METHODS We have developed a real-time, closed-loop system to record and analyze RA from multiple intracardiac leads, and deliver dynamically R-wave triggered pacing stimuli during the absolute refractory period. We have evaluated the ability of this system to control RA and reduce arrhythmia susceptibility, in vivo. RESULTS R-wave triggered pacing can induce RA, the magnitude of which can be modulated by varying the amplitude, pulse width, and size of the pacing vector. Using a swine model (n=9), we demonstrate that to induce a 1 µV change in the alternans voltage on the body surface, coronary sinus and left ventricle leads, requires a delivered charge of 0.04±0.02, 0.05±0.025, and 0.06±0.033 µC, respectively, while to induce a one unit change of the Kscore, requires a delivered charge of 0.93±0.73, 0.32±0.29, and 0.33±0.37 µC, respectively. For all body surface and intracardiac leads, both Δ(alternans voltage) and ΔKscore between baseline and R-wave triggered paced beats increases consistently with an increase in the pacing pulse amplitude, pulse width, and vector spacing. Additionally, we show that the proposed method can be used to suppress spontaneously occurring alternans (n=7), in the presence of myocardial ischemia. Suppression of RA by pacing during the absolute refractory period results in a significant reduction in arrhythmia susceptibility, evidenced by a lower Srank score during programmed ventricular stimulation compared with baseline before ischemia. CONCLUSIONS We have developed and evaluated a novel closed-loop method to dynamically modulate RA in a swine model. Our data suggest that suppression of RA directly reduces arrhythmia susceptibility and reinforces the concept that RA plays a critical role in the pathophysiology of arrhythmogenesis.
Collapse
Affiliation(s)
- Faisal M Merchant
- Cardiology Division, Emory University School of Medicine, Atlanta, GA (F.M.M.).,Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston
| | - Omid Sayadi
- Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston
| | - Kwanghyun Sohn
- Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston
| | - Eric H Weiss
- Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge (E.H.W., A.A.A.)
| | - Dheeraj Puppala
- Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston
| | - Rajiv Doddamani
- Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service (J.P.S., E.K.H.), Massachusetts General Hospital, Boston
| | - E Kevin Heist
- Cardiology Division, Cardiac Arrhythmia Service (J.P.S., E.K.H.), Massachusetts General Hospital, Boston
| | - Chris Owen
- Neurosurgery Division (C.O.), Massachusetts General Hospital, Boston
| | - Kanchan Kulkarni
- Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston
| | - Antonis A Armoundas
- Cardiovascular Research Center (F.M.M., O.S., K.S., E.H.W., D.P., R.D., K.K., A.A.A.), Massachusetts General Hospital, Boston.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge (E.H.W., A.A.A.)
| |
Collapse
|
13
|
Horváth B, Hézső T, Kiss D, Kistamás K, Magyar J, Nánási PP, Bányász T. Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Front Pharmacol 2020; 11:413. [PMID: 32372952 PMCID: PMC7184885 DOI: 10.3389/fphar.2020.00413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Based on recent findings, an increased late sodium current (INa,late) plays an important pathophysiological role in cardiac diseases, including rhythm disorders. The article first describes what is INa,late and how it functions under physiological circumstances. Next, it shows the wide range of cellular mechanisms that can contribute to an increased INa,late in heart diseases, and also discusses how the upregulated INa,late can play a role in the generation of cardiac arrhythmias. The last part of the article is about INa,late inhibiting drugs as potential antiarrhythmic agents, based on experimental and preclinical data as well as in the light of clinical trials.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Sport Physiology, University of Debrecen, Debrecen, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Chen J, Xu S, Zhou W, Wu L, Wang L, Li W. Exendin-4 Reduces Ventricular Arrhythmia Activity and Calcium Sparks-Mediated Sarcoplasmic Reticulum Ca Leak in Rats with Heart Failure. Int Heart J 2020; 61:145-152. [DOI: 10.1536/ihj.19-327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jingjing Chen
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Shunen Xu
- Department of Orthopedic, The Affiliated Hospital of Guizhou Medical University
| | - Wei Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Lirong Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Long Wang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| |
Collapse
|
15
|
Chen L, Wang L, Li X, Wang C, Hong M, Li Y, Cao J, Fu L. The role of desmin alterations in mechanical electrical feedback in heart failure. Life Sci 2019; 241:117119. [PMID: 31794771 DOI: 10.1016/j.lfs.2019.117119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
AIM Mechanoelectric feedback (MEF) was related to malignant arrhythmias in heart failure (HF). Desmin is a cytoskeleton protein and could be involved in MEF as a mechanoelectrical transducer. In this study, we will discuss the role of desmin alterations in mechanical electrical feedback in heart failure and its mechanisms. METHODS We used both an in vivo rat model and an in vitro cardiomyocyte model to address this issue. For the in vivo experiments, we establish a sham group, an HF group, streptomycin (SM) group, and an MDL-28170 group. The occurrence of ventricular arrhythmias (VA) was recorded in each group. For the in vitro cardiomyocyte model, we established an NC group, a si-desmin group, and a si-desmin + NBD IKK group. The expression of desmin, IKKβ, p-IKKβ, IKBα, p-NF-κB, and SERCA2 were detected in both in vivo and in vitro experiments. The content of Ca2+ in cytoplasm and sarcoplasmic were detected by confocal imaging in vitro experiments. RESULTS An increased number of VAs were found in the HF group. SM and MDL-28170 can reduce desmin breakdown and the number of VAs in heart failure. The knockdown of desmin in the cardiomyocyte can activate the NF-κB pathway, decrease the level of SERCA2, and result in abnormal distribution of Ca2+. While treatment with NF-κB inhibitor can elevate the level of SERCA2 and alleviate the abnormal distribution of Ca2+. SIGNIFICANCE Overall, desmin may participate in MEF through the NF-κB pathway. This study provides a potential therapeutic target for VA in HF.
