1
|
Schmidt C, Wiedmann F. Disease mechanism and novel drug therapies for atrial fibrillation. MED GENET-BERLIN 2025; 37:147-154. [PMID: 40207039 PMCID: PMC11976400 DOI: 10.1515/medgen-2025-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, affects over 3 % of adults globally, increasing risks for stroke, heart failure, and cognitive decline. Early rhythm control shows promise in improving AF prognosis, and catheter ablation remains an effective, safe option, especially for paroxysmal AF. However, high recurrence rates with antiarrhythmic drugs and ablation persist, particularly in cases of persistent AF. Emerging research on molecular mechanisms has led to innovative therapeutic strategies targeting these pathways, offering hope for more effective AF management. This review explores recent insights into the complex pathophysiology of AF, with a particular focus on ion channel dysfunction, calcium mishandling, oxidative stress, and fibrosis. It further considers how these factors will inspire new therapeutic options.
Collapse
Affiliation(s)
- Constanze Schmidt
- Medical University Hospital HeidelbergDepartment of CardiologyIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Felix Wiedmann
- Medical University Hospital HeidelbergDepartment of CardiologyIm Neuenheimer Feld 41069120HeidelbergGermany
| |
Collapse
|
2
|
Zhang K, Ma Z, Yang Y, Li G. Beneficial effects of doxycycline on atrial electrical remodelling in a rat model of atrial fibrillation. Acta Cardiol 2025:1-11. [PMID: 40337895 DOI: 10.1080/00015385.2025.2500888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/13/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Previous studies showed that doxycycline (Dox) can attenuate chronic intermittent hypoxia (CIH)-induced atrial fibrosis in rats. On this basis, we further investigated the effects of Dox on CIH-induced atrial electrical remodelling. METHODS Rats were randomised into 3 groups: Control group, CIH group, and CIH with Dox treatment (CIH-D) group (n = 30). CIH and CIH-D rats were subjected to CIH 8 h/d for 6 weeks. After collecting the basic parameters of the rats, atrial fibrillation (AF) inducibility, conduction inhomogeneity, and epicardial conduction velocity were examined by in vitro cardiac electrophysiology experiments. The expression levels of ion channel subunits in the atrium were detected by Western blotting. Whole-cell patch clamp experiments were used to recorded action potential (AP), ICa-L, Ito, and the kinetic parameters. RESULTS Compared to the Control rats, CIH rats showed increased AF inducibility, conduction inhomogeneity, and expression levels of p-RyR2, p-CaMKII, Kv11.1, Kir2.3, KCa3.1, whereas the epicardial conduction velocity, ICa-L, Ito, and expression levels of Cav1.2, Kv1.5, Kv4.3 were decreased. Dox-treatment significantly improved the expression levels of Kv1.5, Kv4.3 and Kir2.3 in CIH-D rats. CONCLUSION CIH caused atrial electrical remodelling in our rats, which was improved by Dox treatment. These changes indicated the potential effects of Dox in AF.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zuowang Ma
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Yu Yang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Guangping Li
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Cámara‐Checa A, Álvarez M, Rapún J, Pérez‐Martín S, Núñez‐Fernández R, Rubio‐Alarcón M, Crespo‐García T, Desviat LR, Delpón E, Caballero R, Richard E. Propionic Acidemia-Induced Proarrhythmic Electrophysiological Alterations in Human iPSC-Derived Cardiomyocytes. J Inherit Metab Dis 2025; 48:e70030. [PMID: 40302352 PMCID: PMC12041839 DOI: 10.1002/jimd.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Propionic acidemia (PA) is a metabolic disorder caused by a deficiency of the mitochondrial enzyme propionyl-CoA carboxylase (PCC) due to mutations in the PCCA or PCCB genes, which encode the two PCC subunits. PA may lead to several types of cardiomyopathy and has been linked to cardiac electrical abnormalities such as QT interval prolongation, life-threatening arrhythmias, and sudden cardiac death. To gain insights into the mechanisms underlying PA-induced proarrhythmia, we recorded action potentials (APs) and ion currents using whole-cell patch-clamp in ventricular-like induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) from a PA patient carrying two pathogenic mutations in the PCCA gene (p.Cys616_Val633del and p.Gly477Glufs*9) (PCCA cells) and from a healthy subject (healthy cells). In cells driven at 1 Hz, PCC deficiency increased the latency and prolonged the AP duration (APD) measured at 20% of repolarization, without modifying resting membrane potential or AP amplitude. Moreover, delayed afterdepolarizations appeared at the end of the repolarization phase in unstimulated and paced PCCA cells. PCC deficiency significantly reduced peak sodium current (INa) but increased the late INa (INaL) component. In addition, L-type Ca2+ current (ICaL) density was reduced, while the inward and outward density of the Na+/Ca2+ exchanger current (INCX) was increased in PCCA cells compared to healthy ones. In conclusion, our results demonstrate that at the cellular level, PCC deficiency can modify the ion currents controlling cardiac excitability, APD, and intracellular Ca2+ handling, increasing the risk of arrhythmias independently of the progressive late-onset cardiomyopathy induced by PA disease.
Collapse
Affiliation(s)
- Anabel Cámara‐Checa
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Mar Álvarez
- Centro de Biología Molecular Severo Ochoa UAM‐CSICUniversidad Autónoma de MadridMadridSpain
| | - Josu Rapún
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Sara Pérez‐Martín
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Roberto Núñez‐Fernández
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Marcos Rubio‐Alarcón
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Teresa Crespo‐García
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICUniversidad Autónoma de MadridMadridSpain
- Instituto Universitario de Biología Molecular (IUBM)MadridSpain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Gregorio MarañónMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM‐CSICUniversidad Autónoma de MadridMadridSpain
- Instituto Universitario de Biología Molecular (IUBM)MadridSpain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos III (ISCIII)MadridSpain
| |
Collapse
|
4
|
Keefe JA, Aguilar-Sanchez Y, Navarro-Garcia JA, Ong I, Li L, Paasche A, Abu-Taha I, Tekook MA, Bruns F, Zhao S, Kamler M, Shen YH, Chelu MG, Li N, Dobrev D, Wehrens XH. Macrophage-mediated IL-6 signaling drives ryanodine receptor-2 calcium leak in postoperative atrial fibrillation. J Clin Invest 2025; 135:e187711. [PMID: 40048254 PMCID: PMC12043083 DOI: 10.1172/jci187711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
Postoperative atrial fibrillation (poAF) is AF occurring days after surgery, with a prevalence of 33% among patients undergoing open-heart surgery. The degree of postoperative inflammation correlates with poAF risk, but less is known about the cellular and molecular mechanisms driving postoperative atrial arrhythmogenesis. We performed single-cell RNA-seq comparing atrial nonmyocytes from mice with and without poAF, which revealed infiltrating CCR2+ macrophages to be the most altered cell type. Pseudotime trajectory analyses identified Il-6 as a gene of interest driving in macrophages, which we confirmed in pericardial fluid collected from human patients after cardiac surgery. Indeed, macrophage depletion and macrophage-specific Il6ra conditional knockout (cKO) prevented poAF in mice. Downstream STAT3 inhibition with TTI-101 and cardiomyocyte-specific Stat3 cKO rescued poAF, indicating a proarrhythmogenic role of STAT3 in poAF development. Confocal imaging in isolated atrial cardiomyocytes (ACMs) uncovered what we believe to be a novel link between STAT3 and CaMKII-mediated ryanodine receptor-2 (RyR2)-Ser(S)2814 phosphorylation. Indeed, nonphosphorylatable RyR2S2814A mice were protected from poAF, and CaMKII inhibition prevented arrhythmogenic Ca2+ mishandling in ACMs from mice with poAF. Altogether, we provide multiomic, biochemical, and functional evidence from mice and humans that IL-6-STAT3-CaMKII signaling driven by infiltrating atrial macrophages is a pivotal driver of poAF, which portends therapeutic utility for poAF prevention.
