1
|
Garitano N, Aguado-Alvaro LP, Pelacho B. Emerging Epigenetic Therapies for the Treatment of Cardiac Fibrosis. Biomedicines 2025; 13:1170. [PMID: 40426997 PMCID: PMC12109272 DOI: 10.3390/biomedicines13051170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition, leading to tissue stiffening and organ dysfunction. It is a major contributor to chronic diseases affecting various organs, with limited therapeutic options available. Among the different forms of fibrosis, cardiac fibrosis is particularly relevant due to its impact on cardiovascular diseases (CVDs), which remain the leading cause of morbidity and mortality worldwide. This process is driven by activated cardiac fibroblasts (CFs), which promote ECM accumulation in response to chronic stressors. Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are key regulators of fibroblast activation and fibrotic gene expression. Enzymes such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs) have emerged as potential therapeutic targets, and epigenetic inhibitors have shown promise in modulating these enzymes to attenuate fibrosis by controlling fibroblast function and ECM deposition. These small-molecule compounds offer advantages such as reversibility and precise temporal control, making them attractive candidates for therapeutic intervention. This review aims to provide a comprehensive overview of the mechanisms by which epigenetic regulators influence cardiac fibrosis and examines the latest advances in preclinical epigenetic therapies. By integrating recent data from functional studies, single-cell profiling, and drug development, it highlights key molecular targets, emerging therapeutic strategies, and current limitations, offering a critical framework to guide future research and clinical translation.
Collapse
Affiliation(s)
- Nerea Garitano
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (N.G.); (L.P.A.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Laura Pilar Aguado-Alvaro
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (N.G.); (L.P.A.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Pelacho
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (N.G.); (L.P.A.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
2
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Natural Bioproducts with Epigenetic Properties for Treating Cardiovascular Disorders. Genes (Basel) 2025; 16:566. [PMID: 40428388 PMCID: PMC12111369 DOI: 10.3390/genes16050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiovascular disorders (CVDs) are the leading cause of mortality worldwide, highlighting an urgent need for innovative therapeutic strategies. Recent advancements highlight the potential of naturally derived bioproducts with epigenetic properties to offer protection against CVDs. These compounds act on key epigenetic mechanisms, DNA methylation, histone modifications, and non-coding RNA regulation to modulate gene expression essential for cardiovascular health. This review explores the effects of various bioproducts, such as polyphenols, flavonoids, and other natural extracts, on these epigenetic modifications and their potential benefits in preventing and managing CVDs. We discuss recent discoveries and clinical applications, providing insights into the epigenetic regulatory mechanisms of these compounds as potential epidrugs, naturally derived agents with promising therapeutic prospects in epigenetic therapy for CVDs.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (V.N.); (I.C.); (L.C.); (R.C.)
| | | | | | | | | |
Collapse
|
3
|
Fang J, Wu S, Zhao H, Zhou C, Xue L, Lei Z, Li H, Shan Z. New Types of Post-Translational Modification of Proteins in Cardiovascular Diseases. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10600-7. [PMID: 40032789 DOI: 10.1007/s12265-025-10600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Post-translational modifications (PTMs), which are covalent alterations of proteins after their synthesis, are critical for their proper function and the maintenance of cellular physiology. The significance of PTMs in the context of cardiovascular diseases (CVDs) has been increasingly recognized due to their potential to influence protein stability, activity, and localization, thereby affecting the progression of CVDs. The identification and understanding of PTMs in CVDs at the molecular level are vital for the discovery of new biomarkers and new targets for clinical interventions. This article provides a comprehensive overview of the role and mechanisms of new types of PTMs, such as acetylation, crotonylation, succinylation, S-nitrosylation, malonylation, S-palmitonylation, β-hydroxybutyrylation and lactylation, in CVDs, highlighting their importance in advancing diagnostic and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Juntao Fang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People'S Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Shaoyu Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People'S Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Hengli Zhao
- Medical Research Institute, Guangdong Provincial People'S Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Chuanmeng Zhou
- Medical Research Institute, Guangdong Provincial People'S Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Ling Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People'S Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Zhiyong Lei
- Department of Experimental Cardiology, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
- CDL Research, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
- Circulatory Health Laboratory, UMC Utrecht, Regenerative Medicine Center Utrecht, University Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hui Li
- Medical Research Institute, Guangdong Provincial People'S Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Zhixin Shan
- Medical Research Institute, Guangdong Provincial People'S Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Yang M, Wang J, Liu Z, Li Z. PRR14 mediates mechanotransduction and regulates myofiber identity via MEF2C in skeletal muscle. Metabolism 2025; 164:156109. [PMID: 39706290 DOI: 10.1016/j.metabol.2024.156109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Skeletal muscle is a crucial tissue for physical activity and energy metabolism. Muscle atrophy, characterized by the loss of muscle mass and strength, contributes to adverse outcomes among individuals. This study elucidated the involvement of the nuclear lamina component PRR14 in transmitting mechanical signals and mediating the impact of exercise on skeletal muscle. The expression of PRR14 demonstrated a positive correlation with exercise, while a decline in adult skeletal muscle is evident in disuse muscle conditions. Genetically, multiple single nucleotide polymorphisms (SNPs) within PRR14's genomic locus were linked with muscle mass and function. Specific knockout (KO) of skeletal muscle Prr14 in mice lead to muscle atrophy, validating the genetic association. By employing biochemical analysis and high-throughput sequencing techniques, including transcriptome profile and epigenome investigations such as Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and Transposase-Accessible Chromatin sequencing (ATAC-seq), we discovered that PRR14's deficiency altered chromatin structure, regulated MEF2C's activity, and disrupted myofiber identity maintenance, ultimately causing muscle atrophy. Our finding highlights the crucial role of PRR14 in mechanotransduction and epigenetic regulation, offering new therapeutic avenues for skeletal muscle pathologies related to these mechanisms.
Collapse
Affiliation(s)
- Mei Yang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Jiajie Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhongyue Liu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
5
|
Sun Z, Lin J, Sun X, Yun Z, Zhang X, Xu S, Duan J, Yao K. Bioinformatics combining machine learning and single-cell sequencing analysis to identify common mechanisms and biomarkers of rheumatoid arthritis and ischemic heart failure. Heliyon 2025; 11:e41641. [PMID: 39897930 PMCID: PMC11783397 DOI: 10.1016/j.heliyon.2025.e41641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Patients with rheumatoid arthritis (RA) have an increased risk of ischemic heart failure (IHF), but the shared mechanisms are unclear. This study analyzed RNA sequencing data from five RA and IHF datasets to identify common biological mechanisms and significant biomarkers. One hundred and seventy-seven common differentially expressed genes (CDEGs) were identified, with enrichment analysis highlighting pathways related to sarcomere organization, ventricular myocardial tissue morphogenesis, chondrocyte differentiation, prolactin signaling, hematopoietic cell lineage, and protein methyltransferases. Five hub genes (CD2, CD3D, CCL5, IL7R, and SPATA18) were identified through protein-protein interaction (PPI) network analysis and machine learning. Co-expression and immune cell infiltration analyses underscored the importance of the inflammatory immune response, with hub genes showing significant correlations with plasma cells, activated CD4+ T memory cells, monocytes, and T regulatory cells. Single-cell RNA sequencing (scRNA-seq) confirmed hub gene expression primarily in T cells, activated T cells, monocytes, and NK cells. The findings underscore the critical roles of sarcomere organization, prolactin signaling, protein methyltransferase activity, and immune responses in the progression of IHF in RA patients. These insights not only identify valuable biomarkers and therapeutic targets but also offer promising directions for early diagnosis, personalized treatments, and preventive strategies for IHF in the context of RA. Moreover, the results highlight opportunities for repurposing existing drugs and developing new therapeutic interventions, which could reduce the risk of IHF in RA patients and improve their overall prognosis.
Collapse
Affiliation(s)
- Ziyi Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing, 100053, People's Republic of China
- Graduate School, Beijing University of Chinese Medicine, No.11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jianguo Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing, 100053, People's Republic of China
| | - Xiaoning Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing, 100053, People's Republic of China
| | - Zhangjun Yun
- Graduate School, Beijing University of Chinese Medicine, No.11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xiaoxiao Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing, 100053, People's Republic of China
| | - Siyu Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing, 100053, People's Republic of China
- Graduate School, Beijing University of Chinese Medicine, No.11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinlong Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing, 100053, People's Republic of China
| | - Kuiwu Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixiangge, Xicheng District, Beijing, 100053, People's Republic of China
- Academic Administration Office, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Inside Dongzhimen, Dongcheng District, Beijing, 100700, People's Republic of China
| |
Collapse
|
6
|
Matacchione G, Piacenza F, Pimpini L, Rosati Y, Marcozzi S. The role of the gut microbiota in the onset and progression of heart failure: insights into epigenetic mechanisms and aging. Clin Epigenetics 2024; 16:175. [PMID: 39614396 PMCID: PMC11607950 DOI: 10.1186/s13148-024-01786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) plays a critical role in regulating human physiology, with dysbiosis linked to various diseases, including heart failure (HF). HF is a complex syndrome with a significant global health impact, as its incidence doubles with each decade of life, and its prevalence peaks in individuals over 80 years. A bidirectional interaction exists between GM and HF, where alterations in gut health can worsen the disease's progression. MAIN BODY The "gut hypothesis of HF" suggests that HF-induced changes, such as reduced intestinal perfusion and altered gut motility, negatively impact GM composition, leading to increased intestinal permeability, the release of GM-derived metabolites into the bloodstream, and systemic inflammation. This process creates a vicious cycle that further deteriorates heart function. GM-derived metabolites, including trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and secondary bile acids (BAs), can influence gene expression through epigenetic mechanisms, such as DNA methylation and histone modifications. These epigenetic changes may play a crucial role in mediating the effects of dysbiotic gut microbial metabolites, linking them to altered cardiac health and contributing to the progression of HF. This process is particularly relevant in older individuals, as the aging process itself has been associated with both dysbiosis and cumulative epigenetic alterations, intensifying the interplay between GM, epigenetic changes, and HF, and further increasing the risk of HF in the elderly. CONCLUSION Despite the growing body of evidence, the complex interplay between GM, epigenetic modifications, and HF remains poorly understood. The dynamic nature of epigenetics and GM, shaped by various factors such as age, diet, and lifestyle, presents significant challenges in elucidating the precise mechanisms underlying this complex relationship. Future research should prioritize innovative approaches to overcome these limitations. By identifying specific metabolite-induced epigenetic modifications and modulating the composition and function of GM, novel and personalized therapeutic strategies for the prevention and/or treatment of HF can be developed. Moreover, targeted research focusing specifically on older individuals is crucial for understanding the intricate connections between GM, epigenetics, and HF during aging.