Collapse
Affiliation(s)
- Lin Chen
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Li Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xingyi Li
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Can Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Mingyang Hong
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yuanshi Li
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Junxian Cao
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Lu Fu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
16
|
Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. J Am Heart Assoc 2019; 8:e013750. [PMID: 31617437 PMCID: PMC6898836 DOI: 10.1161/jaha.119.013750] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | | | - Mohamad B. Kassab
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Furrukh Sana
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Kasra Moazzami
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Omid Sayadi
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jagmeet P. Singh
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - E. Kevin Heist
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - Antonis A. Armoundas
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
17
|
Myocardial Expression of SERCA2a and Structural and Functional Indices in Patients with Atrial Fibrillation. Bull Exp Biol Med 2019; 167:787-790. [PMID: 31656001 DOI: 10.1007/s10517-019-04623-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 10/25/2022]
Abstract
The study examined the relationships between SERCA2a expression in the myocardium and structural and functional indices in patients with atrial fibrillation. In uniform cohort of patients, this expression differed significantly but positively correlated with the size of the left atrium, end-systolic volume, and end-diastolic volume. In contrast, SERCA2a expression negatively correlated with early (peak E) and late (peak A) diastolic filling rates in left ventricle. SERCA2a expression was also associated with echocardiographic parameters reflecting structural and functional status of the heart in patients with persistent atrial fibrillation.
Collapse
|
18
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018. [PMID: 30425651 DOI: 10.3389/fphys.2018.01517, 10.3389/fpls.2018.01517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
19
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
20
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517,+10.3389/fpls.2018.01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States,*Correspondence: Dmitry Terentyev,
| |
Collapse
|
21
|
Scardigli M, Müllenbroich C, Margoni E, Cannazzaro S, Crocini C, Ferrantini C, Coppini R, Yan P, Loew LM, Campione M, Bocchi L, Giulietti D, Cerbai E, Poggesi C, Bub G, Pavone FS, Sacconi L. Real-time optical manipulation of cardiac conduction in intact hearts. J Physiol 2018; 596:3841-3858. [PMID: 29989169 PMCID: PMC6117584 DOI: 10.1113/jp276283] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/05/2018] [Indexed: 11/28/2022] Open
Abstract
Key points Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all‐optical platform to monitor and control electrical activity in real‐time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed‐loop approach was also applied to simulate a re‐entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time all‐optical stimulation can control cardiac rhythm in normal and abnormal conditions.
Abstract Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart. Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all‐optical platform to monitor and control electrical activity in real‐time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed‐loop approach was also applied to simulate a re‐entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time all‐optical stimulation can control cardiac rhythm in normal and abnormal conditions.
Collapse
Affiliation(s)
- M Scardigli
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - E Margoni
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,Department of Physics, University of Pisa, Pisa, 56127, Italy
| | - S Cannazzaro
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Crocini
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - R Coppini
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, Florence, 50139, Italy
| | - P Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - L M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - M Campione
- Neuroscience Institute, National Research Council, Padova, 35121, Italy.,Department of Biomedical Sciences, Univercity ot Padua, Padua, 35121, Italy
| | - L Bocchi
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,Department of Information Engineering, University of Florence, Via S. Marta 3, Florence, 50139, Italy
| | - D Giulietti
- National Institute of Optics, National Research Council, Florence, 50125, Italy.,Department of Physics, University of Pisa, Pisa, 56127, Italy
| | - E Cerbai
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, Florence, 50139, Italy
| | - C Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - G Bub
