1
|
Zhang C, Wang Y, Huang F, Zhang Y, Huang M, Liu H, Liu Y, Wang Q, Liu C, Angwa L, Gao Y, Sun D, Jiang Y. Novel mechanism of fluoride induced cardiovascular system injury by regulating p53/miR200c-3p during endothelial dysfunction. ENVIRONMENTAL RESEARCH 2025; 271:121102. [PMID: 39952459 DOI: 10.1016/j.envres.2025.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The impairment of the cardiovascular system by fluoride has attracted public health concern, and its toxic effects on ECs have garnered extensive research attention. However, epidemiological clues of fluoride induced cardiovascular injury are limited. The function of ECs is crucial for the early diagnosis of CVD, yet mechanisms through which fluoride disrupts endothelial function are still unclear. PURPOSE To investigate the relationship between fluoride exposure and hypertension in population by epidemiological investigation. To explore the potential mechanism of functional injury of ECs induced by fluoride. RESULT Epidemiological studies have shown that the risk of hypertension in study population increased with the increased of urinary fluoride concentration [OR = 1.565, 95%CI (1.143, 2.142)]. In rat model with fluorosis alongside a model of fluoride induced ECs injury, NaF led to anti-adhesion of ECs and barrier dysfunction. Notably, the expression levels of eNOS and NO were found to be decreased, while the expression levels of ACE, vWF, ICAM-1, VCAM-1 and ET-1 were elevated. Our findings also indicated that NaF induced oxidative stress in ECs, evidenced by significant increased in ROS and MDA levels and decreased protein expression of GPx4 and SOD activity. It was further found that NaF activated the p53/miR-200c-3p signaling axis via ROS, leading to endothelial dysfunction. CONCLUSION This study found that fluoride exposure was a risk factor for hypertension. In addition, fluoride could cause ECs dysfunction by inducing oxidative stress and activating p53/miR-200c-3p. These findings were helpful to further understand the mechanism of fluoride induced cardiovascular system injury and provide a theoretical basis for fluoride induced cardiovascular system injury.
Collapse
Affiliation(s)
- Chao Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Yue Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Fengya Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Yaoyuan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Mingyue Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Hui Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Yunzhu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Qiaoyu Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Chang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China
| | - Linet Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; United State University-Africa, Department of Phamaceutics, Pharmacy Practice, and Public Health, People's Republic of China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University), People's Republic of China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
2
|
Ershov PV, Yablokov EO, Mezentsev YV, Ivanov AS. Human prostacyclin and thromboxane synthases: Molecular interactions, regulation, and pharmacology. Biochimie 2025; 234:76-88. [PMID: 40222477 DOI: 10.1016/j.biochi.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Prostanoids are lipid mediators of the human body that are involved in the inflammation and platelet aggregation. Prostacyclin is a vasodilator and inhibitor of platelet aggregation, and a product of the enzymatic reaction catalyzed by prostacyclin synthase (PTGIS). Thromboxane is a vasoconstrictor and synthesized by thromboxane synthase (TBXAS1). An imbalance of prostanoids can accompany cardio-/cerebrovascular diseases and cancers. PTGIS and TBXAS1 are clinically relevant membrane-bound enzymes of the multigene family of cytochromes P450 (CYPs), also known as CYP8A1 and CYP5A1, respectively. Particular studies of these functional antagonists will contribute to the elucidation of pathogenic mechanisms. The purpose of this work was to analyze the literature landscape over a period of 2020-2024 in the field of biological, pharmacogenomic, and pharmacological features of PTGIS and TBXAS1 as well as to explore the potential of their regulation at the post-transcriptional and post-translational levels using systems biological analysis. The review discusses recent findings on the novel aspects of both synthases established in gene knockout and overexpression experiments, current preclinical pharmacology, and potential ways of gene expression regulation. Identification of protein-protein interactions and post-translational modifications appear to be the main options for modulating PTGIS and TBXAS1 activity. The microsomal CYPs are known to form complexes with each other and direct interactions of CYP2E1 with both synthases can probably lead to modulation of their activity. Progress in the preclinical development of low molecular weight compounds as inhibitors of TBXAS1 is more prospective than PTGIS that is applied as gene therapy biologicals for in vivo production of prostacyclin due to its noticeable anticancer and vasodilator effects.
Collapse
Affiliation(s)
- Pavel V Ershov
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia.
| | - Evgeniy O Yablokov
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia
| | - Yuri V Mezentsev
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia
| | - Alexis S Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia
| |
Collapse
|
3
|
Song ZP, Chen L, Wang QW, Zhang ZS, Xu JY, Bai WW, Wang SX, Guo T. Circulating monocyte adhesion repairs endothelium-denuded injury through downstream of kinase 3-mediated endothelialization. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167631. [PMID: 39689764 DOI: 10.1016/j.bbadis.2024.167631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The integrity of the endothelial monolayer is critical for preventing life-threatening hemorrhaging and thrombosis. However, how severe endothelium-denuded injury is rapidly repaired remains unknown. Given the common biological properties between endothelial cells and circulating monocytes, we aimed to examine whether blood monocytes are involved in endothelium wound healing. The in vivo common carotid artery endothelium-denuded (CCAED) model was established through a wire-induced injury. Monocyte adhesion was assessed using immunofluorescence and a parallel plate flow chamber. We initially observed that the circulating monocyte-mediated endothelialization was better downstream of kinase 3 deficient mice (DOK3-/-) than that of wild-type (WT) mice following induction of the CCAED model. Rapid endothelialization increased endothelial integrity, prevented coagulation, and decreased thrombosis. Mechanistically, following endothelium-denuded injury, monocyte chemoattractant protein 1 (MCP1) disassociated from DOK3 and C-C chemokine receptor type 2B (CCR2B), increased the intracellular Ca2+ concentration, and promoted adhesion in circulating monocytes. However, this process was inhibited by the CCR2B inhibitor INCB3344. Moreover, the adhesive functions of circulating monocytes isolated from DOK3-/- mice were stronger than those from WT mice. Furthermore, adhered monocytes expressed endothelial-specific markers and compensated for endothelium-dependent vasorelaxation in WT mice. Similarly, these effects were enhanced in DOK3-/- mice. Bindarit, a selective MCP1 inhibitor, suppressed endothelialization following CCAED surgery in WT mice but not in DOK3-/- mice. In conclusion, endothelialization mediated by circulating monocytes repairs endothelium-denuded injury to compensate for endothelial functions through MCP1/DOK3/CCR2B/Ca2+ signaling. Our findings indicate that circulating monocyte adhesion is an important endothelial wound healing mechanism.