Collapse
Affiliation(s)
- Joshua A. Keefe
- Cardiovascular Research Institute
- Department of Integrative Physiology, and
| | | | | | - Isabelle Ong
- Cardiovascular Research Institute
- Department of Integrative Physiology, and
| | - Luge Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Amelie Paasche
- Cardiovascular Research Institute
- Department of Integrative Physiology, and
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Marcel A. Tekook
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Florian Bruns
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Shuai Zhao
- Cardiovascular Research Institute
- Department of Integrative Physiology, and
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Ying H. Shen
- Cardiovascular Research Institute
- Department of Surgery, Division of Cardiothoracic Surgery and
| | - Mihail G. Chelu
- Cardiovascular Research Institute
- Department of Internal Medicine, Division of Cardiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Heart Institute at Baylor St. Luke’s Medical Center, Houston, Texas, USA
| | - Na Li
- Cardiovascular Research Institute
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Dobromir Dobrev
- Department of Integrative Physiology, and
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute
- Department of Integrative Physiology, and
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience
- Department of Pediatrics, and
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2025; 39:435-458. [PMID: 37702834 PMCID: PMC11954709 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Tomek J, Zhou X, Martinez-Navarro H, Holmes M, Bury T, Berg LA, Tomkova M, Jo E, Nagy N, Bertrand A, Bueno-Orovio A, Colman M, Rodriguez B, Bers D, Heijma J. T-World: A highly general computational model of a human ventricular myocyte. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645031. [PMID: 40196542 PMCID: PMC11974879 DOI: 10.1101/2025.03.24.645031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cardiovascular disease is the leading cause of death, demanding new tools to improve mechanistic understanding and overcome limitations of stem cell and animal-based research. We introduce T-World, a highly general virtual model of human ventricular cardiomyocyte suitable for multiscale studies. T-World shows comprehensive agreement with human physiology, from electrical activation to contraction, and is the first to replicate all key cellular mechanisms driving life-threatening arrhythmias. Extensively validated on unseen data, it demonstrates strong predictivity across applications and scales. Using T-World we revealed a likely sex-specific arrhythmia risk in females related to restitution properties, identified arrhythmia drivers in type 2 diabetes, and describe unexpected pro-arrhythmic role of NaV1.8 in heart failure. T-World demonstrates strong performance in predicting drug-induced arrhythmia risk and opens new opportunities for predicting and explaining drug efficacy, demonstrated by unpicking effects of mexiletine in Long QT syndrome 2. T-World is available as open-source code and an online app.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Anatomy, Physiology and Genetics (University of Oxford)
- Department of Pharmacology (UC Davis)
| | - Xin Zhou
- Department of Computer Science (University of Oxford)
| | | | - Maxx Holmes
- Department of Computer Science (University of Oxford)
| | - Thomas Bury
- Department of Physiology (McGill University)
| | | | | | - Emily Jo
- Department of Anatomy, Physiology and Genetics (University of Oxford)
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy (University of Szeged)
| | | | | | | | | | | | - Jordi Heijma
- Medical Physics and Biophysics (Medical University of Graz)
| |
Collapse
|
7
|
Perelli RM, Dewars ER, Cope H, Behura AS, Ponek AQ, Sala AM, Zhang Z, Muralidharan P, Moya-Mendez ME, Berkman A, Monaco GG, Sullivan MC, Ezekian JE, Yang Q, Sun B, Kurzlechner LM, Asokan T, Breglio AM, Jay Campbell M, Spector ZZ, Rehder CW, Tang PC, James CA, Calkins H, Shashi V, Landstrom AP. TAX1BP3 Causes TRPV4-Mediated Autosomal Recessive Arrhythmogenic Cardiomyopathy. Circ Res 2025; 136:667-684. [PMID: 39963794 PMCID: PMC11949706 DOI: 10.1161/circresaha.124.325180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is one of the leading causes of sudden cardiac death in children, young adults, and athletes and is characterized by the fibro-fatty replacement of the myocardium, predominantly of the right ventricle. Sixty percent of patients with ACM have a known genetic cause, but for the remainder, the pathogenesis is unknown. This lack of mechanistic understanding has slowed the development of disease-modifying therapies, and children with ACM have a high degree of morbidity and mortality. METHODS Induced pluripotent stem cells (iPSCs) from 3 family members were differentiated into cardiac myocytes (CMs). Calcium imaging was conducted by labeling calcium with CAL-520 and confocal imaging to capture calcium sparks after iPSC-CMs were electrically paced. A cardiac-specific, inducible knockout mouse (Tax1bp3-/-) was made and intracardiac electrophysiology studies conducted to observe arrhythmia inducibility following pacing. RESULTS We identified a kindred with multiple members affected by ACM cosegregating with biallelic variants in the gene TAX1BP3, which encodes the protein TAX1BP3 (Tax1-binding protein 3). iPSC-CMs derived from this kindred demonstrated increased intracellular lipid droplets, induction of TRPV4 (transient receptor potential vanilloid type 4) expression, and inducible TRPV4 current. This was associated with depletion of the intracellular sarcoplasmic reticulum Ca2+ store and increased RyR2 (ryanodine receptor 2)-mediated store Ca2+ leak and delayed afterdepolarizations, a known mechanism of Ca2+-mediated arrhythmogenesis. Similarly, Tax1bp3 cardiac-specific knockout mice had increased Ca2+ leak and were predisposed to ventricular arrhythmias compared with wild-type mice. Ca2+ leak in both the iPSC-CMs and mouse ventricular myocytes was rescued by small molecule TRPV4 inhibition. This strategy also effectively reduced Ca2+ leak in a PKP2 (plakophilin 2) p.His773AlafsX8 iPSC-CM model of ACM. CONCLUSIONS We conclude that TAX1BP3 is associated with rare autosomal recessive ACM through TRPV4-mediated Ca2+ leak from RyR2. Further, TRPV4 current inhibition has the potential to be a new therapeutic target for ACM.
Collapse
Affiliation(s)
- Robin M. Perelli
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Enya R. Dewars
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell and Molecular Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Heidi Cope
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Alexander S. Behura
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Anna Q. Ponek
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Angelina M. Sala
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zhushan Zhang
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Padmapriya Muralidharan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Mary E. Moya-Mendez
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Amy Berkman
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Gabrielle G. Monaco
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Molly C. Sullivan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Jordan E. Ezekian
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Qixin Yang
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Bo Sun
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Leonie M. Kurzlechner
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Tulsi Asokan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Andrew M. Breglio
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - M. Jay Campbell
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zebulon Z. Spector
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Catherine W. Rehder
- Department of Pathology and Duke University Health Systems Clinical Laboratories, Durham, North Carolina, United States
| | | | - Paul C. Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Cynthia A. James
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| | - Hugh Calkins
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| | - Vandana Shashi
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Andrew P. Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
8
|
Georghiou GP, Xanthopoulos A, Kanellopoulos G, Georghiou P, Georgiou A, Skoularigis J, Giamouzis G, Lampropoulos K, Patrikios I, Triposkiadis F. Cancer Is a Major Determinant of Postoperative Atrial Fibrillation After Cardiac Surgery. J Clin Med 2025; 14:2117. [PMID: 40142925 PMCID: PMC11943429 DOI: 10.3390/jcm14062117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Postoperative atrial fibrillation (POAF) occurs frequently after cardiac surgery and is associated with increased morbidity and mortality. The pathogenesis of POAF in this setting is complex and not completely understood. Since cancer is a well-known risk factor for AF, the aim of this study was to identify potential predictors, including cancer, of POAF after cardiac surgery. Methods: This prospective study included 400 consecutive patients in sinus rhythm who underwent elective cardiac surgery in Aretaeio Hospital (Nicosia, Cyprus) from January 2020 till January 2023. The primary outcome was the development of POAF during hospitalization, defined as any documented AF episode lasting >30 s. Predictors of the primary outcome were studied using univariable and multivariable logistic regression analysis. Results: Of the 400 patients (68 [61-73] years, 64 [16%] females) studied, 66 (16.5%) developed POAF. Among the variables examined, the only predictors of POAF were cardiopulmonary bypass time (odds ratio [OR] = 1.001, 95% confidence interval = [95% CI, 1.000-1.001], p = -0.031) and cancer (OR = 3.852, 95% CI = [1.535-9.664], p = 0.004). Cancer was present in 13 (4%) and in 10 (15%) of patients without and with POAF, respectively (p < 0.001). Conclusions: Cancer was associated with a dramatic increase in POAF risk early after elective cardiac surgery in this study. Whether patients developing POAF after cardiac surgery should be searched for cancer deserves further investigation.
Collapse
Affiliation(s)
- Georgios P. Georghiou
- Department of Cardiothoracic Surgery, Aretaeio Hospital, 2414 Nicosia, Cyprus; (G.P.G.); (G.K.)
- Medical School, European University Cyprus, 2404 Nicosia, Cyprus; (K.L.)
- Department of Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrew Xanthopoulos
- Department of Cardiology, University General Hospital of Larissa, 41334 Larissa, Greece; (A.X.); (J.S.)
| | - George Kanellopoulos
- Department of Cardiothoracic Surgery, Aretaeio Hospital, 2414 Nicosia, Cyprus; (G.P.G.); (G.K.)
| | | | - Amalia Georgiou
- Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - John Skoularigis
- Department of Cardiology, University General Hospital of Larissa, 41334 Larissa, Greece; (A.X.); (J.S.)
| | - Grigorios Giamouzis
- Department of Cardiology, University General Hospital of Larissa, 41334 Larissa, Greece; (A.X.); (J.S.)
| | - Konstantinos Lampropoulos
- Medical School, European University Cyprus, 2404 Nicosia, Cyprus; (K.L.)
- 3rd Department of Cardiology, Euroclinic of Athens, 11521 Athens, Greece
| | - Ioannis Patrikios
- Medical School, European University Cyprus, 2404 Nicosia, Cyprus; (K.L.)
| | - Filippos Triposkiadis
- Medical School, European University Cyprus, 2404 Nicosia, Cyprus; (K.L.)
- Department of Cardiology, University General Hospital of Larissa, 41334 Larissa, Greece; (A.X.); (J.S.)
| |
Collapse
|
9
|
Krammer T, Baier MJ, Hegner P, Zschiedrich T, Lukas D, Wolf M, Le Phu C, Lutz V, Evert K, Kozakov K, Li J, Holzamer A, Maier LS, Provaznik Z, Bers DM, Wagner S, Mustroph J. Cardioprotective effects of semaglutide on isolated human ventricular myocardium. Eur J Heart Fail 2025. [PMID: 40107718 DOI: 10.1002/ejhf.3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
AIMS Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has shown promising effects in reducing cardiovascular events in patients with obesity and heart failure (HF) with preserved ejection fraction (HFpEF) irrespective of concomitant diabetes. However, the exact mechanisms underlying its cardioprotective actions remain unclear. Our study investigates the direct effects of semaglutide on human cardiomyocytes, focusing on calcium (Ca) and sodium (Na) handling and its potential to improve myocardial contractility. METHODS AND RESULTS Human left ventricular cardiomyocytes were isolated from non-failing (NF) hearts, patients with aortic stenosis and a HFpEF-like phenotype (AS), and those with end-stage HF with reduced ejection fraction (HFrEF). Late Na current (INa), sarcoplasmic reticulum (SR) Ca leak, and contractility were assessed in isolated cardiomyocytes treated with semaglutide. CaMKII inhibitor autocamtide-2-related inhibitory peptide and GLP-1 receptor antagonist exendin 9-39 (Ex-9-39) were used to elucidate signalling pathways. Semaglutide reduced late INa in AS and HFrEF cardiomyocytes to levels comparable to NF. Additionally, semaglutide decreased diastolic SR Ca leak and improved systolic Ca transients and contractility in AS and HFrEF tissue. These effects were mediated through GLP-1 receptor agonism and were comparable to CaMKII inhibition. In multicellular preparations, semaglutide differentially improved myocardial contractility in AS and HFrEF in a dose-dependent manner. CONCLUSION Semaglutide directly modulates ion homeostasis in human cardiomyocytes, reducing proarrhythmic diastolic SR Ca leak and enhancing systolic function, which may explain its observed clinical benefits. These findings provide mechanistic insights into the cardioprotective effects of semaglutide and suggest its potential therapeutic use in HF.
Collapse
Affiliation(s)
- Thomas Krammer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maria J Baier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Zschiedrich
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - David Lukas
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Wolf
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Christian Le Phu
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Vanessa Lutz
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute for Pathology, University of Regensburg, Regensburg, Germany
| | - Kostiantyn Kozakov
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jing Li
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Holzamer
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Zdenek Provaznik
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Li X, Wu M, Fang L, Chen Q, Chen Z, Lin Z, Chen J, Makota P, Li Y, Zhang J. Cardiac FGF23 Increases Intracellular Calcium in Atrial Myocytes and the Susceptibility to Atrial Fibrillation Decreased in FGF23 f / fMyHC Cre /+ Mice. J Cell Mol Med 2025; 29:e70517. [PMID: 40126903 PMCID: PMC11932160 DOI: 10.1111/jcmm.70517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Exogenous fibroblast growth factor (FGF) 23 is closely associated with atrial fibrillation (AF) and is able to alter the cardiac electrophysiological activity by increasing intracellular calcium. While its arrhythmogenic mechanism remains unclear, this study aims to investigate the electrophysiological effects of cardiac FGF23 on intracellular calcium in atrial cells and its underlying mechanism. The incidence of AF was significantly decreased in FGF23f/fMyHCCre/+ mice compared to Cre mice. A significant increase in the incidence of triggering activity (TA), L-type calcium currents (ICa,L) and systolic calcium transient was induced in neonatal mice atrial myocytes (NMAMs) from the overexpression of FGF23. Conversely, the opposite effects were exhibited as a reduced diastolic spontaneous calcium leak and weakened Na+/Ca2+ exchange (NCX) function in cardiac myocytes from FGF23f/fMyHCCre/+ mice, which can reduce incidences of AF induced by delayed after depolarization (DAD). In addition, ryanodine-receptor 2 (RyR2) of calcium regulatory proteins was significantly downregulated in FGF23f/fMyHCCre/+ mice and upregulated in FGF23 overexpression of NMAMs. In conclusion, overexpression of cardiac FGF23 may increase the susceptibility to AF due to DAD or TA induced by increasing intracellular calcium in atrial myocytes.