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - F S Pavone
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019, Italy
| | - L Sacconi
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| |
Collapse
|
22
|
Nayyar S, Suszko A, Porta-Sanchez A, Dalvi R, Chauhan VS. Reduced T wave alternans in heart failure responders to cardiac resynchronization therapy: Evidence of electrical remodeling. PLoS One 2018; 13:e0199637. [PMID: 29953465 PMCID: PMC6023131 DOI: 10.1371/journal.pone.0199637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/11/2018] [Indexed: 01/25/2023] Open
Abstract
Background T-wave alternans (TWA), a marker of electrical instability, can be modulated by cardiac resynchronization therapy (CRT). The relationship between TWA and heart failure response to CRT has not been clearly defined. Methods and results In 40-patients (age 65±11 years, left ventricular ejection-fraction [LVEF] 23±7%), TWA was evaluated prospectively at median of 2 months (baseline) and 8 months (follow-up) post-CRT implant. TWA-magnitude (Valt >0μV, k≥3), its duration (d), and burden (Valt ·d) were quantified in moving 128-beat segments during incremental atrial (AAI, native-TWA) and atrio-biventricular (DDD-CRT) pacing. The immediate and long-term effect of CRT on TWA was examined. Clinical response to CRT was defined as an increase in LVEF of ≥5%. Native-TWA was clinically significant (Valt ≥1.9μV, k≥3) in 68% of subjects at baseline. Compared to native-TWA at baseline, DDD-CRT pacing at baseline and follow-up reduced the number of positive TWA segments, peak-magnitude, longest-duration and peak-burden of TWA (44±5 to 33±5 to 28±4%, p = 0.02 and 0.002; 5.9±0.8 to 4.1±0.7 to 3.8±0.7μV, p = 0.01 and 0.01; 97±9 to 76±8 to 67±8sec, p = 0.004 and <0.001; and 334±65 to 178±58 to 146±54μV.sec, p = 0.01 and 0.004). In addition, the number of positive segments and longest-duration of native-TWA diminished during follow-up (44±5 to 35±6%, p = 0.044; and 97±9 to 81±9sec, p = 0.02). Clinical response to CRT was observed in 71% of patients; the reduction in DDD-CRT paced TWA both at baseline and follow-up was present only in responders (interaction p-values <0.1). Conclusion Long-term CRT reduces the prevalence and magnitude of TWA. This CRT induced beneficial electrical remodeling is a marker of clinical response after CRT.
Collapse
Affiliation(s)
- Sachin Nayyar
- Peter Munk Cardiac Center, Division of Cardiology, University Health Network, Toronto, ON, Canada
| | - Adrian Suszko
- Peter Munk Cardiac Center, Division of Cardiology, University Health Network, Toronto, ON, Canada
| | - Andreu Porta-Sanchez
- Peter Munk Cardiac Center, Division of Cardiology, University Health Network, Toronto, ON, Canada
| | - Rupin Dalvi
- Peter Munk Cardiac Center, Division of Cardiology, University Health Network, Toronto, ON, Canada
| | - Vijay S. Chauhan
- Peter Munk Cardiac Center, Division of Cardiology, University Health Network, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
23
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
24
|
Deng YL, Zhao JY, Yao JH, Tang Q, Zhang L, Zhou HL, Zhang CT, Lv JG, Quan XQ. Verapamil suppresses cardiac alternans and ventricular arrhythmias in acute myocardial ischemia via ryanodine receptor inhibition. Am J Transl Res 2017; 9:2712-2722. [PMID: 28670363 PMCID: PMC5489875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
T-wave alternans (TWA) is a potent arrhythmia substrate under the conditions of acute myocardial ischemia. Abnormal intracellular calcium cycling contributes to the genesis of cardiac alternans. Ryanodine receptor (RyR) is a pivotal Ca2+ cycling protein central to Ca2+ signaling in the heart. Here, we investigated the potential role of RyR in cardiac alternans and ventricular arrhythmias in acute myocardial ischemia. Transmembrane action potentials were simultaneously recorded from epicardium and endocardium together with a transmural ECG and isometric contraction force in the arterially perfused left ventricular wedge preparations. Calcium alternans were induced by incremental frequency of field stimulation in rat ventricular myocytes. TWA, mechanical alternans and ventricular arrhythmias were reproducibly induced by rapid pacing in the acute ischemic wedge preparations. Compared with control group, calcium alternans ratio and spontaneous calcium release were increased in acute ischemic myocytes. Verapamil, a phenylalkylamine calcium channel blocker, can successfully abolish spontaneous calcium release, TWA, and ventricular arrhythmias. The inhibition effect of verapamil could be diminished by low concentration of ryanodine (10 nmol/L). However, nifedipine, a dihydropyridine calcium channel blocker, could not block TWA or arrhythmias. Moreover, verapamil, but not nifedipine, significantly decreased ROS production in ischemic myocytes. Collectively, our results indicate that verapamil can significantly inhibit the development of cardiac alternans and ventricular arrhythmias in acute myocardial ischemia, and the mechanism was related to the inhibition of RyR and the protective function to oxidative stress.
