1
|
Dutton LC, Crosland A, Dukes-McEwan J, Connolly DJ. Association of the TTN, PDK4, and RNF207 mutations with dilated cardiomyopathy in Dobermanns from the United Kingdom. PLoS One 2025; 20:e0319932. [PMID: 40080479 PMCID: PMC11906055 DOI: 10.1371/journal.pone.0319932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025] Open
Abstract
A missense mutation in the titin gene (TTN) and a splice-site mutation in the pyruvate dehydrogenase kinase 4 gene (PDK4) have been associated with dilated cardiomyopathy (DCM) in Dobermanns from the United States. Additionally, a missense mutation in the gene RNF207 has been reported in association with DCM from a European Dobermann cohort. Based on this we examined the association of these variants with DCM in United Kingdom (UK) Dobermanns. We hypothesized that the TTN and PDK4 gene variants would not be associated with DCM in UK Dobermanns and that there would be an association between the RNF207 mutation and DCM. We included 74 client owned dogs (30 control dogs and 44 dogs with DCM) in the study. Allele frequencies for each variant were calculated. Chi-square testing was used to assess for differences in allele frequencies and genotype proportions between groups. Overall allele frequency in this cohort was 35% for the TTN variant, 18% for the PDK4 variant, and 37% for the RNF207 variant. There was no difference in allele or genotype frequencies between control and DCM dogs for TTN or PDK4 (p = 0.79 for both allele frequencies, p = 0.91 for TTN and p = 0.78 for PDK4 genotype frequencies). There was a significant difference in the allele frequencies of the RNF207 variant between DCM cases and controls (OR 2.4 (95% CI 1.07 - 5.15), p = 0.03) and genotype frequencies for RNF207, with a homozygous genotype found almost exclusively in DCM dogs (p = 0.034). We conclude that the previously reported RNF207 variant appears associated with DCM in UK Dobermanns, but there was no association with the previously reported TTN or PDK4 mutations. This is important when considering selective breeding in different populations of Dobermanns. However, the small sample size may impact the generalizability of the results.
Collapse
Affiliation(s)
- Luke C. Dutton
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| | - Andrew Crosland
- Department of Small Animal Clinical Science, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Joanna Dukes-McEwan
- Department of Small Animal Clinical Science, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - David J. Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, London, United Kingdom
| |
Collapse
|
2
|
Wang D, Lin M, Wang R, Huang X, Liang Y, Wang X, Chen Y, Gao Y, Guo H, Liang H, Li X. Single-Cell Transcriptomic Reveals the Involvement of Cell-Cell Junctions in the Early Development of Hypertrophic Cardiomyopathy. J Cell Mol Med 2025; 29:e70366. [PMID: 39900554 PMCID: PMC11790354 DOI: 10.1111/jcmm.70366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025] Open
Abstract
The relationship between the changes in endothelial cell-cell junctions and microvascular abnormalities in the progression of hypertrophic cardiomyopathy (HCM), as well as their potential as early biomarkers, remains unclear. Here, we analysed single-nucleus RNA-sequencing data from the left ventricles of 44 health donors and HCM patients. First, we observed that endothelial cell-cell junctions were significantly altered in HCM vascular endothelial cells (ECs), including tight junctions, gap junctions and adherens junctions, especially in capillary ECs. The proposed pseudo-timing analysis predicted that endothelial cell-cell junctions abnormalities occurred in the early stages of HCM. Second, we verified that endothelial cell-cell junctions disorders occur at early stages of HCM disease progression in two time-series single-nucleus datasets of mice. The expression of eight cell-cell junction genes showed an initial increase in the early stage, followed by a slight decrease in the middle stage, and a sharp increase in the later stage. Subsequently, cell communication and transcription factor analysis were used to explore the underlying mechanisms. Furthermore, an early HCM prediction model was developed and independently validated using three mRNA datasets comprising 204 health individuals and HCM patients for the eight genes panel, the accuracy was 0.81 [0.63-0.98]. Finally, we validated this panel in HCM tissues. This study demonstrated in humans and mice that eight cell-cell junction genes were significantly elevated in the early stages of HCM and may be potential biomarkers for the early diagnosis of HCM.
