1
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
2
|
Blaser MC, Bäck M, Lüscher TF, Aikawa E. Calcific aortic stenosis: omics-based target discovery and therapy development. Eur Heart J 2025; 46:620-634. [PMID: 39656785 PMCID: PMC11825147 DOI: 10.1093/eurheartj/ehae829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Calcific aortic valve disease (CAVD) resulting in aortic stenosis (AS) is the most common form of valvular heart disease, affecting 2% of those over age 65. Those who develop symptomatic severe AS have an average further lifespan of <2 years without valve replacement, and three-quarters of these patients will develop heart failure, undergo valve replacement, or die within 5 years. There are no approved pharmaceutical therapies for AS, due primarily to a limited understanding of the molecular mechanisms that direct CAVD progression in the complex haemodynamic environment. Here, advances in efforts to understand the pathogenesis of CAVD and to identify putative drug targets derived from recent multi-omics studies [including (epi)genomics, transcriptomics, proteomics, and metabolomics] of blood and valvular tissues are reviewed. The recent explosion of single-cell omics-based studies in CAVD and the pathobiological and potential drug discovery insights gained from the application of omics to this disease area are a primary focus. Lastly, the translation of knowledge gained in valvular pathobiology into clinical therapies is addressed, with a particular emphasis on treatment regimens that consider sex-specific, renal, and lipid-mediated contributors to CAVD, and ongoing Phase I/II/III trials aimed at the prevention/treatment of AS are described.
Collapse
Affiliation(s)
- Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, 17th Floor, Boston, MA 02115, USA
| | - Magnus Bäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Valvular and Coronary Disease, Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, 17th Floor, Boston, MA 02115, USA
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 741, Boston, MA 02115, USA
| |
Collapse
|
3
|
Jeepipalli S, Gurusamy P, Luz Martins AR, Colella E, Nadakuditi SR, Desaraju T, Yada A, Onime J, William J, Bhattacharyya I, Chan EKL, Kesavalu L. Altered microRNA Expression Correlates with Reduced TLR2/4-Dependent Periodontal Inflammation and Bone Resorption Induced by Polymicrobial Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632435. [PMID: 39829929 PMCID: PMC11741372 DOI: 10.1101/2025.01.10.632435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health. Many factors modulate the TLR-mediated signaling pathway, including specific miRNAs. The present study was designed to characterize the function of TLR2/4 signaling to the miRNA profile after polybacterial infection with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in C57BL6/J wild-type, TLR2 -/- , and TLR4 -/- mice (n=16/group) using RT-qPCR. The selection of 15 dominant miRNAs for RT-qPCR analysis was based on prior NanoString global miRNA expression profiling in response to polymicrobial and monobacterial infection. Polybacterial infections established gingival colonization in wild-type, TLR2 -/- and TLR4 -/- mice with induction of bacterial-specific IgG. A significant reduction in alveolar bone resorption (ABR) and gingival inflammation was observed in the mandibles of TLR2/4 -/- mice compared to C57BL6/J wild-type mice ( p <0.0001). Periodontal bacteria disseminated from gingival tissue to the multiple organs in wild-type and TLR2 -/- mice (heart, lungs, brain, kidney) and limited to heart ( F. nucleatum ), lungs ( P. gingivalis ), kidney ( T. forsythia ) in TLR4 -/- mice. The diagnostic potential of miRNAs was assessed by receiver operating characteristic (ROC) curves. Among 15 miRNAs, three were upregulated in C57BL6/J wild-type mice, two in TLR2 -/- , and seven in TLR4 -/- mice. Notably, the anti-inflammatory miR-146a-5p was consistently upregulated in all the mice. Additionally, miR-15a-5p was upregulated in wild-type and TLR2 -/- mice. let-7c-5p was upregulated in TLR4 -/- mice and downregulated in the wild-type mice. Multi-species oral bacterial infection alters the TLR2/4 signaling pathways by modulating the expression of several potential biomarker miRNAs in periodontium. IMPORTANCE Periodontitis is the most prevalent chronic immuno-infectious multispecies dysbiotic disease of the oral cavity. The Toll-like receptors (TLR) provide the first line of defense, one of the best-characterized pathogens-detection systems and play a vital role in recognizing multiple microbial products. Multispecies infection with periodontal bacteria S. gordonii, F. nucleatum, P. gingivalis, T. denticola, and T. forsythia induced gingival inflammation, alveolar bone resorption (ABR) and miRNA expression in the C57BL6/J wild-type mice and whereas infection did not increase significant ABR in the TLR2/4 deficient mice. Among the 15 miRNAs investigated, miR-146a - 5p, miR-15a-5p were upregulated in wild-type and TLR2 -/- mice and miR-146a-5p, miR-30c-5p, let-7c-5p were upregulated in the TLR4 -/- mice compared to sham-infected controls. Notably, inflammatory miRNA miR-146a-5p was upregulated uniquely among the three different infection groups. The upregulated miRNAs (miR-146a, miR-15-a-5p, let-7c-5p) and downregulated miRNAs could be markers for TLRs-mediated induction of periodontitis.