Collapse
Affiliation(s)
- Yu-Lei Deng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jun-Yan Zhao
- Department of Cardiology, Yuhuangding HospitalYantai 264000, China
| | - Ji-Hua Yao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Department of Cardiology, Tongjishenzhi HospitalWuhan 430030, China
| | - Qiang Tang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Hong-Lian Zhou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jia-Gao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xiao-Qing Quan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|
25
|
Kennedy M, Bers DM, Chiamvimonvat N, Sato D. Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans. J Physiol 2017; 595:2285-2297. [PMID: 27902841 DOI: 10.1113/jp273626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS A mathematical model of a small conductance Ca2+ -activated potassium (SK) channel was developed and incorporated into a physiologically detailed ventricular myocyte model. Ca2+ -sensitive K+ currents promote negative intracellular Ca2+ to membrane voltage (CAi2+ → Vm ) coupling. Increase of Ca2+ -sensitive K+ currents can be responsible for electromechanically discordant alternans and quasiperiodic oscillations at the cellular level. At the tissue level, Turing-type instability can occur when Ca2+ -sensitive K+ currents are increased. ABSTRACT Cardiac alternans is a precursor to life-threatening arrhythmias. Alternans can be caused by instability of the membrane voltage (Vm ), instability of the intracellular Ca2+ ( Ca i2+) cycling, or both. Vm dynamics and Ca i2+ dynamics are coupled via Ca2+ -sensitive currents. In cardiac myocytes, there are several Ca2+ -sensitive potassium (K+ ) currents such as the slowly activating delayed rectifier current (IKs ) and the small conductance Ca2+ -activated potassium (SK) current (ISK ). However, the role of these currents in the development of arrhythmias is not well understood. In this study, we investigated how these currents affect voltage and Ca2+ alternans using a physiologically detailed computational model of the ventricular myocyte and mathematical analysis. We define the coupling between Vm and Ca i2+ cycling dynamics ( Ca i2+→Vm coupling) as positive (negative) when a larger Ca2+ transient at a given beat prolongs (shortens) the action potential duration (APD) of that beat. While positive coupling predominates at baseline, increasing IKs and ISK promote negative Ca i2+→Vm coupling at the cellular level. Specifically, when alternans is Ca2+ -driven, electromechanically (APD-Ca2+ ) concordant alternans becomes electromechanically discordant alternans as IKs or ISK increase. These cellular level dynamics lead to different types of spatially discordant alternans in tissue. These findings help to shed light on the underlying mechanisms of cardiac alternans especially when the relative strength of these currents becomes larger under pathological conditions or drug administrations.
Collapse
Affiliation(s)
- Matthew Kennedy
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
| | - Daisuke Sato
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
26
|
Stary V, Puppala D, Scherrer-Crosbie M, Dillmann WH, Armoundas AA. SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition. J Appl Physiol (1985) 2016; 120:865-75. [PMID: 26846549 DOI: 10.1152/japplphysiol.00588.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/27/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from diseased hearts, leading to new therapeutic targets.
Collapse
Affiliation(s)
- Victoria Stary
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Cardiology and Pulmonology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; and
| | - Dheeraj Puppala
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Wolfgang H Dillmann
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts;
| |
Collapse
|
27
|
Trayanova NA, Chang KC. How computer simulations of the human heart can improve anti-arrhythmia therapy. J Physiol 2016; 594:2483-502. [PMID: 26621489 DOI: 10.1113/jp270532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/25/2015] [Indexed: 01/26/2023] Open
Abstract
Over the last decade, the state-of-the-art in cardiac computational modelling has progressed rapidly. The electrophysiological function of the heart can now be simulated with a high degree of detail and accuracy, opening the doors for simulation-guided approaches to anti-arrhythmic drug development and patient-specific therapeutic interventions. In this review, we outline the basic methodology for cardiac modelling, which has been developed and validated over decades of research. In addition, we present several recent examples of how computational models of the human heart have been used to address current clinical problems in cardiac electrophysiology. We will explore the use of simulations to improve anti-arrhythmic pacing and defibrillation interventions; to predict optimal sites for clinical ablation procedures; and to aid in the understanding and selection of arrhythmia risk markers. Together, these studies illustrate how the tremendous advances in cardiac modelling are poised to revolutionize medical treatment and prevention of arrhythmia.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kelly C Chang
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
28
|
Zhou X, Bueno-Orovio A, Orini M, Hanson B, Hayward M, Taggart P, Lambiase PD, Burrage K, Rodriguez B. In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circ Res 2015; 118:266-78. [PMID: 26602864 PMCID: PMC4719495 DOI: 10.1161/circresaha.115.307836] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE Repolarization alternans (RA) are associated with arrhythmogenesis. Animal studies have revealed potential mechanisms, but human-focused studies are needed. RA generation and frequency dependence may be determined by cell-to-cell variability in protein expression, which is regulated by genetic and external factors. OBJECTIVE To characterize in vivo RA in human and to investigate in silico using human models, the ionic mechanisms underlying the frequency-dependent differences in RA behavior identified in vivo. METHODS AND RESULTS In vivo electrograms were acquired at 240 sites covering the epicardium of 41 patients at 6 cycle lengths (600-350 ms). In silico investigations were conducted using a population of biophysically detailed human models incorporating variability in protein expression and calibrated using in vivo recordings. Both in silico and in vivo, 2 types of RA were identified, with Fork- and Eye-type restitution curves, based on RA persistence or disappearance, respectively, at fast pacing rates. In silico simulations show that RA are strongly correlated with fluctuations in sarcoplasmic reticulum calcium, because of strong release and weak reuptake. Large L-type calcium current conductance is responsible for RA disappearance at fast frequencies in Eye-type (30% larger in Eye-type versus Fork-type; P<0.01), because of sarcoplasmic reticulum Ca(2+) ATPase pump potentiation caused by frequency-induced increase in intracellular calcium. Large Na(+)/Ca(2+) exchanger current is the main driver in translating Ca(2+) fluctuations into RA. CONCLUSIONS In human in vivo and in silico, 2 types of RA are identified, with RA persistence/disappearance as frequency increases. In silico, L-type calcium current and Na(+)/Ca(2+) exchanger current determine RA human cell-to-cell differences through intracellular and sarcoplasmic reticulum calcium regulation.
