1
|
Mao Y, Feng J. Phosphatase activity-based PPM1K: a key player in the regulation of mitochondrial function and its multifaceted impact in diseases. Mol Cell Biochem 2025; 480:2815-2826. [PMID: 39695034 DOI: 10.1007/s11010-024-05188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
PPM1K is a significant metal-dependent phosphatase predominantly located in the mitochondrial matrix, where it plays a crucial role in the metabolism of branched-chain amino acids (BCAAs). It is implicated in cellular function and development across various tissues and is associated with diseases like Alzheimer's, cardiomyopathy, and maple syrup urine disease (MSUD). This article reviews PPM1K's impact on mitochondrial function and cellular metabolism, as well as its role in disease progression. The regulation of PPM1K expression and activity by various factors is complex and highlights its therapeutic potential. PPM1K's dysfunction can lead to the accumulation of BCAAs and the excessive opening of the mitochondrial permeability transition pore (MPTP), disrupting physiological metabolism and function. It also regulates the degradation of BCAAs by acting as a specific phosphatase for the E1α subunit of the BCKD complex. Outside the mitochondria, PPM1K suppresses de novo fatty acid synthesis and promotes fatty acid oxidation by dephosphorylating ACL. Furthermore, PPM1K has anti-inflammatory effects and modulates immune cell infiltration in tumor tissues. The expression and activity of PPM1K are influenced by factors such as BCAA concentration, fructose intake, and drug treatments, making it a promising target for therapeutic applications and further basic research.
Collapse
Affiliation(s)
- Yuanling Mao
- Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jing Feng
- Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
2
|
Nguyen N, Yang J, Morisseau C, Li D, German JB, Lam E, Woodside DB, Hammock BD, Shih PAB. Differential Psychopathology Associations Found for Docosahexaenoic Acid versus Arachidonic Acid Oxylipins of the Cytochrome P450 Pathway in Anorexia Nervosa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.02.25323194. [PMID: 40093218 PMCID: PMC11908297 DOI: 10.1101/2025.03.02.25323194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Anorexia nervosa (AN) is one of the deadliest disorders in psychiatry. AN patients tend to avoid high-fat and high-calorie foods to maintain a pathologically low body weight. High-fat foods are major sources of polyunsaturated fatty acids (PUFAs), lipids that are crucial for health and brain development. PUFAs can be categorized into different omega classes (n-3, n-6) or into essential (ALA, LA) versus nonessential PUFAs (EPA, DHA, ARA). PUFAs are metabolized by Cytochrome P450 (CYP450) enzymes into bioactive oxylipins with inflammation-resolving properties termed epoxy-fatty acids (EpFAs). EpFAs are further hydrolyzed into pro-inflammatory diol-fatty acids (DiHFAs) by soluble epoxide hydrolase (sEH), the protein product of an AN risk gene, EPHX2 . Using a meal challenge study protocol, EpFA and DiHFA oxylipins and sEH were analyzed in age-matched AN and healthy women to determine if sEH-associated oxylipins affect AN risk and psychopathology. At the fasting timepoint, half of the oxylipins were lower in AN compared to controls (all p<0.050). After eating, all but one EpFAs increased in AN (p=0.091 to 0.697) whereas all EpFAs decreased in controls (p=0.0008 to 0.462). By contrast, essential PUFA-derived DiHFAs significantly increased, whereas nonessential PUFA-derived DiHFAs significantly decreased in both groups. DiHFA oxylipins associated with AN psychopathology displayed a PUFA-dependent directionally opposite pattern: n-3 DHA-derived DiHFAs (DiHDPEs) were associated with lower severity in eating disorder risk, global psychological maladjustment, shape and restraint concerns, and global Eating Disorder Examination score. By contrast, n-6 ARA-derived DiHFAs (DiHETrEs) were associated with more severe emotional dysregulation, bulimia, interoceptive deficits, asceticism, and overcontrol scores. On the other hand, EpFA oxylipins were not significantly associated with AN psychopathology. This study confirms lipid metabolic dysregulation as a risk factor for AN. CYP450 oxylipins associated with AN risk and symptoms are sEH- and PUFA class-dependent. Our findings reveal that gene-diet interactions contribute to metabolic dysregulation in AN, highlighting a need for additional research to develop precision medicine for AN management.
Collapse
|
3
|
Hamaya R, Hara K, Manson JE, Rimm EB, Sacks FM, Xue Q, Qi L, Cook NR. Machine-learning approaches to predict individualized treatment effect using a randomized controlled trial. Eur J Epidemiol 2025; 40:151-166. [PMID: 39946045 PMCID: PMC12060031 DOI: 10.1007/s10654-024-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/13/2024] [Indexed: 04/24/2025]
Abstract
Recent advancements in machine learning (ML) for analyzing heterogeneous treatment effects (HTE) are gaining prominence within the medical and epidemiological communities, offering potential breakthroughs in the realm of precision medicine by enabling the prediction of individual responses to treatments. This paper introduces the methodological frameworks used to study HTEs, particularly based on a single randomized controlled trial (RCT). We focus on methods to estimate conditional average treatment effect (CATE) for multiple covariates, aiming to predict individualized treatment effects. We explore a range of methodologies from basic frameworks like the T-learner, S-learner, and Causal Forest, to more advanced ones such as the DR-learner and R-learner, as well as cross-validation for CATE estimation to enhance statistical efficiency by estimating CATE for all RCT participants. We also provide a practical application of these approaches using the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial, which compared the effects of high versus low-fat diet interventions on 2-year weight changes. We compared different sets of covariates for CATE estimation, showing that the DR- and R-learners are useful for the estimation of CATE in high-dimensional settings. This paper aims to explain the theoretical underpinnings and methodological nuances of ML-based HTE analysis without relying on technical jargon, making these concepts more accessible to the clinical and epidemiological research communities.
Collapse
Affiliation(s)
- Rikuta Hamaya
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 900 Commonwealth Avenue East, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Konan Hara
- Department of Economics, University of Arizona, Tucson, AZ, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 900 Commonwealth Avenue East, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Lu Qi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Nancy R Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 900 Commonwealth Avenue East, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
5
|
Teymoori F, Farhadnejad H, Norouzzadeh M, Jahromi MK, Saber N, Mokhtari E, Asghari G, Yuzbashian E, Mirmiran P, Khalaj A, Zarkesh M, Hedayati M, Vafa M. The relationship between dietary branched-chain and aromatic amino acids with the regulation of leptin and FTO genes in adipose tissue of patients undergoing abdominal surgery. Amino Acids 2025; 57:8. [PMID: 39798053 PMCID: PMC11724777 DOI: 10.1007/s00726-024-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years. The samples were selected from patients admitted for abdominal surgeries. The dietary intake of BCAAs and AAAs was determined using a valid and reliable 168-item food frequency questionnaire. Using the quantitative PCR method, leptin and FTO mRNA expression was measured in both visceral and subcutaneous fat tissues. The mean age of the participants was 39.8 ± 12.7 years, and the mean intake of BCAAs and AAAs was 17.7 ± 0.9 and 9.3 ± 0.3% of protein per day, respectively. In overweight-obese patients(body mass index = 25-34.9 kg/m2), the intake of BCAAs(β:-0.75,95%CI:-1.47,-0.03), valine(β:-0.78,95%CI:-1.51,-0.05), and tyrosine(β:-0.81,95%CI:-1.55,-0.06) was inversely associated with FTO gene expression in subcutaneous fat tissue in adjusted model. In morbidly obese patients(body mass index ≥ 35 kg/m2), a higher intake of total BCAAs(β:1.10,95%CI:0.07-2.13), leucine(β:1.07,95%CI:0.03-2.13), and isoleucine(β:1.49,95%CI:0.46-2.52) was associated with an increase of leptin gene expression in subcutaneous fat tissue. Our findings suggest that dietary BCAA may associated with gene expression in adipose tissues, potentially influencing obesity-related metabolic pathways. Further prospective studies are warranted to validate results and elucidate the potential for dietary interventions targeting amino acids intake in obesity management.
Collapse
Affiliation(s)
- Farshad Teymoori
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Norouzzadeh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Niloufar Saber
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golaleh Asghari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Emad Yuzbashian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khalaj
- Department of Surgery, Tehran Obesity Treatment Center, Shahed University, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Department of Nutrition, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Górczyńska-Kosiorz S, Kosiorz M, Dzięgielewska-Gęsiak S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients 2024; 16:3562. [PMID: 39458556 PMCID: PMC11510173 DOI: 10.3390/nu16203562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity has become a significant global health issue. This multifaceted condition is influenced by genetic, environmental, and lifestyle factors, significantly influenced by nutrition. Aim: The study's objective is to elucidate the relationship between obesity-related genes, nutrient intake, and the development of obesity and the importance of other metabolic diseases. Methods: A comprehensive literature review spanning the past two decades was conducted to analyze the contributions of genetic variants-including FTO, MC4R, and LEPR-and their associations with dietary habits, highlighting how specific nutrients affect gene expression and obesity risk and how the coexistence of metabolic diseases such as type 2 diabetes and osteoporosis may modulate these factors. Moreover, the role of epigenetic factors, such as dietary patterns that encourage the development of obesity, was explored. Discussion and Conclusions: By understanding the intricate relationships among genetics, nutrients, and obesity development, this study highlights the importance of personalized dietary strategies in managing obesity. Overall, an integrated approach that considers genetic predispositions alongside environmental influences is essential for developing effective prevention and treatment methodologies, ultimately contributing to better health outcomes in diverse populations.