Collapse
|
4
|
Wang Y, Xiong J, Ouyang K, Ling M, Luo J, Sun J, Xi Q, Chen T, Zhang Y. Extracellular vesicles: From large-scale production and engineering to clinical applications. J Tissue Eng 2025; 16:20417314251319474. [PMID: 40322740 PMCID: PMC12048759 DOI: 10.1177/20417314251319474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising strategy for treating a wide spectrum of pathologies, as they can deliver their cargo to recipient cells and regulate the signaling pathway of these cells to modulate their fate. Despite the great potential of EVs in clinical applications, their low yield and the challenges of cargo loading remain significant obstacles, hindering their transition from experimental research to clinical practice. Therefore, promoting EV release and enhancing EV cargo-loading are promising fields with substantial research potential and broad application prospects. In this review, we summarize the clinical applications of EVs, the methods and technologies for their large-scale production, engineering, and modification, as well as the challenges that must be addressed during their development. We also discuss the future perspectives of this exciting field of research to facilitate its transformation from bench to clinical reality.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiali Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kun Ouyang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingwang Ling
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Liang R, Abudurexiti N, Wu J, Ling J, Peng Z, Yuan H, Wen S. Exosomes and miRNAs in Cardiovascular Diseases and Transcatheter Pulmonary Valve Replacement: Advancements, Gaps and Perspectives. Int J Mol Sci 2024; 25:13686. [PMID: 39769447 PMCID: PMC11727898 DOI: 10.3390/ijms252413686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
As an important carrier of intercellular information transmission, exosomes regulate the physiological and pathological state of local or distant cells by carrying a variety of signal molecules such as microRNAs (miRNAs). Current research indicates that exosomes and miRNAs can serve as biomarkers and therapeutic targets for a variety of cardiovascular diseases (CVDs). This narrative review summarizes the research progress of exosomes and their miRNAs in CVDs, particularly in pulmonary valve diseases (PVDs), and, for the first time, explores their potential associations with transcatheter pulmonary valve replacement (TPVR). Currently, miRNAs play a crucial role in determining the optimal timing for TPVR intervention, and they demonstrate broad application prospects in post-TPVR right ventricular (RV) remodeling, treatment, and prognosis monitoring. However, the association between exosomes and miRNAs and the development of PVDs, particularly pulmonary regurgitation, remains unclear. The molecular mechanisms of exosomes and miRNAs in PVDs and RV remodeling after TPVR have not been fully elucidated, and their application in postoperative treatment following TPVR is still in its infancy. Future research must focus on advancing fundamental studies, validating biomarkers, and enhancing clinical applications to achieve significant breakthroughs.
Collapse
Affiliation(s)
- Runzhang Liang
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Naijimuding Abudurexiti
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Jiaxiong Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Jing Ling
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Zirui Peng
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Haiyun Yuan
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| | - Shusheng Wen
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; (R.L.); (J.W.)
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (N.A.); (J.L.); (Z.P.)
| |
Collapse
|
6
|
Ng YH, Koay YC, Marques FZ, Kaye DM, O’Sullivan JF. Leveraging metabolism for better outcomes in heart failure. Cardiovasc Res 2024; 120:1835-1850. [PMID: 39351766 PMCID: PMC11630082 DOI: 10.1093/cvr/cvae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 12/11/2024] Open
Abstract
Whilst metabolic inflexibility and substrate constraint have been observed in heart failure for many years, their exact causal role remains controversial. In parallel, many of our fundamental assumptions about cardiac fuel use are now being challenged like never before. For example, the emergence of sodium-glucose cotransporter 2 inhibitor therapy as one of the four 'pillars' of heart failure therapy is causing a revisit of metabolism as a key mechanism and therapeutic target in heart failure. Improvements in the field of cardiac metabolomics will lead to a far more granular understanding of the mechanisms underpinning normal and abnormal human cardiac fuel use, an appreciation of drug action, and novel therapeutic strategies. Technological advances and expanding biorepositories offer exciting opportunities to elucidate the novel aspects of these metabolic mechanisms. Methodologic advances include comprehensive and accurate substrate quantitation such as metabolomics and stable-isotope fluxomics, improved access to arterio-venous blood samples across the heart to determine fuel consumption and energy conversion, high quality cardiac tissue biopsies, biochemical analytics, and informatics. Pairing these technologies with recent discoveries in epigenetic regulation, mitochondrial dynamics, and organ-microbiome metabolic crosstalk will garner critical mechanistic insights in heart failure. In this state-of-the-art review, we focus on new metabolic insights, with an eye on emerging metabolic strategies for heart failure. Our synthesis of the field will be valuable for a diverse audience with an interest in cardiac metabolism.