Collapse
Affiliation(s)
- Dingchen Wang
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong ProvinceChina
- Department of Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Miao Lin
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdong ProvinceChina
- Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouGuangdong ProvinceChina
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and ApplicationGuangzhouGuangdong ProvinceChina
| | - Ruobing Wang
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdong ProvinceChina
| | - Xiaoran Huang
- Department of Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Yaowen Liang
- Department of Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouGuangdong ProvinceChina
- Shantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Xiran Wang
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdong ProvinceChina
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and ApplicationGuangzhouGuangdong ProvinceChina
| | - Yuge Chen
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yunfei Gao
- Zhuhai Precision Medical CenterZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan UniversityZhuhaiGuangdong ProvinceChina
- The Biomedical Translational Research InstituteJinan University Faculty of Medical Science, Jinan UniversityGuangzhouGuangdong ProvinceChina
| | - Huiming Guo
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdong ProvinceChina
| | - Huiying Liang
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdong ProvinceChina
- Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouGuangdong ProvinceChina
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and ApplicationGuangzhouGuangdong ProvinceChina
| | - Xin Li
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong ProvinceChina
- Department of Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
3
|
Hilal N, An Z, Prondzynski M, Matsui E, Sahu D, Mao S, Jung YL, Yang Y, Epstein S, Chen MH, Pu W, Monte FD, Huang AY, Choudhury S. Somatic Genomic and Transcriptomic Changes in Single Ischemic Human Heart Cardiomyocytes. RESEARCH SQUARE 2025:rs.3.rs-5875531. [PMID: 39975917 PMCID: PMC11838741 DOI: 10.21203/rs.3.rs-5875531/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Heart failure is a multifaceted syndrome contributing significantly to mortality and hospitalization rates among the global population1. One of the prevalent causes of heart failure is ischemic heart disease (IHD), often caused by a blockage in a coronary artery, ultimately leading to the loss of myocardial tissue and contractile force2. The impact of this ischemic ambiance on the cardiomyocyte genome and transcriptome has not been thoroughly studied. During normal aging, cardiomyocytes progressively accumulate somatic mutations faster than many dividing cells, suggesting that internal and external factors specific to cardiomyocytes might influence this accumulation3. In this study, we analyzed single-cell whole-genome and transcriptome data from the left ventricle of 5 individuals with IHD and 10 healthy control individuals. We found that somatic DNA alterations significantly increase in IHD cardiomyocytes, with distinct mutational patterns indicating a disrupted DNA repair system and a cytotoxic environment, potentially associated with increased inflammatory response in the myocardium and a compensatory anti-inflammatory response in IHD. An in vitro iPS-derived hypoxic cardiomyocyte mutational profile indicates similar mutational spectra. Transcriptomic analysis revealed increased expression of EGR1, FOS, and collagen genes in ischemic heart cardiomyocytes, leading to a more fibrotic heart. The aberrant accumulation of DNA alterations and changes in transcriptional patterns in the ischemic heart cardiomyocytes provide insight into the development of IHD.
Collapse
Affiliation(s)
- Nazia Hilal
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zheming An
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maksymilian Prondzynski
- Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Erica Matsui
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Debesh Sahu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Shulin Mao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Youngsook Lucy Jung
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yingxi Yang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Epstein
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ming-Hui Chen
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - William Pu
- Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | | | - August Yue Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangita Choudhury
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
Liao Y, Li R, Zhang H, Li Q, Xu X, Meng F, Sun Y. CircSugp1 interacts with CPSF6 to modulate intestinal mucosa repair by regulating alternative polyadenylation-mediated shortening of the Wdr89 3'UTR. Int Immunopharmacol 2025; 145:113793. [PMID: 39662264 DOI: 10.1016/j.intimp.2024.113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circular RNAs are a single-stranded non-coding RNAs and play an important role in the development of many diseases. Alternative polyadenylation (APA) regulates the gene 3'UTR length for controlling gene expressions. Although the APA mechanism has been widely studied in the development of diseases, there is no data on its role in the burned intestinal mucosa. We thus herein assessed the role of the circSugp1-initiating APA mechanism in the burned intestinal mucosa. CircSugp1 was downregulated in the intestinal mucosa of burned mice. CircSugp1 promoted proliferation and migration in vitro and in vivo. CircSugp1 promotes the expression of CPSF6; the overexpression of CPSF6 can shorten the gene 3'UTR within the transcript APA range. The promoting effect of circSugp1 on value-added migration was mediated by the APA regulation of the Wdr89 short 3'UTR isoform. CircSugp1 targeted the upregulation of the expression of CPSF6, followed by upregulation of the expression of Wdr89 through APA, promoting the repair of intestinal mucosal damage in burned mice.