Collapse
Affiliation(s)
- Giulia Matacchione
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60127, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | | | - Yuri Rosati
- Pneumologia, IRCCS INRCA, 60027, Osimo, Italy
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
7
|
Panico C, Felicetta A, Kunderfranco P, Cremonesi M, Salvarani N, Carullo P, Colombo F, Idini A, Passaretti M, Doro R, Rubino M, Villaschi A, Da Rin G, Peano C, Kallikourdis M, Greco CM, Condorelli G. Single-Cell RNA Sequencing Reveals Metabolic Stress-Dependent Activation of Cardiac Macrophages in a Model of Dyslipidemia-Induced Diastolic Dysfunction. Circulation 2024; 150:1517-1532. [PMID: 38126199 DOI: 10.1161/circulationaha.122.062984] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout-Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibition in this model. CONCLUSIONS Using single-cell RNA sequencing in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.
Collapse
Affiliation(s)
- Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Arianna Felicetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Paolo Kunderfranco
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marco Cremonesi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Nicolò Salvarani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Pierluigi Carullo
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Federico Colombo
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandra Idini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Mauro Passaretti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Riccardo Doro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marcello Rubino
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandro Villaschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Giorgio Da Rin
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| |
Collapse
|
8
|
Petersen TB, Suthahar N, Asselbergs FW, de Bakker M, Akkerhuis KM, Constantinescu AA, van Ramshorst J, Katsikis PD, van der Spek PJ, Umans VA, de Boer RA, Boersma E, Rizopoulos D, Kardys I. Proteomic biomarkers related to obesity in heart failure with reduced ejection fraction and their associations with outcome. Obesity (Silver Spring) 2024; 32:1658-1669. [PMID: 39039788 DOI: 10.1002/oby.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Heart failure (HF) pathophysiology in patients with obesity may be distinct. To study these features, we identified obesity-related biomarkers from 4210 circulating proteins in patients with HF with reduced ejection fraction (HFrEF) and examined associations of these proteins with HF prognosis and biological mechanisms. METHODS In 373 patients with trimonthly blood sampling during a median follow-up of 2.1 (25th-75th percentile: 1.1-2.6) years, we applied an aptamer-based multiplex approach measuring 4210 proteins in baseline samples and the last two samples before study end. Associations between obesity (BMI > 30 kg/m2) and baseline protein levels were analyzed. Subsequently, associations of serially measured obesity-related proteins with biological mechanisms and the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, left ventricular assist device implantation, and heart transplantation) were examined. RESULTS Obesity was identified in 26% (96/373) of patients. A total of 30% (112/373) experienced a PEP (with obesity: 26% [25/96] vs. without obesity: 31% [87/277]). A total of 141/4210 proteins were linked to obesity, reflecting mechanisms of neuron projection development, cell adhesion, and muscle cell migration. A total of 50/141 proteins were associated with the PEP, of which 12 proteins related to atherosclerosis or hypertrophy provided prognostic information beyond clinical characteristics, N-terminal pro-B-type natriuretic peptide, and high-sensitivity troponin T. CONCLUSIONS Patients with HFrEF and obesity show distinct proteomic profiles compared to patients with HFrEF without obesity. Obesity-related proteins are independently associated with HF outcome. These proteins carry potential to improve management of obesity-related HF and could be leads for future research.
Collapse
Affiliation(s)
- Teun B Petersen
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Navin Suthahar
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marie de Bakker
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Alina A Constantinescu
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jan van Ramshorst
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Peter J van der Spek
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Victor A Umans
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Desiderio A, Pastorino M, Campitelli M, Longo M, Miele C, Napoli R, Beguinot F, Raciti GA. DNA methylation in cardiovascular disease and heart failure: novel prediction models? Clin Epigenetics 2024; 16:115. [PMID: 39175069 PMCID: PMC11342679 DOI: 10.1186/s13148-024-01722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD) affect over half a billion people worldwide and are the leading cause of global deaths. In particular, due to population aging and worldwide spreading of risk factors, the prevalence of heart failure (HF) is also increasing. HF accounts for approximately 36% of all CVD-related deaths and stands as the foremost cause of hospitalization. Patients affected by CVD or HF experience a substantial decrease in health-related quality of life compared to healthy subjects or affected by other diffused chronic diseases. MAIN BODY For both CVD and HF, prediction models have been developed, which utilize patient data, routine laboratory and further diagnostic tests. While some of these scores are currently used in clinical practice, there still is a need for innovative approaches to optimize CVD and HF prediction and to reduce the impact of these conditions on the global population. Epigenetic biomarkers, particularly DNA methylation (DNAm) changes, offer valuable insight for predicting risk, disease diagnosis and prognosis, and for monitoring treatment. The present work reviews current information relating DNAm, CVD and HF and discusses the use of DNAm in improving clinical risk prediction of CVD and HF as well as that of DNAm age as a proxy for cardiac aging. CONCLUSION DNAm biomarkers offer a valuable contribution to improving the accuracy of CV risk models. Many CpG sites have been adopted to develop specific prediction scores for CVD and HF with similar or enhanced performance on the top of existing risk measures. In the near future, integrating data from DNA methylome and other sources and advancements in new machine learning algorithms will help develop more precise and personalized risk prediction methods for CVD and HF.
Collapse
Affiliation(s)
- Antonella Desiderio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Monica Pastorino
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
- Department of Molecular Medicine and Biotechnology, Federico II University of Naples, Naples, Italy
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Raffaele Napoli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| |
Collapse
|
10
|
Ikelaar NA, Barnard AM, Eng SWM, Hosseini Vajargah S, Ha KCH, Kan HE, Vandenborne K, Niks EH, Walter GA, Spitali P. Large scale serum proteomics identifies proteins associated with performance decline and clinical milestones in Duchenne muscular dystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311516. [PMID: 39148831 PMCID: PMC11326316 DOI: 10.1101/2024.08.05.24311516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Serum biomarkers are promising minimally invasive outcome measures in clinical studies in Duchenne muscular dystrophy (DMD). However, biomarkers strongly associated with clinical progression and predicting performance decline are lacking. In this study we aimed to identify serum biomarkers associated with clinical performance and able to predict clinical milestones in DMD. Towards this aim we present a retrospective multi-center cohort study including serum samples and clinical data collected in research participants with DMD as part of a natural history study at the University of Florida (UF) and real-world observations at Leiden University Medical Center (LUMC) between 2009-2022. The 7K SomaScan® assay was used to analyse protein levels in in individual serum samples. Serum biomarkers predicted age at loss of ambulation (LoA), age at loss of overhead reach (OHR) and age at loss of hand to mouth function (HTM). Secondary outcomes were the association of biomarkers with age, corticosteroid (CS) usage, and clinical performance based on the North Star Ambulatory Assessment (NSAA), 10 meter run velocity (10mrv), 6 minute walk (6MWT) and Performance of the Upper Limb (PUL2.0). A total of 716 serum samples were collected in 79 participants at UF and 74 at LUMC (mean[SD] age; 10.9[3.2] vs 8.4[3.4]). 244 serum proteins showed an association with CS usage in both cohorts independent of CS type and regimen, including MMP3 and IGLL1. 318 probes (corresponding to 294 proteins) showed significant associations with NSAA, 10mrv, 6MWT and/or PUL2.0 across both cohorts. The expression of 38 probes corresponding to 36 proteins such as RGMA, EHMT2, ART3, ANTXR2 and DLK1 was associated with risk of both lower and upper limb clinical milestones in both the LUMC and UF cohort. In conclusion, multiple biomarkers were associated with CS use, motor function and upper lower and upper limb disease milestones in DMD. These biomarkers were validated across two independent cohorts, increasing their likelihood of translation for use within the broader DMD population.