Collapse
Affiliation(s)
- Xin Zhou
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Alfonso Bueno-Orovio
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Michele Orini
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Ben Hanson
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Martin Hayward
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Peter Taggart
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Pier D Lambiase
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Kevin Burrage
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.)
| | - Blanca Rodriguez
- From the Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom (X.Z., A.B.-O., K.B., B.R.); Institute of Cardiovascular Science, University College London, London, United Kingdom (M.O., P.T., P.D.L.); Mechanical Engineering Department, University College London, London, United Kingdom (B.H.); The Heart Hospital, University College London Hospital, London, United Kingdom (M.O., M.H., P.T., P.D.L.); and ACEMS ARC Centre of Excellence and School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia (K.B.).
| |
Collapse
|
29
|
Kawasaki M, Yamada T, Morita T, Furukawa Y, Tamaki S, Iwasaki Y, Kikuchi A, Kondo T, Takahashi S, Kawai T, Okuyama Y, Sakata Y, Fukunami M. Risk Stratification for Ventricular Tachyarrhythmias by Ambulatory Electrocardiogram-Based Frequency Domain T-Wave Alternans. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2015; 38:1425-33. [PMID: 26351097 DOI: 10.1111/pace.12747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ambulatory electrocardiogram (ECG)-based T-wave alternans (TWA) quantified by the modified moving average method (MMA) can be used to identify patients at risk for sudden cardiac death. However, there is no information available on ambulatory ECG-based TWA as quantified by the frequency domain (FD) method to identify patients with an implantable cardioverter defibrillator (ICD) who are at high risk for ventricular tachyarrhythmias. Further, there are few data regarding the comparison of clinical utility of FD-TWA with MMA-TWA, heart rate variability (HRV), and heart rate turbulence (HRT). METHODS AND RESULTS In 41 patients with ICD, of whom 14 patients had a past history of at least one appropriate ICD discharge, FD-TWA, MMA-TWA, HRV, and HRT were analyzed from 24-hour Holter ECG monitoring recordings. Only positive results of FD-TWA and abnormal HRV (standard deviation of all normal-to-normal intervals ≤111 ms) were significantly more frequently observed in patients with than without appropriate ICD discharge. Patients with FD-TWA positive had a significantly higher risk of appropriate ICD discharge than those with FD-TWA negative (50% vs 16%; odds ratio, 5.3 [95% confidence interval, 1.2-23.7], P = 0.02). When FD-TWA and HRV were combined, the specificity (93% vs 59%, P = 0.003) and predictive accuracy (83% vs 66%, P = 0.07) for the identification of patients with appropriate ICD discharge were greater than those for FD-TWA only. CONCLUSION The ambulatory ECG-based FD-TWA might be useful to detect patients with ICD who are at high risk for ventricular tachyarrhythmias, and the combination of FD-TWA and HRV might improve the ability to detect such high-risk patients.
Collapse
Affiliation(s)
- Masato Kawasaki
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Takahisa Yamada
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Takashi Morita
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Yoshio Furukawa
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Shunsuke Tamaki
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Yusuke Iwasaki
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Atsushi Kikuchi
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Takumi Kondo
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | | | - Tsutomu Kawai
- Division of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Yuji Okuyama
- Advanced Cardiovascular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
30
|
Affiliation(s)
- Héctor H Valdivia
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor.
| |
Collapse
|
31
|
Edwards JN, Blatter LA. Cardiac alternans and intracellular calcium cycling. Clin Exp Pharmacol Physiol 2015; 41:524-32. [PMID: 25040398 DOI: 10.1111/1440-1681.12231] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/20/2022]
Abstract
Cardiac alternans refers to a condition in which there is a periodic beat-to-beat oscillation in electrical activity and the strength of cardiac muscle contraction at a constant heart rate. Clinically, cardiac alternans occurs in settings that are typical for cardiac arrhythmias and has been causally linked to these conditions. At the cellular level, alternans is defined as beat-to-beat alternations in contraction amplitude (mechanical alternans), action potential duration (APD; electrical or APD alternans) and Ca(2+) transient amplitude (Ca(2+) alternans). The cause of alternans is multifactorial; however, alternans always originate from disturbances of the bidirectional coupling between membrane voltage (Vm ) and intracellular calcium ([Ca(2+) ]i ). Bidirectional coupling refers to the fact that, in cardiac cells, Vm depolarization and the generation of action potentials cause the elevation of [Ca(2+) ]i that is required for contraction (a process referred to as excitation-contraction coupling); conversely, changes of [Ca(2+) ]i control Vm because important membrane currents are Ca(2+) dependent. Evidence is mounting that alternans is ultimately caused by disturbances of cellular Ca(2+) signalling. Herein we review how two key factors of cardiac cellular Ca(2+) cycling, namely the release of Ca(2+) from internal stores and the capability of clearing the cytosol from Ca(2+) after each beat, determine the conditions under which alternans occurs. The contributions from key Ca(2+) -handling proteins (i.e. surface membrane channels, ion pumps and transporters and internal Ca(2+) release channels) are discussed.