Collapse
Affiliation(s)
- Zhi-Peng Song
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qian-Wen Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Shan Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Yao Xu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Shuang-Xi Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Tao Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
4
|
Song JW, Zhang ZS, Chen L, Wang QW, Xu JY, Bai WW, Li B, Wang SX, Guo T. Vitamin B-6 Prevents Heart Failure with Preserved Ejection Fraction Through Downstream of Kinase 3 in a Mouse Model. J Nutr 2024; 154:3031-3041. [PMID: 39147036 DOI: 10.1016/j.tjnut.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND There is an urgent need to develop an efficient therapeutic strategy for heart failure with preserved ejection fraction (HFpEF), which is mediated by phenotypic changes in cardiac macrophages. We previously reported that vitamin B-6 inhibits macrophage-mediated inflammasome activation. OBJECTIVES We sought to examine whether the prophylactic use of vitamin B-6 prevents HFpEF. METHODS HFpEF model was elicited by a combination of high-fat diet and Nω-nitro-l-arginine methyl ester supplement in mice. Cardiac function was assessed using conventional echocardiography and Doppler imaging. Immunohistochemistry and immunoblotting were used to detect changes in the macrophage phenotype and myocardial remodeling-related molecules. RESULTS Co-administration of vitamin B-6 with HFpEF mice mitigated HFpEF phenotypes, including diastolic dysfunction, cardiac macrophage phenotypic shifts, fibrosis, and hypertrophy. Echocardiographic improvements were observed, with the E/E' ratio decreasing from 42.0 to 21.6 and the E/A ratio improving from 2.13 to 1.17. The exercise capacity also increased from 295.3 to 657.7 min. However, these beneficial effects were negated in downstream of kinase (DOK) 3-deficient mice. Mechanistically, vitamin B-6 increased DOK3 protein concentrations and inhibited macrophage phenotypic changes, which were abrogated by an AMP-activated protein kinase inhibitor. CONCLUSIONS Vitamin B-6 increases DOK3 signaling to lower risk of HFpEF by inhibiting phenotypic changes in cardiac macrophages.
Collapse
Affiliation(s)
- Jia-Wen Song
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Shan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qian-Wen Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Yao Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Tao Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Li B, Bai WW, Guo T, Tang ZY, Jing XJ, Shan TC, Yin S, Li Y, Wang F, Zhu ML, Lu JX, Bai YP, Dong B, Li P, Wang SX. Statins improve cardiac endothelial function to prevent heart failure with preserved ejection fraction through upregulating circRNA-RBCK1. Nat Commun 2024; 15:2953. [PMID: 38580662 PMCID: PMC10997751 DOI: 10.1038/s41467-024-47327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction. We have previously reported that statins prevent endothelial dysfunction through inhibition of microRNA-133a (miR-133a). This study is to investigate the effects and the underlying mechanisms of statins on HFpEF. Here, we show that statins upregulate the expression of a circular RNA (circRNA-RBCK1) which is co-transcripted with the ring-B-box-coiled-coil protein interacting with protein kinase C-1 (RBCK1) gene. Simultaneously, statins increase activator protein 2 alpha (AP-2α) transcriptional activity and the interaction between circRNA-RBCK1 and miR-133a. Furthermore, AP-2α directly interacts with RBCK1 gene promoter in endothelial cells. In vivo, lovastatin improves diastolic function in male mice under HFpEF, which is abolished by loss function of endothelial AP-2α or circRNA-RBCK1. This study suggests that statins upregulate the AP-2α/circRNA-RBCK1 signaling to suppress miR-133a in cardiac endothelial cells and prevent diastolic dysfunction in HFpEF.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wen-Wu Bai
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Yu Tang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Jiao Jing
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ti-Chao Shan
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Sen Yin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fu Wang
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mo-Li Zhu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jun-Xiu Lu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yong-Ping Bai
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bo Dong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Peng Li
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuang-Xi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Bai W, Guo T, Wang H, Li B, Sun Q, Wu W, Zhang J, Zhou J, Luo J, Zhu M, Lu J, Li P, Dong B, Han S, Pang X, Zhang G, Bai Y, Wang S. S-nitrosylation of AMPKγ impairs coronary collateral circulation and disrupts VSMC reprogramming. EMBO Rep 2024; 25:128-143. [PMID: 38177907 PMCID: PMC10897329 DOI: 10.1038/s44319-023-00015-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.
Collapse
Affiliation(s)
- Wenwu Bai
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Quan Sun
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanzhou Wu
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jipeng Zhou
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingmin Luo
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Moli Zhu
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junxiu Lu
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Shufang Han
- Department of Cardiology, The 960th Hospital of PLA Joint Logistics Support Force, Jinan, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guogang Zhang
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongping Bai
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuangxi Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
7
|
Tang X, Zhao S, Liu J, Liu X, Sha X, Huang C, Hu L, Sun S, Gao Y, Chen H, Zhang Z, Wang D, Gu Y, Chen S, Wang L, Gu A, Chen F, Pu J, Chen X, Yu B, Xie L, Huang Z, Han Y, Ji Y. Mitochondrial GSNOR Alleviates Cardiac Dysfunction via ANT1 Denitrosylation. Circ Res 2023; 133:220-236. [PMID: 37377022 DOI: 10.1161/circresaha.123.322654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Jieqiong Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Xiameng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Xinqi Sha
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Changgao Huang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Lulu Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (D.W., Y.G.)
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Zhiren Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital (Z.Z., Y.J.), Harbin Medical University, Heilongjiang, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (D.W., Y.G.)
| | - Yuexi Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital (S.C.), Nanjing Medical University, Jiangsu, China
| | - Liansheng Wang
- Department of Cardiology (L.W.), First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health (A.G.), Nanjing Medical University, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Forensic Medicine (F.C.), Nanjing Medical University, Jiangsu, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, China (J.P.)
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital (X.C.), Nanjing Medical University, Jiangsu, China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Ministry of Education (B.Y.), Harbin Medical University, Heilongjiang, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, China (Z.H.)