Collapse
Affiliation(s)
- Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Matylda Kosiorz
- Students’ Scientific Association by the Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| |
Collapse
|
7
|
Bray GA, Qi L, Sacks FM. Is There an Ideal Diet? Some Insights from the POUNDS Lost Study. Nutrients 2024; 16:2358. [PMID: 39064800 PMCID: PMC11280300 DOI: 10.3390/nu16142358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Diets for weight loss have a long history but an ideal one has not yet been clearly identified. To compare low-fat and lower carbohydrate diets, we designed The Preventing Overweight by Novel Dietary Strategies (POUNDS) Lost study. This is a 2 × 2 factorial study with diets of 20% or 40% fat and 15% or 25% protein with a graded carbohydrate intake of 35, 45, 55 and 65%. Weight loss, overall, was modest at nearly 6% with all four diets, and no significant dietary difference. The variability in weight loss in each diet group was significant, ranging from greater than 20% to a small weight gain. Studies of genetic variations in relation to weight loss showed that the diet that was selected could significantly affect weight loss, emphasizing that there is no ideal diet and more than one diet can be used to treat obesity. Weight loss was also influenced by the level of baseline triiodothyronine or thyroxine, and baseline carbohydrate and insulin resistance. Achieving a stable Health Eating Food Diversity Index, eating more protein, eating more fiber, engaging in more physical activity, sleeping better and eating less ultra-processed foods were beneficial strategies for weight loss in this trial. Although there is no "ideal diet", both the DASH diet and the Mediterranean diet have clinical trials showing their significant benefit for cardiovascular risk factors. Finally, the lesson of the "Last Chance Diet", which recommended a diet with protein from gelatin, proved that some diets could be hazardous.
Collapse
Affiliation(s)
- George A. Bray
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orlean, LA 70112, USA;
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| |
Collapse
|
8
|
Mehta NH, Huey SL, Kuriyan R, Peña-Rosas JP, Finkelstein JL, Kashyap S, Mehta S. Potential Mechanisms of Precision Nutrition-Based Interventions for Managing Obesity. Adv Nutr 2024; 15:100186. [PMID: 38316343 PMCID: PMC10914563 DOI: 10.1016/j.advnut.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Precision nutrition (PN) considers multiple individual-level and environmental characteristics or variables to better inform dietary strategies and interventions for optimizing health, including managing obesity and metabolic disorders. Here, we review the evidence on potential mechanisms-including ones to identify individuals most likely to respond-that can be leveraged in the development of PN interventions addressing obesity. We conducted a review of the literature and included laboratory, animal, and human studies evaluating biochemical and genetic data, completed and ongoing clinical trials, and public programs in this review. Our analysis describes the potential mechanisms related to 6 domains including genetic predisposition, circadian rhythms, physical activity and sedentary behavior, metabolomics, the gut microbiome, and behavioral and socioeconomic characteristics, i.e., the factors that can be leveraged to design PN-based interventions to prevent and treat obesity-related outcomes such as weight loss or metabolic health as laid out by the NIH 2030 Strategic Plan for Nutrition Research. For example, single nucleotide polymorphisms can modify responses to certain dietary interventions, and epigenetic modulation of obesity risk via physical activity patterns and macronutrient intake have also been demonstrated. Additionally, we identified limitations including questions of equitable implementation across a limited number of clinical trials. These include the limited ability of current PN interventions to address systemic influences such as supply chains and food distribution, healthcare systems, racial or cultural inequities, and economic disparities, particularly when designing and implementing PN interventions in low- and middle-income communities. PN has the potential to help manage obesity by addressing intra- and inter-individual variation as well as context, as opposed to "one-size fits all" approaches though there is limited clinical trial evidence to date.
Collapse
Affiliation(s)
- Neel H Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States
| | - Rebecca Kuriyan
- Division of Nutrition, St. John's Research Institute, Bengaluru, Karnataka, India
| | - Juan Pablo Peña-Rosas
- Global Initiatives, The Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States; Division of Nutrition, St. John's Research Institute, Bengaluru, Karnataka, India
| | - Sangeeta Kashyap
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine New York Presbyterian, New York, NY, United States
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States; Division of Medical Informatics, St. John's Research Institute, Bengaluru, Karnataka, India.
| |
Collapse
|
9
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
10
|
Mehta NH, Shah HA, D'Amico RS. Sonodynamic Therapy and Sonosensitizers for Glioma Treatment: A Systematic Qualitative Review. World Neurosurg 2023; 178:60-68. [PMID: 37454909 DOI: 10.1016/j.wneu.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as an encouraging noninvasive technique that uses ultrasound to activate targeted agents to induce antitumor effects for the treatment of glioma. With extensive variation in the types of sonosensitizers, protocols for sonication, and model systems, a comprehensive overview of existing preclinical data on the efficacy of SDT in glioma treatment is warranted. Here, we conduct a systematic review of preclinical and early clinical literature on implementing SDT to treat in vitro and in vivo models of glioma. Our findings suggest that coupling sonosensitizers such as 5-aminolevulinic acid, hematoporphyrin monomethyl ether, and sinoporphyrin sodium with focused ultrasound induces robust cytotoxic activity in tumor cells (in vitro and in vivo). These effects are likely mediated by the oxidative stress induced by reactive oxygen species production, apoptotic signaling cascades, and intracellular calcium overload. Future research is needed to better understand the biochemical and mechanistic properties of SDT, and ongoing trials may help elucidate the clinical feasibility of glioma treatment with optimized sonically activated treatments.
Collapse
Affiliation(s)
- Neel H Mehta
- Department of Biology, Cornell University, Ithaca, New York, USA.
| | - Harshal A Shah
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, New York, New York, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, New York, New York, USA
| |
Collapse
|
11
|
Qi L, Heianza Y, Li X, Sacks FM, Bray GA. Toward Precision Weight-Loss Dietary Interventions: Findings from the POUNDS Lost Trial. Nutrients 2023; 15:3665. [PMID: 37630855 PMCID: PMC10458797 DOI: 10.3390/nu15163665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The POUNDS Lost trial is a 2-year clinical trial testing the effects of dietary interventions on weight loss. This study included 811 adults with overweight or obesity who were randomized to one of four diets that contained either 15% or 25% protein and 20% or 40% fat in a 2 × 2 factorial design. By 2 years, participants on average lost from 2.9 to 3.6 kg in body weight in the four intervention arms, while no significant difference was observed across the intervention arms. In POUNDS Lost, we performed a series of ancillary studies to detect intrinsic factors particular to genomic, epigenomic, and metabolomic markers that may modulate changes in weight and other cardiometabolic traits in response to the weight-loss dietary interventions. Genomic variants identified from genome-wide association studies (GWASs) on obesity, type 2 diabetes, glucose and lipid metabolisms, gut microbiome, and dietary intakes have been found to interact with dietary macronutrients (fat, protein, and carbohydrates) in relation to weight loss and changes of body composition and cardiometabolic traits. In addition, we recently investigated epigenomic modifications, particularly blood DNA methylation and circulating microRNAs (miRNAs). We reported DNA methylation levels at NFATC2IP, CPT1A, TXNIP, and LINC00319 were related to weight loss or changes of glucose, lipids, and blood pressure; we also reported thrifty miRNA expression as a significant epigenomic marker related to changes in insulin sensitivity and adiposity. Our studies have also highlighted the importance of temporal changes in novel metabolomic signatures for gut microbiota, bile acids, and amino acids as predictors for achievement of successful weight loss outcomes. Moreover, our studies indicate that biochemical, behavioral, and psychosocial factors such as physical activity, sleep disturbance, and appetite may also modulate metabolic changes during dietary interventions. This review summarized our major findings in the POUNDS Lost trial, which provided preliminary evidence supporting the development of precision diet interventions for obesity management.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - George A. Bray
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|
12
|
Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients 2023; 15:2782. [PMID: 37375686 DOI: 10.3390/nu15122782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a common, serious, and costly disease. More than 1 billion people worldwide are obese-650 million adults, 340 million adolescents, and 39 million children. The WHO estimates that, by 2025, approximately 167 million people-adults and children-will become less healthy because they are overweight or obese. Obesity-related conditions include heart disease, stroke, type 2 diabetes, and certain types of cancer. These are among the leading causes of preventable, premature death. The estimated annual medical cost of obesity in the United States was nearly $173 billion in 2019 dollars. Obesity is considered the result of a complex interaction between genes and the environment. Both genes and the environment change in different populations. In fact, the prevalence changes as the result of eating habits, lifestyle, and expression of genes coding for factors involved in the regulation of body weight, food intake, and satiety. Expression of these genes involves different epigenetic processes, such as DNA methylation, histone modification, or non-coding micro-RNA synthesis, as well as variations in the gene sequence, which results in functional alterations. Evolutionary and non-evolutionary (i.e., genetic drift, migration, and founder's effect) factors have shaped the genetic predisposition or protection from obesity in modern human populations. Understanding and knowing the pathogenesis of obesity will lead to prevention and treatment strategies not only for obesity, but also for other related diseases.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Carmen Cassadonte
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paolo Sbraccia
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Systems Medicine, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Biancolella
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
13
|
Ozcelik F, Arslan S, Ozguc Caliskan B, Kardas F, Ozkul Y, Dundar M. PPM1K defects cause mild maple syrup urine disease: The second case in the literature. Am J Med Genet A 2023; 191:1360-1365. [PMID: 36706222 DOI: 10.1002/ajmg.a.63129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by the insufficient catabolism of branched-chain amino acids. BCKDHA, BCKDHB, DBT, and DLD encode the subunits of the branched-chain α-ketoacid dehydrogenase complex, which is responsible for the catabolism of these amino acids. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT are characteristic of MSUD. In addition, a patient with a PPM1K defect was previously reported. PPM1K dephosphorylates and activates the enzyme complex. We report a patient with MSUD with mild findings and elevated BCAA levels carrying a novel homozygous start-loss variant in PPM1K. Our study offers further evidence that PPM1K variants cause mild MSUD.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Sezai Arslan
- Division of Nutrition and Metabolism, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | | | - Fatih Kardas
- Division of Nutrition and Metabolism, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Mu L, Ye Z, Hu J, Zhang Y, Chen K, Sun H, Li R, Mao W, Long X, Zhang C, Lai Y, Liu J, Zhao Y, Qiao J. PPM1K-regulated impaired catabolism of branched-chain amino acids orchestrates polycystic ovary syndrome. EBioMedicine 2023; 89:104492. [PMID: 36863088 PMCID: PMC9986518 DOI: 10.1016/j.ebiom.2023.104492] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common diseases with the coexistence of reproductive malfunction and metabolic disorders. Previous studies have found increased branched chain amino acid (BCAA) levels in women with PCOS. However, it remains unclear whether BCAA metabolism is causally associated with the risk of PCOS. METHODS The changes of BCAA levels in the plasma and follicular fluids of PCOS women were detected. Mendelian randomization (MR) approaches were used to explore the potential causal association between BCAA levels and the risk of PCOS. The function of the gene coding the protein phosphatase Mg2+/Mn2+-dependent 1K (PPM1K) was further explored by using Ppm1k-deficient mouse model and PPM1K down-regulated human ovarian granulosa cells. FINDINGS BCAA levels were significantly elevated in both plasma and follicular fluids of PCOS women. Based on MR, a potential direct, causal role for BCAA metabolism was revealed in the pathogenesis of PCOS, and PPM1K was detected as a vital driver. Ppm1k-deficient female mice had increased BCAA levels and exhibited PCOS-like traits, including hyperandrogenemia and abnormal follicle development. A reduction in dietary BCAA intake significantly improved the endocrine and ovarian dysfunction of Ppm1k-/- female mice. Knockdown of PPM1K promoted the conversion of glycolysis to pentose phosphate pathway and inhibited mitochondrial oxidative phosphorylation in human granulosa cells. INTERPRETATION Ppm1k deficiency-impaired BCAA catabolism causes the occurrence and development of PCOS. PPM1K suppression disturbed energy metabolism homeostasis in the follicular microenvironment, which provided an underlying mechanism of abnormal follicle development. FUNDING This study was supported by the National Key Research and Development Program of China (2021YFC2700402, 2019YFA0802503), the National Natural Science Foundation of China (81871139, 82001503, 92057107), the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-001), Key Clinical Projects of Peking University Third Hospital (BYSY2022043), the China Postdoctoral Science Foundation (2021T140600), and the Collaborative Innovation Program of Shanghai Municipal Health Commission (2020CXJQ01).