Collapse
Affiliation(s)
- Joshua N Edwards
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
32
|
Abstract
RATIONALE Alternans is a risk factor for cardiac arrhythmia, including atrial fibrillation. At the cellular level alternans manifests as beat-to-beat alternations in contraction, action potential duration (APD), and magnitude of the Ca(2+) transient (CaT). Electromechanical and CaT alternans are highly correlated, however, it has remained controversial whether the primary cause of alternans is a disturbance of cellular Ca(2+) signaling or electrical membrane properties. OBJECTIVE To determine whether a primary failure of intracellular Ca(2+) regulation or disturbances in membrane potential and AP regulation are responsible for the occurrence of alternans in atrial myocytes. METHODS AND RESULTS Pacing-induced APD and CaT alternans were studied in single rabbit atrial and ventricular myocytes using combined [Ca(2+)]i and electrophysiological measurements. In current-clamp experiments, APD and CaT alternans strongly correlated in time and magnitude. CaT alternans was observed without alternation in L-type Ca(2+) current, however, elimination of intracellular Ca(2+) release abolished APD alternans, indicating that [Ca(2+)]i dynamics have a profound effect on the occurrence of CaT alternans. Trains of 2 distinctive voltage commands in form of APs recorded during large and small alternans CaTs were applied to voltage-clamped cells. CaT alternans was observed with and without alternation in the voltage command shape. During alternans AP-clamp large CaTs coincided with both long and short AP waveforms, indicating that CaT alternans develop irrespective of AP dynamics. CONCLUSIONS The primary mechanism underlying alternans in atrial cells, similarly to ventricular cells, resides in a disturbance of Ca(2+) signaling, whereas APD alternans are a secondary consequence, mediated by Ca(2+)-dependent AP modulation.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- From the Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL
| | - Lothar A Blatter
- From the Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL.
| |
Collapse
|
33
|
SHI SHAOBO, LIU TAO, LI YAFENG, QIN MU, TANG YANHONG, SHEN JERRYY, LIANG JINJUN, YANG BO, HUANG CONGXIN. Chronic N-Methyl-d-Aspartate Receptor Activation Induces Cardiac Electrical Remodeling and Increases Susceptibility to Ventricular Arrhythmias. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2014; 37:1367-77. [PMID: 24888504 DOI: 10.1111/pace.12430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
Affiliation(s)
- SHAOBO SHI
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan PR China
- Cardiovascular Research Institute; Wuhan University; Wuhan PR China
| | - TAO LIU
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan PR China
- Cardiovascular Research Institute; Wuhan University; Wuhan PR China
| | - YAFENG LI
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan PR China
- Cardiovascular Research Institute; Wuhan University; Wuhan PR China
| | - MU QIN
- The First Clinical Medical College of Three Gorges University; Yichang PR China
| | - YANHONG TANG
- Cardiovascular Research Institute; Wuhan University; Wuhan PR China
| | - JERRY Y. SHEN
- Department of Family Medicine; College of Community Health Sciences; University of Alabama; Tuscaloosa Alabama
| | - JINJUN LIANG
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan PR China
| | - BO YANG
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan PR China
| | - CONGXIN HUANG
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan PR China
- Cardiovascular Research Institute; Wuhan University; Wuhan PR China
| |
Collapse
|
34
|
Merchant FM, Sayadi O, Moazzami K, Puppala D, Armoundas AA. T-wave alternans as an arrhythmic risk stratifier: state of the art. Curr Cardiol Rep 2014; 15:398. [PMID: 23881581 DOI: 10.1007/s11886-013-0398-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microvolt level T-wave alternans (MTWA), a phenomenon of beat-to-beat variability in the repolarization phase of the ventricles, has been closely associated with an increased risk of ventricular tachyarrhythmic events (VTE) and sudden cardiac death (SCD) during medium- and long-term follow-up. Recent observations also suggest that heightened MTWA magnitude may be closely associated with short-term risk of impending VTE. At the subcellular and cellular level, perturbations in calcium transport processes likely play a primary role in the genesis of alternans, which then secondarily lead to alternans of action potential morphology and duration (APD). As such, MTWA may play a role not only in risk stratification but also more fundamentally in the pathogenesis of VTE. In this paper, we outline recent advances in understanding the pathogenesis of MTWA and also the utility of T-wave alternans testing for clinical risk stratification. We also highlight emerging clinical applications for MTWA.