| | - Yi Han
- Department of Geriatrics (Y.H.), First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital (Z.Z., Y.J.), Harbin Medical University, Heilongjiang, China
| |
Collapse
|
8
|
Yang M, Liu X, Tang X, Sun W, Ji Z. LC-MS based urine untargeted metabolomic analyses to identify and subdivide urothelial cancer. Front Oncol 2023; 13:1160965. [PMID: 37256175 PMCID: PMC10226587 DOI: 10.3389/fonc.2023.1160965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Urine metabolomics has been a promising technique in the liquid biopsy of urothelial cancer (UC). The comparison of upper tract urothelial cancer (UTUC), lower tract urothelial cancer (BCa), and healthy controls (HCs) need to be performed to find related biomarkers. Methods In our investigation, urine samples from 35 UTUCs, 44 BCas, and 53 gender- and age-matched HCs were analyzed using liquid chromatography-high resolution mass spectrometry (LC-HRMS). In different groups, the differential metabolites and the disturbed metabolism pathways were explored. Transcriptomics and urine metabolomics are combined to identify the probably disturbed gene in BCa. Results With an area under the curve (AUC) of 0.815, the panel consisting of prostaglandin I2, 5-methyldeoxycytidine, 2,6-dimethylheptanoyl carnitine, and deoxyinosine was able to discriminate UC from HCs. With an AUC of 0.845, the validation group also demonstrated strong predictive ability. UTUC and BCa without hematuria could be distinguished using the panel of 5'-methylthioadenosine, L-beta-aspartyl-L-serine, dehydroepiandrosterone sulfate, and N'-formylkynurenine (AUC=0.858). The metabolite panel comprising aspartyl-methionine, 7-methylinosine, and alpha-CEHC glucuronide could discriminate UTUC from BCa with hematuria with an AUC of 0.83. Fatty acid biosynthesis, purine metabolism, tryptophan metabolism, pentose and glucuronate interconversions, and arachidonic acid metabolism were dysregulated when comparing UC with HCs. PTGIS and BCHE, the genes related to the metabolism of prostaglandin I2 and myristic acid respectively, were significantly associated with the survival of BCa. Discussion Not only could LC-HRMS urine metabolomic investigations distinguish UC from HCs, but they could also identify UTUC from BCa. Additionally, urine metabolomics combined with transcriptomics can find out the potential aberrant genes in the metabolism.
Collapse
Affiliation(s)
- Ming Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Mishra S, Sarkar S, Pandey A, Yadav SK, Negi R, Yadav S, Pant AB. Crosstalk Between miRNA and Protein Expression Profiles in Nitrate-Exposed Brain Cells. Mol Neurobiol 2023; 60:3855-3872. [DOI: 10.1007/s12035-023-03316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
|
10
|
Zhou NQ, Song YT, Liu WZ, Yue RZ, Tian XQ, Yang SC, Yin YL, Li P. Diagnostic ultrasound-mediated microbubble cavitation dose-dependently improves diabetic cardiomyopathy through angiogenesis. Cell Biol Int 2023; 47:178-187. [PMID: 36183368 DOI: 10.1002/cbin.11918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/19/2023]
Abstract
Ultrasound-mediated microbubble cavitation (UMMC) induces therapeutic angiogenesis to treat ischemic diseases. This study aimed to investigate whether diagnostic UMMC alleviates diabetic cardiomyopathy (DCM) and, if so, through which mechanisms. DCM model was established by injecting streptozocin into rats to induce hyperglycemia, followed by a high-fat diet. The combined therapy of cation microbubble with low-intensity diagnostic ultrasound (frequency = 4 MHz), with a pulse frequency of 20 Hz and pulse length (PL) of 8, 18, 26, or 36 cycles, was given to rats twice a week for 8 consecutive weeks. Diagnostic UMMC therapy with PL at 8, 18, and 26 cycles, but not 36 cycles, dramatically prevented myocardial fibrosis, improved heart functions, and increased angiogenesis, accompanied by increased levels of PI3K, Akt, and eNOS proteins in the DCM model of rats. In cultured endothelial cells, low-intensity UMMC treatment (PL = 3 cycles, sound pressure level = 50%, mechanical index = 0.82) increased cell viability and activated PI3K-Akt-eNOS signaling. The combination of diagnostic ultrasound with microbubble destruction dose-dependently promoted angiogenesis, thus improving heart function through PI3K-Akt-eNOS signaling in diabetes. Accordingly, diagnostic UMMC therapy should be considered to protect the heart in patients with diabetes.
Collapse
Affiliation(s)
- Nan-Qian Zhou
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Yu-Ting Song
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang, Henan, China.,Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei-Zhen Liu
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui-Zhu Yue
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin-Qiao Tian
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Shi-Chang Yang
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ya-Ling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang, Henan, China
| |
Collapse
|
11
|
Peng H, Weng L, Lei S, Hou S, Yang S, Li M, Zhao D. Hypoxia-hindered methylation of PTGIS in endometrial stromal cells accelerates endometriosis progression by inducing CD16 - NK-cell differentiation. Exp Mol Med 2022; 54:890-905. [PMID: 35781537 PMCID: PMC9356144 DOI: 10.1038/s12276-022-00793-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Prostacyclin (PGI2) plays key roles in shaping the immune microenvironment and modulating vasodilation, whereas its contribution to endometriosis (EMs) remains largely unclear. Our study suggested that prostacyclin synthase (PTGIS)-dependent PGI2 signaling was significantly activated in EMs, which was involved in the hypoxic microenvironment of ectopic lesions and deficient methylation status of the PTGIS promoter. Notably, in vitro assays, hypoxia promoted PTGIS expression through DNA methyltransferase 1 (DNMT1)-mediated DNA methylation deficiency in endometrial stromal cells (ESCs); PTGIS overexpression enhanced the adhesive ability of ESCs and led to elevated PGI2 production, and PGI2 triggered CD16− (encoded by FCGR3, Fc fragment of IgG receptor IIIa) natural killer (NK)-cell differentiation through PGI2 receptor (IP, PTGIR) in an ESC/NK-cell coculture system. Our rodent model experiment suggested that treatment with the PGI2 analog iloprost and adoptive transfer of fcgr3 knockout (fcgr3−/−) NK cells aggravated EMs progression and that genetic ablation of ptgis (ptgis−/−) in ectopic lesions and treatment with the PTGIR antagonist RO1138452 partially rescued this outcome. Thus, our findings identified the contribution of PGI2 to EMs progression via enhancement of the adhesive ability of ESCs and inhibition of the activity of NK cells. We hypothesized that PGI2 is a target for EMs intervention and provide a rationale for studying pharmacological PTGIR inhibition and PTGIS genetic depletion therapies as therapeutic strategies for EMs. Inhibiting the activity of a critical enzyme found overexpressed in endometriosis lesions could lead to novel therapeutics. Endometriosis affects around 10 per cent of women of reproductive age globally, yet the condition is poorly understood. Endometriosis lesions are known to be in a hypoxic, or low oxygen, state. Zhao Dong at Tongji University in Shanghai, China, and co-workers used human tissue samples and mouse models to determine the roles of a metabolite called prostacyclin (PGI2) and its catalytic enzyme (prostacyclin synthase, PTGIS) in endometriosis. PTGIS levels were significantly elevated in hypoxic endometrial cells, triggering the overproduction of PGI2. This PTGIS/PGI2 increase enhanced the adhesiveness of the cells, promoting survival of developing lesions. PGI2 overproduction also triggered abnormal differentiation of a specific group of immune cells called natural killer cells, disrupting the body’s immune response.