Collapse
Affiliation(s)
- Yu Liao
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China; Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Ran Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China; Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Hao Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China; Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Qi Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China; Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoqing Xu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China; Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Fanze Meng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China; Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China; Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
5
|
Chi J, Wu N, Li P, Hu J, Cai H, Lin C, Lai Y, Yang H, Huang J, Li M, Xu L. Hygrothermal stress increases malignant arrhythmias susceptibility by inhibiting the LKB1-AMPK-Cx43 pathway. Sci Rep 2024; 14:5010. [PMID: 38424223 PMCID: PMC10904738 DOI: 10.1038/s41598-024-55804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
High mortality due to hygrothermal stress during heat waves is mostly linked to cardiovascular malfunction, the most serious of which are malignant arrhythmias. However, the mechanism associated with hygrothermal stress leading to malignant arrhythmias remains unclear. The energy metabolism regulated by liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and the electrical signaling based on gap junction protein, connexin43 (Cx43), plays important roles in the development of cardiac arrhythmias. In order to investigate whether hygrothermal stress induces arrhythmias via the LKB1-AMPK-Cx43 pathway, Sprague-Dawley rats were exposed to high temperature and humidity for constructing the hygrothermal stress model. A final choice of 40 °C and 85% humidity was made by pre-exploration based on different gradient environmental conditions with reference to arrhythmia event-inducing stability and risk of sudden death. Then, the incidence of arrhythmic events, as well as the expression, phosphorylation at Ser368, and distribution of Cx43 in the myocardium, were examined. Meanwhile, the adenosine monophosphate-activated protein kinase activator, Acadesine, was also administered to investigate the role played by AMPK in the process. Our results showed that hygrothermal stress induced malignant arrhythmias such as ventricular tachycardia, ventricular fibrillation, and severe atrioventricular block. Besides, hygrothermal stress decreased the phosphorylation of Cx43 at Ser368, induced proarrhythmic redistribution of Cx43 from polar to lateral sides of the cardiomyocytes, and also caused LKB1 and phosphorylated-AMPK expression to be less abundant. While, pretreatment with Acadesine significantly actived the LKB1-AMPK-Cx43 pathway and thus ameliorated malignant arrhythmias, indicating that the hygrothermal stress-induced arrhythmias is associated with the redistribution of gap junctions in cardiomyocytes and the organism's energy metabolism.
Collapse
Affiliation(s)
- Jianing Chi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
| | - Ningxia Wu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jiaman Hu
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cai
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cailong Lin
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Lai
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Lin Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China.
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China.
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China.
| |
Collapse
|
6
|
Niskanen JE, Ohlsson Å, Ljungvall I, Drögemüller M, Ernst RF, Dooijes D, van Deutekom HWM, van Tintelen JP, Snijders Blok CJB, van Vugt M, van Setten J, Asselbergs FW, Petrič AD, Salonen M, Hundi S, Hörtenhuber M, Kere J, Pyle WG, Donner J, Postma AV, Leeb T, Andersson G, Hytönen MK, Häggström J, Wiberg M, Friederich J, Eberhard J, Harakalova M, van Steenbeek FG, Wess G, Lohi H. Identification of novel genetic risk factors of dilated cardiomyopathy: from canine to human. Genome Med 2023; 15:73. [PMID: 37723491 PMCID: PMC10506233 DOI: 10.1186/s13073-023-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a life-threatening heart disease and a common cause of heart failure due to systolic dysfunction and subsequent left or biventricular dilatation. A significant number of cases have a genetic etiology; however, as a complex disease, the exact genetic risk factors are largely unknown, and many patients remain without a molecular diagnosis. METHODS We performed GWAS followed by whole-genome, transcriptome, and immunohistochemical analyses in a spontaneously occurring canine model of DCM. Canine gene discovery was followed up in three human DCM cohorts. RESULTS Our results revealed two independent additive loci associated with the typical DCM phenotype comprising left ventricular systolic dysfunction and dilatation. We highlight two novel candidate genes, RNF207 and PRKAA2, known for their involvement in cardiac action potentials, energy homeostasis, and morphology. We further illustrate the distinct genetic etiologies underlying the typical DCM phenotype and ventricular premature contractions. Finally, we followed up on the canine discoveries in human DCM patients and discovered candidate variants in our two novel genes. CONCLUSIONS Collectively, our study yields insight into the molecular pathophysiology of DCM and provides a large animal model for preclinical studies.