Collapse
Affiliation(s)
- Faisal M Merchant
- Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
35
|
Merchant FM, Sayadi O, Puppala D, Moazzami K, Heller V, Armoundas AA. A translational approach to probe the proarrhythmic potential of cardiac alternans: a reversible overture to arrhythmogenesis? Am J Physiol Heart Circ Physiol 2013; 306:H465-74. [PMID: 24322612 DOI: 10.1152/ajpheart.00639.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrocardiographic alternans, a phenomenon of beat-to-beat alternation in cardiac electrical waveforms, has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death (SCD). In the clinical setting, a positive microvolt T-wave alternans test has been associated with a heightened risk of arrhythmic mortality and SCD during medium- and long-term follow-up. However, rather than merely being associated with an increased risk for SCD, several lines of preclinical and clinical evidence suggest that cardiac alternans may play a causative role in generating the acute electrophysiological substrate necessary for the onset of ventricular arrhythmias. Deficiencies in Ca(2+) transport processes have been implicated in the genesis of alternans at the subcellular and cellular level and are hypothesized to contribute to the conditions necessary for dispersion of refractoriness, wave break, reentry, and onset of arrhythmia. As such, detecting acute surges in alternans may provide a mechanism for predicting the impending onset of arrhythmia and opens the door to delivering upstream antiarrhythmic therapies. In this review, we discuss the preclinical and clinical evidence to support a causative association between alternans and acute arrhythmogenesis and outline the potential clinical implications of such an association.
Collapse
Affiliation(s)
- Faisal M Merchant
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia; and
| | | | | | | | | | | |
Collapse
|
36
|
Trayanova NA, Boyle PM. Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:209-24. [PMID: 24375958 DOI: 10.1002/wsbm.1256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 11/12/2022]
Abstract
Modern cardiovascular research has increasingly recognized that heart models and simulation can help interpret an array of experimental data and dissect important mechanisms and interrelationships, with developments rooted in the iterative interaction between modeling and experimentation. This article reviews the progress made in simulating cardiac electrical behavior at the level of the organ and, specifically, in the development of models of ventricular arrhythmias and fibrillation, as well as their termination (defibrillation). The ability to construct multiscale models of ventricular arrhythmias, representing integrative behavior from the molecule to the entire organ, has enabled mechanistic inquiry into the dynamics of ventricular arrhythmias in the diseased myocardium, in understanding drug-induced proarrhythmia, and in the development of new modalities for defibrillation, to name a few. In this article, we also review the initial use of ventricular models of arrhythmia in personalized diagnosis, treatment planning, and prevention of sudden cardiac death. Implementing individualized cardiac simulations at the patient bedside is poised to become one of the most thrilling examples of computational science and engineering approaches in translational medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
37
|
Sayadi O, Merchant FM, Puppala D, Mela T, Singh JP, Heist EK, Owen C, Armoundas AA. A novel method for determining the phase of T-wave alternans: diagnostic and therapeutic implications. Circ Arrhythm Electrophysiol 2013; 6:818-26. [PMID: 23884196 DOI: 10.1161/circep.113.000114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND T-wave alternans (TWA) has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death. However, to estimate and suppress TWA effectively, the phase of TWA must be accurately determined. METHODS AND RESULTS We developed a method that computes the beat-by-beat integral of the T-wave morphology, over time points within the T-wave with positive alternans. Then, we estimated the signed derivative of the T-wave integral sequence, which allows the classification of each beat to a binary phase index. In animal studies, we found that this method was able to accurately identify the T-wave phase in artificially induced alternans (P<0.0001). The coherence of the phase increased consistently after acute ischemia induction in all body-surface and intracardiac leads (P<0.0001). Also, we developed a phase-resetting detection algorithm that enhances the diagnostic utility of TWA. We further established an algorithm that uses the phase of TWA to deliver appropriate polarity-pacing pulses (all interventions compared with baseline, P<0.0001 for alternans voltage; P<0.0001 for K(score)), to suppress TWA. Finally, we demonstrated that using the phase of TWA we can suppress spontaneous TWA during acute ischemia; 77.6% for alternans voltage (P<0.0001) and 92.5% for K(score) (P<0.0001). CONCLUSIONS We developed a method to quantify the temporal variability of the TWA phase. This method is expected to enhance the utility of TWA in predicting ventricular arrhythmias and sudden cardiac death and raises the possibility of using upstream therapies to abort a ventricular tachyarrhythmia before its onset.