Collapse
Affiliation(s)
- Haiyan Peng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lichun Weng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shating Lei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shuhui Hou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shaoliang Yang
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Dong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China. .,Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.
| |
Collapse
|
12
|
Yang H, Liu W, Song S, Bai L, Nie Y, Bai Y, Zhang G. Proteogenomics Integrating Reveal a Complex Network, Alternative Splicing, Hub Genes Regulating Heart Maturation. Genes (Basel) 2022; 13:genes13020250. [PMID: 35205300 PMCID: PMC8872128 DOI: 10.3390/genes13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Heart maturation is an essentially biological process for neonatal heart transition to adult heart, thus illustrating the mechanism of heart maturation may be helpful to explore postnatal heart development and cardiac cardiomyopathy. This study combined proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) and transcriptome analysis based on RNA sequencing to detect the proteins and genes associated with heart maturation in mice. The proteogenomics integrating analysis identified 254 genes/proteins as commonly differentially expressed between neonatal and adult hearts. Functional and pathway analysis demonstrated that these identified genes/proteins contribute to heart maturation mainly by regulating mRNA processing and energy metabolism. Genome-wide alternative splicing (AS) analysis showed that some important sarcomere and energy-associated genes undergo different AS events. Through the Cytoscape plug-in CytoHubba, a total of 23 hub genes were found and further confirmed by RT-qPCR. Next, we verified that the most up-regulated hub gene, Ogdhl, plays an essential role in heart maturation by detecting energy metabolism phenotype changes in the Ogdhl-interfering cardiomyocytes. Together, we revealed a complex gene network, AS genes and patterns, and candidate hub genes controlling heart maturation by proteome and transcriptome combination analysis.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Weijing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (W.L.); (S.S.); (L.B.); (Y.N.)
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, China;
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
13
|
Fu CN, Song JW, Song ZP, Wang QW, Bai WW, Guo T, Li P, Liu C, Wang SX, Dong B. Excessive expression of miR-1a by statin causes skeletal injury through targeting mitogen-activated protein kinase kinase kinase 1. Aging (Albany NY) 2021; 13:11470-11490. [PMID: 33864447 PMCID: PMC8109097 DOI: 10.18632/aging.202839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Backgrounds: A major side effect of statin, a widely used drug to treat hyperlipidemia, is skeletal myopathy through cell apoptosis. The aim of this study is to investigate the roles of microRNA in statin-induced injury. Methods: Apolipoprotein E knockout (ApoE-/-) mice were administered with simvastatin (20 mg/kg/day) for 8 weeks. Exercise capacity was evaluated by hanging grid test, forelimb grip strength, and running tolerance test. Results: In cultured skeletal muscle cells, statin increased the levels of miR-1a but decreased the levels of mitogen-activated protein kinase kinase kinase 1 (MAP3K1) in a time or dose dependent manner. Both computational target-scan analysis and luciferase gene reporter assay indicated that MAP3K1 is the target gene of miR-1a. Statin induced cell apoptosis of skeletal muscle cells, but abolished by downregulating of miR-1a or upregulation of MAP3K1. Further, the effects of miR-1a inhibition on statin-induced cell apoptosis were ablated by MAP3K1 siRNA. In ApoE-/- mice, statin induced cell apoptosis of skeletal muscle cells and decreased exercise capacity in mice infected with vector, but not in mice with lentivirus-mediated miR-1a gene silence. Conclusion: Statin causes skeletal injury through induction of miR-1a excessive expression to decrease MAP3K1 gene expression.
Collapse
Affiliation(s)
- Chang-Ning Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Peng Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian-Wen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
14
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
15
|
Hu DJ, Li ZY, Zhu YT, Li CC. Overexpression of long noncoding RNA ANRIL inhibits phenotypic switching of vascular smooth muscle cells to prevent atherosclerotic plaque development in vivo. Aging (Albany NY) 2020; 13:4299-4316. [PMID: 33411680 PMCID: PMC7906209 DOI: 10.18632/aging.202392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023]
Abstract
Background: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. Long noncoding RNA ANRIL (lncRNA-ANRIL) is critical in vascular homeostasis. Metformin produces multiple beneficial effects in atherosclerosis. However, the underlying mechanisms need to be elucidated. Methods and Results: Metformin increased lncRNA-ANRIL expression and AMPK activity in cultured VSMCs, and inhibited the phenotypic switching of VSMCs to the synthetic phenotype induced by platelet-derived growth factor (PDGF). Overexpression of lncRNA-ANRIL inhibited phenotypic switching and reversed the reduction of AMPK activity in PDGF-treated VSMCs. While, gene knockdown of lncRNA-ANRIL by adenovirus or silence of AMPKγ through siRNA abolished AMPK activation induced by metformin in VSMCs. RNA-immunoprecipitation analysis indicated that the affinity of lncRNA-ANRIL to AMPKγ subunit was increased by metformin. In vivo, administration of metformin increased the levels of lncRNA-ANRIL, suppressed VSMC phenotypic switching, and prevented the development of atherosclerotic plaque in Apoe-/- mice fed with western diet. These protective effects of metformin were abolished by infecting Apoe-/- mice with adenovirus expressing lncRNA-ANRIL shRNA. The levels of AMPK phosphorylation, AMPK activity, and lncRNA-ANRIL expression were decreased in human atherosclerotic lesions. Conclusion: Metformin activates AMPK to suppress the formation of atherosclerotic plaque through upregulation of lncRNA-ANRIL.