Collapse
Affiliation(s)
- Xiao‐Qian Li
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Mei‐Qiong Wu
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| | - Li‐Hua Fang
- Department of Cardiovascular MedicineFuzhou First Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Qian Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of Critical Care Medicine Division FourFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| | - Zhi‐Jie Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Zhu‐Hui Lin
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Jian‐Quan Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| | - Panashe Makota
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Yang Li
- Department of CardiologyThe Sixth Medical Center, Chinese People's Liberation Army HospitalBeijingChina
| | - Jian‐Cheng Zhang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouFujianChina
| |
Collapse
|
11
|
Beyer SE, Sohns C, Sommer P. Atrial Fibrillation in End-Stage Heart Failure. Card Electrophysiol Clin 2025; 17:87-97. [PMID: 39893040 DOI: 10.1016/j.ccep.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
End-stage heart failure (HF) accounts for 1% to 10% of all HF cases. It is frequently associated with coexistent atrial fibrillation due in part to structural changes related to altered hemodynamics, increased wall stress, and neurohormonal activation. The treatment remains challenging because of frequent atrial remodeling, comorbidities, and high recurrence rates. Studies have found no benefit of medical rhythm control compared with rate control. However, recent data suggest that catheter ablation might be associated with a reduction in HF symptomatology and all-cause mortality. Alternative treatment options including AV nodal ablation are available for refractory cases, but should not delay urgent heart transplantation.
Collapse
Affiliation(s)
- Sebastian E Beyer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Georgstr. 11, Bad Oeynhausen 32545, Germany
| | - Christian Sohns
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Georgstr. 11, Bad Oeynhausen 32545, Germany
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Georgstr. 11, Bad Oeynhausen 32545, Germany.
| |
Collapse
|
12
|
Chang Y, Zou Q. Mitochondrial calcium homeostasis and atrial fibrillation: Mechanisms and therapeutic strategies review. Curr Probl Cardiol 2025; 50:102988. [PMID: 39828107 DOI: 10.1016/j.cpcardiol.2025.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance. However, Ca²⁺ homeostasis disruptions, particularly overload, result in excessive ROS production, mitochondrial permeability transition pore (mPTP) opening, and oxidative stress-induced damage. These changes lead to mitochondrial dysfunction, Ca²⁺ leakage, and cardiomyocyte apoptosis, driving AF progression and atrial remodeling. Therapeutically, targeting mitochondrial Ca²⁺ homeostasis shows promise in mitigating AF. Moderate Ca²⁺ regulation enhances energy metabolism, stabilizes mitochondrial membrane potential, and bolsters antioxidant defenses by upregulating enzymes like superoxide dismutase and glutathione peroxidase. This reduces ROS generation and facilitates clearance. Proper Ca²⁺ levels also prevent electron leakage and promote mitophagy, aiding in damaged mitochondria removal and reducing ROS accumulation. Future strategies include modulating Ryanodine receptor 2 (RyR2), mitochondrial calcium uniporter (MCU), and sodium-calcium exchanger (NCLX) to control Ca²⁺ overload and oxidative damage. Addressing mitochondrial Ca²⁺ dynamics offers a compelling approach to breaking the cycle of Ca²⁺ overload, oxidative stress, and AF progression. Further research is needed to clarify the mechanisms of mitochondrial Ca²⁺ regulation and its role in AF pathogenesis. This knowledge will guide the development of innovative treatments to improve outcomes and quality of life for AF patients.
Collapse
Affiliation(s)
- Yixuan Chang
- School of Health Management, Binzhou Medical University, BinZhou, 256600, PR China
| | - Qi Zou
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, PR China.
| |
Collapse
|
13
|
Ning ZH, Wang XH, Tang HF, Hu HJ. The role of SGLT1 in atrial fibrillation and its relationship with endothelial-mesenchymal transition. Biochem Biophys Res Commun 2025; 748:151338. [PMID: 39823893 DOI: 10.1016/j.bbrc.2025.151338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia closely associated with atrial fibrosis, posing significant challenges to cardiovascular health. Recent studies have identified the sodium-glucose co-transporter 1 (SGLT1) as a potential key player in the pathophysiology of heart diseases, particularly in the context of AF and atrial fibrosis. This review aims to synthesize current knowledge regarding the mechanisms by which SGLT1 influences the development of AF and atrial fibrosis, with a specific focus on its relationship with endothelial-mesenchymal transition (EMT). By analyzing the latest research findings, this paper discusses how SGLT1 may modulate structural and functional changes in the atria, thereby enhancing our understanding of the underlying mechanisms driving AF.
Collapse
Affiliation(s)
- Zhi-Hong Ning
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiu-Heng Wang
- The First Affiliated Hospital, Department of Medical-record, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hui-Fang Tang
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Heng-Jing Hu
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
14
|
Zhou F, Zhou JB, Wei TP, Wu D, Wang RX. The Role of HIF-1α in Atrial Fibrillation: Recent Advances and Therapeutic Potentials. Rev Cardiovasc Med 2025; 26:26787. [PMID: 40026494 PMCID: PMC11868874 DOI: 10.31083/rcm26787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 03/05/2025] Open
Abstract
The steady increase in life expectancy throughout the world is contributing to an increased incidence of atrial fibrillation (AF), which imposes a significant socioeconomic toll on affected patients and societies. The mechanisms underlying atrial fibrillation are multifaceted and vary among individuals. Hypoxia is a process that is closely linked to AF onset and progression. Hypoxia-inducible factor 1-alpha (HIF-1α) is a transcription factor that serves as a key regulator of oxygen homeostasis within cells through its activation under hypoxic conditions and subsequently coordinates various pathophysiological responses. High levels of HIF-1α expression are evident in AF patients, and facilitate the progression from persistent AF to permanent AF. Thus, HIF-1α may serve as a promising target for novel therapeutic strategies aimed at the prevention and treatment of AF. This review provides an overview and synthesis of recent studies probing the relationship between HIF-1α and AF, providing a foundation for future studies and the development targeted drug therapies.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Jia-Bin Zhou
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Tian-Peng Wei
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Dan Wu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Grogan A, Brong A, Joca HC, Boyman L, Kaplan AD, Ward CW, Greiser M, Kontrogianni-Konstantopoulos A. Constitutive deletion of the obscurin-Ig58/59 domains induces atrial remodeling and Ca2+-based arrhythmogenesis. JCI Insight 2025; 10:e184202. [PMID: 39804820 PMCID: PMC11949006 DOI: 10.1172/jci.insight.184202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59. Males in this line develop atrial fibrillation by 6 months, with atrial and ventricular dilation by 12 months. As Obscn-ΔIg58/59 left ventricles at 6 months exhibit no deficits in sarcomeric ultrastructure or Ca2+ signaling, we hypothesized that susceptibility to arrhythmia may emanate from the atria. Ultrastructural evaluation of male Obscn-ΔIg58/59 atria uncovered prominent Z-disk streaming by 6 months and further misalignment by 12 months. Relatedly, isolated Obscn-ΔIg58/59 atrial cardiomyocytes exhibited increased Ca2+ spark frequency and age-specific alterations in Ca2+ cycling dynamics, coinciding with arrhythmia onset and progression. Quantitative analysis of the transverse-axial tubule (TAT) network using super-resolution microscopy demonstrated significant TAT depletion in Obscn-ΔIg58/59 atria. These structural and Ca2+ signaling deficits were accompanied by age-specific alterations in the expression or phosphorylation of T-cap protein, which links transverse tubules to Z-disks, and junctophilin 2, which connects transverse tubules to the sarcoplasmic reticulum. Collectively, our work establishes the Obscn-ΔIg58/59 model as a reputable genetic model for atrial cardiomyopathy and provides mechanistic insights into atrial fibrillation and remodeling.
Collapse
Affiliation(s)
| | - Annie Brong
- Department of Biochemistry and Molecular Biology
| | | | - Liron Boyman
- Department of Physiology and Center for Biomedical Engineering and Technology
- Marlene and Stewart Greenebaum Comprehensive Cancer Center
| | - Aaron D. Kaplan
- Department of Physiology and Center for Biomedical Engineering and Technology
- Division of Cardiology, Department of Medicine; and
| | | | - Maura Greiser
- Department of Physiology and Center for Biomedical Engineering and Technology
- Claude D. Pepper Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
16
|
Do TQ, Knollmann BC. Inhibitors of Intracellular RyR2 Calcium Release Channels as Therapeutic Agents in Arrhythmogenic Heart Diseases. Annu Rev Pharmacol Toxicol 2025; 65:443-463. [PMID: 39374431 DOI: 10.1146/annurev-pharmtox-061724-080739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Ryanodine receptor type 2 (RyR2) is the principal intracellular calcium release channel in the cardiac sarcoplasmic reticulum (SR). Pathological RyR2 hyperactivity generates arrhythmia risk in genetic and structural heart diseases. RYR2 gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia. In structural heart diseases (i.e., heart failure), posttranslation modifications render RyR2 channels leaky, resulting in pathologic calcium release during diastole, contributing to arrhythmogenesis and contractile dysfunction. Hence, RyR2 represents a therapeutic target in arrhythmogenic heart diseases. We provide an overview of the structure and function of RyR2, and then review US Food and Drug Administration-approved and investigational RyR2 inhibitors. A therapeutic classification of RyR2 inhibitors is proposed based on their mechanism of action. Class I RyR2 inhibitors (e.g., flecainide) do not change SR calcium content and are primarily antiarrhythmic. Class II RyR2 inhibitors (e.g., dantrolene) increase SR calcium content, making them less effective as antiarrhythmics but preferable in conditions with reduced SR calcium content such as heart failure.