Collapse
Affiliation(s)
- Julia E Niskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Robert F Ernst
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hanneke W M van Deutekom
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christian J B Snijders Blok
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marion van Vugt
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | | | - Milla Salonen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Matthias Hörtenhuber
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juha Kere
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Programs Unit, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - W Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Dalhousie Medicine, Saint John, NB, Canada
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Alex V Postma
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Wiberg
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Friederich
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Jenny Eberhard
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, The Netherlands
| | - Gerhard Wess
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
7
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
8
|
Corbett CB, St Paul A, Leigh T, Kelemen SE, Peluzzo AM, Okune RN, Eguchi S, Haines DS, Autieri MV. Genetic Deletion of FXR1 Reduces Intimal Hyperplasia and Induces Senescence in Vascular Smooth Muscle Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:638-653. [PMID: 37080662 PMCID: PMC10155270 DOI: 10.1016/j.ajpath.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 04/22/2023]
Abstract
Vascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown. In the current study, RNA-sequencing of FXR1-depleted VSMC identified many transcripts with decreased abundance, most of which were associated with proliferation and cell division. mRNA abundance and stability of a number of these transcripts were decreased in FXR1-depleted hVSMC, as was proliferation (P < 0.05); however, increases in beta-galactosidase (P < 0.05) and γH2AX (P < 0.01), indicative of senescence, were noted. Further analysis showed increased abundance of senescence-associated genes with FXR1 depletion. A novel SMC-specific conditional knockout mouse (FXR1SMC/SMC) was developed for further analysis. In a carotid artery ligation model of intimal hyperplasia, FXR1SMC/SMC mice had significantly reduced neointima formation (P < 0.001) after ligation, as well as increases in senescence drivers p16, p21, and p53 compared with several controls. These results suggest that in addition to destabilization of inflammatory transcripts, FXR1 stabilized cell cycle-related genes in VSMC, and absence of FXR1 led to induction of a senescent phenotype, supporting the hypothesis that FXR1 may mediate vascular disease by regulating stability of proliferative mRNA in VSMC.
Collapse
Affiliation(s)
- Cali B Corbett
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda St Paul
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tani Leigh
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Sheri E Kelemen
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda M Peluzzo
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rachael N Okune
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dale S Haines
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Khamoui AV, Tokmina-Roszyk D, Feresin RG, Fields GB, Visavadiya NP. Skeletal muscle proteome expression differentiates severity of cancer cachexia in mice and identifies loss of fragile X mental retardation syndrome-related protein 1. Proteomics 2022; 22:e2100157. [PMID: 35289490 DOI: 10.1002/pmic.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022]
Abstract
TMT-based quantitative proteomics was used to examine protein expression in skeletal muscle from mice with moderate and severe cancer cachexia to study mechanisms underlying varied cachexia severity. Weight loss of 10% (moderate) and 20% (severe) was induced by injection of colon-26 cancer cells in 10-week old Balb/c mice. In moderate cachexia, enriched pathways reflected fibrin formation, integrin/MAPK signaling, and innate immune system, suggesting an acute phase response and fibrosis. These pathways remained enriched in severe cachexia, however, energy-yielding pathways housed in mitochondria were prominent additions to the severe state. These enrichments suggest distinct muscle proteome expression patterns that differentiate cachexia severity. When analyzed with two other mouse models, eight differentially expressed targets were shared including Serpina3n, Sypl2, Idh3a, Acox1, Col6a1, Myoz3, Ugp2, and Slc41a3. Acox1 and Idh3a control lipid oxidation and NADH generation in the TCA cycle, respectively, and Col6a1 comprises part of type VI collagen with reported profibrotic functions, suggesting influential roles in cachexia. A potential target was identified in FXR1, an RNA-binding protein not previously implicated in cancer cachexia. FXR1 decreased in cachexia and related linearly with weight change and myofiber size. These findings suggest distinct mechanisms associated with cachexia severity and potential biomarkers and therapeutic targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.,Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gregg B Fields
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
11
|