Collapse
Affiliation(s)
- N A Ikelaar
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
- Duchenne Center Netherlands
| | - A M Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - S W M Eng
- BioSymetrics, Inc., Huntington, NY, USA
| | | | - K C H Ha
- BioSymetrics, Inc., Huntington, NY, USA
| | - H E Kan
- Duchenne Center Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| | - K Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - E H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
- Duchenne Center Netherlands
| | - G A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - P Spitali
- Human Genetics Department, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
11
|
Bontempo P, Capasso L, De Masi L, Nebbioso A, Rigano D. Therapeutic Potential of Natural Compounds Acting through Epigenetic Mechanisms in Cardiovascular Diseases: Current Findings and Future Directions. Nutrients 2024; 16:2399. [PMID: 39125279 PMCID: PMC11314203 DOI: 10.3390/nu16152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading global cause of morbidity and mortality. These diseases have a multifaceted nature being influenced by a multitude of biochemical, genetic, environmental, and behavioral factors. Epigenetic modifications have a crucial role in the onset and progression of CVD. Epigenetics, which regulates gene activity without altering the DNA's primary structure, can modulate cardiovascular homeostasis through DNA methylation, histone modification, and non-coding RNA regulation. The effects of environmental stimuli on CVD are mediated by epigenetic changes, which can be reversible and, hence, are susceptible to pharmacological interventions. This represents an opportunity to prevent diseases by targeting harmful epigenetic modifications. Factors such as high-fat diets or nutrient deficiencies can influence epigenetic enzymes, affecting fetal growth, metabolism, oxidative stress, inflammation, and atherosclerosis. Recent studies have shown that plant-derived bioactive compounds can modulate epigenetic regulators and inflammatory responses, contributing to the cardioprotective effects of diets. Understanding these nutriepigenetic effects and their reversibility is crucial for developing effective interventions to combat CVD. This review delves into the general mechanisms of epigenetics, its regulatory roles in CVD, and the potential of epigenetics as a CVD therapeutic strategy. It also examines the role of epigenetic natural compounds (ENCs) in CVD and their potential as intervention tools for prevention and therapy.
Collapse
Affiliation(s)
- Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
12
|
Deogharia M, Gurha P. Epigenetic regulation of heart failure. Curr Opin Cardiol 2024; 39:371-379. [PMID: 38606626 PMCID: PMC11150090 DOI: 10.1097/hco.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW The studies on chromatin-modifying enzymes and how they respond to different stimuli within the cell have revolutionized our understanding of epigenetics. In this review, we provide an overview of the recent studies on epigenetic mechanisms implicated in heart failure. RECENT FINDINGS We focus on the major mechanisms and the conceptual advances in epigenetics as evidenced by studies in humans and mouse models of heart failure. The significance of epigenetic modifications and the enzymes that catalyze them is also discussed. New findings from the studies of histone lysine demethylases demonstrate their significance in regulating fetal gene expression, as well as their aberrant expression in adult hearts during HF. Similarly, the relevance of histone deacetylases inhibition in heart failure and the role of HDAC6 in cardio-protection are discussed. Finally, the role of LMNA (lamin A/C), a nuclear membrane protein that interacts with chromatin to form hundreds of large chromatin domains known as lamin-associated domains (LADs), and 3D genome structure in epigenetic regulation of gene expression and heart failure is discussed. SUMMARY Epigenetic modifications provide a mechanism for responding to stress and environmental variation, enabling reactions to both external and internal stimuli, and their dysregulation can be pathological as in heart failure. To gain a thorough understanding of the pathological mechanisms and to aid in the development of targeted treatments for heart failure, future research on studying the combined effects of numerous epigenetic changes and the structure of chromatin is warranted.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, The University of Texas Health Sciences Center at Houston, Texas, USA
| | | |
Collapse
|
13
|
Meng XM, Pang QY, Zhou ZF, Yuan JH, You L, Feng QP, Zhu BM. Histone methyltransferase MLL4 protects against pressure overload-induced heart failure via a THBS4-mediated protection in ER stress. Pharmacol Res 2024; 205:107263. [PMID: 38876442 DOI: 10.1016/j.phrs.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Fang Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Han Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Ren Z, Zhao W, Li D, Yu P, Mao L, Zhao Q, Yao L, Zhang X, Liu Y, Zhou B, Wang L. INO80-Dependent Remodeling of Transcriptional Regulatory Network Underlies the Progression of Heart Failure. Circulation 2024; 149:1121-1138. [PMID: 38152931 DOI: 10.1161/circulationaha.123.065440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Progressive remodeling of cardiac gene expression underlies decline in cardiac function, eventually leading to heart failure. However, the major determinants of transcriptional network switching from normal to failed hearts remain to be determined. METHODS In this study, we integrated human samples, genetic mouse models, and genomic approaches, including bulk RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, to identify the role of chromatin remodeling complex INO80 in heart homeostasis and dysfunction. RESULTS The INO80 chromatin remodeling complex was abundantly expressed in mature cardiomyocytes, and its expression further increased in mouse and human heart failure. Cardiomyocyte-specific overexpression of Ino80, its core catalytic subunit, induced heart failure within 4 days. Combining RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, we revealed INO80 overexpression-dependent reshaping of the nucleosomal landscape that remodeled a core set of transcription factors, most notably the MEF2 (Myocyte Enhancer Factor 2) family, whose target genes were closely associated with cardiac function. Conditional cardiomyocyte-specific deletion of Ino80 in an established mouse model of heart failure demonstrated remarkable preservation of cardiac function. CONCLUSIONS In summary, our findings shed light on the INO80-dependent remodeling of the chromatin landscape and transcriptional networks as a major mechanism underlying cardiac dysfunction in heart failure, and suggest INO80 as a potential preventative or interventional target.
Collapse
Affiliation(s)
- Zongna Ren
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
| | - Wanqing Zhao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Peng Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Luyan Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Yandan Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Bingying Zhou
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
- Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (L.W.)
| |
Collapse
|
15
|
Wu KJ, Chen Q, Leung CH, Sun N, Gao F, Chen Z. Recent discoveries of the role of histone modifications and related inhibitors in pathological cardiac hypertrophy. Drug Discov Today 2024; 29:103878. [PMID: 38211819 DOI: 10.1016/j.drudis.2024.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Pathological cardiac hypertrophy is a common response of the heart to various pathological stimuli. In recent years, various histone modifications, including acetylation, methylation, phosphorylation and ubiquitination, have been identified to have crucial roles in regulating chromatin remodeling and cardiac hypertrophy. Novel drugs targeting these epigenetic changes have emerged as potential treatments for pathological cardiac hypertrophy. In this review, we provide a comprehensive summary of the roles of histone modifications in regulating the development of pathological cardiac hypertrophy, and discuss potential therapeutic targets that could be utilized for its treatment.
Collapse
Affiliation(s)
- Ke-Jia Wu
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Qi Chen
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa 999078, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa 999078, Macau.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China.
| | - Fei Gao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Chaoyang District, Beijing 100029, PR China.
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
16
|
Hoegenauer K, An S, Axford J, Benander C, Bergsdorf C, Botsch J, Chau S, Fernández C, Gleim S, Hassiepen U, Hunziker J, Joly E, Keller A, Lopez Romero S, Maher R, Mangold AS, Mickanin C, Mihalic M, Neuner P, Patterson AW, Perruccio F, Roggo S, Scesa J, Schröder M, Shkoza D, Thai B, Vulpetti A, Renatus M, Reece-Hoyes JS. Discovery of Ligands for TRIM58, a Novel Tissue-Selective E3 Ligase. ACS Med Chem Lett 2023; 14:1631-1639. [PMID: 38116426 PMCID: PMC10726445 DOI: 10.1021/acsmedchemlett.3c00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 12/21/2023] Open
Abstract
Redirecting E3 ligases to neo-substrates, leading to their proteasomal disassembly, known as targeted protein degradation (TPD), has emerged as a promising alternative to traditional, occupancy-driven pharmacology. Although the field has expanded tremendously over the past years, the choice of E3 ligases remains limited, with an almost exclusive focus on CRBN and VHL. Here, we report the discovery of novel ligands to the PRY-SPRY domain of TRIM58, a RING ligase that is specifically expressed in erythroid precursor cells. A DSF screen, followed by validation using additional biophysical methods, led to the identification of TRIM58 ligand TRIM-473. A basic SAR around the chemotype was established by utilizing a competitive binding assay employing a short FP peptide probe derived from an endogenous TRIM58 substrate. The X-ray co-crystal structure of TRIM58 in complex with TRIM-473 gave insights into the binding mode and potential exit vectors for bifunctional degrader design.