Collapse
Affiliation(s)
- Tri Q Do
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
17
|
Saljic A, Heijman J, Dobrev D. From Atrial Small-conductance Calcium-activated Potassium Channels to New Antiarrhythmics. Eur Cardiol 2024; 19:e26. [PMID: 39872420 PMCID: PMC11770539 DOI: 10.15420/ecr.2024.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/27/2024] [Indexed: 01/30/2025] Open
Abstract
Despite significant advances in its management, AF remains a major healthcare burden affecting millions of individuals. Rhythm control with antiarrhythmic drugs or catheter ablation has been shown to improve symptoms and outcomes in AF patients, but current treatment options have limited efficacy and/or significant side-effects. Novel mechanism-based approaches could potentially be more effective, enabling improved therapeutic strategies for managing AF. Small-conductance calcium-activated potassium (SK or KCa2.x) channels encoded by KCNN1-3 have recently gathered interest as novel antiarrhythmic targets with potential atrial-predominant effects. Here, the molecular composition of smallconductance calcium-activated potassium channels and their complex regulation in AF as the basis for understanding the distinct mechanism of action of pore-blockers (apamin, UCL1684, ICAGEN) and modulators of calcium-dependent activation (NS8593, AP14145, AP30663) are summarised. Furthermore, the preclinical and early clinical evidence for the role of small-conductance calcium-activated potassium channel inhibitors in the treatment of AF are reviewed.
Collapse
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-EssenEssen, Germany
| | - Jordi Heijman
- Gottfried Schatz Research Centre, Division of Medical Physics & Biophysics, Medical University of GrazGraz, Austria
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht UniversityMaastricht, the Netherlands
| | - Dobromir Dobrev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
- Departments of Medicine and Research Centre, Montreal Heart Institute and Université de MontréalMontreal, Canada
- Department of Integrative Physiology, Baylor College of MedicineHouston, TX, US
| |
Collapse
|
18
|
Sweat ME, Pu WIT. Genetic and Molecular Underpinnings of Atrial Fibrillation. NPJ CARDIOVASCULAR HEALTH 2024; 1:35. [PMID: 39867228 PMCID: PMC11759492 DOI: 10.1038/s44325-024-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 01/28/2025]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, increases stroke and heart failure risks. Here we review genes linked to AF and mechanisms by which they alter AF risk. We highlight gene expression differences between atrial and ventricular cardiomyocytes, regulatory mechanisms responsible for these differences, and their potential contribution to AF. Understanding AF mechanisms through the lens of atrial gene regulation is crucial to improving AF treatment.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
| | - WIlliam T. Pu
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge,
MA 02138, USA
| |
Collapse
|
19
|
Ding Q, Wang Z, Lu L, Song Z, Ge M, Zhou Q. QTc interval prolongation and risk of atrial fibrillation recurrence: a meta-analysis and observational cohort study. Front Cardiovasc Med 2024; 11:1483591. [PMID: 39582525 PMCID: PMC11582060 DOI: 10.3389/fcvm.2024.1483591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Corrected QT interval (QTc) is a ventricular repolarization marker on electrocardiography. Previous studies evaluated its value in predicting atrial fibrillation (AF) occurrence. However, its predictive efficacy for AF recurrence remains controversial. Methods We searched PubMed and Google databases for studies before January 2024 evaluating the association between QTc interval and AF incidence. A meta-analysis of the eligible datasets was conducted using Bazett's formula, with subgroup analysis to explore the heterogeneity. Additionally, thirty-eight patients with AF who underwent radiofrequency catheter ablation were enrolled and followed-up for 3-36 months. Univariate and multivariate Cox models were used to calculate the hazard ratios (HRs) and determine the relationship between clinical factors and AF recurrence. Kaplan-Meier survival analysis and ROC curve were conducted to assess the impact and predictive efficacy of individual factors. Results Eleven datasets from nine eligible studies were enrolled and meta-analysed. We found that patients with prolonged QTc interval was associated with a significantly higher AF incidence risk, and the risk increased with every 10-ms prolongation. However, this association was not significant in the AF recurrence subgroup. In our prospective cohort, the preoperative body mass index, QTc, left atrial diameter (LAD), and uric acid levels influenced AF recurrence. Multivariate Cox regression analysis identified LAD as an independent factor affecting AF recurrence in patients with a high predictive efficiency. Kaplan-Meier survival analysis showed that increased LAD (>4.5 cm) was associated with postoperative AF recurrence. Discussion Therefore, LAD has better predictive power and can be an indicator for predicting postoperative AF recurrence.
Collapse
Affiliation(s)
| | | | | | | | - Min Ge
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
20
|
Aceituno C, Revuelta D, Jiménez-Sábado V, Ginel A, Molina CE, Hove-Madsen L. Impact of Overnight Storage of Human Atrial Myocytes on Intracellular Calcium Homeostasis and Electrophysiological Utility. Biomolecules 2024; 14:1415. [PMID: 39595591 PMCID: PMC11591567 DOI: 10.3390/biom14111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Human atrial myocytes afford an attractive experimental model to investigate mechanisms underlying electrophysiological alterations in cardiovascular disease. However, this model presents limitations, such as the availability of human atrial tissue and a variable yield of myocytes isolation. Therefore, we aimed to determine whether overnight storage can increase the time window where the electrophysiological properties of human atrial myocytes can be determined. To address this issue, human atrial myocytes isolated from patients undergoing cardiac surgery were used for patch-clamp experiments on the day of cell isolation (Day 1) and the following day (Day 2). The shape of the current-voltage (I-V) relationship for the calcium current (ICa) depended on the access resistance and the cell capacitance, with large cells (>75 pF) requiring a lower access resistance (<15 MΩ) than small cells (<40 pF) to avoid distortion of the I-V curve. Importantly, overnight storage did not significantly affect (1) the ICa amplitude or properties, (2) sarcoplasmic reticulum calcium homeostasis or (3) the frequency-dependency of the beat-to-beat response. In conclusion, overnight storage of isolated human atrial myocytes at 4 °C does not affect essential features of intracellular calcium homeostasis and, therefore, affords a simple protocol to extend the experimental lifetime of human atrial myocytes.
Collapse
Affiliation(s)
- Cristina Aceituno
- Cardiac Rhythm and Contraction Group, Biomedical Research Institute of Barcelona (IIBB-CSIC), Rosselló 161, 08036 Barcelona, Spain;
- Cardiac Rhythm and Contraction Group, Institut de Recerca Sant Pau, St. Antoni Mª Claret 167, 08025 Barcelona, Spain;
| | - David Revuelta
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg Eppendorf (UKE), Martinistrasse 52, W23, 20246 Hamburg, Germany; (D.R.); (C.E.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Potsdamer Strasse 58, 10785 Berlin, Germany
| | - Verónica Jiménez-Sábado
- Cardiac Rhythm and Contraction Group, Institut de Recerca Sant Pau, St. Antoni Mª Claret 167, 08025 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Hospital de la Santa Creu i Sant Pau, St. Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Antonino Ginel
- Cardiac Surgery Department and IR Sant Pau, St. Antoni Mª Claret 167, 08025 Barcelona, Spain;
| | - Cristina E. Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg Eppendorf (UKE), Martinistrasse 52, W23, 20246 Hamburg, Germany; (D.R.); (C.E.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Potsdamer Strasse 58, 10785 Berlin, Germany
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, Biomedical Research Institute of Barcelona (IIBB-CSIC), Rosselló 161, 08036 Barcelona, Spain;
- Cardiac Rhythm and Contraction Group, Institut de Recerca Sant Pau, St. Antoni Mª Claret 167, 08025 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), Hospital de la Santa Creu i Sant Pau, St. Antoni Mª Claret 167, 08025 Barcelona, Spain
| |
Collapse
|
21
|
Zhang X, Wu Y, Smith CER, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca 2+-Driven Arrhythmogenic Events in Female Patients With Atrial Fibrillation: Insights From Computational Modeling. JACC Clin Electrophysiol 2024; 10:2371-2391. [PMID: 39340505 PMCID: PMC11602355 DOI: 10.1016/j.jacep.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Substantial sex-based differences have been reported in atrial fibrillation (AF), but the underlying mechanisms are poorly understood. OBJECTIVES This study sought to gain a mechanistic understanding of Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in male vs female atrial cardiomyocytes and establish their responses to Ca2+-targeted interventions. METHODS We integrated reported sex differences and AF-associated changes (ie, expression and phosphorylation of Ca2+-handling proteins, cardiomyocyte ultrastructural characteristics, and dimensions) into our human atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Sex-specific responses of atrial cardiomyocytes to arrhythmia-provoking protocols and Ca2+-targeted interventions were evaluated. RESULTS Simulated quiescent cardiomyocytes showed increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Sensitivity analysis uncovered distinct arrhythmogenic contributions of each component involved in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation emerged as the major SCR contributor in female AF cardiomyocytes, whereas reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulated Ca2+-targeted interventions identified potential strategies (eg, t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2⁺-ATPase) to attenuate Ca2+-driven arrhythmogenic events in women, and revealed enhanced efficacy when applied in combination. CONCLUSIONS Sex-specific modeling uncovers increased Ca2+-driven arrhythmogenic events in female vs male atria in AF, and suggests combined Ca2+-targeted interventions are promising therapeutic approaches in women.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/xianweizhang1
| | - Yixuan Wu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Charlotte E R Smith
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/Char_Smith3
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway. https://twitter.com/IEMRLouch
| | - Stefano Morotti
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/MorottiLab
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA. https://twitter.com/dr_dobrev
| | - Eleonora Grandi
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| | - Haibo Ni
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| |
Collapse
|
22
|