Collapse
Affiliation(s)
- Liangshan Mu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China; Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenhong Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Junhao Hu
- Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yurong Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Kai Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Weian Mao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chunmei Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuchen Lai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinery Studies Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Guo X, Zhu Y, Guo L, Qi Y, Liu X, Wang J, Zhang J, Cui L, Shi Y, Wang Q, Liu C, Lu G, Liu Y, Li T, Hong S, Qin Y, Xiong X, Wu H, Huang L, Huang H, Gu C, Li B, Li J. BCAA insufficiency leads to premature ovarian insufficiency via ceramide-induced elevation of ROS. EMBO Mol Med 2023; 15:e17450. [PMID: 36847712 PMCID: PMC10086587 DOI: 10.15252/emmm.202317450] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a disease featured by early menopause before 40 years of age, accompanied by an elevation of follicle-stimulating hormone. Though POI affects many aspects of women's health, its major causes remain unknown. Many clinical studies have shown that POI patients are generally underweight, indicating a potential correlation between POI and metabolic disorders. To understand the pathogenesis of POI, we performed metabolomics analysis on serum and identified branch-chain amino acid (BCAA) insufficiency-related metabolic disorders in two independent cohorts from two clinics. A low BCAA diet phenotypically reproduced the metabolic, endocrine, ovarian, and reproductive changes of POI in young C57BL/6J mice. A mechanism study revealed that the BCAA insufficiency-induced POI is associated with abnormal activation of the ceramide-reactive oxygen species (ROS) axis and consequent impairment of ovarian granulosa cell function. Significantly, the dietary supplement of BCAA prevented the development of ROS-induced POI in female mice. The results of this pathogenic study will lead to the development of specific therapies for POI.
Collapse
Affiliation(s)
- Xiao Guo
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yuemeng Zhu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lu Guo
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yiwen Qi
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Xiaocheng Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jinhui Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yueyang Shi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qichu Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Cenxi Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Guangxing Lu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yilian Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Tao Li
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shangyu Hong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yingying Qin
- Shanghai First Maternity and Infant Hospital, Shanghai, China.,Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuelian Xiong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hao Wu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lin Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - He Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Chao Gu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Bin Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jin Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Qi L. Nutrition for precision health: The time is now. Obesity (Silver Spring) 2022; 30:1335-1344. [PMID: 35785484 DOI: 10.1002/oby.23448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Precision nutrition has emerged as a boiling area of nutrition research, with a particular focus on revealing the individual variability in response to diets that is determined mainly by the complex interactions of dietary factors with the multi-tiered "omics" makeups. Reproducible findings from the observational studies and diet intervention trials have lent preliminary but consistent evidence to support the fundamental role of gene-diet interactions in determining the individual variability in health outcomes including obesity and weight loss. Recent investigations suggest that the abundance and diversity of the gut microbiome may also modify the dietary effects; however, considerable instability in the results from the microbiome research has been noted. In addition, growing studies suggest that a complicated multiomics algorithm would be developed by incorporating the genome, epigenome, metabolome, proteome, and microbiome in predicting the individual variability in response to diets. Moreover, precision nutrition would also scrutinize the role of biological (circadian) rhythm in determining the individual variability of dietary effects. The evidence gathered from precision nutrition research will be the basis for constructing precision health dietary recommendations, which hold great promise to help individuals and their health care providers create precise and effective diet plans for precision health in the future.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Dimou A, Tsimihodimos V, Bairaktari E. The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. Int J Mol Sci 2022; 23:ijms23074022. [PMID: 35409380 PMCID: PMC8999875 DOI: 10.3390/ijms23074022] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/26/2022] Open
Abstract
Branched chain amino acids (BCAAs), leucine, isoleucine and valine, are essential amino acids widely studied for their crucial role in the regulation of protein synthesis mainly through the activation of the mTOR signaling pathway and their emerging recognition as players in the regulation of various physiological and metabolic processes, such as glucose homeostasis. BCAA supplementation is primarily used as a beneficial nutritional intervention in chronic liver and kidney disease as well as in muscle wasting disorders. However, downregulated/upregulated plasma BCAAs and their defective catabolism in various tissues, mainly due to altered enzymatic activity of the first two enzymes in their catabolic pathway, BCAA aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKD), have been investigated in many nutritional and disease states. The current review focused on the underlying mechanisms of altered BCAA catabolism and its contribution to the pathogenesis of a numerous pathological conditions such as diabetes, heart failure and cancer. In addition, we summarize findings that indicate that the recovery of the dysregulated BCAA catabolism may be associated with an improved outcome and the prevention of serious disease complications.
Collapse
Affiliation(s)
- Aikaterini Dimou
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Correspondence: ; Tel.: +30-26510-07620
| |
Collapse
|
18
|
He Q, Dong H, Guo Y, Gong M, Xia Q, Lu F, Wang D. Multi-target regulation of intestinal microbiota by berberine to improve type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1074348. [PMID: 36465656 PMCID: PMC9715767 DOI: 10.3389/fendo.2022.1074348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its complications are major public health problems that seriously affect the quality of human life. The modification of intestinal microbiota has been widely recognized for the management of diabetes. The relationship between T2DM, intestinal microbiota, and active ingredient berberine (BBR) in intestinal microbiota was reviewed in this paper. First of all, the richness and functional changes of intestinal microbiota disrupt the intestinal environment through the destruction of the intestinal barrier and fermentation/degradation of pathogenic/protective metabolites, targeting the liver, pancreas, visceral adipose tissue (VAT), etc., to affect intestinal health, blood glucose, and lipids, insulin resistance and inflammation. Then, we focus on BBR, which protects the composition of intestinal microbiota, the changes of intestinal metabolites, and immune regulation disorder of the intestinal environment as the therapeutic mechanism as well as its current clinical trials. Further research can analyze the mechanism network of BBR to exert its therapeutic effect according to its multi-target compound action, to provide a theoretical basis for the use of different phytochemical components alone or in combination to prevent and treat T2DM or other metabolic diseases by regulating intestinal microbiota.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fuer Lu, ; Dingkun Wang,
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fuer Lu, ; Dingkun Wang,
| |
Collapse
|
19
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Zhou T, Sun D, Li X, Heianza Y, LeBoff MS, Bray GA, Sacks FM, Qi L. Genetically determined SCFA concentration modifies the association of dietary fiber intake with changes in bone mineral density during weight loss: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Am J Clin Nutr 2021; 114:42-48. [PMID: 33829223 PMCID: PMC8246619 DOI: 10.1093/ajcn/nqab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND SCFAs are involved in regulation of body weight and bone health. OBJECTIVES We aimed to examine whether genetic variations related to butyrate modified the relation between dietary fiber intake and changes in bone mineral density (BMD) in response to weight-loss dietary interventions. METHODS In the 2-y Preventing Overweight Using Novel Dietary Strategies trial, 424 participants with BMD measured by DXA scan were randomly assigned to 1 of 4 diets varying in macronutrient intakes. A polygenic score (PGS) was calculated based on 7 genetic variants related to the production of butyrate for 370 of the 424 participants. RESULTS SCFA PGS significantly modified the association between baseline dietary fiber intake and sex on 2-y changes in whole-body BMD (P-interaction = 0.049 and 0.008). In participants with the highest tertile of SCFA PGS, higher dietary fiber intake was related to a greater increase in BMD (β: 0.0022; 95% CI: 0.0009, 0.0035; P = 0.002), whereas no such association was found for participants in the lower tertiles. In the lowest tertiles of SCFA PGS, men showed a significant increase in whole-body BMD (β: 0.0280; 95% CI: 0.0112, 0.0447; P = 0.002) compared with women. In the highest tertile, no significant difference was found for the change in BMD between men and women. CONCLUSIONS Our data indicate that genetic variants related to butyrate modify the relations of dietary fiber intake and sex with long-term changes in BMD in response to weight-loss diet interventions.