Zhu H, Zhang Y, Zhang C, Xie Z. RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Front Cardiovasc Med 2022; 8:773573. [PMID: 35004889 PMCID: PMC8733325 DOI: 10.3389/fcvm.2021.773573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Pathological tissue remodeling such as fibrosis is developed in various cardiac diseases. As one of cardiac activated-myofibroblast protein markers, CKAP4 may be involved in this process and the mechanisms have not been explored. Methods: We assumed that CKAP4 held a role in the regulation of cardiac fibrotic remodeling as an RNA-binding protein. Using improved RNA immunoprecipitation and sequencing (iRIP-seq), we sought to analyze the RNAs bound by CKAP4 in normal atrial muscle (IP1 group) and remodeling fibrotic atrial muscle (IP2 group) from patients with cardiac valvular disease. Quantitative PCR and Western blotting were applied to identify CKAP4 mRNA and protein expression levels in human right atrium samples. Results: iRIP-seq was successfully performed, CKAP4-bound RNAs were characterized. By statistically analyzing the distribution of binding peaks in various regions on the reference human genome, we found that the reads of IP samples were mainly distributed in the intergenic and intron regions implying that CKAP4 is more inclined to combine non-coding RNAs. There were 913 overlapping binding peaks between the IP1 and IP2 groups. The top five binding motifs were obtained by HOMER, in which GGGAU was the binding sequence that appeared simultaneously in both IP groups. Binding peak-related gene cluster enrichment analysis demonstrated these genes were mainly involved in biological processes such as signal transduction, protein phosphorylation, axonal guidance, and cell connection. The signal pathways ranking most varied in the IP2 group compared to the IP1 group were relating to mitotic cell cycle, protein ubiquitination and nerve growth factor receptors. More impressively, peak analysis revealed the lncRNA-binding features of CKAP4 in both IP groups. Furthermore, qPCR verified CKAP4 differentially bound lncRNAs including LINC00504, FLJ22447, RP11-326N17.2, and HELLPAR in remodeling myocardial tissues when compared with normal myocardial tissues. Finally, the expression of CKAP4 is down-regulated in human remodeling fibrotic atrium. Conclusions: We reveal certain RNA-binding features of CKAP4 suggesting a relevant role as an unconventional RNA-binding protein in cardiac remodeling process. Deeper structural and functional analysis will be helpful to enrich the regulatory network of cardiac remodeling and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanfeng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongshang Xie
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Beckmann A, Recktenwald J, Ferdinand A, Grißmer A, Meier C. First Responders to Hyperosmotic Stress in Murine Astrocytes: Connexin 43 Gap Junctions Are Subject to an Immediate Ultrastructural Reorganization. BIOLOGY 2021; 10:biology10121307. [PMID: 34943223 PMCID: PMC8698406 DOI: 10.3390/biology10121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Gap junctions are intercellular channels that provide the means for direct transport of small molecules, ions, and water between connected cells. With these functions, gap junctions are essential for the maintenance of astrocytic homeostasis and of particular importance in the context of pathophysiological disbalances. These include the hyperosmolar hyperglycemic syndrome or the pathology after brain trauma. We demonstrate that short-term hyperosmolarity reduces intercellular communication via gap junctions. These functional changes coincide with the transformation of gap junction ultrastructure as evidenced by freeze-fracture replica immunolabeling and transmission electron microscopy. The hyperosmolarity-induced immediate changes in the ultrastructural assembly of connexons, the protein constituents of gap junction channels, have not been described in astrocytes before and are revealing the coherence of structure and function in gap junctions. Phosphorylation of Connexin 43, the main gap junction protein in astrocytes, at amino acid 368 (Serine) might link the two. Abstract In a short-term model of hyperosmotic stress, primary murine astrocytes were stimulated with a hyperosmolar sucrose solution for five minutes. Astrocytic gap junctions, which are mainly composed of Connexin (Cx) 43, displayed immediate ultrastructural changes, demonstrated by freeze–fracture replica immunogold labeling: their area, perimeter, and distance of intramembrane particles increased, whereas particle numbers per area decreased. Ultrastructural changes were, however, not accompanied by changes in Cx43 mRNA expression. In contrast, transcription of the gap junction regulator zonula occludens (ZO) protein 1 significantly increased, whereas its protein expression was unaffected. Phosphorylation of Serine (S) 368 of the Cx43 C–terminus has previously been associated with gap junction disassembly and reduction in gap junction communication. Hyperosmolar sucrose treatment led to enhanced phosphorylation of Cx43S368 and was accompanied by inhibition of gap junctional intercellular communication, demonstrated by a scrape loading-dye transfer assay. Taken together, Cx43 gap junctions are fast reacting elements in response to hyperosmolar challenges and can therefore be considered as one of the first responders to hyperosmolarity. In this process, phosphorylation of Cx43S368 was associated with disassembly of gap junctions and inhibition of their function. Thus, modulation of the gap junction assembly might represent a target in the treatment of brain edema or trauma.