Xiao Z, Yang H, Pan Y, Meng H, Qu Z, Kong B, Shuai W, Huang H. Ubiquitin-specific protease 38 promotes atrial fibrillation in diabetic mice by stabilizing iron regulatory protein 2. Free Radic Biol Med 2024; 224:88-102. [PMID: 39173894 DOI: 10.1016/j.freeradbiomed.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common cardiovascular disease often observed in diabetes mellitus, and there is currently no satisfactory therapeutic option. Ubiquitin-specific protease 38 (USP38) has been implicated in the degradation of numerous substrate proteins in the myocardium. Herein, we aim to investigate the role of USP38 in AF induced by diabetes. METHODS Cardiac-specific transgenic USP38 mice and cardiac-specific knockout USP38 mice were constructed, and streptozotocin was used to establish diabetic mouse model. Functional, electrophysiological, histologic, biochemical studies were performed. RESULTS The expression of USP38 was upregulated in atrial tissues of diabetic mice and HL-1 cells exposed to high glucose. USP38 overexpression increased susceptibility to AF, accompanied by aberrant expression of calcium-handling protein, heightened iron load and oxidation stress in diabetic mice. Conversely, USP38 deficiency reduced vulnerability to AF by hampering ferroptosis. Mechanistically, USP38 bound to iron regulatory protein 2 (IRP2), stabilizing it and remove K48-linked polyubiquitination chains, thereby increasing intracellular iron overload, lipid peroxidation, and ultimately contributing to ferroptosis. In addition, reduced iron overload by deferoxamine treatment alleviated oxidation stress and decreased vulnerability to AF in diabetic mice. CONCLUSION Overall, our findings reveal the detrimental role of USP38 in diabetes-related AF, manifested by increased level of iron overload and oxidation stress.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Yucheng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hong Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zongze Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Pfenniger A, Yoo S, Arora R. Oxidative stress and atrial fibrillation. J Mol Cell Cardiol 2024; 196:141-151. [PMID: 39307416 DOI: 10.1016/j.yjmcc.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Though the pathogenesis of AF is complex and is not completely understood, many studies suggest that oxidative stress is a major mechanism in pathophysiology of AF. Through multiple mechanisms, reactive oxygen species (ROS) lead to the formation of an AF substrate that facilitates the development and maintenance of AF. In this review article, we provide an update on the different mechanisms by which oxidative stress promotes atrial remodeling. We then discuss several therapeutic strategies targeting oxidative stress for the prevention or treatment of AF. Considering the complex biology of ROS induced remodeling, and the evolution of ROS sources and compartmentalization during AF progression, there is a definite need for improvement in timing, targeting and reduction of off-target effects of therapeutic strategies targeting oxidative injury in AF.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
24
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Phadke K, D’Anna S, Vega ET, Xiao J, Lin X, Zhang M, Sall J, Liang FX, Park DS, Cerrone M, Lundby A, Delmar M, van Opbergen CJ. Atrial cardiomyopathy resulting from loss of plakophilin-2 expression: Response to adrenergic stimulation and implications for the exercise response. J Physiol 2024:10.1113/JP286985. [PMID: 39446303 PMCID: PMC12018593 DOI: 10.1113/jp286985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/25/2024] [Indexed: 04/25/2025] Open
Abstract
Atrial arrhythmias occur in 20-40% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) and are associated with an increased risk of sustained ventricular arrhythmias and inappropriate implantable cardioverter-defibrillator shocks. The pathophysiology of atrial arrhythmias in ARVC remains unclear. Most cases of gene-positive ARVC are linked to pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Here, we test the hypothesis that loss of PKP2 expression leads to pro-arrhythmic changes in atrial cardiomyocytes. Atrial cells/tissue were obtained from a cardiac-specific, tamoxifen-activated model of PKP2 deficiency (PKP2cKO). By contrast to PKP2cKO ventricular myocytes, PKP2cKO atrial cardiomyocytes presented no significant differences in intracellular calcium (Ca2+ i) transient dynamics, sarcoplasmic reticulum load or action potential morphology. PKP2cKO atrial cardiomyocytes showed elevated reactive oxygen species levels, increased frequency and amplitude of Ca2+ sparks, and increased diastolic [Ca2+]i compared to control; the latter two parameters were further increased by isoproterenol exposure and reversed by exposure to ryanodine receptor blocker dantrolene. We speculate that these isoproterenol-dependent effects may impact on the exercise-related atrial arrhythmia risk in ARVC patients. Despite absence of changes in Ca2+ i transient dynamics, PKP2cKO atrial cardiomyocytes showed enhanced sarcomere shortening and impaired sarcomere relaxation. Orthogonal transcriptomic analysis of human(GTEx) and PKP2cKO atrial tissue led to identification of 41 transcripts depending on PKP2 expression. Biochemical follow-up confirmed reduced abundance of sarcomeric protein myosin binding protein C, potentially playing a role in cellular shortening and relaxation changes observed. Our findings provide novel insights into the role of PKP2 in atrial myocardium with potential implications to therapeutic management of atrial fibrillation in patients with PKP2-related ARVC. KEY POINTS: Atrial arrhythmias occur in a large group of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), a cardiac disease mostly caused by pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Exercise is considered to be an independent risk factor for arrhythmias consequent to PKP2 deficiency. We show that loss of PKP2 expression affects cellular calcium handling and electrophysiology differently in left atrial vs. ventricular myocardium and causes extensive atrial fibrosis. PKP2-deficient atrial cardiomyocytes present increased spontaneous sarcoplasmic reticulum calcium release events, further enhanced by isoproterenol exposure and reversible by a ryanodine receptor blocker (dantrolene). In addition, PKP2-deficient atrial myocytes exhibit impaired relaxation and enhanced sarcomere shortening, most probably related to reduced abundance of myosin binding protein C. We speculate that cellular effects reported upon isoproterenol impact on the exercise-related atrial arrhythmia risk in ARVC patients. We further propose that therapeutic approaches aimed at mitigating ventricular damage may be effective to treat the atrial disease in ARVC.
Collapse
Affiliation(s)
- Kavya Phadke
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Sergio D’Anna
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Junhua Xiao
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Xianming Lin
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Mingliang Zhang
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Joseph Sall
- DART Microscopy Laboratory, New York University Grossmann School of Medicine
| | - Feng-Xia Liang
- DART Microscopy Laboratory, New York University Grossmann School of Medicine
- Department of Cell Biology, New York University Grossmann School of Medicine
| | - David S. Park
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Marina Cerrone
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine
| | | |
Collapse
|
26
|
Moore OM, Sibrian-Vazquez M, Navarro-Garcia JA, Aguilar-Sanchez Y, Turkieltaub-Paredes MR, Lahiri SK, Ni L, Word TA, Miyake CY, Strongin RM, Wehrens XHT. Structure-activity optimization of ryanodine receptor modulators for the treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2024:S1547-5271(24)03393-9. [PMID: 39366435 DOI: 10.1016/j.hrthm.2024.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia disorder associated with lethal arrhythmias. Most CPVT cases are caused by inherited variants in the gene encoding ryanodine receptor type 2 (RYR2). OBJECTIVE The goal of this study was to investigate the structure-activity relationship of tetracaine derivatives and to test a lead compound in a mouse model of CPVT. METHODS We synthesized >200 tetracaine derivatives and characterized 11 of those. The effects of these compounds on Ca2+ handling in cardiomyocytes from R176Q/+ mice was tested with confocal microscopy. The effects of lead compound MSV1302 on arrhythmia inducibility and cardiac contractility were tested by programmed electrical stimulation and echocardiography, respectively. Plasma and microsomal stability and cytotoxicity assays were also performed. RESULTS Ca2+ imaging revealed that 3 of 11 compounds suppressed sarcoplasmic reticulum Ca2+ leak through mutant RyR2. Two compounds selected for further testing exhibited a half-maximal effective concentration of 146 nM (MSV1302) and 49 nM (MSV1406). Whereas neither compound altered baseline electrocardiogram intervals, only MSV1302 suppressed stress- and pacing-induced ventricular tachycardia in vivo in R176Q/+ mice. Echocardiography revealed that the lead compound MSV1302 did not negatively affect cardiac inotropy and chronotropy. Finally, compound MSV1302 did not block INa, ICa,L, or IKr; it exhibited excellent stability in plasma and microsomes, and it was not cytotoxic. CONCLUSION Structure-activity relationship studies of second-generation tetracaine derivatives identified lead compound MSV1302 with a favorable pharmacokinetic profile. MSV1302 normalized aberrant RyR2 activity in vitro and in vivo, without altering cardiac inotropy, chronotropy, or off-target effects on other ion channels. This compound may be a strong candidate for future clinical studies to determine its efficacy in CPVT patients.
Collapse
Affiliation(s)
- Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas; Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | | | - Jose Alberto Navarro-Garcia
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Mara R Turkieltaub-Paredes
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Li Ni
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas; Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tarah A Word
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Christina Y Miyake
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, Oregon
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas; Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Center for Space Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
27
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
28
|
Bommer T, Knierim M, Unsöld J, Riedl D, Stengel L, Paulus M, Körtl T, Liaw N, Maier LS, Streckfuss-Bömeke K, Sossalla S, Pabel S. Simulation of cardiac arrhythmias in human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2024; 19:e0310463. [PMID: 39331676 PMCID: PMC11432883 DOI: 10.1371/journal.pone.0310463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
The effects and mechanisms of cardiac arrhythmias are still incompletely understood and an important subject of cardiovascular research. A major difficulty for investigating arrhythmias is the lack of appropriate human models. Here, we present a protocol for a translational simulation of different types of arrhythmias using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and electric cell culture pacing. The protocol comprises the handling of ventricular and atrial hiPSC-CM before and during in vitro arrhythmia simulation and possible arrhythmia simulation protocols mimicking clinical arrhythmias like atrial fibrillation. Isolated or confluent hiPSC-CM can be used for the simulation. In vitro arrhythmia simulation did not impair cell viability of hiPSC-CM and could reproduce arrhythmia associated phenotypes of patients. The use of hiPSC-CM enables patient-specific studies of arrhythmias, genetic interventions, or drug-screening. Thus, the in vitro arrhythmia simulation protocol may offer a versatile tool for translational studies on the mechanisms and treatment options of cardiac arrhythmias.