Collapse
Affiliation(s)
- Tao Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Meryl S LeBoff
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Gkouskou K, Lazou E, Skoufas E, Eliopoulos AG. Genetically Guided Mediterranean Diet for the Personalized Nutritional Management of Type 2 Diabetes Mellitus. Nutrients 2021; 13:nu13020355. [PMID: 33503923 PMCID: PMC7912380 DOI: 10.3390/nu13020355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The current consensus for the prevention and management of type 2 diabetes mellitus (T2DM) is that high-quality diets and adherence to a healthy lifestyle provide significant health benefits. Remarkably, however, there is little agreement on the proportions of macronutrients in the diet that should be recommended to people suffering from pre-diabetes or T2DM. We herein discuss emerging evidence that underscores the importance of gene-diet interactions in the improvement of glycemic biomarkers in T2DM. We propose that we can achieve better glycemic control in T2DM patients by coupling Mediterranean diets to genetic information as a predictor for optimal diet macronutrient composition in a personalized manner. We provide evidence to support this concept by presenting a case study of a T2DM patient who achieved rapid glycemic control when adhered to a personalized, genetically-guided Mediterranean Diet.
Collapse
Affiliation(s)
- Kalliopi Gkouskou
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
- Embiodiagnostics Biology Research Company, 71305 Heraklion, Greece
- Correspondence: (K.G.); (A.G.E.); Tel.: +30-2107462356 (A.G.E.)
| | - Evgenia Lazou
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
| | - Efstathios Skoufas
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
| | - Aristides G. Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (E.L.); (E.S.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (K.G.); (A.G.E.); Tel.: +30-2107462356 (A.G.E.)
| |
Collapse
|
22
|
Abstract
Obesity is associated with an increased risk of various diseases and mortality. Although nearly 50 % of adults have been reported trying to lose weight, the prevalence of obesity has increased. One factor that hinders weight loss-induced decrease in obesity prevalence is weight regain. Although behavioural, psychological and physiological factors associated with weight regain have been reviewed, the information regarding the relationship between weight regain and genetics has not been previously summarised. In this paper, we comprehensively review the association between genetic polymorphisms and weight regain in adults and children with obesity after weight loss. Based on this information, identification of genetic polymorphism in patients who undergo weight loss intervention might be used to estimate their risks of weight regain. Additionally, the genetic-based risk estimation may be used as a guide for physicians and dietitians to provide each of their patients with the most appropriate strategies for weight loss and weight maintenance.
Collapse
|
23
|
Guo Y, Huang Z, Sang D, Gao Q, Li Q. The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Front Bioeng Biotechnol 2020; 8:575442. [PMID: 33042976 PMCID: PMC7523408 DOI: 10.3389/fbioe.2020.575442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a rapidly growing epidemic, which leads to increased mortality rates and health care costs. Nutrients (namely, carbohydrates, fat, protein, mineral substances, and vitamin), sensing, and management are central to metabolic homeostasis, therefore presenting a leading factor contributing to T2D. Understanding the comprehensive effects and the underlying mechanisms of nutrition in regulating glucose metabolism and the interactions of diet with genetics, epigenetics, and gut microbiota is helpful for developing new strategies to prevent and treat T2D. In this review, we discuss different mechanistic pathways contributing to T2D and then summarize the current researches concerning associations between different nutrients intake and glucose homeostasis. We also explore the possible relationship between nutrients and genetic background, epigenetics, and metagenomics in terms of the susceptibility and treatment of T2D. For the specificity of individual, precision nutrition depends on the person’s genotype, and microbiota is vital to the prevention and intervention of T2D.
Collapse
Affiliation(s)
- Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dan Sang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiong Gao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Bayer S, Winkler V, Hauner H, Holzapfel C. Associations between Genotype-Diet Interactions and Weight Loss-A Systematic Review. Nutrients 2020; 12:E2891. [PMID: 32971836 PMCID: PMC7551578 DOI: 10.3390/nu12092891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Studies on the interactions between single nucleotide polymorphisms (SNPs) and macronutrient consumption on weight loss are rare and heterogeneous. This review aimed to conduct a systematic literature search to investigate genotype-diet interactions on weight loss. Four databases were searched with keywords on genetics, nutrition, and weight loss (PROSPERO: CRD42019139571). Articles in languages other than English and trials investigating special groups (e.g., pregnant women, people with severe diseases) were excluded. In total, 20,542 articles were identified, and, after removal of duplicates and further screening steps, 27 articles were included. Eligible articles were based on eight trials with 91 SNPs in 63 genetic loci. All articles examined the interaction between genotype and macronutrients (carbohydrates, fat, protein) on the extent of weight loss. However, in most cases, the interaction results were not significant and represented single findings that lack replication. The publications most frequently analyzed genotype-fat intake interaction on weight loss. Since the majority of interactions were not significant and not replicated, a final evaluation of the genotype-diet interactions on weight loss was not possible. In conclusion, no evidence was found that genotype-diet interaction is a main determinant of obesity treatment success, but this needs to be addressed in future studies.
Collapse
Affiliation(s)
- Sandra Bayer
- Institute for Nutritional Medicine, University Hospital Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 80992 Munich, Germany; (S.B.); (V.W.); (H.H.)
| | - Vincent Winkler
- Institute for Nutritional Medicine, University Hospital Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 80992 Munich, Germany; (S.B.); (V.W.); (H.H.)
| | - Hans Hauner
- Institute for Nutritional Medicine, University Hospital Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 80992 Munich, Germany; (S.B.); (V.W.); (H.H.)
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, University Hospital Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 80992 Munich, Germany; (S.B.); (V.W.); (H.H.)
| |
Collapse
|
25
|
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 8:CD011737. [PMID: 32827219 PMCID: PMC8092457 DOI: 10.1002/14651858.cd011737.pub3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS We included 15 randomised controlled trials (RCTs) (16 comparisons, 56,675 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.70 to 0.98, 12 trials, 53,758 participants of whom 8% had a cardiovascular event, I² = 67%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 53. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nicole Martin
- Institute of Health Informatics Research, University College London, London, UK
| | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Christian Kirk
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Eve Foster
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
26
|
Cuevas-Sierra A, Riezu-Boj JI, Guruceaga E, Milagro FI, Martínez JA. Sex-Specific Associations between Gut Prevotellaceae and Host Genetics on Adiposity. Microorganisms 2020; 8:E938. [PMID: 32580458 PMCID: PMC7356943 DOI: 10.3390/microorganisms8060938] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023] Open
Abstract
The gut microbiome has been recognized as a tool for understanding adiposity accumulation and for providing personalized nutrition advice for the management of obesity and accompanying metabolic complications. The genetic background is also involved in human energy homeostasis. In order to increase the value of nutrigenetic dietary advice, the interplay between genetics and microbiota must be investigated. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and 95 obesity-related single nucleotide polymorphisms (SNPs) searched in the literature. Oral mucosa and fecal samples from 360 normal weight, overweight and obese subjects were collected. Next generation genotyping of these 95 SNPs and fecal 16S rRNA sequencing were performed. A genetic risk score (GRS) was constructed with 10 SNPs statistically or marginally associated with body mass index (BMI). Several microbiome statistical analyses at family taxonomic level were applied (LEfSe, Canonical Correspondence Analysis, MetagenomeSeq and Random Forest), and Prevotellaceae family was found in all of them as one of the most important bacterial families associated with BMI and GRS. Thus, in this family it was further analyzed the interactive association between BMI and GRS with linear regression models. Interestingly, women with higher abundance of Prevotellaceae and higher GRS were more obese, compared to women with higher GRS and lower abundance of Prevotellaceae. These findings suggest relevant interrelationships between Prevotellaceae and the genetic background that may determine interindividual BMI differences in women, which opens the way to new precision nutrition-based treatments for obesity.
Collapse
Affiliation(s)
- Amanda Cuevas-Sierra
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
| | - José Ignacio Riezu-Boj
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Elizabeth Guruceaga
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Proteomics, Genomics and Bioinformatics Core Facility, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín Ignacio Milagro
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Alfredo Martínez
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 5:CD011737. [PMID: 32428300 PMCID: PMC7388853 DOI: 10.1002/14651858.cd011737.pub2] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nicole Martin
- Institute of Health Informatics Research, University College London, London, UK
| | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Christian Kirk
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Eve Foster
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
28
|
Bray GA. In the Footsteps of Wilbur Olin Atwater: The Atwater Lecture for 2019. Adv Nutr 2020; 11:743-750. [PMID: 31925422 PMCID: PMC7231597 DOI: 10.1093/advances/nmz128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/12/2022] Open
Abstract
A central theme of Atwater's research was the development and application of methods to understand how human beings and animals adapt to the nutrients they ingest. The research described in this article also deals with adaptation to nutrition focusing on adaptation to overnutrition, adaptation to undernutrition, adaptation to dietary fat, adaptation to dietary protein, adaptation to micronutrients, and adaptation to sugar and high-fructose corn syrup (HFCS). Studies using overfeeding have shown several things. First, overfeeding did not change the thermic response to ingestion of food nor the coupling of oxidative phosphorylation in muscle to energy expended by muscles during work on a bicycle ergometer between 25 and 100 watts. Second, the response to overfeeding was significantly influenced by the quantity of protein in the diet. During carefully controlled studies of underfeeding of people with obesity, the macronutrient composition of the diet did not affect the magnitude of weight loss. However, baseline genetic and metabolic information could provide guidance for selecting among the lower or higher protein diets, and lower or higher fat diets. Adaptation to an increase in dietary fat from 35% to 50% is slow and variable in healthy sedentary men. Adaptation is more rapid and complete when these same men were physically active. This effect of muscular exercise was traced to changes in the metabolism of glucose in muscles where pathways inhibiting glucose metabolism were activated by exercise. Dietary patterns that increased the intake of calcium, magnesium, and potassium effectively lower blood pressure in individuals with high normal blood pressure. Finally, the intake of sugary beverages was related to the onset of the current epidemic of obesity.