Collapse
|
13
|
Wang Y, Wang J, Hao Z, Yang H, Li Y, Tan M, Liu L, Feng S, Mei L, Qian B. Inhibition of gap junction communication between cells can induce apoptosis of corpus cavernosum smooth muscle in guinea pigs. Andrologia 2021; 54:e14287. [PMID: 34755909 DOI: 10.1111/and.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, we aimed to investigate the effect of gap junction (GJ) on apoptosis of smooth muscle. Forty adult male guinea pigs were randomly divided into four groups with 10 guinea pigs in each group. Adeno-associated virus (AAV) and Gap27 were injected at the root of the corpus cavernosum. Two weeks later, the corpus cavernosum tissue was taken to be tested. The expression of Cx43 and α-SMC protein was detected by immunofluorescence and Western blotting. The content of corpus cavernosum smooth muscle was detected by Masson trichrome staining. Apoptosis was detected by TUNEL staining and Western blotting. The results showed that Gap27 did not affect Cx43 but decreased the expression of smooth muscle. The results of TUNEL staining and detection of apoptosis-related proteins showed that apoptosis was induced by Gap27. In addition, we found that corpus cavernosum injection of AAV could induce obvious apoptosis. In this study, we examined the effect of inhibition of gap junction on smooth muscle, and suggested that the decrease of gap junction function may be a potential mechanism of smooth muscle apoptosis.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Urological Surgery, The First Affiliated Hospital of the Medical College of Shihezi University, Shihezi, China.,Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Jingshen Wang
- Department of Urological Surgery, The First Affiliated Hospital of the Medical College of Shihezi University, Shihezi, China.,Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Zhiqiang Hao
- Department of Urological Surgery, The First Affiliated Hospital of the Medical College of Shihezi University, Shihezi, China.,Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Heng Yang
- Department of Urological Surgery, The First Affiliated Hospital of the Medical College of Shihezi University, Shihezi, China.,Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Yongle Li
- Department of Urological Surgery, The First Affiliated Hospital of the Medical College of Shihezi University, Shihezi, China.,Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Minghui Tan
- Department of Urological Surgery, The First Affiliated Hospital of the Medical College of Shihezi University, Shihezi, China.,Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Lixin Liu
- The People's Hospital of Yudu county, Ganzhou, China
| | - Shiming Feng
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Liang Mei
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Biao Qian
- Department of Urological Surgery, The First Affiliated Hospital of the Medical College of Shihezi University, Shihezi, China.,Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| |
Collapse
|
14
|
Proteomics of Mouse Heart Ventricles Reveals Mitochondria and Metabolism as Major Targets of a Post-Infarction Short-Acting GLP1Ra-Therapy. Int J Mol Sci 2021; 22:ijms22168711. [PMID: 34445425 PMCID: PMC8395861 DOI: 10.3390/ijms22168711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, making it crucial to search for new therapies to mitigate major adverse cardiac events (MACEs) after a cardiac ischemic episode. Drugs in the class of the glucagon-like peptide-1 receptor agonists (GLP1Ra) have demonstrated benefits for heart function and reduced the incidence of MACE in patients with diabetes. Previously, we demonstrated that a short-acting GLP1Ra known as DMB (2-quinoxalinamine, 6,7-dichloro-N-[1,1-dimethylethyl]-3-[methylsulfonyl]-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline or compound 2, Sigma) also mitigates adverse postinfarction left ventricular remodeling and cardiac dysfunction in lean mice through activation of parkin-mediated mitophagy following infarction. Here, we combined proteomics with in silico analysis to characterize the range of effects of DMB in vivo throughout the course of early postinfarction remodeling. We demonstrate that the mitochondrion is a key target of DMB and mitochondrial respiration, oxidative phosphorylation and metabolic processes such as glycolysis and fatty acid beta-oxidation are the main biological processes being regulated by this compound in the heart. Moreover, the overexpression of proteins with hub properties identified by protein–protein interaction networks, such as Atp2a2, may also be important to the mechanism of action of DMB. Data are available via ProteomeXchange with identifier PXD027867.
Collapse
|
15
|
Jhuo SJ, Liu IH, Tasi WC, Chou TW, Lin YH, Wu BN, Lee KT, Lai WT. Characteristics of Ventricular Electrophysiological Substrates in Metabolic Mice Treated with Empagliflozin. Int J Mol Sci 2021; 22:ijms22116105. [PMID: 34198942 PMCID: PMC8200966 DOI: 10.3390/ijms22116105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Empagliflozin (EMPA) is a sodium–glucose transporter 2 (SGLT2) inhibitor that functions as a new-generation glucose-lowering agent and has been proven to be beneficial for patients with cardiovascular diseases. However, the possible benefits and mechanisms of its antiarrhythmic effects in cardiac tissue have not yet been reported. In this study, we elucidated the possible antiarrhythmic effects and mechanisms of EMPA treatment in cardiac tissues of metabolic syndrome (MS) mice. A total of 20 C57BL/6J mice (age: 8 weeks) were divided into four groups: (1) control group, mice fed a standard chow for 16 weeks; (2) MS group, mice fed a high-fat diet for 16 weeks; (3) EMPA group, mice fed a high-fat diet for 12 weeks and administered EMPA at 10 mg/kg daily for the following 4 weeks; and (4) glibenclamide (GLI) group, mice fed a high-fat diet for 12 weeks and administered GLI at 0.6 mg/kg daily for the following 4 weeks. All mice were sacrificed after 16 weeks of feeding. The parameters of electrocardiography (ECG), echocardiography, and the effective refractory period (ERP) of the left ventricle were recorded. The histological characteristics of cardiac tissue, including connexin (Cx) expression and fibrotic areas, were also evaluated. Compared with the MS group, the ECG QT interval in the EMPA group was significantly shorter (57.06 ± 3.43 ms vs. 50.00 ± 2.62 ms, p = 0.011). The ERP of the left ventricle was also significantly shorter in the EMPA group than that in the GLI group (20.00 ± 10.00 ms vs. 60.00 ± 10.00 ms, p = 0.001). The expression of Cx40 and Cx43 in ventricular tissue was significantly lower in the MS group than in the control group. However, the downregulation of Cx40 and Cx43 was significantly attenuated in the EMPA group compared with the MS and GLI groups. The fibrotic areas of ventricular tissue were also fewer in the EMPA group than that in the MS group. In this study, the ECG QT interval in the EMPA group was shorter than that in the MS group. Compared with the MS group, the EMPA group exhibited significant attenuation of downregulated connexin expression and significantly fewer fibrotic areas in ventricles. These results may provide evidence of possible antiarrhythmic effects of EMPA.