Collapse
Affiliation(s)
- Thea Bommer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maria Knierim
- Department of Cardiothoracic and Vascular Surgery, University Medical Centre Göttingen, Göttingen, Germany
| | - Julia Unsöld
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Dominic Riedl
- Justus-Liebig-University Gießen Medical Clinic I and Campus Kerckhoff Bad Nauheim, Gießen and Bad Nauheim, Germany
| | - Laura Stengel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Paulus
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Körtl
- Justus-Liebig-University Gießen Medical Clinic I and Campus Kerckhoff Bad Nauheim, Gießen and Bad Nauheim, Germany
| | - Norman Liaw
- Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Göttingen, Germany
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Justus-Liebig-University Gießen Medical Clinic I and Campus Kerckhoff Bad Nauheim, Gießen and Bad Nauheim, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
29
|
Mazhar F, Bartolucci C, Regazzoni F, Paci M, Dedè L, Quarteroni A, Corsi C, Severi S. A detailed mathematical model of the human atrial cardiomyocyte: integration of electrophysiology and cardiomechanics. J Physiol 2024; 602:4543-4583. [PMID: 37641426 DOI: 10.1113/jp283974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Mechano-electric regulations (MER) play an important role in the maintenance of cardiac performance. Mechano-calcium and mechano-electric feedback (MCF and MEF) pathways adjust the cardiomyocyte contractile force according to mechanical perturbations and affects electro-mechanical coupling. MER integrates all these regulations in one unit resulting in a complex phenomenon. Computational modelling is a useful tool to accelerate the mechanistic understanding of complex experimental phenomena. We have developed a novel model that integrates the MER loop for human atrial cardiomyocytes with proper consideration of feedforward and feedback pathways. The model couples a modified version of the action potential (AP) Koivumäki model with the contraction model by Quarteroni group. The model simulates iso-sarcometric and isometric twitches and the feedback effects on AP and Ca2+-handling. The model showed a biphasic response of Ca2+ transient (CaT) peak to increasing pacing rates and highlights the possible mechanisms involved. The model has shown a shift of the threshold for AP and CaT alternans from 4.6 to 4 Hz under post-operative atrial fibrillation, induced by depressed SERCA activity. The alternans incidence was dependent on a chain of mechanisms including RyRs availability time, MCF coupling, CaMKII phosphorylation, and the stretch levels. As a result, the model predicted a 10% slowdown of conduction velocity for a 20% stretch, suggesting a role of stretch in creation of substrate formation for atrial fibrillation. Overall, we conclude that the developed model provides a physiological CaT followed by a physiological twitch. This model can open pathways for the future studies of human atrial electromechanics. KEY POINTS: With the availability of human atrial cellular data, interest in atrial-specific model integration has been enhanced. We have developed a detailed mathematical model of human atrial cardiomyocytes including the mechano-electric regulatory loop. The model has gone through calibration and evaluation phases against a wide collection of available human in-vitro data. The usefulness of the model for analysing clinical problems has been preliminaryly tested by simulating the increased incidence of Ca2+ transient and action potential alternans at high rates in post-operative atrial fibrillation condition. The model determines the possible role of mechano-electric feedback in alternans incidence, which can increase vulnerability to atrial arrhythmias by varying stretch levels. We found that our physiologically accurate description of Ca2+ handling can reproduce many experimental phenomena and can help to gain insights into the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Fazeelat Mazhar
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | | | - Michelangelo Paci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Luca Dedè
- MOX - Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Alfio Quarteroni
- MOX - Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristiana Corsi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| |
Collapse
|
30
|
Shaaban A, Scott SS, Greenlee AN, Binda N, Noor A, Webb A, Guo S, Purdy N, Pennza N, Habib A, Mohammad SJ, Smith SA. Atrial fibrillation in cancer, anticancer therapies, and underlying mechanisms. J Mol Cell Cardiol 2024; 194:118-132. [PMID: 38897563 PMCID: PMC11500699 DOI: 10.1016/j.yjmcc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Atrial fibrillation (AF) is a common arrhythmic complication in cancer patients and can be exacerbated by traditional cytotoxic and targeted anticancer therapies. Increased incidence of AF in cancer patients is independent of confounding factors, including preexisting myocardial arrhythmogenic substrates, type of cancer, or cancer stage. Mechanistically, AF is characterized by fast unsynchronized atrial contractions with rapid ventricular response, which impairs ventricular filling and results in various symptoms such as fatigue, chest pain, and shortness of breath. Due to increased blood stasis, a consequence of both cancer and AF, concern for stroke increases in this patient population. To compound matters, cardiotoxic anticancer therapies themselves promote AF; thereby exacerbating AF morbidity and mortality in cancer patients. In this review, we examine the relationship between AF, cancer, and cardiotoxic anticancer therapies with a focus on the shared molecular and electrophysiological mechanisms linking these disease processes. We also explore the potential role of sodium-glucose co-transporter 2 inhibitors (SGLT2i) in the management of anticancer-therapy-induced AF.
Collapse
Affiliation(s)
- Adnan Shaaban
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA
| | - Shane S Scott
- Medical Scientist Training Program, Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashley N Greenlee
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nkongho Binda
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA
| | - Ali Noor
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Averie Webb
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shuliang Guo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Najhee Purdy
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nicholas Pennza
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Alma Habib
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA
| | - Somayya J Mohammad
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sakima A Smith
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Bob and Corrinne Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Fakuade FE, Hubricht D, Möller V, Sobitov I, Liutkute A, Döring Y, Seibertz F, Gerloff M, Pronto JRD, Haghighi F, Brandenburg S, Alhussini K, Ignatyeva N, Bonhoff Y, Kestel S, El-Essawi A, Jebran AF, Großmann M, Danner BC, Baraki H, Schmidt C, Sossalla S, Kutschka I, Bening C, Maack C, Linke WA, Heijman J, Lehnart SE, Kensah G, Ebert A, Mason FE, Voigt N. Impaired Intracellular Calcium Buffering Contributes to the Arrhythmogenic Substrate in Atrial Myocytes From Patients With Atrial Fibrillation. Circulation 2024; 150:544-559. [PMID: 38910563 PMCID: PMC11319087 DOI: 10.1161/circulationaha.123.066577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Alterations in the buffering of intracellular Ca2+, for which myofilament proteins play a key role, have been shown to promote cardiac arrhythmia. It is interesting that although studies report atrial myofibrillar degradation in patients with persistent atrial fibrillation (persAF), the intracellular Ca2+ buffering profile in persAF remains obscure. Therefore, we aimed to investigate the intracellular buffering of Ca2+ and its potential arrhythmogenic role in persAF. METHODS Transmembrane Ca2+ fluxes (patch-clamp) and intracellular Ca2+ signaling (fluo-3-acetoxymethyl ester) were recorded simultaneously in myocytes from right atrial biopsies of sinus rhythm (Ctrl) and patients with persAF, alongside human atrial subtype induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Protein levels were quantified by immunoblotting of human atrial tissue and induced pluripotent stem cell-derived cardiac myocytes. Mouse whole heart and atrial electrophysiology were measured on a Langendorff system. RESULTS Cytosolic Ca2+ buffering was decreased in atrial myocytes of patients with persAF because of a depleted amount of Ca2+ buffers. In agreement, protein levels of selected Ca2+ binding myofilament proteins, including cTnC (cardiac troponin C), a major cytosolic Ca2+ buffer, were significantly lower in patients with persAF. Small interfering RNA (siRNA)-mediated knockdown of cTnC (si-cTNC) in atrial iPSC-CM phenocopied the reduced cytosolic Ca2+ buffering observed in persAF. Si-cTnC treated atrial iPSC-CM exhibited a higher predisposition to spontaneous Ca2+ release events and developed action potential alternans at low stimulation frequencies. Last, indirect reduction of cytosolic Ca2+ buffering using blebbistatin in an ex vivo mouse whole heart model increased vulnerability to tachypacing-induced atrial arrhythmia, validating the direct mechanistic link between impaired cytosolic Ca2+ buffering and atrial arrhythmogenesis. CONCLUSIONS Our findings suggest that loss of myofilament proteins, particularly reduced cTnC protein levels, causes diminished cytosolic Ca2+ buffering in persAF, thereby potentiating the occurrence of spontaneous Ca2+ release events and atrial fibrillation susceptibility. Strategies targeting intracellular buffering may represent a promising therapeutic lead in persAF management.
Collapse
Affiliation(s)
- Funsho E. Fakuade
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Dominik Hubricht
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Vanessa Möller
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Izzatullo Sobitov
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Aiste Liutkute
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Yannic Döring
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Fitzwilliam Seibertz
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Marcus Gerloff
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Julius Ryan D. Pronto
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Fereshteh Haghighi
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Sören Brandenburg
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Khaled Alhussini
- Department of Thoracic and Cardiovascular Surgery (K.A., C.B.), University Clinic Würzburg, Germany
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Nadezda Ignatyeva
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Yara Bonhoff
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Stefanie Kestel
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Aschraf El-Essawi
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
- Department of Thoracic and Cardiovascular Surgery, Klinikum Braunschweig, Germany (A.E.-E.)
| | - Ahmad Fawad Jebran
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Marius Großmann
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Bernhard C. Danner
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Hassina Baraki
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Germany (C.S.)
- German Center for Cardiovascular Research Partner Site Heidelberg/Mannheim, Heidelberg University (C.S.)
| | - Samuel Sossalla
- Department of Cardiology, University Hospital Giessen & Kerckhoff Clinic, Germany (S.S.)
- Department of Cardiology, Bad Nauheim & German Center for Cardiovascular Research Partner Site Rhine-Main, Germany (S.S.)
| | - Ingo Kutschka
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Constanze Bening
- Department of Thoracic and Cardiovascular Surgery (K.A., C.B.), University Clinic Würzburg, Germany
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center Würzburg (K.A., C.B., C.M.), University Clinic Würzburg, Germany
| | - Wolfgang A. Linke
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
- Institute of Physiology II, University of Münster, Germany (W.A.L.)
| | - Jordi Heijman
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria (J.H.)
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands (J.H.)
| | - Stephan E. Lehnart
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - George Kensah
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Thoracic and Cardiovascular Surgery (F.H., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., G.K.), University Medical Center Göttingen, Germany
| | - Antje Ebert
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Department of Cardiology and Pneumology (S.B., N.I., W.A.L., S.E.L., A.E.), Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Fleur E. Mason
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| | - Niels Voigt
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (F.E.F., A.L., F.S., F.H., S.E.L., A.E., N.V.), Georg-August-University Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Lower Saxony, Germany (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., F.H., S.B., N.I., Y.B., S.K., A.E.-E., A.F.J., M. Großmann, B.C.D., H.B., I.K., W.A.L., S.E.L., G.K., A.E., F.E.M., N.V.)
- Institute of Pharmacology and Toxicology (F.E.F., D.H., V.M., I.S., A.L., Y.D., F.S., M. Gerloff, J.R.D.P., Y.B., S.K., F.E.M., N.V.), University Medical Center Göttingen, Germany
| |
Collapse
|
32
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
33
|
Fang L, Chen Q, Cheng X, Li X, Zou T, Chen J, Xiang G, Xue Q, Li Y, Zhang J. Calcium-mediated DAD in membrane potentials and triggered activity in atrial myocytes of ETV1 f / fMyHC Cre /+ mice. J Cell Mol Med 2024; 28:e70005. [PMID: 39159135 PMCID: PMC11332596 DOI: 10.1111/jcmm.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 08/21/2024] Open
Abstract
The E-twenty-six variant 1 (ETV1)-dependent transcriptome plays an important role in atrial electrical and structural remodelling and the occurrence of atrial fibrillation (AF), but the underlying mechanism of ETV1 in AF is unclear. In this study, cardiomyocyte-specific ETV1 knockout (ETV1f/fMyHCCre/+, ETV1-CKO) mice were constructed to observe the susceptibility to AF and the underlying mechanism in AF associated with ETV1-CKO mice. AF susceptibility was examined by intraesophageal burst pacing, induction of AF was increased obviously in ETV1-CKO mice than WT mice. Electrophysiology experiments indicated shortened APD50 and APD90, increased incidence of DADs, decreased density of ICa,L in ETV1-CKO mice. There was no difference in VINACT,1/2 and VACT,1/2, but a significantly longer duration of the recovery time after inactivation in the ETV1-CKO mice. The recording of intracellular Ca2+ showed that there was significantly increased in the frequency of calcium spark, Ca2+ transient amplitude, and proportion of SCaEs in ETV1-CKO mice. Reduction of Cav1.2 rather than NCX1 and SERCA2a, increase RyR2, p-RyR2 and CaMKII was reflected in ETV1-CKO group. This study demonstrates that the increase in calcium spark and SCaEs corresponding to Ca2+ transient amplitude may trigger DAD in membrane potential in ETV1-CKO mice, thereby increasing the risk of AF.