Collapse
Affiliation(s)
- Klemens Hoegenauer
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Shaojian An
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jake Axford
- Global Discovery
Chemistry, Novartis Institutes for BioMedical
Research, Cambridge, Massachusetts 02139, United States
| | - Christina Benander
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Christian Bergsdorf
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Josephine Botsch
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Suzanne Chau
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - César Fernández
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Scott Gleim
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Ulrich Hassiepen
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Juerg Hunziker
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Emilie Joly
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Aramis Keller
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Sandra Lopez Romero
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Robert Maher
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Anne-Sophie Mangold
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Craig Mickanin
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Manuel Mihalic
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Philippe Neuner
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Andrew W. Patterson
- Global Discovery
Chemistry, Novartis Institutes for BioMedical
Research, Cambridge, Massachusetts 02139, United States
| | - Francesca Perruccio
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Silvio Roggo
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Julien Scesa
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Martin Schröder
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Dojna Shkoza
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Binh Thai
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Anna Vulpetti
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Martin Renatus
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - John S. Reece-Hoyes
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
18
|
Meng XM, Liu SB, Deng T, Li DY, You L, Hong H, Feng QP, Zhu BM. Loss of Histone Methyltransferase KMT2D Attenuates Angiogenesis in the Ischemic Heart by Inhibiting the Transcriptional Activation of VEGF-A. J Cardiovasc Transl Res 2023; 16:1032-1049. [PMID: 36947365 PMCID: PMC10616223 DOI: 10.1007/s12265-023-10373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Angiogenesis occurred after myocardial infarction (MI) protects heart failure (HF). The aim of our study was to explore function of histone methyltransferase KMT2D (MLL4, mixed-lineage leukemia 4) in angiogenesis post-MI. Western blotting showed that KMT2D protein expression was elevated in MI mouse myocardial. Cardiomyocyte-specific Kmt2d-knockout (Kmt2d-cKO) mice were generated, and echocardiography and immunofluorescence staining detected significantly attenuated cardiac function and insufficient angiogenesis following MI in Kmt2d-cKO mice. Cross-talk assay suggested that Kmt2d-KO H9c2-derived conditioned medium attenuates EA.hy926 EC function. ELISA further identified that VEGF-A released from Kmt2d-KO H9c2 was significantly reduced. CUT&Tag and RT-qPCR revealed that KMT2D deficiency reduced Vegf-a mRNA expression and enrichment of H3K4me1 on the Vegf-a promoter. Moreover, KMT2D silencing in ECs also suppressed endothelial function. Our study indicates that KMT2D depletion in both cardiomyocytes and ECs attenuates angiogenesis and that loss of KMT2D exacerbates heart failure after MI in mice.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Serio S, Pagiatakis C, Musolino E, Felicetta A, Carullo P, Laura Frances J, Papa L, Rozzi G, Salvarani N, Miragoli M, Gornati R, Bernardini G, Condorelli G, Papait R. Cardiac Aging Is Promoted by Pseudohypoxia Increasing p300-Induced Glycolysis. Circ Res 2023; 133:687-703. [PMID: 37681309 DOI: 10.1161/circresaha.123.322676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Heart failure is typical in the elderly. Metabolic remodeling of cardiomyocytes underlies inexorable deterioration of cardiac function with aging: glycolysis increases at the expense of oxidative phosphorylation, causing an energy deficit contributing to impaired contractility. Better understanding of the mechanisms of this metabolic switching could be critical for reversing the condition. METHODS To investigate the role of 3 histone modifications (H3K27ac, H3K27me3, and H3K4me1) in the metabolic remodeling occurring in the aging heart, we cross-compared epigenomic, transcriptomic, and metabolomic data from mice of different ages. In addition, the role of the transcriptional coactivator p300 (E1A-associated binding protein p300)/CBP (CREB binding protein) in cardiac aging was investigated using a specific inhibitor of this histone acetyltransferase enzyme. RESULTS We report a set of species-conserved enhancers associated with transcriptional changes underlying age-related metabolic remodeling in cardiomyocytes. Activation of the enhancer region of Hk2-a key glycolysis pathway gene-was fostered in old age-onset mouse heart by pseudohypoxia, wherein hypoxia-related genes are expressed under normal O2 levels, via increased activity of P300/CBP. Pharmacological inhibition of this transcriptional coactivator before the onset of cardiac aging led to a more aerobic, less glycolytic, metabolic state, improved heart contractility, and overall blunting of cardiac decline. CONCLUSIONS Taken together, our results suggest how epigenetic dysregulation of glycolysis pathway enhancers could potentially be targeted to treat heart failure in the elderly.
Collapse
Affiliation(s)
- Simone Serio
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy (S.S., G.C.)
| | - Christina Pagiatakis
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Arianna Felicetta
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Pierluigi Carullo
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Javier Laura Frances
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Laura Papa
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Giacomo Rozzi
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Nicolò Salvarani
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Institute of Genetic and Biomedical Research, UOS of Milan, National Research Council of Italy (N.S.)
| | - Michele Miragoli
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Medicine and Surgery, University of Parma, Italy (M.M.)
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy (S.S., G.C.)
| | - Roberto Papait
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| |
Collapse
|
20
|
Chi L, Zhong L, Lee D, Yu X, Caballero A, Nieman B, Delgado-Olguin P. G9a inactivation in progenitor cells with Isl1-Cre with reduced recombinase activity models aspects of Dandy-Walker complex. Biol Open 2023; 12:bio059894. [PMID: 37470706 PMCID: PMC10399207 DOI: 10.1242/bio.059894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
G9a, also known as EHMT2, is essential for embryogenesis and has specific functions in multiple developmental processes. G9a inactivation affects development of the nervous system, which is formed with contribution of descendants of progenitor cells expressing the transcription factor Isl1. However, the function of G9a in Isl1-expressing progenitors is unknown. Here, we show that G9a is required for proper development of multiple structures formed with contribution of Isl1-expressing progenitors. A Cre-dependent GFP reporter revealed that the recombinase activity of the Isl1-Cre used in this study to inactivate G9a was reduced to a subset of Isl1-expressing progenitor cells. G9a mutants reached endpoint by 7 weeks of age with cardiac hypertrophy, hydrocephalus, underdeveloped cerebellum and hind limb paralysis, modeling aspects of Dandy-Walker complex. Moreover, neuroepithelium of the lateral ventricle derived from Isl1-expressing progenitors was thinner and disorganized, potentially compromising cerebrospinal fluid dynamics in G9a mutants. Micro-computed tomography after iodine staining revealed increased volume of the heart, eye lens and brain structures in G9a mutant fetuses. Thus, altered development of descendants of the second heart field and the neural crest could contribute to multicomponent malformation like Dandy-Walker.
Collapse
Affiliation(s)
- Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Ling Zhong
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Endocrinology, National Health Committee Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dorothy Lee
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Xinwen Yu
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Amalia Caballero
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Brian Nieman
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Mouse Imaging Centre (MICe), The Hospital for Sick Children, Toronto, ON M5T3H7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Paul Delgado-Olguin
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, Toronto, ON M5S3H2, Canada
| |
Collapse
|
21
|
Zhu JY, van de Leemput J, Han Z. The Roles of Histone Lysine Methyltransferases in Heart Development and Disease. J Cardiovasc Dev Dis 2023; 10:305. [PMID: 37504561 PMCID: PMC10380575 DOI: 10.3390/jcdd10070305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Epigenetic marks regulate the transcriptomic landscape by facilitating the structural packing and unwinding of the genome, which is tightly folded inside the nucleus. Lysine-specific histone methylation is one such mark. It plays crucial roles during development, including in cell fate decisions, in tissue patterning, and in regulating cellular metabolic processes. It has also been associated with varying human developmental disorders. Heart disease has been linked to deregulated histone lysine methylation, and lysine-specific methyltransferases (KMTs) are overrepresented, i.e., more numerous than expected by chance, among the genes with variants associated with congenital heart disease. This review outlines the available evidence to support a role for individual KMTs in heart development and/or disease, including genetic associations in patients and supporting cell culture and animal model studies. It concludes with new advances in the field and new opportunities for treatment.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Yang JH, Petty CA, Dixon-McDougall T, Lopez MV, Tyshkovskiy A, Maybury-Lewis S, Tian X, Ibrahim N, Chen Z, Griffin PT, Arnold M, Li J, Martinez OA, Behn A, Rogers-Hammond R, Angeli S, Gladyshev VN, Sinclair DA. Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY) 2023; 15:5966-5989. [PMID: 37437248 PMCID: PMC10373966 DOI: 10.18632/aging.204896] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay. We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.
Collapse
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Christopher A. Petty
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Thomas Dixon-McDougall
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Maria Vina Lopez
- Molecular and Biomedical Sciences, University of Maine, Orono, ME 04467, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sun Maybury-Lewis
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Nabilah Ibrahim
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Zhili Chen
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Patrick T. Griffin
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Matthew Arnold
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Jien Li
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Oswaldo A. Martinez
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
- Department of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexander Behn
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Ryan Rogers-Hammond
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| | - Suzanne Angeli
- Molecular and Biomedical Sciences, University of Maine, Orono, ME 04467, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA 02115, USA
| |
Collapse
|
23
|
Li X, Shen D, Zhu Z, Lyu D, He C, Sun Y, Li J, Lu Q, Wang G. Dual roles of demethylation in cancer treatment and cardio-function recovery. Redox Biol 2023; 64:102785. [PMID: 37343447 PMCID: PMC10363477 DOI: 10.1016/j.redox.2023.102785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
There are no effective therapeutic targets or strategies that simultaneously inhibit tumour growth and promote cardiac function recovery. Here, we analyzed targets for cancer treatments and cardiac repair, with demethylation emerging as a common factor in these candidate lists. As DNA methyltransferase 1 (DNMT1) majorly responds to methylation, a natural compound library is screened, identifying dioscin as a novel agent targeted at DNMT1, widely used for heart diseases. Dioscin was found to reduce DNMT activities and inhibits growth in breast cancer cells. Combined with analyses of RNA-seq and MeDIP-seq, the promoters of antioxidant genes were demethylated after dioscin, recruiting NRF2 and elevating their expression. In Nrf2 knockout mice, the cardiac protection role of dioscin was blocked by Nrf2-loss. Furthermore, in tumour-bearing mice with hypertrophy, dioscin was observed to inhibit tumour growth and alleviate cardiac injury simultaneously. This study is the first to identify dioscin as a novel demethylation agent with dual functions of anti-cancer and cardio-protection.