Collapse
Affiliation(s)
- George A Bray
- Pennington Biomedical Research Center of Louisiana State University, and Children's Hospital of Oakland Research Institute (CHORI), Baton Rouge, LA and Oakland, CA, USA
| |
Collapse
|
29
|
Hosseinpour-Niazi S, Tahmasebinejad Z, Esfandiar Z, Bakhshi B, Mirmiran P, Azizi F. Weight gain, but not macronutrient intake, modifies the effect of dietary branch chain amino acids on the risk of metabolic syndrome. Diabetes Res Clin Pract 2020; 161:108039. [PMID: 32007512 DOI: 10.1016/j.diabres.2020.108039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022]
Abstract
AIMS The aim of this study was to investigate whether both weight change and the background intakes of macronutrient modulate the association between dietary branch chain amino acids (BCAAs) and the risk of metabolic syndrome (MetS). METHODS This prospective study was conducted within the framework of theTehranLipidand Glucose Study. BCAA intakes were collected using a valid and reliable semi-quantitative food frequency questionnaire. MetS components were defined according to the modified national Cholesterol Education Program Adult Treatment Panel III. Weight change was categorized as weight gain (≥ or <7% over 8.9 year follow-up). Dietary fat and carbohydrate intake were categorized as above/below the median intake. RESULTS Among participants with weight gain ≥ 7% during follow-up, intakes of both dietary BCAAs and its various sources (below or above the median intake) were associated with higher risk of MetS, compared with subjects with lower intakes of BCAAs and weight change ≤ 7%. Background dietary fat and carbohydrate did not modify the association of dietary BCAAs and its various sources with the risk of MetS. CONCLUSIONS Weight change, but not dietary macronutrient intake, modulates the association between dietary BCAAs and risk of MetS among adults.
Collapse
Affiliation(s)
- Somayeh Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhale Tahmasebinejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohre Esfandiar
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Bakhshi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Tan PY, Mitra SR. The Combined Effect of Polygenic Risk from FTO and ADRB2 Gene Variants, Odds of Obesity, and Post-Hipcref Diet Differences. Lifestyle Genom 2020; 13:84-98. [PMID: 32101872 DOI: 10.1159/000505662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/30/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Computing polygenic risk scores (PRS) to predict the degree of risk for obesity may contribute to weight management programs strategically. OBJECTIVES To investigate the combined effect of FTO rs9930501, rs9930506, and rs9932754 and ADRB2 rs1042713 and rs1042714 using PRS on (1) the odds of obesity and (2) post-intervention differences in dietary, anthropometric, and cardiometabolic parameters in response to high-protein calorie-restricted, high-vitamin E, high-fiber (Hipcref) diet intervention in Malaysian adults. METHODS Both a cross-sectional study (n = 178) and a randomized controlled trial (RCT) (n = 128) were conducted to test the aforementioned objectives. PRS was computed as the weighted sum of the risk alleles possessed by each individual participant. Participants were stratified into first (PRS 0-0.64), second (PRS 0.65-3.59), and third (PRS 3.60-8.18) tertiles. RESULTS The third tertile of PRS was associated with significantly higher odds of obesity: 2.29 (95% CI = 1.11-4.72, adjusted p = 0.025) compared to the first tertile. Indians (3.9 ± 0.3) had significantly higher PRS compared to Chinese (2.1 ± 0.4) (p = 0.010). In the RCT, a greater reduction in high-sensitivity C-reactive protein (hsCRP) levels was found in second and third tertiles after Hipcref diet intervention compared to the control diet (p interaction = 0.048). CONCLUSION Higher PRS was significantly associated with increased odds of obesity. Individuals with higher PRS had a significantly greater reduction in hsCRP levels after Hipcref diet compared to the control diet.
Collapse
Affiliation(s)
- Pui Yee Tan
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Soma Roy Mitra
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia,
| |
Collapse
|
31
|
Bray GA, Krauss RM, Sacks FM, Qi L. Lessons Learned from the POUNDS Lost Study: Genetic, Metabolic, and Behavioral Factors Affecting Changes in Body Weight, Body Composition, and Cardiometabolic Risk. Curr Obes Rep 2019; 8:262-283. [PMID: 31214942 DOI: 10.1007/s13679-019-00353-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This paper reviews the genetic and non-genetic factors that provided predictions of, or were associated with, weight loss and other metabolic changes in the POUNDS Lost clinical trial of weight loss. This trial randomized 811 individuals who were overweight or obese to one of four diets that contained either 15% or 25% protein and 20% or 40% fat in a 2 × 2 factorial design. A standard behavioral weight loss program was available for all participants who were followed for 2 years with an 80% completion rate. RECENT FINDINGS Nineteen genes and five genetic risk scores were used along with demographic, behavioral, endocrine, and metabolic measurements. Genetic variations in most of the genes were associated with weight loss, but this association often varied with the dietary assignment. A number of demographic and behavioral factors, including attendance at behavioral sessions and food cravings were predictive of weight changes. A high baseline level of free triiodothyronine or free thyroxine predicted the magnitude of weight loss. Several perfluoroakyl compounds predicted more rapid weight regain. Genetic evidence from POUNDS Lost provides guidance toward selection of a personalized weight loss diet and improvement in metabolic profile. There is still room for additional research into the predictors of weight loss.
Collapse
Affiliation(s)
- George A Bray
- Pennington Biomedical Research Center Baton Rouge, Baton Rouge, LA, USA.
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Frank M Sacks
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Tulane University School of Public Health, New Orleans, LA, USA
| |
Collapse
|
32
|
Zhou M, Shao J, Wu CY, Shu L, Dong W, Liu Y, Chen M, Wynn RM, Wang J, Wang J, Gui WJ, Qi X, Lusis AJ, Li Z, Wang W, Ning G, Yang X, Chuang DT, Wang Y, Sun H. Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes 2019; 68:1730-1746. [PMID: 31167878 PMCID: PMC6702639 DOI: 10.2337/db18-0927] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Recent studies implicate a strong association between elevated plasma branched-chain amino acids (BCAAs) and insulin resistance (IR). However, a causal relationship and whether interrupted BCAA homeostasis can serve as a therapeutic target for diabetes remain to be established experimentally. In this study, unbiased integrative pathway analyses identified a unique genetic link between obesity-associated IR and BCAA catabolic gene expression at the pathway level in human and mouse populations. In genetically obese (ob/ob) mice, rate-limiting branched-chain α-keto acid (BCKA) dehydrogenase deficiency (i.e., BCAA and BCKA accumulation), a metabolic feature, accompanied the systemic suppression of BCAA catabolic genes. Restoring BCAA catabolic flux with a pharmacological inhibitor of BCKA dehydrogenase kinase (BCKDK) ( a suppressor of BCKA dehydrogenase) reduced the abundance of BCAA and BCKA and markedly attenuated IR in ob/ob mice. Similar outcomes were achieved by reducing protein (and thus BCAA) intake, whereas increasing BCAA intake did the opposite; this corroborates the pathogenic roles of BCAAs and BCKAs in IR in ob/ob mice. Like BCAAs, BCKAs also suppressed insulin signaling via activation of mammalian target of rapamycin complex 1. Finally, the small-molecule BCKDK inhibitor significantly attenuated IR in high-fat diet-induced obese mice. Collectively, these data demonstrate a pivotal causal role of a BCAA catabolic defect and elevated abundance of BCAAs and BCKAs in obesity-associated IR and provide proof-of-concept evidence for the therapeutic validity of manipulating BCAA metabolism for treating diabetes.
Collapse
Affiliation(s)
- Meiyi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Shao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Yang Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Weibing Dong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengping Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jun Gui
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiangbing Qi
- Chemistry Center, National Institute of Biological Science, Beijing, China
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California at Los Angeles, Los Angeles, CA
| | - Zhaoping Li
- Department of Clinical Nutrition, University of California at Los Angeles, Los Angeles, CA
| | - Weiqing Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, University of California at Los Angeles, Los Angeles, CA
| | - Haipeng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Departments of Anesthesiology, Medicine, and Physiology, University of California at Los Angeles, Los Angeles, CA
| |
Collapse
|
33
|
Gene-Environment Interactions on Body Fat Distribution. Int J Mol Sci 2019; 20:ijms20153690. [PMID: 31357654 PMCID: PMC6696304 DOI: 10.3390/ijms20153690] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
The prevalence of obesity has been increasing markedly in the U.S. and worldwide in the past decades; and notably, the obese populations are signified by not only the overall elevated adiposity but also particularly harmful accumulation of body fat in the central region of the body, namely, abdominal obesity. The profound shift from “traditional” to “obesogenic” environments, principally featured by the abundance of palatable, energy-dense diet, reduced physical activity, and prolonged sedentary time, promotes the obesity epidemics and detrimental body fat distribution. Recent advances in genomics studies shed light on the genetic basis of obesity and body fat distribution. In addition, growing evidence from investigations in large cohorts and clinical trials has lent support to interactions between genetic variations and environmental factors, e.g., diet and lifestyle factors, in relation to obesity and body fat distribution. This review summarizes the recent discoveries from observational studies and randomized clinical trials on the gene–environment interactions on obesity and body fat distribution.
Collapse
|
34
|
Biswas D, Duffley L, Pulinilkunnil T. Role of branched‐chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019; 33:8711-8731. [DOI: 10.1096/fj.201802842rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Luke Duffley
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| |
Collapse
|
35
|
Haydar S, Grigorescu F, Vintilă M, Cogne Y, Lautier C, Tutuncu Y, Brun JF, Robine JM, Pugeat M, Normand C, Poucheret P, Gheorghiu ML, Georgescu C, Badiu C, Băculescu N, Renard E, Ylli D, Badiou S, Sutra T, Cristol JP, Mercier J, Gomis R, Macias JM, Litvinov S, Khusnutdinova E, Poiana C, Pasquali R, Lauro D, Sesti G, Prudente S, Trischitta V, Tsatsoulis A, Abdelhak S, Barakat A, Zenati A, Ylli A, Satman I, Kanninen T, Rinato Y, Missoni S. Fine-scale haplotype mapping of MUT, AACS, SLC6A15 and PRKCA genes indicates association with insulin resistance of metabolic syndrome and relationship with branched chain amino acid metabolism or regulation. PLoS One 2019; 14:e0214122. [PMID: 30913280 PMCID: PMC6435171 DOI: 10.1371/journal.pone.0214122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Branched chain amino acids (BCAA) are essential elements of the human diet, which display increased plasma levels in obesity and regained particular interest as potential biomarkers for development of diabetes. To define determinants of insulin resistance (IR) we investigated 73 genes involved in BCAA metabolism or regulation by fine-scale haplotype mapping in two European populations with metabolic syndrome. French and Romanians (n = 465) were genotyped for SNPs (Affymetrix) and enriched by imputation (BEAGLE 4.1) at 1000 genome project density. Initial association hits detected by sliding window were refined (HAPLOVIEW 3.1 and PHASE 2.1) and correlated to homeostasis model assessment (HOMAIR) index, in vivo insulin sensitivity (SI) and BCAA plasma levels (ANOVA). Four genomic regions were associated with IR located downstream of MUT, AACS, SLC6A15 and PRKCA genes (P between 9.3 and 3.7 x 10-5). Inferred haplotypes up to 13 SNPs length were associated with IR (e.g. MUT gene with P < 4.9 x 10-5; Bonferroni 1.3 x 10-3) and synergistic to HOMAIR. SNPs in the same regions were also associated with one order of magnitude lower P values (e.g. rs20167284 in the MUT gene with P < 1.27 x 10-4) and replicated in Mediterranean samples (n = 832). In French, influential haplotypes (OR > 2.0) were correlated with in vivo insulin sensitivity (1/SI) except for SLC6A15 gene. Association of these genes with BCAA levels was variable, but influential haplotypes confirmed implication of MUT from BCAA metabolism as well as a role of regulatory genes (AACS and PRKCA) and suggested potential changes in transcriptional activity. These data drive attention towards new regulatory regions involved in IR in relation with BCAA and show the ability of haplotypes in phased DNA to detect signals complimentary to SNPs, which may be useful in designing genetic markers for clinical applications in ethnic populations.