Collapse
Affiliation(s)
- Li‐Hua Fang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Qian Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of Critical Care Medicine Division FourFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Xian‐Lu Cheng
- Department of CardiologyNanping First Hospital Affiliated to Fujian Medical UniversityNanpingFujianPeople's Republic of China
| | - Xiao‐Qian Li
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
| | - Tian Zou
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Jian‐Quan Chen
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Guo‐Jian Xiang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| | - Qiao Xue
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Yang Li
- Department of Cardiology, the Sixth Medical CenterChinese People's Liberation Army HospitalBeijingPeople's Republic of China
| | - Jian‐Cheng Zhang
- Shengli Clinical Medicine College of Fujian Medical UniversityFuzhouFujianChina
- Department of CardiologyFujian Provincial HospitalFuzhouFujianPeople's Republic of China
| |
Collapse
|
34
|
Martin AA, Townsend D. Eating your heart out: endogenous proteases may contribute to atrial stunning following atrial fibrillation treatment. Am J Physiol Heart Circ Physiol 2024; 327:H504-H506. [PMID: 38995668 DOI: 10.1152/ajpheart.00450.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Ashley A Martin
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
35
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
36
|
Li D, Liu Y, Li C, Zhou Z, Gao K, Bao H, Yang J, Xue G, Yin D, Zhao X, Shen K, Zhang L, Li J, Li C, Song J, Zhao L, Pei Y, Xuan L, Zhang Y, Lu Y, Zhang ZR, Yang B, Li Y, Pan Z. Spexin Diminishes Atrial Fibrillation Vulnerability by Acting on Galanin Receptor 2. Circulation 2024; 150:111-127. [PMID: 38726666 DOI: 10.1161/circulationaha.123.067517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/15/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND G protein-coupled receptors play a critical role in atrial fibrillation (AF). Spexin is a novel ligand of galanin receptors (GALRs). In this study, we investigated the regulation of spexin and GALRs on AF and the underlying mechanisms. METHODS Global spexin knockout (SPX-KO) and cardiomyocyte-specific GALRs knockout (GALR-cKO) mice underwent burst pacing electrical stimulation. Optical mapping was used to determine atrial conduction velocity and action potential duration. Atrial myocyte action potential duration and inward rectifying K+ current (IK1) were recorded using whole-cell patch clamps. Isolated cardiomyocytes were stained with Fluo-3/AM dye, and intracellular Ca2+ handling was examined by CCD camera. A mouse model of AF was established by Ang-II (angiotensin II) infusion. RESULTS Spexin plasma levels in patients with AF were lower than those in subjects without AF, and knockout of spexin increased AF susceptibility in mice. In the atrium of SPX-KO mice, potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) and sarcolipin (SLN) were upregulated; meanwhile, IK1 current was increased and Ca2+ handling was impaired in isolated atrial myocytes of SPX-KO mice. GALR2-cKO mice, but not GALR1-cKO and GALR3-cKO mice, had a higher incidence of AF, which was associated with higher IK1 current and intracellular Ca2+ overload. The phosphorylation level of CREB (cyclic AMP responsive element binding protein 1) was upregulated in atrial tissues of SPX-KO and GALR2-cKO mice. Chromatin immunoprecipitation confirmed the recruitment of p-CREB to the proximal promoter regions of KCNJ2 and SLN. Finally, spexin treatment suppressed CREB signaling, decreased IK1 current and decreased intracellular Ca2+ overload, which thus reduced the inducibility of AF in Ang-II-infused mice. CONCLUSIONS Spexin reduces atrial fibrillation susceptibility by inhibiting CREB phosphorylation and thus downregulating KCNJ2 and SLN transcription by GALR2 receptor. The spexin/GALR2/CREB signaling pathway represents a novel therapeutic avenue in the development of agents against atrial fibrillation.
Collapse
Affiliation(s)
- Desheng Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Yang Liu
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology (Y. Liu, D.Y., X.Z., Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Changzhu Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Zhiwen Zhou
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Kangyi Gao
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Hairong Bao
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Jiming Yang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Genlong Xue
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (G.X.)
| | - Dechun Yin
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology (Y. Liu, D.Y., X.Z., Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Xinbo Zhao
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology (Y. Liu, D.Y., X.Z., Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Kewei Shen
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Lingmin Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Jialiang Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Chenhong Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Jiahui Song
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Lexin Zhao
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Yao Pei
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Lina Xuan
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Yang Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Yanjie Lu
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Zhi-Ren Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology (Y. Liu, D.Y., X.Z., Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
- National Health Commission Key Laboratory of Cell Transplantation (Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Baofeng Yang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Yue Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology (Y. Liu, D.Y., X.Z., Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
- National Health Commission Key Laboratory of Cell Transplantation (Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
| | - Zhenwei Pan
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, International Cooperation Base for Major Cardiovascular Diseases in Cold Regions, China) College of Pharmacy (D.L., Changzhu Li, Z.Z., K.G., H.B., J.Y., K.S., L. Zhang, J.L., Chenhong Li, J.S., L. Zhao, Y.P., L.X., Y.Z., Y. Lu, B.Y., Z.P.), First Affiliated Hospital, Harbin Medical University, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology (Y. Liu, D.Y., X.Z., Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
- National Health Commission Key Laboratory of Cell Transplantation (Z.-R.Z., Y. Li, Z.P.), First Affiliated Hospital, Harbin Medical University, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, China (Z.P.)
| |
Collapse
|
37
|
Zheng J, Fang J, Xu D, Liu H, Wei X, Qin C, Xue J, Gao Z, Hu N. Micronano Synergetic Three-Dimensional Bioelectronics: A Revolutionary Breakthrough Platform for Cardiac Electrophysiology. ACS NANO 2024; 18:15332-15357. [PMID: 38837178 DOI: 10.1021/acsnano.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.
Collapse
Affiliation(s)
- Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Haitao Liu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
38
|
Hartmann N, Knierim M, Maurer W, Dybkova N, Zeman F, Hasenfuß G, Sossalla S, Streckfuss-Bömeke K. Na V1.8 as Proarrhythmic Target in a Ventricular Cardiac Stem Cell Model. Int J Mol Sci 2024; 25:6144. [PMID: 38892333 PMCID: PMC11172914 DOI: 10.3390/ijms25116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium channel NaV1.8, encoded by the SCN10A gene, has recently emerged as a potential regulator of cardiac electrophysiology. We have previously shown that NaV1.8 contributes to arrhythmogenesis by inducing a persistent Na+ current (late Na+ current, INaL) in human atrial and ventricular cardiomyocytes (CM). We now aim to further investigate the contribution of NaV1.8 to human ventricular arrhythmogenesis at the CM-specific level using pharmacological inhibition as well as a genetic knockout (KO) of SCN10A in induced pluripotent stem cell CM (iPSC-CM). In functional voltage-clamp experiments, we demonstrate that INaL was significantly reduced in ventricular SCN10A-KO iPSC-CM and in control CM after a specific pharmacological inhibition of NaV1.8. In contrast, we did not find any effects on ventricular APD90. The frequency of spontaneous sarcoplasmic reticulum Ca2+ sparks and waves were reduced in SCN10A-KO iPSC-CM and control cells following the pharmacological inhibition of NaV1.8. We further analyzed potential triggers of arrhythmias and found reduced delayed afterdepolarizations (DAD) in SCN10A-KO iPSC-CM and after the specific inhibition of NaV1.8 in control cells. In conclusion, we show that NaV1.8-induced INaL primarily impacts arrhythmogenesis at a subcellular level, with minimal effects on systolic cellular Ca2+ release. The inhibition or knockout of NaV1.8 diminishes proarrhythmic triggers in ventricular CM. In conjunction with our previously published results, this work confirms NaV1.8 as a proarrhythmic target that may be useful in an anti-arrhythmic therapeutic strategy.
Collapse
Affiliation(s)
- Nico Hartmann
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Maria Knierim
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Clinic for Cardio-Thoracic and Vascular Surgery, University Medical Center, 37075 Göttingen, Germany
| | - Wiebke Maurer
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Nataliya Dybkova
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Florian Zeman
- Center for Clinicial Trials, University of Regensburg, 93042 Regensburg, Germany
| | - Gerd Hasenfuß
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Samuel Sossalla
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Medical Clinic I, Cardiology and Angiology, Giessen and Department of Cardiology at Kerckhoff Heart and Lung Center, Justus-Liebig-University, 61231 Bad Nauheim, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
39
|
Neeman-Egozi S, Livneh I, Dolgopyat I, Nussinovitch U, Milman H, Cohen N, Eisen B, Ciechanover A, Binah O. Stress-Induced Proteasome Sub-Cellular Translocation in Cardiomyocytes Causes Altered Intracellular Calcium Handling and Arrhythmias. Int J Mol Sci 2024; 25:4932. [PMID: 38732146 PMCID: PMC11084437 DOI: 10.3390/ijms25094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.