Collapse
Affiliation(s)
- Xinuo Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Dehong Shen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Dayin Lyu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chang He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinran Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Qiulun Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
24
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
25
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|
26
|
Wang K, Sun X, Sun Y, Jiao B, Yao J, Hu Y, Deng Q, Dong J, Wang W, Wang Y, Li C. Transcriptional regulation of macrophages in heart failure. Front Cardiovasc Med 2023; 10:1148041. [PMID: 37063966 PMCID: PMC10097991 DOI: 10.3389/fcvm.2023.1148041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Adverse cardiac remodeling after acute myocardial infarction is the most important pathological mechanism of heart failure and remains a major problem in clinical practice. Cardiac macrophages, derived from tissue resident macrophages and circulating monocyte, undergo significant phenotypic and functional changes following cardiac injury and play crucial roles in inflammatory response and tissue repair response. Currently, numerous studies indicate that epigenetic regulatory factors and transcription factors can regulate the transcription of inflammatory and reparative genes and timely conversion of inflammatory macrophages into reparative macrophages and then alleviate cardiac remodeling. Accordingly, targeting transcriptional regulation of macrophages may be a promising option for heart failure treatment. In this review, we not only summarize the origin and function of cardiac macrophages, but more importantly, describe the transcriptional regulation of macrophages in heart failure, aiming to provide a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- Keyan Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Jiao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| |
Collapse
|
27
|
Gromova T, Gehred ND, Vondriska TM. Single-cell transcriptomes in the heart: when every epigenome counts. Cardiovasc Res 2023; 119:64-78. [PMID: 35325060 PMCID: PMC10233279 DOI: 10.1093/cvr/cvac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The response of an organ to stimuli emerges from the actions of individual cells. Recent cardiac single-cell RNA-sequencing studies of development, injury, and reprogramming have uncovered heterogeneous populations even among previously well-defined cell types, raising questions about what level of experimental resolution corresponds to disease-relevant, tissue-level phenotypes. In this review, we explore the biological meaning behind this cellular heterogeneity by undertaking an exhaustive analysis of single-cell transcriptomics in the heart (including a comprehensive, annotated compendium of studies published to date) and evaluating new models for the cardiac function that have emerged from these studies (including discussion and schematics that depict new hypotheses in the field). We evaluate the evidence to support the biological actions of newly identified cell populations and debate questions related to the role of cell-to-cell variability in development and disease. Finally, we present emerging epigenomic approaches that, when combined with single-cell RNA-sequencing, can resolve basic mechanisms of gene regulation and variability in cell phenotype.
Collapse
Affiliation(s)
- Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalie D Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Loss of KDM5B ameliorates pathological cardiac fibrosis and dysfunction by epigenetically enhancing ATF3 expression. Exp Mol Med 2022; 54:2175-2187. [PMID: 36481938 PMCID: PMC9794816 DOI: 10.1038/s12276-022-00904-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Excessive cardiac fibrosis is central to adverse cardiac remodeling and dysfunction leading to heart failure in many cardiac diseases. Histone methylation plays a crucial role in various pathophysiological events. However, the role of histone methylation modification enzymes in pathological cardiac fibrosis needs to be fully elucidated. Here, we identified lysine demethylase 5B (KDM5B), a histone H3K4me2/me3 demethylase, as a key epigenetic mediator of pathological cardiac fibrosis. KDM5B expression was upregulated in cardiac fibroblasts and myocardial tissues in response to pathological stress. KDM5B deficiency markedly ameliorated cardiac fibrosis, improved cardiac function, and prevented adverse cardiac remodeling following myocardial infarction (MI) or pressure overload. KDM5B knockout or inhibitor treatment constrained the transition of cardiac fibroblasts to profibrogenic myofibroblasts and suppressed fibrotic responses. KDM5B deficiency also facilitated the transformation of cardiac fibroblasts to endothelial-like cells and promoted angiogenesis in response to myocardial injury. Mechanistically, KDM5B bound to the promoter of activating transcription factor 3 (Atf3), an antifibrotic regulator of cardiac fibrosis, and inhibited ATF3 expression by demethylating the activated H3K4me2/3 modification, leading to the enhanced activation of TGF-β signaling and excessive expression of profibrotic genes. Our study indicates that KDM5B drives pathological cardiac fibrosis and represents a candidate target for intervention in cardiac dysfunction and heart failure.
Collapse
|
29
|
Xiao Z, Xie Y, Huang F, Yang J, Liu X, Lin X, Zhu P, Zheng S. MicroRNA-205-5p plays a suppressive role in the high-fat diet-induced atrial fibrosis through regulation of the EHMT2/IGFBP3 axis. GENES & NUTRITION 2022; 17:11. [PMID: 35858845 PMCID: PMC9297569 DOI: 10.1186/s12263-022-00712-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Objective MicroRNAs (miRNAs) targeting has been revealed to be an appealing strategy for the treatment and management of atrial fibrillation (AF). In this research, we aimed to explore the mechanisms of miR-205-5p in reducing the high-fat diet (HFD)-induced atrial fibrosis through the EHMT2/IGFBP3 axis. Methods Expression levels of miR-205-5p, IGFBP3 and EHMT2 were determined in AF patients, cell fibrosis models and mouse atrial fibrosis models. Luciferase activity and RIP assays were performed to detect the binding between miR-205-5p and EHMT2, and ChIP assays were implemented to detect the enrichment of H3K9me2 and H3K4me3 in the promoter region of IGFBP3 in cells. The related experiments focusing on the inflammatory response, atrial fibrosis, mitochondrial damage, and metabolic abnormalities were performed to figure out the roles of miR-205-5p, IGFBP3, and EHMT2 in cell and mouse atrial fibrosis models. Results Low expression levels of miR-205-5p and IGFBP3 and a high expression of EHMT2 were found in AF patients, cell fibrosis models and mouse atrial fibrosis models. Upregulation of miR-205-5p reduced the expression of TGF-β1, α-SMA, Col III and other fibrosis-related proteins. miR-205-5p overexpression targeted EHMT2 to regulate the methylation of H3 histones to promote IGFBP3 expression, which in turn affected the fibrosis of atrial muscle cells. In HFD-induced atrial fibrosis mice, upregulated miR-205-5p or elevated IGFBP3 alleviated atrial fibrosis, mitochondrial damage, and metabolic abnormalities. Conclusion This study suggests that miR-205-5p attenuates HFD-induced atrial fibrosis via modulating the EHMT2/IGFBP3 axis. Graphical Abstract miR-205-5p alleviates high-fat diet-induced atrial fibrosis in mice via EHMT2/IGFBP3. ![]()
Collapse
|
30
|
Lizcano F, Bustamante L. Molecular perspectives in hypertrophic heart disease: An epigenetic approach from chromatin modification. Front Cell Dev Biol 2022; 10:1070338. [PMID: 36523510 PMCID: PMC9745061 DOI: 10.3389/fcell.2022.1070338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 04/04/2025] Open
Abstract
Epigenetic changes induced by environmental factors are increasingly relevant in cardiovascular diseases. The most frequent molecular component in cardiac hypertrophy is the reactivation of fetal genes caused by various pathologies, including obesity, arterial hypertension, aortic valve stenosis, and congenital causes. Despite the multiple investigations performed to achieve information about the molecular components of this pathology, its influence on therapeutic strategies is relatively scarce. Recently, new information has been taken about the proteins that modify the expression of fetal genes reactivated in cardiac hypertrophy. These proteins modify the DNA covalently and induce changes in the structure of chromatin. The relationship between histones and DNA has a recognized control in the expression of genes conditioned by the environment and induces epigenetic variations. The epigenetic modifications that regulate pathological cardiac hypertrophy are performed through changes in genomic stability, chromatin architecture, and gene expression. Histone 3 trimethylation at lysine 4, 9, or 27 (H3-K4; -K9; -K27me3) and histone demethylation at lysine 9 and 79 (H3-K9; -K79) are mediators of reprogramming in pathologic hypertrophy. Within the chromatin architecture modifiers, histone demethylases are a group of proteins that have been shown to play an essential role in cardiac cell differentiation and may also be components in the development of cardiac hypertrophy. In the present work, we review the current knowledge about the influence of epigenetic modifications in the expression of genes involved in cardiac hypertrophy and its possible therapeutic approach.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, Universidad de La Sabana (CIBUS), Campus Puente del Comun, Autopista Norte de Bogota, Chia, Colombia
- Fundación Cardio-Infantil IC, Bogotá, Colombia
| | - Lizeth Bustamante
- Fundación Cardio-Infantil IC, Bogotá, Colombia
- Universidad del Rosario School of Medicine and Health Sciences, Bogotá, Colombia
| |
Collapse
|
31
|
Liu M, Liu Y, Li X, Pei M, Han M, Qi F. Dexmedetomidine inhibits abnormal muscle hypertrophy of myofascial trigger points via TNF-α/ NF-κB signaling pathway in rats. Front Pharmacol 2022; 13:1031804. [PMID: 36408215 PMCID: PMC9669483 DOI: 10.3389/fphar.2022.1031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Myofascial pain syndrome (MPS) is a chronic pain disorder with inflammation-related primarily characterized by the presence of myofascial trigger points (MTrPs). Myocyte enhancer factor 2C (MEF2C) is involved in the occurrence of a variety of skeletal muscle diseases. However, it is not yet clear if MEF2C is involved in MTrPs. The purpose of this study was to investigate whether MEF2C was involved in the inflammatory pathogenesis of MTrPs. In the present study, we used RNA sequencing (RNA-seq) to compare the differential expression of myocyte enhancer factor 2C (MEF2C) in healthy participants and MTrPs participants. The widely used rat MTrPs model was established to research the upstream and downstream regulatory mechanism of MEF2C and found that MEF2C was significantly increased in patients with MTrPs. Dexmedetomidine (Dex) was injected intramuscularly in the MTrPs animal to assess its effects on MEF2C. The expression of MEF2C protein and mRNA in skeletal muscle of rats in the MTrPs group were up-regulated. In addition, the expression of TNF- α, p-P65, MLCK, and Myocilin (MyoC) was up-regulated and the mechanical pain threshold was decreased. Peripheral TNF- α injection significantly decreased the mechanical pain threshold and increased the expression of p-P65, MLCK, MEF2C, and MyoC in healthy rats. Maslinic acid increased the mechanical pain threshold and inhibited the expression of p-P65, MLCK, MEF2C, and MyoC. In addition, peripheral injection of DEX in MTrPs rats also inhibited the expression of TNF- α, p-P65, MLCK, MEF2C, and MyoC. These results suggest that MEF2C is involved in the inflammatory pathogenesis of MTrPs and DEX serves as a potential therapeutic strategy for the treatment of MPS.