Collapse
Affiliation(s)
- Shih-Jie Jhuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan; (S.-J.J.); (I.-H.L.); (W.-C.T.); (T.-W.C.); (Y.-H.L.); (W.-T.L.)
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
| | - I-Hsin Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan; (S.-J.J.); (I.-H.L.); (W.-C.T.); (T.-W.C.); (Y.-H.L.); (W.-T.L.)
| | - Wei-Chung Tasi
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan; (S.-J.J.); (I.-H.L.); (W.-C.T.); (T.-W.C.); (Y.-H.L.); (W.-T.L.)
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Te-Wu Chou
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan; (S.-J.J.); (I.-H.L.); (W.-C.T.); (T.-W.C.); (Y.-H.L.); (W.-T.L.)
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan; (S.-J.J.); (I.-H.L.); (W.-C.T.); (T.-W.C.); (Y.-H.L.); (W.-T.L.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Bin-Nan Wu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
| | - Kun-Tai Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan; (S.-J.J.); (I.-H.L.); (W.-C.T.); (T.-W.C.); (Y.-H.L.); (W.-T.L.)
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Correspondence:
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan; (S.-J.J.); (I.-H.L.); (W.-C.T.); (T.-W.C.); (Y.-H.L.); (W.-T.L.)
| |
Collapse
|
16
|
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17:e8792. [PMID: 33434350 PMCID: PMC7803364 DOI: 10.15252/msb.20188792] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein-protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)-based approaches have allowed unbiased mapping of these disease-mediated changes in protein-protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein-protein interactions at a system-level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS-based protein-protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.
Collapse
Affiliation(s)
- Alicia L Richards
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
17
|
Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 2019; 114:40. [DOI: 10.1007/s00395-019-0748-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
|
18
|
Sun Z, Yang Y, Wu L, Talabieke S, You H, Zheng Y, Luo D. Connexin 43-serine 282 modulates serine 279 phosphorylation in cardiomyocytes. Biochem Biophys Res Commun 2019; 513:567-572. [PMID: 30981509 DOI: 10.1016/j.bbrc.2019.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
Connexin 43 (Cx43) phosphorylation plays a pivotal role in cardiac electrical and contractile performance. In a previous study we have found that Cx43 phosphorylation at serine 282 (pS282) regulates cardiomyocyte survival. Considering that both sites are altered simultaneously in many studies, we designed this study to identify the status of S279 phosphorylation upon pS282 manipulation. In heterozygous mice with S282 gene substituted with alanine (S282A), we found ventricular arrhythmias with inhibition of Cx43 phosphorylation at both S282 and S279 in the hearts. In cultured neonatal rat ventricular myocytes (NRVMs), transfection of virus carrying S282A mutant also blocked Cx43 phosphorylation at both S279/282 and gap junction coupling, while expression of wild-type Cx43 or S279A did not. Further, NRVMs transfected with S282 phospho-mimicking mutant substituted with aspartate or treated with ATP exhibited promotions of Cx43 phosphorylation at S279/282 and intercellular communication. Therefore, this study demonstrated a regulatory role of Cx43-S282 on S279 phosphorylation in cardiomyocytes, and suggested an involvement of S279 in the Cx43-S282 mediated cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Zhipeng Sun
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yutong Yang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Lulin Wu
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Shaletanati Talabieke
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Hongjie You
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Dali Luo
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
19
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
20
|