Collapse
Affiliation(s)
- Da-Jun Hu
- Department of Cardiology, The First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Zhen-Yu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan-Ting Zhu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
16
|
Li XY, Zhang HM, An GP, Liu MY, Han SF, Jin Q, Song Y, Lin YM, Dong B, Wang SX, Meng LB. S-Nitrosylation of Akt by organic nitrate delays revascularization and the recovery of cardiac function in mice following myocardial infarction. J Cell Mol Med 2020; 25:27-36. [PMID: 33128338 PMCID: PMC7810919 DOI: 10.1111/jcmm.15263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 12/26/2022] Open
Abstract
The effects of long‐term nitrate therapy are compromised due to protein S‐Nitrosylation, which is mediated by nitric oxide (NO). This study is to determine the role of Akt S‐Nitrosylation in the recovery of heart functions after ischaemia. In recombinant Akt protein and in HEK293 cells, NO donor decreased Akt activity and induced Akt S‐Nitrosylation, but was abolished if Akt protein was mutated by replacing cysteine 296/344 with alanine (Akt‐C296/344A). In endothelial cells, NO induced Akt S‐Nitrosylation, reduced Akt activity and damaged multiple cellular functions including proliferation, migration and tube formation. These alterations were ablated if cells expressed Akt‐C296/344A mutant. In Apoe−/− mice, nitroglycerine infusion increased both Akt S‐Nitrosylation and infarct size, reduced Akt activity and capillary density, and delayed the recovery of cardiac function in ischaemic hearts, compared with mice infused with vehicle. Importantly, these in vivo effects of nitroglycerine in Apoe−/− mice were remarkably prevented by adenovirus‐mediated enforced expression of Akt‐C296/344A mutant. In conclusion, long‐term usage of organic nitrate may inactivate Akt to delay ischaemia‐induced revascularization and the recovery of cardiac function through NO‐mediated S‐Nitrosylation.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Hong-Ming Zhang
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Gui-Peng An
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mo-Yan Liu
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Shu-Fang Han
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Qun Jin
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Ying Song
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Yi-Meng Lin
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Bo Dong
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuang-Xi Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ling-Bo Meng
- Department of Cardiology, The Second Hospital affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Huang Q, Pan M, Zhou JP, Yin F. Overexpression of long non-coding RNA ANRIL promotes post-ischaemic angiogenesis and improves cardiac functions by targeting Akt. J Cell Mol Med 2020; 24:6860-6868. [PMID: 32400082 PMCID: PMC7299705 DOI: 10.1111/jcmm.15343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI). Long non‐coding RNA ANRIL (lncRNA‐ANRIL) has been reported to regulate endothelial functions in cardiovascular diseases. This study was to determine the role of lncRNA‐ANRIL in Akt regulation and cardiac functions after MI. Human umbilical vein endothelial cells (HUVECs) were exposed to oxygen‐glucose deprivation (OGD) to mimic in vivo ischaemia. The MI model in mice was induced by ligating left anterior descending coronary artery. OGD remarkably decreased lncRNA‐ANRIL expression level, reduced the phosphorylated levels of Akt and eNOS proteins, and inhibited NO release and cell viability, which were duplicated by shRNA‐mediated gene knockdown of lncRNA‐ANRIL. Conversely, all these effects induced by OGD were abolished by adenovirus‐mediated overexpression of lncRNA‐ANRIL in HUVECs. Further, OGD impaired cell migrations and tube formations in HUVECs, which were reversed by lncRNA‐ANRIL overexpression or Akt up‐regulation. RNA immunoprecipitation analysis indicated that the affinity of lncRNA‐ANRIL to Akt protein was increased in OGD‐treated cells. In animal studies, adenovirus‐mediated lncRNA‐ANRIL overexpression increased the phosphorylated levels of Akt and eNOS, promoted post‐ischaemic angiogenesis and improved heart functions in mice with MI surgery. LncRNA‐ANRIL regulates Akt phosphorylation to improve endothelial functions, which promotes angiogenesis and improves cardiac functions in mice following MI. In this perspective, targeting lncRNA‐ANRIL/Akt may be considered to develop a drug to treat angiogenesis‐related diseases.
Collapse
Affiliation(s)
- Qun Huang
- Departmen of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Miao Pan
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Peng Zhou
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Departmen of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Bai WW, Tang ZY, Shan TC, Jing XJ, Li P, Qin WD, Song P, Wang B, Xu J, Liu Z, Yu HY, Ma ZM, Wang SX, Liu C, Guo T. Up-regulation of paired-related homeobox 2 promotes cardiac fibrosis in mice following myocardial infarction by targeting of Wnt5a. J Cell Mol Med 2019; 24:2319-2329. [PMID: 31880857 PMCID: PMC7011146 DOI: 10.1111/jcmm.14914] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiac fibrosis is a key factor to determine the prognosis in patient with myocardial infarction (MI). The aim of this study is to investigate whether the transcriptional factor paired‐related homeobox 2 (Prrx2) regulates Wnt5a gene expression and the role in myocardial fibrosis following MI. The MI surgery was performed by ligation of left anterior descending coronary artery. Cardiac remodelling was assessed by measuring interstitial fibrosis performed with Masson staining. Cell differentiation was examined by analysis the expression of alpha‐smooth muscle actin (α‐SMA). Both Prrx2 and Wnt5a gene expressions were up‐regulated in mice following MI, accompanied with increased mRNA and protein levels of α‐SMA, collagen I and collagen III, compared to mice with sham surgery. Adenovirus‐mediated gene knock down of Prrx2 increased survival rate, alleviated cardiac fibrosis, decreased infarction sizes and improved cardiac functions in mice with MI. Importantly, inhibition of Prrx2 suppressed ischaemia‐induced Wnt5a gene expression and Wnt5a signalling. In cultured cardiac fibroblasts, TGF‐β increased gene expressions of Prrx2 and Wnt5a, and induced cell differentiations, which were abolished by gene silence of either Prrx2 or Wnt5a. Further, overexpression of Prrx2 or Wnt5a mirrored the effects of TGF‐β on cell differentiations of cardiac fibroblasts. Gene silence of Wnt5a also ablated cell differentiations induced by Prrx2 overexpression in cardiac fibroblasts. Mechanically, Prrx2 was able to bind with Wnt5a gene promoter to up‐regulate Wnt5a gene expression. In conclusions, targeting Prrx2‐Wnt5a signalling should be considered to improve cardiac remodelling in patients with ischaemic heart diseases.
Collapse
Affiliation(s)
- Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Yu Tang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Ti-Chao Shan
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Jiao Jing
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wei-Dong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ping Song
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bo Wang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jian Xu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, China
| | - Zhi-Min Ma
- Department of Endocrinology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Chao Liu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Yong YX, Yang H, Lian J, Xu XW, Han K, Hu MY, Wang HC, Zhou LM. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle 2019; 18:1868-1881. [PMID: 31204565 DOI: 10.1080/15384101.2019.1632133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key mediators of posttranscriptional gene silencing in both pathogenic and pathological aspects of ischemic stroke biology. Therefore, the purpose of present study was to explore the effect of microRNA-199b-3p (miR-199b-3p) on the cerebral microvascular endothelial cells (CMECs) in middle cerebral artery occlusion-reperfusion (MCAO-R) mice by regulating MAPK/ERK/EGR1 axis. Mice were used to establish MCAO-R models and to measure the expression of miR-199b-3p and the MAPK/ERK/EGR1 axis-related genes. CMECs were extracted from the MCAO-R mice. A series of mimic or inhibitor for miR-199b-3p, or U0126 (an inhibitor for the MAPK/ERK/EGR1 axis) were introduced to treat these CMECs. The levels of miR-199b-3p and MAPK/ERK/EGR1 axis-related genes in tissues and cells were detected. The effects miR-199b-3p on the process of CMECs, including cell viability, cell cycle and cell apoptosis were evaluated. miR-199b-3p expressed poorly in the brain tissues after MCAO-R, along with activated MAPK/ERK/EGR1 axis and increased CMECs apoptosis. CMECs transfected with miR-199b-3p mimics and U0126 manifested with increased cell viability, more cells arrested at the S stage, and inhibited apoptosis of CMECs. In conclusion, these key results demonstrated up-regulated miR-199b-3p could protect mice against ischemic stroke by inhibiting the apoptosis of CMECs through blockade of MAPK/ERK/EGR1 axis.