Collapse
Affiliation(s)
- Mingjian Liu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu Liu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xuan Li
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Miao Pei
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Anesthesiology Clinic, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Mei Han
- Department of the Quality Management, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Mei Han, ; Feng Qi,
| | - Feng Qi
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Mei Han, ; Feng Qi,
| |
Collapse
|
32
|
Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022; 9:952949. [PMID: 36093141 PMCID: PMC9458904 DOI: 10.3389/fcvm.2022.952949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Kai Wang
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Zhang
| |
Collapse
|
33
|
Zhao L, Qi F, Du D, Wu N. Histone demethylase KDM3C regulates the lncRNA GAS5-miR-495-3p-PHF8 axis in cardiac hypertrophy. Ann N Y Acad Sci 2022; 1516:286-299. [PMID: 35777757 DOI: 10.1111/nyas.14813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cardiac hypertrophy (CH) is a pathological phenotype of cardiomyopathy. Epigenetic modification is a mechanism associated with CH. Our study here investigated the histone demethylase KDM3C in relation to epigenetic regulation in CH. We found that KDM3C mRNA silencing alleviated CH, as evidenced by reduced ANP, BNP, and β-MHC mRNAs, increased α-MHC mRNA, decreased cell surface area, and reduced cellular protein/DNA ratios. Specifically, KDM3C upregulated miR-200c-3p expression through demethylation of H3K9me2, leading to enhanced binding of miR-200c-3p to GAS5 and suppression of GAS5 expression; these effects then led to reduced binding of GAS5 to miR-495-3p, increased miR-495-3p expression, and repression of PHF8 transcription. Through these mechanisms, our data indicate that KDM3C-dependent epigenetic modification promotes CH.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Cardiac Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Qi
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongdong Du
- Department of Cardiac Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Naishi Wu
- Department of Cardiac Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
34
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
35
|
Song S, Wang Y, Wang HY, Guo LL. Role of sevoflurane in myocardial ischemia-reperfusion injury via the ubiquitin-specific protease 22/lysine-specific demethylase 3A axis. Bioengineered 2022; 13:13366-13383. [PMID: 36700466 PMCID: PMC9275884 DOI: 10.1080/21655979.2022.2062535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) represents a coronary artery disease, accompanied by high morbidity and mortality. Sevoflurane post-conditioning (SPC) is importantly reported in myocardial disease. Accordingly, the current study sought to evaluate the role of Sevo in MI/RI. Firstly, MI/RI models were established and subjected to SPC. Subsequently, pathological injury in the myocardium, myocardial infarction areas, H9c2 cell viability, apoptosis, and levels of creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH) were all measured. Ubiquitin-specific peptidase (22USP22), lysine-specific demethylase 3A (KDM3A), and Yes1 associated transcriptional regulator (YAP1) were down-regulated in H9c2 cells using cell transfection to verify their roles. The interaction between USP22 and KDM3A and between KDM3A and YAP1 was further validated. USP 22, KDM3A, and YAP1 were found to be down-regulated in MI/RI and SPC protected MI/RI rats, as evidenced by up-regulated expressions of USP22, KDM3A, and YAP1, reduced pathological injury in the myocardium, myocardial infarction areas, apoptosis, and levels of CK-MB, cTnI, and LDH, and enhanced H9c2 cell viability; while the protective effects of Sevo were counteracted by silencing of USP22, KDM3A, and SPC upregulated USP22, which stabilized KDM3A protein levels via deubiquitination, and KDM3A inhibited histone 3 lysine 9 di-methylation (H3K9me2) levels in the YAP1 promoter to encourage YAP1 transcription, to reduce MI/RI.
Collapse
Affiliation(s)
- Shan Song
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yang Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hai-Yan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China,Hai-Yan Wang Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai City264000, Shandong Province, China
| | - Long-Long Guo
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China,CONTACT Long-Long Guo
| |
Collapse
|
36
|
Yan F, Chen Z, Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc Disord 2022; 22:182. [PMID: 35439934 PMCID: PMC9020036 DOI: 10.1186/s12872-022-02621-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heart disease is a major cause of mortality in developed countries. The associated pathology is mainly characterized by the loss of cardiomyocytes that contributes to heart failure (HF). This study aims to investigate the mechanism of euchromatic histone lysine methyltransferase 2 (EHMT2, also term G9a) in HF in rats. Methods Differentially expressed mRNAs in HF were screened using GEO database. Sera from subjects with or without HF were collected, and PCR was performed to detect the G9a expression. G9a was downregulated in cardiomyocytes exposed to oxygen–glucose deprivation (OGD), followed by CCK8, flow cytometry, colorimetric method, and western blot assays. Established HF rats were delivered with lentiviral vectors carrying sh-G9a, and TTC staining, HE staining, TUNEL, ELISA, and western blot were performed. The regulation of G9a on the downstream target BDNF was investigated by RT-qPCR, Western blot, and ChIP-qPCR. Finally, rescue experiments were carried out to substantiate the effect of G9a on cardiomyocyte apoptosis and injury via the BDNF/TrkB axis. Results G9a was overexpressed, whereas BDNF was downregulated in HF. Knockdown of G9a inhibited apoptosis and injury in OGD-treated cardiomyocytes and attenuated the extent of HF and myocardial injury in rats. Silencing of G9a promoted BDNF transcription by repressing H3K9me2 modification of the BDNF promoter. Further depletion of BDNF partially reversed the effect of sh-G9a in alleviating cardiomyocyte apoptosis and injury by inhibiting the TrkB signaling pathway. Conclusion G9a inhibits BDNF expression through H3K9me2 modification, thereby impairing the TrkB signaling pathway and exacerbating the development of HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02621-w.
Collapse
Affiliation(s)
- Fang Yan
- Department of Cardiac Surgery, Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China.,Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Ziying Chen
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
37
|
Braga CL, Acquarone M, Arona VDC, Osório BS, Barreto TG, Kian RM, Pereira JPAL, Silva MDMCD, Silva BA, de Oliveira GMM, Macedo Rocco PR, Silva PL, Alencar AKN. Can Epigenetics Help Solve the Puzzle Between Concomitant Cardiovascular Injury and Severity of Coronavirus Disease 2019? J Cardiovasc Pharmacol 2022; 79:431-443. [PMID: 34935698 DOI: 10.1097/fjc.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023]
Abstract
ABSTRACT The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has significant implications in patients with concomitant cardiovascular disease (CVD) because they are the population at the greatest risk of death. The treatment of such patients and complications may represent a new challenge for the fields of cardiology and pharmacology. Thus, understanding the involvement of this viral infection in CVD might help to reduce the aggressiveness of SARS-CoV-2 in causing multiorgan infection and damage. SARS-CoV-2 disturbs the host epigenome and several epigenetic processes involved in the pathophysiology of COVID-19 that can directly affect the function and structure of the cardiovascular system (CVS). Hence, it would be relevant to identify epigenetic alterations that directly impact CVS physiology after SARS-CoV-2 infection. This could contribute to the view of this virus-induced CVS injury and direct forthcoming tackles for COVID-19 treatment to reduce mortality in patients with CVD. Targeting epigenetic marks could offer strong evidence for the development of novel antiviral therapies, especially in the context of COVID-19-related CVS damage. In this review, we address some of the main signaling pathways that are currently known as being involved in COVID-19 pathophysiology and the importance of this glint on epigenetics and some of its modifiers (epidrugs) to control the unregulated epitope activity in the context of SARS-CoV-2 infection, COVID-19, and underlying CVD.
Collapse
Affiliation(s)
- Cássia L Braga
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor da C Arona
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Brenno S Osório
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Thiago G Barreto
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Ruan M Kian
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | | | - Marina de Moraes C da Silva
- Serviço de Radiologia do Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bagnólia A Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Gláucia Maria M de Oliveira
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Patricia Rieken Macedo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan K N Alencar
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Selective histone methyltransferase G9a inhibition reduces metastatic development of Ewing sarcoma through the epigenetic regulation of NEU1. Oncogene 2022; 41:2638-2650. [PMID: 35354905 PMCID: PMC9054661 DOI: 10.1038/s41388-022-02279-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Ewing sarcoma (EWS) is an aggressive bone and soft tissue tumor with high susceptibility to metastasize. The underlying molecular mechanisms leading to EWS metastases remain poorly understood. Epigenetic changes have been implicated in EWS tumor growth and progression. Linking epigenetics and metastases may provide insight into novel molecular targets in EWS and improve its treatment. Here, we evaluated the effects of a selective G9a histone methyltransferase inhibitor (BIX01294) on EWS metastatic process. Our results showed that overexpression of G9a in tumors from EWS patients correlates with poor prognosis. Moreover, we observe a significantly higher expression of G9a in metastatic EWS tumor as compared to either primary or recurrent tumor. Using functional assays, we demonstrate that pharmacological G9a inhibition using BIX01294 disrupts several metastatic steps in vitro, such as migration, invasion, adhesion, colony formation and vasculogenic mimicry. Moreover, BIX01294 reduces tumor growth and metastases in two spontaneous metastases mouse models. We further identified the sialidase NEU1 as a direct target and effector of G9a in the metastatic process in EWS. NEU1 overexpression impairs migration, invasion and clonogenic capacity of EWS cell lines. Overall, G9a inhibition impairs metastases in vitro and in vivo through the overexpression of NEU1. G9a has strong potential as a prognostic marker and may be a promising therapeutic target for EWS patients.