Collapse
|
38
|
Trayanova NA, O'Hara T, Bayer JD, Boyle PM, McDowell KS, Constantino J, Arevalo HJ, Hu Y, Vadakkumpadan F. Computational cardiology: how computer simulations could be used to develop new therapies and advance existing ones. Europace 2013; 14 Suppl 5:v82-v89. [PMID: 23104919 DOI: 10.1093/europace/eus277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the latest developments in computational cardiology. It focuses on the contribution of cardiac modelling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modelling efforts aimed at advancing and optimizing existent therapies for cardiac disease (defibrillation, ablation of ventricular tachycardia, and cardiac resynchronization therapy) and at suggesting novel treatments, including novel molecular targets, as well as efforts to use cardiac models in stratification of patients likely to benefit from a given therapy, and the use of models in diagnostic procedures.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Armoundas AA, Weiss EH, Sayadi O, Laferriere S, Sajja N, Mela T, Singh JP, Barrett CD, Kevin Heist E, Merchant FM. A novel pacing method to suppress repolarization alternans in vivo: implications for arrhythmia prevention. Heart Rhythm 2012; 10:564-72. [PMID: 23274372 DOI: 10.1016/j.hrthm.2012.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Repolarization alternans (RA), a pattern of ventricular repolarization that repeats on an every other beat basis, has been closely linked with the substrate associated with ventricular tachycardia/ventricular fibrillation. OBJECTIVE To evaluate a novel method to suppress RA. METHODS We have developed a novel method to dynamically (on R-wave detection) trigger pacing pulses during the absolute refractory period. We have tested the ability of this method to control RA in a structurally normal swine heart in vivo. RESULTS RA induced by triggered pacing can be measured from both intracardiac and body surface leads and the amplitude of R-wave triggered pacing-induced alternans can be locally modulated by varying the amplitude and width of the pacing pulse. We have estimated that to induce a 1 μV change in alternans voltage on the body surface, coronary sinus, and left ventricle leads, a triggered pacing pulse delivered in the right ventricle of 0.04±0.02, 0.05±0.025, and 0.06±0.033 μC, respectively, is required. Similarly, to induce a 1 unit change in Kscore (ratio of alternans peak to noise), a pacing stimulus of 0.93±0.73, 0.32±0.29, and 0.33±0.37 μC, respectively, is required. We have been able to demonstrate that RA can be suppressed by R-wave triggered pacing from a site that is within or across ventricles. Lastly, we have demonstrated that the proposed method can be used to suppress spontaneously occurring alternans in the diseased heart. CONCLUSION We have developed a novel method to suppress RA in vivo.
Collapse
Affiliation(s)
- Antonis A Armoundas
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Trayanova NA. Computational cardiology: the heart of the matter. ISRN CARDIOLOGY 2012; 2012:269680. [PMID: 23213566 PMCID: PMC3505657 DOI: 10.5402/2012/269680] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022]
Abstract
This paper reviews the newest developments in computational cardiology. It focuses on the contribution of cardiac modeling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modeling efforts aimed at advancing and optimizing existent therapies for cardiac disease (defibrillation, ablation of ventricular tachycardia, and cardiac resynchronization therapy) and at suggesting novel treatments, including novel molecular targets, as well as efforts to use cardiac models in stratification of patients likely to benefit from a given therapy, and the use of models in diagnostic procedures.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Hackerman Hall Room 216, Baltimore, MD 21218, USA
| |
Collapse
|
41
|
Clinical utility of microvolt T-wave alternans testing in identifying patients at high or low risk of sudden cardiac death. Heart Rhythm 2012; 9:1256-64.e2. [PMID: 22406384 DOI: 10.1016/j.hrthm.2012.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous studies have demonstrated that microvolt T-wave alternans (MTWA) testing is a robust predictor of ventricular tachyarrhythmias and sudden cardiac death (SCD) in at-risk patients. However, recent studies have suggested that MTWA testing is not as good a predictor of "appropriate" implantable cardioverter-defibrillator (ICD) therapy as it is a predictor of SCD in patients without ICDs. OBJECTIVE To evaluate the utility of MTWA testing for SCD risk stratification in patients without ICDs. METHODS Patient-level data were obtained from 5 prospective studies of MTWA testing in patients with no history of ventricular arrhythmia or SCD. In these studies, ICDs were implanted in only a minority of patients and patients with ICDs were excluded from the analysis. We conducted a pooled analysis and examined the 2-year risk for SCD based on the MTWA test result. RESULTS The pooled cohort included 2883 patients. MTWA testing was positive in 856 (30%), negative in 1627 (56%), and indeterminate in 400 (14%) patients. Among patients with a left ventricular ejection fraction (LVEF) of ≤35%, annual SCD event rates were 4.0%, 0.9%, and 4.6% among groups with MTWA positive, negative, and indeterminate test results. The SCD rate was significantly lower among patients with a negative MTWA test result than in patients with either positive or indeterminate MTWA test results (P <.001 for both comparisons). In patients with an LVEF of >35%, annual SCD event rates were 3.0%, 0.3%, and 0.3% among the groups with MTWA positive, negative, and indeterminate test results. The SCD rate associated with a positive MTWA test result was significantly higher than that associated with either negative (P <.001) or indeterminate MTWA test results (P = .003). CONCLUSIONS In patients without ICDs, MTWA testing is a powerful predictor of SCD. Among patients with an LVEF of ≤35%, a negative MTWA test result is associated with a low risk for SCD. Conversely, among patients with an LVEF of >35%, a positive MTWA test result identifies patients at significantly heightened SCD risk. These findings may have important implications for refining primary prevention ICD treatment algorithms.
Collapse
|