Collapse
Affiliation(s)
- Ya-Xiong Yong
- a Guizhou Medical University , Guiyang , P. R. China.,b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua Yang
- a Guizhou Medical University , Guiyang , P. R. China.,c Institute of Medical Sciences, Guizhou Medical University , Guiyang , P.R. China.,d Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University , Guiyang , P. R. China
| | - Jia Lian
- e Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P.R. China
| | - Xiao-Wei Xu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ke Han
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ming-Yi Hu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua-Cheng Wang
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Lie-Min Zhou
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| |
Collapse
|
20
|
Jia L, Zhang Y, Qu YJ, Huai J, Wei H, Yue SW. Gene therapy by lentivirus-mediated RNA interference targeting extracellular-regulated kinase alleviates neuropathic pain in vivo. J Cell Biochem 2019; 120:8110-8119. [PMID: 30426552 DOI: 10.1002/jcb.28090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUNDS Neuropathic pain is an abnormal pain, which is related to the activation of extracellular-regulated kinase (ERK) signaling. This study was to investigate the effects of ERK knockdown via lentivirus-mediated RNA interference on allodynia in rats with chronic compression of the dorsal root ganglia (DRG) and to uncover the potential mechanisms. METHODS The model of chronic compression of the dorsal root ganglia (CCD) was established in rats by surgery. Gene silence was induced by injecting rats with lentivirus expressing ERK short hairpin RNA (shRNA). Behavioral test was performed by calculating paw withdrawal mechanical threshold (PWMT) and thermal paw withdrawal latency (TPWL). RESULTS We firstly generated lentivirus expressing ERK shRNA to downregulate ERK gene expression both in vitro and in vivo by using Western blot analysis and quantitative reverse transcription polymerase chain reaction. In CCD, ERK mRNA, and protein levels in DRG neurons were dramatically increased, accompanied with decreased PWMT and TPWL. Lentivirus-mediated RNA interference decreased ERK gene expression in DRG neurons and normalized the PWMT and TPWL in CCD rats, but not in rats infected with lentivirus expressing negative control shRNA. Further, calcium responses of DRG neurons to the hypotonic solution and 4α-phorbol 12,13-didecanoate were enhanced in CCD rats, which were suppressed by lentivirus-mediated ERK gene silence. Finally, the levels of transient receptor potential vanilloid 4 gene expressions in DRG neurons and L4 to L5 spinal cord isolated from CCD rats were dramatically upregulated, which were reversed by lentivirus-mediated ERK gene knockdown. CONCLUSION Lentivirus-mediated RNA interference (RNAi) silencing targeting ERK might reverse CCD-induced neuropathic pain in rats through transient receptor potential vanilloid 4.
Collapse
Affiliation(s)
- Lei Jia
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Juan Qu
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Juan Huai
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Wei
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Shou-Wei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
21
|
Wang D, Wang H, Liu C, Mu X, Cheng S. Hyperglycemia inhibition of endothelial miR-140-3p mediates angiogenic dysfunction in diabetes mellitus. J Diabetes Complications 2019; 33:374-382. [PMID: 30862410 DOI: 10.1016/j.jdiacomp.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) have emerged as promising regulators of diabetes mellitus (DM)-induced angiogenic dysfunction in endothelial cells (ECs), but information vis-à-vis the functional roles of distinct miRNAs remain surprisingly scarce. The current study was designed to elucidate the expression and function of miR-140-3p in diabetic ECs. METHODS miR-140-3p expression was evaluated in DM mouse model and in human ECs using RT-qPCR, Northern blot and RNA fluorescent in situ hybridization. Effects of miR-140-3p manipulation on ECs function were evaluated using cell proliferation, migration and in vitro tube formation assay. Regulation of FOXK2 transcription by miR-140-3p was determined by luciferase reporter assay and site-directed mutagenesis. RESULTS miR-140-3p expression was significantly down-regulated in high glucose-challenged ECs. Under normal conditions, miR-140-3p knockdown impaired endothelial proliferation and migration, and endothelial tube formation. Mechanistically, miR-140-3p exhibited its proangiogenic effects through directly inhibiting the expression of the forkhead transcription factor FOXK2. From a therapeutic standpoint, shRNA-mediated stable inhibition of FOXK2 effectively corrected miR-140-3p deficiency-induced impairment of ECs proliferation and in vitro angiogenesis. CONCLUSION Endothelial miR-140-3p positive regulates ECs function by directly targeting FOXK2 signaling. Deregulation of miR-140-3p/FOXK2 cascade by hyperglycemia thus serves as an important contributor to angiogenic dysfunction in DM.
Collapse
Affiliation(s)
- Dongni Wang
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China
| | - Haiyan Wang
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China
| | - Cun Liu
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China
| | - Xiaofeng Mu
- Department of Clinical Laboratory, Qingdao Central Hospital, Qingdao 266042, Shandong Province, China
| | - Shaoyun Cheng
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China.
| |
Collapse
|
22
|
Zhang Y, Liu S, Feng Q, Huang X, Wang X, Peng Y, Zhao Z, Liu Z. Perilaldehyde activates AMP-activated protein kinase to suppress the growth of gastric cancer via induction of autophagy. J Cell Biochem 2019; 120:1716-1725. [PMID: 30378150 DOI: 10.1002/jcb.27491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIM Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, is very critical to health maintenance, for a wide range of human chronic diseases, including cancers. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. This study was designed to explore whether PAH prevents gastric cancer growth and to investigate the molecular mechanism. METHODS AND RESULTS In cultured mouse gastric cancer cell line MFCs and human gastric cancer cell lines GC9811-P, PAH activated AMPK by increasing the Thr172 phosphorylation and activity in a time-/concentration-dependent manner. Furthermore, incubation of MFCs with PAH also increased autophagy as determined by monodansylcadaverine (MDC) staining, which was reversed by AMPK inhibitor compound C. PAH further decreased MFCs cell survival, which was abolished by compound C or autophagy inhibitor 3-Methyladenine (3-MA). In vivo studies indicated that 4-week administration of PAH (100 mg/kg/day) suppressed the growth of gastric cancer and increased the levels of autophagy-related proteins, including beclin-1, LC3-II, cathepsin, caspase-3, p53, and cathepsin in tumors isolated from the xenograft model of gastric cancer in mice. Moreover, these anticancer effects produced by PAH were abolished by coadministration of compound C or 3-MA in vivo. CONCLUSIONS PAH increases AMPK phosphorylation and activity to induce gastric cancer cell autophagy to inhibit the growth of gastric cancer. In perspective, therapy of PAH should be applied to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Suosi Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Qin Feng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiuyun Huang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiangyang Wang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Ya Peng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