Collapse
|
39
|
The histone demthylase KDM3A protects the myocardium from ischemia/reperfusion injury via promotion of ETS1 expression. Commun Biol 2022; 5:270. [PMID: 35338235 PMCID: PMC8956629 DOI: 10.1038/s42003-022-03225-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Our prior studies have characterized the participation of histone demethylase KDM3A in diabetic vascular remodeling, while its roles in myocardial ischemia/reperfusion (I/R) injury (MIRI) remain to be illustrated. Here we show that KDM3A was significantly downregulated in rat I/R and cellular hypoxia/reoxygenation (H/R) models. Subsequently, gain- and loss-of-function experiments were performed to investigate the effects of KDM3A in the settings of MIRI. KDM3A knockout exacerbated cardiac dysfunction and cardiomyocytes injury both in vivo and in vitro. The deteriorated mitochondrial apoptosis, reactive oxygen species, and inflammation were simultaneously observed. Conversely, KDM3A overexpression developed the ameliorated alternations in MIRI. Mechanistically, the MIRI-alleviating effects of KDM3A were associated with the enhancement of ETS1 expression. ChIP-PCR affirmed that KDM3A bound to the ETS1 promoter and removed dimethylation of histone H3 lysine 9 (H3K9me2), thus promoting ETS1 transcription. Our findings suggest that KDM3A is available for alleviating multi-etiologies of MIRI through the regulation of ETS1. Prevention of cardiac injury requires a deeper mechanistic understanding of ischemia/reperfusion (I/R) episodes. Here, the authors find that the epigenetic modifier KDM3A plays a crucial role in myocardial I/R injury through its activation of the gene ETS1 and suggest boosting KDM3A expression could be a potential treatment strategy.
Collapse
|
40
|
Le T, He X, Huang J, Liu S, Bai Y, Wu K. Knockdown of long noncoding RNA GAS5 reduces vascular smooth muscle cell apoptosis by inactivating EZH2-mediated RIG-I signaling pathway in abdominal aortic aneurysm. J Transl Med 2021; 19:466. [PMID: 34781960 PMCID: PMC8594130 DOI: 10.1186/s12967-021-03023-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA), an irreversible cardiovascular disease prevalent in the artery, causes the increase of the aneurysm diameter over time, and is a fatal phenomenon inducing sidewall rupture. Long noncoding RNAs (lncRNAs) serve as promising biomarkers for AAA. In the present study, we sought to define the role of lncRNA growth-arrest-specific transcript 5 (GAS5) in growth of smooth muscle cells (SMC) and progression of AAA. Methods Initially, we established angiotensin II (Ang II)-induced AAA mouse models and Ang II-treated vascular SMC model. RT-qPCR and Western blot analysis were adopted to determine expression of GAS5 and zeste homolog 2 (EZH2). After ectopic expression and depletion experiments in Ang II-treated mice and vascular SMCs, cell apoptosis was detected in SMCs using flow cytometry and in mice using TUNEL staining. The binding of GAS5 and EZH2 was evaluated using RNA binding protein immunoprecipitation (RIP) and Co-IP assays. Results Increased GAS5 and RIG-I but decreased EZH2 were found in aortic tissues of AAA mice. EZH2 overexpression inhibited AAA formation and suppressed SMC apoptosis. Functionally, EZH2 blocked the RIG-I signaling pathway and consequently inhibited SMC apoptosis. GAS5 regulated EZH2 transcription in a negative manner in SMCs. Knockdown of GAS5 attenuated SMC apoptosis, which was reversed by EZH2 inhibition or RIG-I overexpression. Conclusions The current study demonstrated that GAS5 induced SMC apoptosis and subsequent AAA onset by activating EZH2-mediated RIG-I signaling pathway, highlighting GAS5 as a novel biomarker for AAA. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03023-w.
Collapse
Affiliation(s)
- Tianming Le
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jianhua Huang
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shuai Liu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Yang Bai
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Kemin Wu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
41
|
Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis 2021; 10:76. [PMID: 34775469 PMCID: PMC8590690 DOI: 10.1038/s41389-021-00370-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a’s catalytic activity was reported as a promising therapeutic target in multiple preclinical studies. Yet, none of the available pharmacological inhibitors of G9a activity have shown success at the early stages of clinical testing. Here, we discuss central findings of oncogenic expression and activation of G9a in CSCs from different origins, as well as the impact of the suppression of G9a histone methyltransferase activity in such contexts. We will explore the challenges posed by direct and systemic inhibition of G9a activity in the perspective of clinical translation of documented small molecules. Finally, we will discuss recent advances in drug discovery as viable strategies to develop context-specific drugs, selectively targeting G9a in CSC populations.
Collapse
|
42
|
CircNCX1: the "Lord of the Ring" in the Heart - Insight into Its Sequence Characteristic, Expression, Molecular Mechanisms, and Clinical Application. J Cardiovasc Transl Res 2021; 15:571-586. [PMID: 34642871 DOI: 10.1007/s12265-021-10176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs with regulatory activity and regarded as new types of therapeutic targets in diseases such as cancers. By means of RNA-Seq technology, numerous cardiac circRNAs were discovered. Although some candidates were detected to involve in heart disease in murine model, relative low sequence conservation and expression level of their human homologs might result in an insignificant, even distinct effect in the human heart. Therefore, the therapeutic significance of circRNAs should be more strictly considered. It is also necessary to discuss which circRNA is suitable for being applied in heart disease treatment. Here, we are willing to introduce a ~ 1830 nt circular transcript generated from single exon of sodium/calcium exchanger 1 (ncx1) gene (also called solute carrier family 8 member A1, slc8a1), usually named circNCX1 or circSLC8A1, which is gradually coming into our view. circNCX1 is one of the most cardiac-enriched circRNAs. It is widely existent in vertebrate and relatively conserved, indicating its indispensability during the evolution of species. Indeed, circNCX1 was shown to involve in heart development by some expression analysis. It was further revealed that the dysregulation of circNCX1 is one of the key pathogeneses of heart diseases including ischemic cardiac injury and hypertrophic cardiomyopathy. To make the significance of circNCX1 in the heart clear, we comprehensively dissected circNCX1 in the aspects of its parental gene structure, conservation, biogenesis and expression profiles, function, molecular mechanisms, and clinical application in this review. New medicine or therapeutic schedules based on circNCX1 are expected in the future.
Collapse
|
43
|
Gharipour M, Mani A, Amini Baghbahadorani M, de Souza Cardoso CK, Jahanfar S, Sarrafzadegan N, de Oliveira C, Silveira EA. How Are Epigenetic Modifications Related to Cardiovascular Disease in Older Adults? Int J Mol Sci 2021; 22:9949. [PMID: 34576113 PMCID: PMC8470616 DOI: 10.3390/ijms22189949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
The rate of aging has increased globally during recent decades and has led to a rising burden of age-related diseases such as cardiovascular disease (CVD). At the molecular level, epigenetic modifications have been shown recently to alter gene expression during the life course and impair cellular function. In this regard, several CVD risk factors, such as lifestyle and environmental factors, have emerged as key factors in epigenetic modifications within the cardiovascular system. In this study, we attempted to summarized recent evidence related to epigenetic modification, inflammation response, and CVD in older adults as well as the effect of lifestyle modification as a preventive strategy in this age group. Recent evidence showed that lifestyle and environmental factors may affect epigenetic mechanisms, such as DNA methylation, histone acetylation, and miRNA expression. Several substances or nutrients such as selenium, magnesium, curcumin, and caffeine (present in coffee and some teas) could regulate epigenetics. Similarly, physical inactivity, alcohol consumption, air pollutants, psychological stress, and shift working are well-known modifiers of epigenetic patterns. Understanding the exact ways that lifestyle and environmental factors could affect the expression of genes could help to influence the time of incidence and severity of aging-associated diseases. This review highlighted that a healthy lifestyle throughout the life course, such as a healthy diet rich in fibers, vitamins, and essential elements, and specific fatty acids, adequate physical activity and sleep, smoking cessation, and stress control, could be useful tools in preventing epigenetic changes that lead to impaired cardiovascular function.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Mona Amini Baghbahadorani
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Camila Kellen de Souza Cardoso
- School of Social Sciences and Health, Nutrition Course, Pontifical Catholic University of Goias, Goiânia 74605-010, Brazil;
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MI 02111, USA;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
- Faculty of Medicine, School of Population and Public Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| |
Collapse
|
44
|
Yang Y, Luan Y, Yuan RX, Luan Y. Histone Methylation Related Therapeutic Challenge in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:710053. [PMID: 34568453 PMCID: PMC8458636 DOI: 10.3389/fcvm.2021.710053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The epidemic of cardiovascular diseases (CVDs) is predicted to spread rapidly in advanced countries accompanied by the high prevalence of risk factors. In terms of pathogenesis, the pathophysiology of CVDs is featured by multiple disorders, including vascular inflammation accompanied by simultaneously perturbed pathways, such as cell death and acute/chronic inflammatory reactions. Epigenetic alteration is involved in the regulation of genome stabilization and cellular homeostasis. The association between CVD progression and histone modifications is widely known. Among the histone modifications, histone methylation is a reversible process involved in the development and homeostasis of the cardiovascular system. Abnormal methylation can promote CVD progression. This review discusses histone methylation and the enzymes involved in the cardiovascular system and determine the effects of histone methyltransferases and demethylases on the pathogenesis of CVDs. We will further demonstrate key proteins mediated by histone methylation in blood vessels and review histone methylation-mediated cardiomyocytes and cellular functions and pathways in CVDs. Finally, we will summarize the role of inhibitors of histone methylation and demethylation in CVDs and analyze their therapeutic potential, based on previous studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Pagiatakis C, Di Mauro V. The Emerging Role of Epigenetics in Therapeutic Targeting of Cardiomyopathies. Int J Mol Sci 2021; 22:ijms22168721. [PMID: 34445422 PMCID: PMC8395924 DOI: 10.3390/ijms22168721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies (CMPs) are a heterogeneous group of myocardial diseases accountable for the majority of cases of heart failure (HF) and/or sudden cardiac death (SCD) worldwide. With the recent advances in genomics, the original classification of CMPs on the basis of morphological and functional criteria (dilated (DCM), hypertrophic (HCM), restrictive (RCM), and arrhythmogenic ventricular cardiomyopathy (AVC)) was further refined into genetic (inherited or familial) and acquired (non-inherited or secondary) forms. Despite substantial progress in the identification of novel CMP-associated genetic variations, as well as improved clinical recognition diagnoses, the functional consequences of these mutations and the exact details of the signaling pathways leading to hypertrophy, dilation, and/or contractile impairment remain elusive. To date, global research has mainly focused on the genetic factors underlying CMP pathogenesis. However, growing evidence shows that alterations in molecular mediators associated with the diagnosis of CMPs are not always correlated with genetic mutations, suggesting that additional mechanisms, such as epigenetics, may play a role in the onset or progression of CMPs. This review summarizes published findings of inherited CMPs with a specific focus on the potential role of epigenetic mechanisms in regulating these cardiac disorders.