Collapse
Affiliation(s)
- Shunit Neeman-Egozi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Ido Livneh
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Irit Dolgopyat
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Udi Nussinovitch
- Department of Cardiology, Edith Wolfson Medical Center, Holon 5822012, Israel
- The Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Nadav Cohen
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Aaron Ciechanover
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| |
Collapse
|
40
|
Pironet A, Vandewiele F, Vennekens R. Exploring the role of TRPM4 in calcium-dependent triggered activity and cardiac arrhythmias. J Physiol 2024; 602:1605-1621. [PMID: 37128952 DOI: 10.1113/jp283831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Cardiac arrhythmias pose a major threat to a patient's health, yet prove to be often difficult to predict, prevent and treat. A key mechanism in the occurrence of arrhythmias is disturbed Ca2+ homeostasis in cardiac muscle cells. As a Ca2+-activated non-selective cation channel, TRPM4 has been linked to Ca2+-induced arrhythmias, potentially contributing to translating an increase in intracellular Ca2+ concentration into membrane depolarisation and an increase in cellular excitability. Indeed, evidence from genetically modified mice, analysis of mutations in human patients and the identification of a TRPM4 blocking compound that can be applied in vivo further underscore this hypothesis. Here, we provide an overview of these data in the context of our current understanding of Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Seibertz F, Voigt N. High-throughput methods for cardiac cellular electrophysiology studies: the road to personalized medicine. Am J Physiol Heart Circ Physiol 2024; 326:H938-H949. [PMID: 38276947 PMCID: PMC11279751 DOI: 10.1152/ajpheart.00599.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Personalized medicine refers to the tailored application of medical treatment at an individual level, considering the specific genotype or phenotype of each patient for targeted therapy. In the context of cardiovascular diseases, implementing personalized medicine is challenging due to the high costs involved and the slow pace of identifying the pathogenicity of genetic variants, deciphering molecular mechanisms of disease, and testing treatment approaches. Scalable cellular models such as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) serve as useful in vitro tools that reflect individual patient genetics and retain clinical phenotypes. High-throughput functional assessment of these constructs is necessary to rapidly assess cardiac pathogenicity and test new therapeutics if personalized medicine is to become a reality. High-throughput photometry recordings of single cells coupled with potentiometric probes offer cost-effective alternatives to traditional patch-clamp assessments of cardiomyocyte action potential characteristics. Importantly, automated patch-clamp (APC) is rapidly emerging in the pharmaceutical industry and academia as a powerful method to assess individual membrane-bound ionic currents and ion channel biophysics over multiple cells in parallel. Now amenable to primary cell and hiPSC-CM measurement, APC represents an exciting leap forward in the characterization of a multitude of molecular mechanisms that underlie clinical cardiac phenotypes. This review provides a summary of state-of-the-art high-throughput electrophysiological techniques to assess cardiac electrophysiology and an overview of recent works that successfully integrate these methods into basic science research that could potentially facilitate future implementation of personalized medicine at a clinical level.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Georg-August University Göttingen, Göttingen, Germany
- Nanion Technologies, GmbH, Munich, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Marchandise S, Roelants V, Raoult T, Garnir Q, Scavée C, Varnavas V, Wauters A, Gruson D, Nellessen E, Hesse M, Beauloye C, Gerber BL. Left Atrial Glucose Metabolism Evaluation by 18F-FDG-PET in Persistent Atrial Fibrillation and in Sinus Rhythm. JACC Basic Transl Sci 2024; 9:459-471. [PMID: 38680960 PMCID: PMC11055205 DOI: 10.1016/j.jacbts.2023.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 05/01/2024]
Abstract
The role of atrial metabolism alterations for initiation and atrial fibrillation (AF) persistence remains poorly understood. Therefore, we evaluated left atrial glucose metabolism by nicotinic acid derivative stimulated 18-fluorodeoxyglucose positron emission tomography in 36 patients with persistent AF undergoing catheter ablation before and 3 months after return to sinus rhythm and compared values against healthy controls. Under identical hemodynamics and metabolic conditions, and although left ventricular FDG uptake remained unchanged, patients in persistent AF presented significantly higher total left atrial and left atrial appendage uptake, which decreased significantly after return to sinus rhythm, despite improvement of passive and active atrial contractile function. These findings support a role of altered glucose metabolism and metabolic wasting underlying the pathophysiology of persistent AF.
Collapse
Affiliation(s)
- Sébastien Marchandise
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Véronique Roelants
- Division of Nuclear Medicine, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pole Molecular Imaging, Radiotherapy & Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Tristan Raoult
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Quentin Garnir
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
| | - Christophe Scavée
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Varnavas Varnavas
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Aurélien Wauters
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Damien Gruson
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Eric Nellessen
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Michel Hesse
- Division of Nuclear Medicine, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pole Molecular Imaging, Radiotherapy & Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| | - Bernhard L. Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Brussels, Belgium
- Pôle de Recherche Cardiovasculaire (CARD), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
43
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
44
|
Zhang X, Wu Y, Smith C, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca2+-Driven Arrhythmias in Female Patients with Atrial Fibrillation: Insights from Computational Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583217. [PMID: 38496584 PMCID: PMC10942295 DOI: 10.1101/2024.03.04.583217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIMS Substantial sex-based differences have been reported in atrial fibrillation (AF), with female patients experiencing worse symptoms, increased complications from drug side effects or ablation, and elevated risk of AF-related stroke and mortality. Recent studies revealed sex-specific alterations in AF-associated Ca2+ dysregulation, whereby female cardiomyocytes more frequently exhibit potentially proarrhythmic Ca2+-driven instabilities compared to male cardiomyocytes. In this study, we aim to gain a mechanistic understanding of the Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in males vs females and establish their responses to Ca2+-targeted interventions. METHODS AND RESULTS We incorporated known sex differences and AF-associated changes in the expression and phosphorylation of key Ca2+-handling proteins and in ultrastructural properties and dimensions of atrial cardiomyocytes into our recently developed 3D atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Our simulations of quiescent cardiomyocytes show increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Parameter sensitivity analysis uncovered precise arrhythmogenic contributions of each component that was implicated in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation in female AF cardiomyocytes emerged as the major SCR contributor, while reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulations of tentative Ca2+-targeted interventions identified potential strategies to attenuate Ca2+-driven arrhythmogenic events in female atria (e.g., t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), and revealed enhanced efficacy when applied in combination. CONCLUSIONS Our sex-specific computational models of human atrial cardiomyocytes uncover increased propensity to Ca2+-driven arrhythmogenic events in female compared to male atrial cardiomyocytes in AF, and point to combined Ca2+-targeted interventions as promising approaches to treat AF in female patients. Our study establishes that AF treatment may benefit from sex-dependent strategies informed by sex-specific mechanisms.
Collapse
|
45
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
46
|
Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, Hou JW, Yang YL, Chen TZ, Xu XL, Wang YP, Li YG. Zbtb16 increases susceptibility of atrial fibrillation in type 2 diabetic mice via Txnip-Trx2 signaling. Cell Mol Life Sci 2024; 81:88. [PMID: 38349408 PMCID: PMC10864461 DOI: 10.1007/s00018-024-05125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and recent epidemiological studies suggested type 2 diabetes mellitus (T2DM) is an independent risk factor for the development of AF. Zinc finger and BTB (broad-complex, tram-track and bric-a-brac) domain containing 16 (Zbtb16) serve as transcriptional factors to regulate many biological processes. However, the potential effects of Zbtb16 in AF under T2DM condition remain unclear. Here, we reported that db/db mice displayed higher AF vulnerability and Zbtb16 was identified as the most significantly enriched gene by RNA sequencing (RNA-seq) analysis in atrium. In addition, thioredoxin interacting protein (Txnip) was distinguished as the key downstream gene of Zbtb16 by Cleavage Under Targets and Tagmentation (CUT&Tag) assay. Mechanistically, increased Txnip combined with thioredoxin 2 (Trx2) in mitochondrion induced excess reactive oxygen species (ROS) release, calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation, and spontaneous Ca2+ waves (SCWs) occurrence, which could be inhibited through atrial-specific knockdown (KD) of Zbtb16 or Txnip by adeno-associated virus 9 (AAV9) or Mito-TEMPO treatment. High glucose (HG)-treated HL-1 cells were used to mimic the setting of diabetic in vitro. Zbtb16-Txnip-Trx2 signaling-induced excess ROS release and CaMKII activation were also verified in HL-1 cells under HG condition. Furthermore, atrial-specific Zbtb16 or Txnip-KD reduced incidence and duration of AF in db/db mice. Altogether, we demonstrated that interrupting Zbtb16-Txnip-Trx2 signaling in atrium could decrease AF susceptibility via reducing ROS release and CaMKII activation in the setting of T2DM.
Collapse
Affiliation(s)
- Zhi-Xing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xing-Xing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu-Dong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Liang Hu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian-Wen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Li Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Tai-Zhong Chen
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Lei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue-Peng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
47
|
Vinciguerra M, Dobrev D, Nattel S. Atrial fibrillation: pathophysiology, genetic and epigenetic mechanisms. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100785. [PMID: 38362554 PMCID: PMC10866930 DOI: 10.1016/j.lanepe.2023.100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
Atrial fibrillation (AF) is the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence dramatically increases with age and could reach up to ∼10% in the elderly. The management of AF is a complex issue that is object of extensive ongoing basic and clinical research, it depends on its genetic and epigenetic causes, and it varies considerably geographically and also according to the ethnicity. Mechanistically, over the last decade, Genome Wide Association Studies have uncovered over 100 genetic loci associated with AF, and have shown that European ancestry is associated with elevated risk of AF. These AF-associated loci revolve around different types of disturbances, including inflammation, electrical abnormalities, and structural remodeling. Moreover, the discovery of epigenetic regulatory mechanisms, involving non-coding RNAs, DNA methylation and histone modification, has allowed unravelling what modifications reshape the processes leading to arrhythmias. Our review provides a current state of the field regarding the identification and functional characterization of AF-related genetic and epigenetic regulatory networks, including ethnic differences. We discuss clear and emerging connections between genetic regulation and pathophysiological mechanisms of AF.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Liverpool Centre for Cardiovascular Science, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Vandenberk B, Haemers P, Morillo C. The autonomic nervous system in atrial fibrillation-pathophysiology and non-invasive assessment. Front Cardiovasc Med 2024; 10:1327387. [PMID: 38239878 PMCID: PMC10794613 DOI: 10.3389/fcvm.2023.1327387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
The autonomic nervous system plays a crucial role in atrial fibrillation pathophysiology. Parasympathetic hyperactivity result in a shortening of the action potential duration, a reduction of the conduction wavelength, and as such facilitates reentry in the presence of triggers. Further, autonomic remodeling of atrial myocytes in AF includes progressive sympathetic hyperinnervation by increased atrial sympathetic nerve density and sympathetic atrial nerve sprouting. Knowledge on the pathophysiological process in AF, including the contribution of the autonomic nervous system, may in the near future guide personalized AF management. This review focuses on the role of the autonomic nervous system in atrial fibrillation pathophysiology and non-invasive assessment of the autonomic nervous system.
Collapse
Affiliation(s)
- Bert Vandenberk
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Peter Haemers
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Carlos Morillo
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
50
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149:e1-e156. [PMID: 38033089 PMCID: PMC11095842 DOI: 10.1161/cir.0000000000001193] [Citation(s) in RCA: 807] [Impact Index Per Article: 807.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anita Deswal
- ACC/AHA Joint Committee on Clinical Practice Guidelines liaison
| | | | | | | | | | - Paul L Hess
- ACC/AHA Joint Committee on Performance Measures liaison
| | | | | | | | | | - Kazuhiko Kido
- American College of Clinical Pharmacy representative
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|