Connexin43 dephosphorylation at serine 282 is associated with connexin43-mediated cardiomyocyte apoptosis. Cell Death Differ 2019; 26:1332-1345. [PMID: 30770876 DOI: 10.1038/s41418-019-0277-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Gap junction protein connexin 43 (Cx43) plays an important role in regulating cardiomyocyte survival in addition to regulating electrical coordination. Cx43 dephosphorylation, found in severe cardiac pathologies, is thought to contribute to myocardial injury. However, the mechanisms underlying Cx43 mediation of cell survival and myocardial lesions remain unknown. Here, we found that transfecting an adenovirus carrying a mutant gene of Cx43-serine 282 substituted with alanine (S282A) into neonatal rat ventricular myocytes (NRVMs) induced cell apoptosis and Ca2+ transient desynchronization, whereas using gap junction inhibitor or knocking down Cx43 expression with Cx43-miRNA caused uncoupled Ca2+ signaling without cell death. Similarly, while Cx43-S282A+/+ failed in generation, Cx43-S282A+/- mice exhibited cardiomyocyte apoptosis and ventricular arrhythmias dependent on S282 dephosphorylation. Further, Cx43 dephosphorylation at S282 activated p38 mitogen-activated protein kinase (p38 MAPK), factor-associated suicide and the caspase-8 apoptotic pathway by physically interacting with p38 MAPK. These findings uncovered a specific Cx43 phosphorylation residue involved in regulating cardiomyocyte homeostasis. S282 phosphorylation deficiency acts as a trigger inducing cardiomyocyte apoptosis and cardiac arrhythmias, providing a potential mechanism for Cx43-mediated myocardial injury in severe cardiac diseases.
Collapse
|
21
|
Gleber C, Yoruk A, Eastburg L, Goldman BI, Cameron SJ. Conduction Dysfunction and Near Expunction: Giant Cell Myocarditis. Am J Med 2018; 131:1317-1320. [PMID: 29729236 PMCID: PMC6431261 DOI: 10.1016/j.amjmed.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Conrad Gleber
- Department of Medicine, Division of General Internal Medicine
| | - Ayhan Yoruk
- Department of Medicine, Division of Cardiology
| | - Luke Eastburg
- Department of Medicine, Division of General Internal Medicine
| | | | - Scott J Cameron
- Department of Medicine, Division of General Internal Medicine; Department of Medicine, Division of Cardiology; Department of Surgery, Division of Cardiac Surgery, University of Rochester School of Medicine, Rochester, NY.
| |
Collapse
|
22
|
Jiang W, Chen C, Huo J, Lu D, Jiang Z, Geng J, Xu H, Shan Q. Comparison between renal denervation and metoprolol on the susceptibility of ventricular arrhythmias in rats with myocardial infarction. Sci Rep 2018; 8:10206. [PMID: 29976952 PMCID: PMC6033884 DOI: 10.1038/s41598-018-28562-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Ventricular arrhythmias (VAs) are the leading cause of sudden cardiac death in patients with myocardial infarction (MI). We sought to compare effects of renal denervation (RDN) and metoprolol on VAs after MI. Fifty-four male Sprague-Dawley rats underwent ligation of left anterior descending coronary artery to induce MI, while 6 rats served as Control. Metoprolol was given 20 mg/kg/day for 5 weeks after MI surgery. RDN/Sham-RDN procedure was performed at 1 week after MI. At 5 weeks after MI, electrical programmed stimulation (EPS) was performed in all groups for evaluation of VAs. After EPS, heart and kidneys were harvested. Compared with MI group, RDN and metoprolol significantly decreased the incidence of VAs, and RDN is superior to metoprolol. Compared with metoprolol group, Masson staining showed that RDN significantly reduced the myocardial fibrosis. Both RDN and metoprolol decreased the protein expression of connexin43 (Cx43) compared with MI group, while only RDN lighted this decrease remarkably. Immunohistochemical staining of Tyrosine hydroxylase (TH) and growth associated protein 43 (GAP43) revealed that RDN and metoprolol had similar effect on reducing densities of sympathetic nerve in infarction border zone. According to this study, RDN is more effective in reducing VAs than metoprolol in ischemic cardiomyopathy model.
Collapse
Affiliation(s)
- Wanying Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chu Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junyu Huo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Zhixin Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Geng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hai Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qijun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
23
|
Jeffrey DA, Sucharov CC. CELF1 regulates gap junction integrity contributing to dilated cardiomyopathy. NON-CODING RNA INVESTIGATION 2018; 2:10. [PMID: 30198017 PMCID: PMC6128295 DOI: 10.21037/ncri.2018.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|