Collapse
Affiliation(s)
- Christina Pagiatakis
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence: (C.P.); (V.D.M.)
| | - Vittoria Di Mauro
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Via Fantoli 16/15, 20138 Milan, Italy
- Correspondence: (C.P.); (V.D.M.)
| |
Collapse
|
46
|
Deficiency of CXXC finger protein 1 leads to small changes in heart rate but moderate epigenetic alterations and significant protein downregulation of hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) ion channels in mice. Heart Rhythm 2021; 18:1780-1789. [PMID: 34182171 DOI: 10.1016/j.hrthm.2021.06.1190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The normal cardiac rhythm is generated in the sinoatrial node (SAN). Changes in ionic currents of the SAN may cause sinus arrhythmia. CXXC finger protein 1 (Cfp1) is an epigenetic regulator that is involved in transcriptional regulation of multiple genes. OBJECTIVE The purpose of this study was to explore whether Cfp1 controls SAN function through regulation of ion channel-related genes. METHODS Electrophysiological study, patch clamp recording, reverse transcriptase polymerase chain reaction, optical mapping, chromatin immunoprecipitation, and immunofluorescence staining were performed to evaluate the function of SAN and underlying mechanism on Cfp1 heterozygous knockout (Cfp1+/-) mice. RESULTS Heart rate was slower slightly and SAN recovery time was longer in Cfp1+/- mice than controls. Whole-cell patch-clamp recording showed that the firing rate of action potentials was reduced in Cfp1+/- mice. The density of If current was reduced by 66% in SAN cells of Cfp1+/- mice but the densities of ICa, ICa-L, and ICa-T were not changed. The hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) mRNA level in SAN tissue of Cfp1+/- mice was reduced. The HCN4 protein was significantly decreased in SAN cells and tissues after heterozygous deletion of Cfp1. Chromatin immunoprecipitation assay on cultured HL-1 cells demonstrated that Cfp1 was enriched in the promoter regions of HCN4. Knockdown of Cfp1 reduced H3K4 trimethylation, H3K9 acetylation, and H3K27 acetylation of HCN4 promoter region. CONCLUSION Deficiency of Cfp1 leads to small changes in heart rate by moderate epigenetic modification alterations and significant protein downregulation of HCN4 ion channels in mice.
Collapse
|
47
|
Qin J, Guo N, Tong J, Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J Mol Cell Cardiol 2021; 159:120-129. [PMID: 34175302 DOI: 10.1016/j.yjmcc.2021.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy is an adaptive response of the heart to increased workload induced by various physiological or pathological stimuli. It is a common pathological process in multiple cardiovascular diseases, and it ultimately leads to heart failure. The development of cardiac hypertrophy is accompanied by gene expression reprogramming, a process that is largely dependent on epigenetic regulation. Histone modifications such as methylation and acetylation are dynamically regulated under cardiac stress. These consequently contribute to the pathogenesis of cardiac hypertrophy via compensatory or maladaptive transcriptome reprogramming. Histone methylation and acetylation modifiers play crucial roles in epigenetic remodeling during the pathogenesis of cardiac hypertrophy. Regulation of histone methylation and acetylation modifiers serves as a bridge between signal transduction and downstream gene reprogramming. Exploring the role of histone modifiers in cardiac hypertrophy provides novel therapeutic strategies to treat cardiac hypertrophy and heart failure. In this review, we summarize the recent advancements in functional histone methylation and acetylation modifiers in cardiac hypertrophy, with an emphasis on the underlying mechanisms and the therapeutic potential.
Collapse
Affiliation(s)
- Jian Qin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
48
|
EZH2 as an epigenetic regulator of cardiovascular development and diseases. J Cardiovasc Pharmacol 2021; 78:192-201. [PMID: 34029268 DOI: 10.1097/fjc.0000000000001062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Enhancer of zeste homolog 2(EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and is responsible for catalyzing mono-, di-, and trimethylation of histone H3 at lysine-27(H3K27me1/2/3). Many noncoding RNAs or signaling pathways are involved in EZH2 functional alterations. This new epigenetic regulation of target genes is able to silence downstream gene expression and modify physiological and pathological processes in heart development, cardiomyocyte regeneration and cardiovascular diseases such as hypertrophy, ischemic heart diseases, atherosclerosis and cardiac fibrosis. Targeting the function of EZH2 could be a potential therapeutic approach for cardiovascular diseases.
Collapse
|
49
|
Pagiatakis C, Musolino E, Gornati R, Bernardini G, Papait R. Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res 2021; 33:737-745. [PMID: 31811572 PMCID: PMC8084772 DOI: 10.1007/s40520-019-01430-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Aging is an important risk factor for several human diseases such as cancer, cardiovascular disease and neurodegenerative disorders, resulting from a combination of genetic and environmental factors (e.g., diet, smoking, obesity and stress), which, at molecular level, cause changes in gene expression underlying the decline of physiological function. Epigenetics, which include mechanisms regulating gene expression independently of changes to DNA sequence, regulate gene expression by modulating the structure of chromatin or by regulating the binding of transcriptional machinery to DNA. Several studies showed that an impairment of epigenetic mechanisms promotes alteration of gene expression underlying several aging-related diseases. Alteration of these mechanisms is also linked with changes of gene expression that occurs during aging processes of different tissues. In this review, we will outline the potential role of epigenetics in the onset of two age-related pathologies, cancer and cardiovascular diseases.
Collapse
|
50
|
Hall AW, Chaffin M, Roselli C, Lin H, Lubitz SA, Bianchi V, Geeven G, Bedi K, Margulies KB, de Laat W, Tucker NR, Ellinor PT. Epigenetic Analyses of Human Left Atrial Tissue Identifies Gene Networks Underlying Atrial Fibrillation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e003085. [PMID: 33155827 PMCID: PMC8240092 DOI: 10.1161/circgen.120.003085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) often arises from structural abnormalities in the left atria (LA). Annotation of the noncoding genome in human LA is limited, as are effects on gene expression and chromatin architecture. Many AF-associated genetic variants reside in noncoding regions; this knowledge gap impairs efforts to understand the molecular mechanisms of AF and cardiac conduction phenotypes. METHODS We generated a model of the LA noncoding genome by profiling 7 histone post-translational modifications (active: H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K36me3; repressive: H3K27me3, H3K9me3), CTCF binding, and gene expression in samples from 5 individuals without structural heart disease or AF. We used MACS2 to identify peak regions (P<0.01), applied a Markov model to classify regulatory elements, and annotated this model with matched gene expression data. We intersected chromatin states with expression quantitative trait locus, DNA methylation, and HiC chromatin interaction data from LA and left ventricle. Finally, we integrated genome-wide association data for AF and electrocardiographic traits to link disease-related variants to genes. RESULTS Our model identified 21 epigenetic states, encompassing regulatory motifs, such as promoters, enhancers, and repressed regions. Genes were regulated by proximal chromatin states; repressive states were associated with a significant reduction in gene expression (P<2×10-16). Chromatin states were differentially methylated, promoters were less methylated than repressed regions (P<2×10-16). We identified over 15 000 LA-specific enhancers, defined by homeobox family motifs, and annotated several cardiovascular disease susceptibility loci. Intersecting AF and PR genome-wide association studies loci with long-range chromatin conformation data identified a gene interaction network dominated by NKX2-5, TBX3, ZFHX3, and SYNPO2L. CONCLUSIONS Profiling the noncoding genome provides new insights into the gene expression and chromatin regulation in human LA tissue. These findings enabled identification of a gene network underlying AF; our experimental and analytic approach can be extended to identify molecular mechanisms for other cardiac diseases and traits.
Collapse
Affiliation(s)
- Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Honghuang Lin
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Steven A. Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geert Geeven
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kenneth Bedi
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
- Masonic Medical Research Institute, Utica, NY
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| |
Collapse
|