23
|
Zhu ML, Wang G, Wang H, Guo YM, Song P, Xu J, Li P, Wang S, Yang L. Amorphous nano-selenium quantum dots improve endothelial dysfunction in rats and prevent atherosclerosis in mice through Na +/H + exchanger 1 inhibition. Vascul Pharmacol 2019; 115:26-32. [PMID: 30695730 DOI: 10.1016/j.vph.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
AIM Selenium, a trace element involved in important enzymatic activities inside the body, has protective effects against cardiovascular diseases including atherosclerosis. The safe dose of selenium in the organism is very narrow, limiting the supplementation of selenium in diet. The aim of this study is to explore whether selenium quantum dots (SeQDs) prevent atherosclerosis and to investigate the potential mechanisms. METHODS An amorphous form of SeQDs (A-SeQDs) and a crystalline form of SeQDs (C-SeQDs) were prepared through self-redox decomposition of selenosulfate precursor. Endothelial dysfunction was induced by balloon injury plus high fat diet (HFD) in rats. Atherosclerotic model was established by feeding Apoe-/- mice with HFD. RESULTS Administrations of A-SeQDs but not C-SeQDs dramatically improved endothelium-dependent relaxation, and accelerated would healing in primary endothelial cells isolated from rats, which was comprised by co-treatment of LiCl. Lentivirus-mediated knockdown of Na+/H+ exchanger 1 (NHE1) abolished LiCl-induced endothelial dysfunction in rats. In cultured endothelial cells, A-SeQDs, as well as cariporide, inhibited NHE1 activities, decreased intracellular pH value and Ca2+ concentration, and reduced calpain activity increased by ox-LDL. These protective effects of A-SeQDs were reversed by LiCl treatment in endothelial cells. In Apoe-/- mice feeding with HFD, A-SeQDs prevented endothelial dysfunction and reduced the size of atherosclerotic plaque in aortic arteries. Further, lentivirus-mediated NHE1 gene overexpression abolished the protective effects of A-SeQDs against endothelial dysfunction and atherosclerosis in Apoe-/- mice. CONCLUSION A-SeQDs prevents endothelial dysfunction and the growth of atherosclerotic plaque through NHE1 inhibition and subsequent inactivation of Ca2+/calpain signaling. Clinically, the administration of A-SeQDs is an effective approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - He Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Yu-Ming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Ping Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuangxi Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
24
|
Yin S, Bai W, Li P, Jian X, Shan T, Tang Z, Jing X, Ping S, Li Q, Miao Z, Wang S, Ou W, Fei J, Guo T. Berberine suppresses the ectopic expression of miR-133a in endothelial cells to improve vascular dementia in diabetic rats. Clin Exp Hypertens 2018; 41:708-716. [PMID: 30472896 DOI: 10.1080/10641963.2018.1545846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sen Yin
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenwu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tichao Shan
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Zhenyu Tang
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Xuejiao Jing
- Department of Healthcare, Qilu Hospital, Shandong University, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Shuangxi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wensheng Ou
- Department of Liver Disease, Chenzhou NO. 1 People’s Hospital, Chenzhou, China
| | - Jianchun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
25
|
Li CC, Qiu XT, Sun Q, Zhou JP, Yang HJ, Wu WZ, He LF, Tang CE, Zhang GG, Bai YP. Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K. J Cell Mol Med 2018; 23:1164-1173. [PMID: 30450725 PMCID: PMC6349160 DOI: 10.1111/jcmm.14016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.
Collapse
Affiliation(s)
- Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Peng Zhou
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Jun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wan-Zhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Fang He
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can-E Tang
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Sun Q, Wang K, Pan M, Zhou J, Qiu X, Wang Z, Yang Z, Chen Y, Shen H, Gu Q, Fang L, Zhang G, Bai Y. A minimally invasive approach to induce myocardial infarction in mice without thoracotomy. J Cell Mol Med 2018; 22:5208-5219. [PMID: 30589494 PMCID: PMC6201221 DOI: 10.1111/jcmm.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of morbidity and mortality in the world. Traditional method to induce MI by left coronary artery (LCA) ligation is typically performed by an invasive approach that requires ventilation and thoracotomy, causing serious injuries in animals undergoing this surgery. We attempted to develop a minimally invasive method (MIM) to induce MI in mice. Under the guide of ultrasound, LCA ligation was performed in mice without ventilation and chest-opening. Compared to sham mice, MIM induced MI in mice as determined by triphenyltetrazolium chloride staining and Masson staining. Mice with MIM surgery revealed the reductions of LVEF, LVFS, E/A and ascending aorta (AAO) blood flow, and the elevations of S-T segment and serum cTn-I levels at 24 post-operative hours. The effects of MI induced by MIM were comparable to the effects of MI produced by traditional method in mice. Importantly, MIM increased the survival rates and caused less inflammation after the surgery of LCA ligation, compared to the surgery of traditional method. Further, MIM induced angiogenesis and apoptosis in ischaemic hearts from mice at postoperative 28 days as similarly as traditional method did. Finally, the MIM model was able to develop into the myocardial ischaemia/reperfusion model by using a balloon catheter with minor modifications. The MI model is able to be efficiently induced by a minimally invasive approach in mice without ventilation and chest-opening. This new model is potentially to be used in studying ischaemia-related heart diseases.