Collapse
Affiliation(s)
- Sara Haydar
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| | - Florin Grigorescu
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| | - Mădălina Vintilă
- Universitatea de Medicina si Farmacie Carol Davila, Department of Endocrinology, Bucharest, Romania
| | - Yannick Cogne
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| | - Corinne Lautier
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| | - Yildiz Tutuncu
- Istanbul University, Department of Internal Medicine, Istanbul, Turkey
| | - Jean Frederic Brun
- University of Montpellier, PhyMedExp, INSERM, CNRS, Department of Biochemistry and Hormonology, CHRU Montpellier, Montpellier, France
| | | | - Michel Pugeat
- University Claude Bernard de Lyon 1, Lyon-Bron, France
| | - Christophe Normand
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| | | | - Monica Livia Gheorghiu
- Universitatea de Medicina si Farmacie Carol Davila, Department of Endocrinology, Bucharest, Romania
| | - Carmen Georgescu
- Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Corin Badiu
- Universitatea de Medicina si Farmacie Carol Davila, Department of Endocrinology, Bucharest, Romania
| | - Nicoleta Băculescu
- Universitatea de Medicina si Farmacie Carol Davila, Department of Endocrinology, Bucharest, Romania
| | - Eric Renard
- Centre Hospitalier Regional Universitaire de Montpellier, Departement d'Endocrinologie, Diabète, Nutrition, Hôpital Lapeyronie, Montpellier, France
| | - Dorina Ylli
- Mjekesise University of Tirana, Tirana, Albania
| | - Stephanie Badiou
- University of Montpellier, PhyMedExp, INSERM, CNRS, Department of Biochemistry and Hormonology, CHRU Montpellier, Montpellier, France
| | - Thibault Sutra
- University of Montpellier, PhyMedExp, INSERM, CNRS, Department of Biochemistry and Hormonology, CHRU Montpellier, Montpellier, France
| | - Jean Paul Cristol
- University of Montpellier, PhyMedExp, INSERM, CNRS, Department of Biochemistry and Hormonology, CHRU Montpellier, Montpellier, France
| | - Jacques Mercier
- University of Montpellier, PhyMedExp, INSERM, CNRS, Department of Biochemistry and Hormonology, CHRU Montpellier, Montpellier, France
| | - Ramon Gomis
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | - Catalina Poiana
- Universitatea de Medicina si Farmacie Carol Davila, Department of Endocrinology, Bucharest, Romania
| | - Renato Pasquali
- University Alma Mater Studiorum, Division of Endocrinology, Bologna, Italy
| | - Davide Lauro
- Universita degli Studi di Roma Tor Vergata, Roma, Italy
| | - Giorgio Sesti
- University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Sabrina Prudente
- Scientific Institute Casa Sollievo della Sofferenza, San Giovani Rotondo, Italy
| | - Vincenzo Trischitta
- Scientific Institute Casa Sollievo della Sofferenza, San Giovani Rotondo, Italy
| | - Agathocles Tsatsoulis
- University of Ioannina School of Medicine, Department of Endocrinology, Ioannina, Greece
| | - Sonia Abdelhak
- Institut Pasteur de Tunis, Laboratory of Biomedical Genomics and Oncogenetics, Tunis, Tunisia
| | | | - Akila Zenati
- Universite d'Alger, CHU Bab-El-Oued, Alger, Algeria
| | - Agron Ylli
- Mjekesise University of Tirana, Tirana, Albania
| | - Ilhan Satman
- Istanbul University, Department of Internal Medicine, Istanbul, Turkey
| | | | | | - Sasa Missoni
- Institute for Anthropological Research, Zagreb, Croatia
| |
Collapse
|
36
|
Dolatabad MR, Guo LL, Xiao P, Zhu Z, He QT, Yang DX, Qu CX, Guo SC, Fu XL, Li RR, Ge L, Hu KJ, Liu HD, Shen YM, Yu X, Sun JP, Zhang PJ. Crystal structure and catalytic activity of the PPM1K N94K mutant. J Neurochem 2019; 148:550-560. [DOI: 10.1111/jnc.14631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Meisam Rostaminasab Dolatabad
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lu-lu Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Zhongliang Zhu
- School of Life Sciences; University of Science and Technology of China; Hefei Anhui China
| | - Qing-tao He
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Du-xiao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Chang-xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Sheng-chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Xiao-lei Fu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Rui-rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Ke-jia Hu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Hong-da Liu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Pharmacology and Chemical Biology; School of Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Yue-mao Shen
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Xiao Yu
- Department of Physiology; Shandong University; School of Medicine; Jinan Shandong China
| | - Jin-peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Peking University; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Beijing China
| | - Peng-ju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| |
Collapse
|
37
|
O'Connor S, Rudkowska I. Dietary Fatty Acids and the Metabolic Syndrome: A Personalized Nutrition Approach. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 87:43-146. [PMID: 30678820 DOI: 10.1016/bs.afnr.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Dietary fatty acids are present in a wide variety of foods and appear in different forms and lengths. The different fatty acids are known to have various effects on metabolic health. The metabolic syndrome (MetS) is a constellation of risk factors of chronic diseases. The etiology of the MetS is represented by a complex interplay of genetic and environmental factors. Dietary fatty acids can be important contributors of the evolution or in prevention of the MetS; however, great interindividual variability exists in the response to fatty acids. The identification of genetic variants interacting with fatty acids might explain this heterogeneity in metabolic responses. This chapter reviews the mechanisms underlying the interactions between the different components of the MetS, dietary fatty acids and genes. Challenges surrounding the implementation of personalized nutrition are also covered.
Collapse
Affiliation(s)
- Sarah O'Connor
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Iwona Rudkowska
- CHU de Québec Research Center, Université Laval, Québec, QC, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
38
|
Wang T, Xu M, Bi Y, Ning G. Interplay between diet and genetic susceptibility in obesity and related traits. Front Med 2018; 12:601-607. [DOI: 10.1007/s11684-018-0648-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/26/2018] [Indexed: 01/28/2023]
|
39
|
Zhang ZY, Monleon D, Verhamme P, Staessen JA. Branched-Chain Amino Acids as Critical Switches in Health and Disease. Hypertension 2018; 72:1012-1022. [DOI: 10.1161/hypertensionaha.118.10919] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhen-Yu Zhang
- From the KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology (Z.-Y.Z., J.A.S.), University of Leuven, Belgium
- Department of Cardiovascular Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China (Z.-Y.Z.)
| | - Daniel Monleon
- Metabolomic and Molecular Image Laboratory, Fundación Investigatión Clínico de Valencia, Spain (D.M.)
| | - Peter Verhamme
- KU Leuven Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (P.V.), University of Leuven, Belgium
| | - Jan A. Staessen
- From the KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology (Z.-Y.Z., J.A.S.), University of Leuven, Belgium
- Cardiovascular Research Institute, Maastricht University, the Netherlands (J.A.S.)
| |
Collapse
|
40
|
Xuan L, Hou Y, Wang T, Li M, Zhao Z, Lu J, Xu Y, Chen Y, Qi L, Wang W, Bi Y, Xu M. Association of branched chain amino acids related variant rs1440581 with risk of incident diabetes and longitudinal changes in insulin resistance in Chinese. Acta Diabetol 2018; 55:901-908. [PMID: 29855804 DOI: 10.1007/s00592-018-1165-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
AIMS Previous genome-wide association studies reported rs1440581 was significantly associated with circulating branched chain amino acids (BCAAs) levels in Europeans. We aimed to investigate association of BCAAs related variant rs1440581 with incident T2D risk and longitudinal changes in glucose-related metabolic traits in a community-based prospective cohort of Chinese. METHODS 6043 non-diabetic participants aged ≥ 40 years from a community-based population at baseline were included and followed-up for 5 years. The BCAAs related variant rs1440581 was genotyped. Incident T2D was defined as fasting plasma glucose (FPG) ≥ 7.0 mmol/L or taking anti-diabetic therapy. Anthropometry and biochemical measurements were evaluated at both baseline and follow-up. RESULTS 576 (9.5%) participants developed T2D during the 5-year follow-up. Each C-allele was associated with a 20% higher risk of incident T2D (odds ratio = 1.20, 95% confidence interval [1.05, 1.36]) after adjustments for the confounders. We did not find a main effect of the variant on increase in fasting serum insulin (FSI) level or insulin resistance (IR). However, we found rs1440581 significantly modified effect of weight gain on increase in FSI and HOMA-IR. In the C-allele carriers, body mass index increase was associated with greater increase in Log10_FSI (β ± SE 0.027 ± 0.002) and Log10_HOMA-IR (0.030 ± 0.003), as compared to T-allele (both P for interaction = 0.003). CONCLUSIONS BCAAs related genetic variant rs1440581 was associated with an increased risk of incident T2D in a Chinese population. This variant might modify effect of weight gain on development in IR.