Collapse
Affiliation(s)
- Quan Sun
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Kang‐Kai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Miao Pan
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Ji‐Peng Zhou
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Xue‐Ting Qiu
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen‐Yu Wang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen Yang
- Department of Hypertension and Vascular Diseasethe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yan Chen
- Department of HematologyXiangya HospitalCentral South UniversityChangshaChina
| | - Hong Shen
- Institute of Medical SciencesXiangya HospitalCentral South UniversityChangshaChina
| | - Qi‐Lin Gu
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Long‐Hou Fang
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Guo‐Gang Zhang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
27
|
Lu JX, Guo C, Ou WS, Jing Y, Niu HF, Song P, Li QZ, Liu Z, Xu J, Li P, Zhu ML, Yin YL. Citronellal prevents endothelial dysfunction and atherosclerosis in rats. J Cell Biochem 2018; 120:3790-3800. [PMID: 30367511 DOI: 10.1002/jcb.27660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis is a chronical inflammatory disease in arterial walls, which is involved in oxidative stress and endothelial dysfunction. Aromatherapy is one of the complementary therapies that use essential oils as the major therapeutic agents to treat several diseases. Citronellal (CT) is a monoterpene predominantly formed by the secondary metabolism of plants, producing antithrombotic, antiplatelet, and antihypertensive activities. AIM The aim of the present study is to explore whether aromatherapy with CT improves endothelial function to prevent the formation of atherosclerotic plaque in vivo. METHODS An AS model in carotid artery was induced by balloon injury and vitamin D3 injection in rats fed with a high-fat diet. The size of the carotid atherosclerotic plaque was determined by ultrasound, oil red, and hematoxylin-eosin staining. Endothelial function was assessed by measuring acetylcholine-induced vessel relaxation in an organ chamber. RESULTS Administrations of CT (50, 100, and 150 mg/kg) as well as lovastatin dramatically reduced the size of carotid atherosclerotic plaque in rats in a dose-dependent manner, compared with atherosclerotic rats fed with a high-fat diet plus balloon injury and vitamin D3. Mechanically, CT improved endothelial dysfunction, increased cell migration, and suppressed oxidative stress and inflammation in vascular endothelium in rats feeding on the high-fat diet plus balloon injury. Further, CT downregulated the protein levels of sodium-hydrogen exchanger 1 in rats with atherosclerosis. CONCLUSION CT improves endothelial dysfunction and prevents the growth of atherosclerosis in rats by reducing oxidative stress. Clinically, CT is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Jun-X Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-S Ou
- Department of Gastroenterology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yun Jing
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hui-F Niu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Z Li
- Department of Cardiology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jian Xu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-L Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-L Yin
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
28
|
Zhang ZM, Wang BX, Ou WS, Lv YH, Li MM, Miao Z, Wang SX, Fei JC, Guo T. Administration of losartan improves aortic arterial stiffness and reduces the occurrence of acute coronary syndrome in aged patients with essential hypertension. J Cell Biochem 2018; 120:5713-5721. [PMID: 30362602 DOI: 10.1002/jcb.27856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUNDS AND AIMS Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blocker losartan is potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of losartan in aged patients with essential hypertension are not entirely investigated. METHODS The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. RESULTS In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared with patients without essential hypertension. Logistic regression analysis indicated that age, hypertension duration, and losartan treatment are risk factors of arterial stiffness. In a perspective study, long-term administration of losartan (50 mg/d) remarkably reduced PWV in aged patients with essential hypertension. In a longitudinal study, PWV is an independent predictor of the occurrence of acute coronary syndrome (ACS) in elderly patients with essential hypertension by using multivariate analysis. Further, the ACS occurrence was reduced by long-term administration of losartan in aged patients with essential hypertension, compared with the old hypertensive patients without taking losartan. CONCLUSION Losartan treatment is a negative risk factor of arterial stiffness and reduces the risk of ACS in aged patients with essential hypertension.
Collapse
Affiliation(s)
- Zhi-Mian Zhang
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Bing-Xiang Wang
- Department of Orthopedics, Provincial Hospital of Shandong, Jinan, China
| | - Wen-Sheng Ou
- Department of Liver Disease, Chenzhou No.1 People s Hospital, Chenzhou, China
| | - Yan-Hong Lv
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Min Li
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Chun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Zhang HM, Liu MY, Lu JX, Zhu ML, Jin Q, Ping S, Li P, Jian X, Han YL, Wang SX, Li XY. Intracellular acidosis via activation of Akt-Girdin signaling promotes post ischemic angiogenesis during hyperglycemia. Int J Cardiol 2018; 277:205-211. [PMID: 30316647 DOI: 10.1016/j.ijcard.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
AIMS The impaired angiogenesis is the major cause of diabetic delayed wound healing. The molecular insight remains unknown. Previous study has shown that high glucose (HG) activates Na+/H+ exchanger 1 (NHE1) and induces intracellular alkalinization, resulting in endothelial dysfunction. The aim of this study is to investigate whether activation of NHE1 in endothelial cells by HG damages the angiogenesis in vitro and in vivo. METHODS AND RESULTS We used western blot to detect the phosphorylations of both Akt and Girdin, and pH-sensitive BCECF fluorescence to assay NHE1 activity and pHi value, respectively. The angiogenesis was evaluated by measuring the number of tube formation in vitro, and blood perfusion by laser doppler and neovascularization by staining CD31 in vivo. Our results indicated that induction of intracellular acidosis (IA) increased p-Akt and p-Girdin in human umbilical vein endothelial cells (HUVEC). HG activated NHE1 and increased pHi value in a time-dependent manner, associated with the decreased phosphorylations of both Akt and Gridin, while inhibition of NHE1 by amiloride abolished the HG-induced reductions of p-Akt and p-Girdin. However, silence of Akt by siRNA transfection or pharmacological inhibitors (wortmannin and LY294002) bypassed IA-induced Girdin phosphorylation. Overexpression of constitutively active Akt abolished HG-reduced Girdin phosphorylation. In addition, upregulation of Akt or inhibition of NHE1 remarkably attenuated HG-impaired tube formation in HUVEC. In vivo study revealed that amiloride dramatically rescued hyperglycemia-delayed blood perfusion and neovascularization by augmenting ischemia-induced angiogenesis. CONCLUSION IA promotes ischemia-induced angiogenesis via Akt-dependent Girdin phosphorylation in diabetic mice.
Collapse
Affiliation(s)
- Hong-Ming Zhang
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Mo-Yan Liu
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Jun-Xiu Lu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Qun Jin
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-Ling Han
- Department of Cardiology, General Hospital of Shenyang Military Command, Shenyang, China.
| | - Shuang-Xi Wang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiao-Yan Li
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China.
| |
Collapse
|
30
|
Zhou SN, Lu JX, Wang XQ, Shan MR, Miao Z, Pan GP, Jian X, Li P, Ping S, Pang XY, Bai YP, Liu C, Wang SX. S-Nitrosylation of Prostacyclin Synthase Instigates Nitrate Cross-Tolerance In Vivo. Clin Pharmacol Ther 2018; 105:201-209. [PMID: 29672839 DOI: 10.1002/cpt.1094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Development of nitrate tolerance is a major drawback to nitrate therapy. Prostacyclin (PGI2) is a powerful vasodilator produced from prostaglandin (PGH2) by prostacyclin synthase (PGIS) in endothelial cells. This study aimed to determine the role of PGIS S-nitrosylation in nitrate tolerance induced by nitroglycerin (GTN). In endothelial cells, GTN increased PGIS S-nitrosylation and disturbed PGH2 metabolism, which were normalized by mutants of PGIS cysteine 231/441 to alanine (C231/441A). Clearance of nitric oxide by carboxy-PTIO or inhibition of S-nitrosylation by N-acetyl-cysteine decreased GTN-induced PGIS S-nitrosylation. Enforced expression of mutated PGIS with C231/441A markedly abolished GTN-induced PGIS S-nitrosylation and nitrate cross-tolerance in Apoe-/- mice. Inhibition of cyclooxygenase 1 by aspirin, supplementation of PGI2 by beraprost, and inhibition of PGIS S-nitrosylation by N-acetyl-cysteine improved GTN-induced nitrate cross-tolerance in rats. In patients, increased PGIS S-nitrosylation was associated with nitrate tolerance. In conclusion, GTN induces nitrate cross-tolerance through PGIS S-nitrosylation at cysteine 231/441.
Collapse
Affiliation(s)
- Sheng-Nan Zhou
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Jun-Xiu Lu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xue-Qing Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Mei-Rong Shan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Zhang Miao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Pin Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Song Ping
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xin-Yan Pang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China.,College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|