Collapse
Affiliation(s)
- Liping Xuan
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Hou
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Mian Li
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Zhiyun Zhao
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Jieli Lu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Yu Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Yuhong Chen
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Weiqing Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Yufang Bi
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Min Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine and Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
41
|
Huang T, Wang T, Heianza Y, Sun D, Ivey K, Durst R, Schwarzfuchs D, Stampfer MJ, Bray GA, Sacks FM, Shai I, Qi L. HNF1A variant, energy-reduced diets and insulin resistance improvement during weight loss: The POUNDS Lost trial and DIRECT. Diabetes Obes Metab 2018; 20:1445-1452. [PMID: 29424957 DOI: 10.1111/dom.13250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/27/2018] [Accepted: 02/05/2018] [Indexed: 11/30/2022]
Abstract
AIM To determine whether weight-loss diets varying in macronutrients modulate the genetic effect of hepatocyte nuclear factor 1α (HNF1A) rs7957197 on weight loss and improvement of insulin resistance. MATERIALS AND METHODS We analysed the interaction between HNF1A rs7957197 and weight-loss diets with regard to weight loss and insulin resistance improvement among 722 overweight/obese adults from a 2-year randomized weight-loss trial, the POUNDS Lost trial. The findings were replicated in another independent 2-year weight-loss trial, the Dietary Intervention Randomized Controlled Trial (DIRECT), in 280 overweight/obese adults. RESULTS In the POUNDS Lost trial, we found that a high-fat diet significantly modified the genetic effect of HNF1A on weight loss and reduction in waist circumference (P for interaction = .006 and .005, respectively). Borderline significant interactions for fasting insulin and insulin resistance (P for interaction = .07 and .06, respectively) were observed. We replicated the results in DIRECT. Pooled results showed similar significant interactions with weight loss, waist circumference reduction, and improvement in fasting insulin and insulin resistance (P values for interaction = .001, .005, .02 and .03, respectively). Greater decreases in weight, waist circumference, fasting insulin level and insulin resistance were observed in participants with the T allele compared to those without the T allele in the high-fat diet group (P = .04, .03 and .01, respectively). CONCLUSIONS Our replicable findings provide strong evidence that individuals with the HNF1A rs7957197 T allele might obtain more benefits in weight loss and improvement of insulin resistance by choosing a hypocaloric and high-fat diet.
Collapse
Affiliation(s)
- Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisana
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisana
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisana
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisana
| | - Kerry Ivey
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ronen Durst
- Cardiology Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Center for Research Prevention and Treatment of Atherosclerosis, Internal Medicine Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - George A Bray
- Pennington Biomedical Research Center of the Louisiana State University System, Baton Rouge, Lousiana
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Iris Shai
- Department of Public Health, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisana
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Haydar S, Lautier C, Grigorescu F. BRANCHED CHAIN AMINO ACIDS AT THE EDGE BETWEEN MENDELIAN AND COMPLEX DISORDERS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:238-247. [PMID: 31149264 PMCID: PMC6516512 DOI: 10.4183/aeb.2018.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Branched chained amino acids (BCAA) are essential components of the human diet and important nutrient signals, which regain particular interest in recent years with the avenue of metabolomics studies suggesting their potential role as biomarkers. There is now compelling evidence for predictive role of BCAA in progression of diabetes, but causality relationship is still debated concerning insulin resistance and genetic versus non-genetic pathogenesis. Mendelian randomization studies in large cohorts of diabetes indicated pathogenic role of PPM1K (protein phosphatase Mg2+/Mn2+ dependent 1K) on Chr 4q22.1 gene, encoding for a phosphatase that activates BCKDH (branched chain keto acid dehydrogenase) complex. Recent studies indicated that insulin rapidly and dose-dependently regulates gene expression of the same complex, but the relationship with systemic insulin resistance and glucose levels is complex. Rare genetic syndromes due to Mendelian mutations in key genes in BCAA catabolism may be good models to understand potential role of gene of BCAA catabolism. However, in studying complex disorders geneticists are faced to complete new aspects of metabolic regulation complicating understanding genetics of obesity, diabetes or metabolic syndrome. A review of genetic syndromes of BCAA metabolism suggests that insulin resistance is not present, except rare cases of methylmalonic aciduria due to MUT (methylmalonyl-coA mutase) gene on Chr 6p12.3. Another aspect that complicates understanding is the new role of central nervous system (CNS) in insulin resistance. For a long time the hypothalamic hunger/satiety neuronal system was considered a key site of nutrient regulation. Genes may also affect the brain rewarding system (BRS) that would regulate food intake by modulating the motivation to obtain food and considering hedonic properties. Nutrigenomic and nutrigenetic investigations taking into account concurrently BCAA intake, metabolic regulation and gene variation have large perspectives to merge genetic and nutritional understanding in complex disorders.
Collapse
Affiliation(s)
| | | | - F. Grigorescu
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| |
Collapse
|
43
|
Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, Kushner RF, Daniels SR, Wadden TA, Tsai AG, Hu FB, Jakicic JM, Ryan DH, Wolfe BM, Inge TH. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr Rev 2018; 39:79-132. [PMID: 29518206 PMCID: PMC5888222 DOI: 10.1210/er.2017-00253] [Citation(s) in RCA: 513] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022]
Abstract
The prevalence of obesity, measured by body mass index, has risen to unacceptable levels in both men and women in the United States and worldwide with resultant hazardous health implications. Genetic, environmental, and behavioral factors influence the development of obesity, and both the general public and health professionals stigmatize those who suffer from the disease. Obesity is associated with and contributes to a shortened life span, type 2 diabetes mellitus, cardiovascular disease, some cancers, kidney disease, obstructive sleep apnea, gout, osteoarthritis, and hepatobiliary disease, among others. Weight loss reduces all of these diseases in a dose-related manner-the more weight lost, the better the outcome. The phenotype of "medically healthy obesity" appears to be a transient state that progresses over time to an unhealthy phenotype, especially in children and adolescents. Weight loss is best achieved by reducing energy intake and increasing energy expenditure. Programs that are effective for weight loss include peer-reviewed and approved lifestyle modification programs, diets, commercial weight-loss programs, exercise programs, medications, and surgery. Over-the-counter herbal preparations that some patients use to treat obesity have limited, if any, data documenting their efficacy or safety, and there are few regulatory requirements. Weight regain is expected in all patients, especially when treatment is discontinued. When making treatment decisions, clinicians should consider body fat distribution and individual health risks in addition to body mass index.
Collapse
Affiliation(s)
- George A Bray
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - William E Heisel
- Institute of Health Metrics and Evaluation University of Washington, Seattle, Washington
| | - Ashkan Afshin
- Institute of Health Metrics and Evaluation University of Washington, Seattle, Washington
| | | | - William H Dietz
- Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | - Michael Long
- Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | | | - Stephen R Daniels
- Department of Pediatrics, University of Colorado Children Hospital, Denver, Colorado
| | - Thomas A Wadden
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adam G Tsai
- Kaiser Permanente Colorado, Denver, Colorado
| | - Frank B Hu
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Donna H Ryan
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Bruce M Wolfe
- Oregon Health and Science University, Portland, Oregon
| | - Thomas H Inge
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
- Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|
44
|
Goni L, Qi L, Cuervo M, Milagro FI, Saris WH, MacDonald IA, Langin D, Astrup A, Arner P, Oppert JM, Svendstrup M, Blaak EE, Sørensen TI, Hansen T, Martínez JA. Effect of the interaction between diet composition and the PPM1K genetic variant on insulin resistance and β cell function markers during weight loss: results from the Nutrient Gene Interactions in Human Obesity: implications for dietary guidelines (NUGENOB) randomized trial. Am J Clin Nutr 2017; 106:902-908. [PMID: 28768654 DOI: 10.3945/ajcn.117.156281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/29/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Circulating branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) have been shown to be associated with insulin resistance and diabetes risk. The common rs1440581 T allele in the protein phosphatase Mg2+/Mn2+ dependent 1K (PPM1K) gene has been related to elevated BCAA concentrations and risk of type 2 diabetes.Objective: In the present study, we tested whether dietary fat and carbohydrate intakes influenced the association between the rs1440581 PPM1K genetic variant and glucose-metabolism traits during weight loss.Design: The rs1440581 PPM1K genetic variant was genotyped in a total of 757 nondiabetic individuals who were randomly assigned to 1 of 2 energy-restricted diets that differed in macronutrient composition (low-fat diet: 20-25% fat, 15% protein, and 60-65% carbohydrate; high-fat diet: 40-45% fat, 15% protein, and 40-45% carbohydrate). The changes in fasting glucose, fasting insulin, insulin resistance (homeostasis model assessment of insulin resistance) and homeostasis model assessment of β cell function (HOMA-B) were measured after a mean ± SD weight loss of 6.8 ± 3.4 kg over 10 wk and analyzed according to the presence of the T allele of rs1440581.Results: The rs1440581 T allele was associated with a smaller improvement in glucose concentrations after the 10-wk dietary intervention (β ± SE: 0.05 ± 0.02 mg/dL; P = 0.03). In addition, significant gene-diet interactions were shown for the rs1440581 PPM1K genetic variant in relation to changes in insulin and HOMA-B (P-interaction = 0.006 and 0.002, respectively). In response to the high-fat diet, the T allele was associated with a higher reduction of insulin (β ± SE: -0.77 ± 0.40 μU/mL; P = 0.04) and HOMA-B (β ± SE: -13.2 ± 3.81; P = 0.003). An opposite effect was observed in the low-fat diet group, although in this group the T allele was marginally (P = 0.10) and not significantly (P = 0.24) associated with insulin and HOMA-B, respectively.Conclusion:PPM1K rs1440581 may affect changes in glucose metabolism during weight loss, and this effect is dependent on dietary fat and carbohydrate intakes. This trial was registered at controlled-trials.com as ISRCTN25867281.
Collapse
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Sciences and Physiology, and.,Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA.,Departments of Nutrition and.,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Marta Cuervo
- Department of Nutrition, Food Sciences and Physiology, and.,Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain.,Biomedical Research Center Network in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, and.,Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain.,Biomedical Research Center Network in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Wim H Saris
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ian A MacDonald
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dominique Langin
- National Institute of Health and Medical Research, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.,Laboratory of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, and
| | - Peter Arner
- Department of Medicine, Karolinska Institute at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jean-Michel Oppert
- Department of Nutrition, Pitie-Salpetriere University Hospital; University Pierre et Marie Curie-Paris 6; Institute of Cardiometabolism and Nutrition; Center for Research on Human Nutrition Ile-de-France; Paris, France
| | - Mathilde Svendstrup
- Novo Nordisk Foundation Center for Basic Metabolic Research and.,Danish Diabetes Academy, Odense, Denmark; and
| | - Ellen E Blaak
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Thorkild Ia Sørensen
- Department of Nutrition, Food Sciences and Physiology, and.,Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Epidemiology (formerly Institute of Preventive Medicine), Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research and
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, and .,Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain.,Biomedical Research Center Network in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research, Pamplona, Navarra, Spain
| |
Collapse
|
45
|
Heianza Y, Sun D, Wang T, Huang T, Bray GA, Sacks FM, Qi L. Starch Digestion-Related Amylase Genetic Variant Affects 2-Year Changes in Adiposity in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes 2017; 66:2416-2423. [PMID: 28659346 PMCID: PMC5566300 DOI: 10.2337/db16-1482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/17/2017] [Indexed: 01/05/2023]
Abstract
Salivary and pancreatic amylases (encoded by AMY1 and AMY2 genes, respectively) are responsible for digesting starchy foods. AMY1 and AMY2 show copy number variations that affect differences in amylase amount and activity, and AMY1 copies have been associated with adiposity. We investigated whether genetic variants determining amylase gene copies are associated with 2-year changes in adiposity among 692 overweight and obese individuals who were randomly assigned to diets varying in macronutrient content. We found that changes in body weight (BW) and waist circumference (WC) were significantly different according to the AMY1-AMY2 rs11185098 genotype. Individuals carrying the A allele (indicating higher amylase amount and activity) showed a greater reduction in BW and WC at 6, 12, 18, and 24 months than those without the A allele (P < 0.05 for all). The association was stronger for long-term changes compared with short-term changes of these outcomes. The genetic effects on these outcomes did not significantly differ across diet groups. In conclusion, the genetic variant determining starch metabolism influences the response to weight-loss dietary intervention. Overweight and obese individuals carrying the AMY1-AMY2 rs11185098 genotype associated with higher amylase activity may have greater loss of adiposity during low-calorie diet interventions.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Ramos-Lopez O, Milagro FI, Allayee H, Chmurzynska A, Choi MS, Curi R, De Caterina R, Ferguson LR, Goni L, Kang JX, Kohlmeier M, Marti A, Moreno LA, Pérusse L, Prasad C, Qi L, Reifen R, Riezu-Boj JI, San-Cristobal R, Santos JL, Martínez JA. Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2017; 10:43-62. [PMID: 28689206 DOI: 10.1159/000477729] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic diseases, including obesity, are major causes of morbidity and mortality in most countries. The adverse impacts of obesity and associated comorbidities on health remain a major concern due to the lack of effective interventions for prevention and management. Precision nutrition is an emerging therapeutic approach that takes into account an individual's genetic and epigenetic information, as well as age, gender, or particular physiopathological status. Advances in genomic sciences are contributing to a better understanding of the role of genetic variants and epigenetic signatures as well as gene expression patterns in the development of diverse chronic conditions, and how they may modify therapeutic responses. This knowledge has led to the search for genetic and epigenetic biomarkers to predict the risk of developing chronic diseases and personalizing their prevention and treatment. Additionally, original nutritional interventions based on nutrients and bioactive dietary compounds that can modify epigenetic marks and gene expression have been implemented. Although caution must be exercised, these scientific insights are paving the way for the design of innovative strategies for the control of chronic diseases accompanying obesity. This document provides a number of examples of the huge potential of understanding nutrigenetic, nutrigenomic, and nutriepigenetic roles in precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara "Fray Antonio Alcalde" and Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bray GA, Ryan DH, Johnson W, Champagne CM, Johnson CM, Rood J, Williamson DA, Sacks FM. Markers of dietary protein intake are associated with successful weight loss in the POUNDS Lost trial. Clin Obes 2017; 7:166-175. [PMID: 28340516 PMCID: PMC5517018 DOI: 10.1111/cob.12188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/03/2017] [Accepted: 01/28/2017] [Indexed: 11/29/2022]
Abstract
To assess the association of markers for dietary protein intake, measures of dietary adherence and demographic variables with weight loss in the POUNDS Lost study over the first 6 months and again between 6 and 24 months using data from those who completed each period. This is a secondary analysis of pooled data on completers assigned to one of four diets: 65%C/15%P/20%F (AP/LF), 55%C/25%P/20%F (HP/LF), 45%C/15%P/40%F (AP/HF) or 35%C/25%P40%F (HP/HF) in the POUNDS Lost study. Urinary nitrogen excretion, dietary adherence measured by 24-h recall and attendance at sessions, age (above and below 50 years), gender, race/ethnicity and activity by pedometry were analysed. Increased spread between protein intake at baseline and protein at 6 or 24 months, assessed by urinary nitrogen excretion, was associated with greater weight loss from baseline to 2 years. At 6 and 24 months, older age, male gender, body mass index > 30 kg m-2 and adherence to the fat and protein diets were associated with more weight loss. None of these variables was associated with a regain from 6 to 24 months. Weight regain for women in the highest carbohydrate (65%) group was significantly greater (-4.4 kg [95% CI: -5.9, -3.0]) than for women in the lowest carbohydrate group (-1.8 kg [95% CI: -3.2, -0.4 kg]) (P for interaction = 0.012). An increased spread in the difference between baseline and follow-up protein intake was associated with greater weight loss, consistent with the 'protein spread theory'. Women eating the highest carbohydrate diet regained more weight from 6 to 24 months.
Collapse
Affiliation(s)
- George A. Bray
- PBRC; Pennington Biomedical Research Center of the University State University System, Baton Rouge, Louisiana
| | - Donna H. Ryan
- PBRC; Pennington Biomedical Research Center of the University State University System, Baton Rouge, Louisiana
| | - William Johnson
- PBRC; Pennington Biomedical Research Center of the University State University System, Baton Rouge, Louisiana
| | - Catherine M. Champagne
- PBRC; Pennington Biomedical Research Center of the University State University System, Baton Rouge, Louisiana
| | - Callie M. Johnson
- PBRC; Pennington Biomedical Research Center of the University State University System, Baton Rouge, Louisiana
| | - Jennifer Rood
- PBRC; Pennington Biomedical Research Center of the University State University System, Baton Rouge, Louisiana
| | - Donald A. Williamson
- PBRC; Pennington Biomedical Research Center of the University State University System, Baton Rouge, Louisiana
| | - Frank M. Sacks
- HCSPH; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and the General Clinical Research Center, Brigham and Women’s Hospital and the Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Heianza Y, Qi L. Gene-Diet Interaction and Precision Nutrition in Obesity. Int J Mol Sci 2017; 18:ijms18040787. [PMID: 28387720 PMCID: PMC5412371 DOI: 10.3390/ijms18040787] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
The rapid rise of obesity during the past decades has coincided with a profound shift of our living environment, including unhealthy dietary patterns, a sedentary lifestyle, and physical inactivity. Genetic predisposition to obesity may have interacted with such an obesogenic environment in determining the obesity epidemic. Growing studies have found that changes in adiposity and metabolic response to low-calorie weight loss diets might be modified by genetic variants related to obesity, metabolic status and preference to nutrients. This review summarized data from recent studies of gene-diet interactions, and discussed integration of research of metabolomics and gut microbiome, as well as potential application of the findings in precision nutrition.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 2016; 13:e1002179. [PMID: 27898682 PMCID: PMC5127513 DOI: 10.1371/journal.pmed.1002179] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/20/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. METHODS AND FINDINGS Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. CONCLUSIONS Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.
Collapse
|
50
|
Zhang X, Zhang Y, Xiao X, Ma X, He J. The relation between health insurance and management of hypertension in Shanghai, China: a cross-sectional study. BMC Public Health 2016; 16:959. [PMID: 27613593 PMCID: PMC5018164 DOI: 10.1186/s12889-016-3627-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We aimed to investigate the management of hypertension in Shanghai, China and to examine whether there was any difference of hypertension management among people enrolled in different health insurances. METHODS In this cross-sectional study, a total of 31,531 residents were selected in Shanghai, using a randomized, stratified, multi-stage sampling method, and were asked to provide their status of hypertension, condition of hypertension management, health insurances and other demographic information. A weighted propensity score model was used to adjust confounders and to analyze the differences on hypertension management among hypertension patients enrolled in different health insurances. RESULTS In Shanghai, most hypertension patients achieved good management of hypertension. However, patients enrolled in the New Cooperative Medical Scheme or the Urban Resident Basic Medical Insurance scheme were more likely to achieve publicity of precautionary knowledge about hypertension (OR = 2.36 [95 % CI :1.96,2.85] and 1.28 [95 % CI:1.12,1.45], respectively) and had their blood pressure under control (OR = 1.33 [95 % CI :1.09,1.62] and 1.22 [95 % CI:1.05,1.42], respectively) than patients enrolled in the Urban Employee Basic Health Insurance scheme. CONCLUSION The study provided a comprehensive description of hypertension in Shanghai, China. To support the management of hypertension, publicity of hypertension prevention knowledge should be improved, especially to people enrolled in the Urban Employee Basic Health Insurance scheme.
Collapse
Affiliation(s)
- Xinji Zhang
- Department of Health Statistics, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433 China
| | - Yuan Zhang
- Department of Health Statistics, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433 China
| | - Xiang Xiao
- Department of Health Statistics, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433 China
| | - Xiuqiang Ma
- Department of Health Statistics, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433 China
| | - Jia He
- Department of Health Statistics, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433 China
| |
Collapse
|