Collapse
Affiliation(s)
- Yann Huey Ng
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC 3800, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, VIC 3800, Australia
| | - John F O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room 3E71 D17, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Office 3E72, Camperdown, NSW 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Department of Medicine, Technische Univeristat Dresden, 01062 Dresden, Germany
| |
Collapse
|
7
|
Hu Q, Wu X, Guo C, Wang T, Guo H, Wang J, Wang B, Cui W, Bai H, Zhou J, Li L, Han L, Cao L, Ge S, Gao G, Wang T, Wu Z, Guo W, Qu Y, Feng J, Liu H. Astrocyte-neuron crosstalk through extracellular vesicle-shuttled miRNA-382-5p promotes traumatic brain injury. Exp Mol Med 2024; 56:2642-2658. [PMID: 39617787 DOI: 10.1038/s12276-024-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024] Open
Abstract
Although astrocytes undergo functional changes in response to brain injury and may be the driving force of subsequent neuronal death, the underlying mechanisms remain incompletely elucidated. Here, we showed that extracellular vesicle (EV)-shuttled miRNA-382-5p may serve as a biomarker for the severity of traumatic brain injury (TBI), as the circulating EV-miRNA-382-5p level was significantly increased in both human patients and TBI model mice. Mechanistically, astrocyte-derived EVs delivered the shuttled miRNA-382-5p to mediate astrocyte-neuron communication, which promoted neuronal mitochondrial dysfunction by inhibiting the expression of optic atrophy-1 (OPA1). Consistent with these findings, genetic ablation of neuronal OPA1 exacerbated mitochondrial damage and neuronal apoptosis in response to TBI. Moreover, engineered RVG-miRNA-382-5p inhibitor-EVs, which can selectively deliver a miRNA-382-5p inhibitor to neurons, significantly attenuated mitochondrial damage and improved neurological function after TBI. Taken together, our data suggest that EV-shuttled miRNA-382-5p may be a critical mediator of astrocyte-induced neurotoxicity under pathological conditions and that targeting miRNA-382-5p-OPA1 signaling has potential for clinical translation in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Chengxuan Guo
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Tinghao Wang
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Bodong Wang
- Department of Neurosurgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Hao Bai
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Jinpeng Zhou
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Leiyang Li
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Liying Han
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Liang Cao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Ting Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyong Wu
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China.
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China.
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, Xi'an, Shaanxi, China.
- Shaanxi Clinical Research Center for Neurosurgical Diseases, Xi'an, Shaanxi, China.
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Sharma S, Artner T, Preissner KT, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free RNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118584. [PMID: 39306538 DOI: 10.1016/j.atherosclerosis.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024]
Abstract
Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Klaus T Preissner
- Kerckhoff-Heart Research Institute, Department Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Long M, Cheng M. Small extracellular vesicles associated miRNA in myocardial fibrosis. Biochem Biophys Res Commun 2024; 727:150336. [PMID: 38959731 DOI: 10.1016/j.bbrc.2024.150336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.
Collapse
Affiliation(s)
- Minwen Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Liu F, Liao H, Fang Z, Tang Q, Liu Y, Li C, Zhou C, Zhang Y, Shen J. MicroRNA-6954-3p Downregulation Contributes to Orofacial Neuropathic Pain in Mice Via Targeting Voltage-Gated Sodium Channel β2 Subunit Protein. THE JOURNAL OF PAIN 2024; 25:104598. [PMID: 38866121 DOI: 10.1016/j.jpain.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
The voltage-gated sodium channel β2 subunit protein (SCN2B) plays a crucial role in neuropathic pain. However, the role and mechanisms of SCN2B in orofacial neuropathic pain are still unclear. This study aimed to investigate the upstream regulatory mechanisms of SCN2B in the trigeminal ganglion (TG) underlying orofacial neuropathic pain. Chronic constriction injury of the infraorbital nerve (CCI-ION) of mice was performed to establish the model of orofacial neuropathic pain. Von Frey filament test was performed to detect the head withdrawal threshold (HWT) of mice. Quantitative reverse transcription-polymerase chain, western blotting (WB), fluorescence in situ hybridization, and immunofluorescence (IF) staining were used to detect the expression and distribution of SCN2B and miR-6954-3p in the TG of mice. A luciferase activity assay was carried out to prove the binding between SCN2B messenger ribonucleic acid (mRNA) and miR-6954-3p. After the CCI-ION surgery, the levels of Scn2b mRNA and protein significantly increased and miR-6954-3p decreased in the TG of mice with decreasing HWT. IF staining revealed that SCN2B was expressed specifically in the TG neurons. Silencing SCN2B in the TG of CCI-ION mice significantly increased the HWT. Importantly, the 3'-untranslated region of Scn2b mRNA was proved to bind with miR-6954-3p. Fluorescence in situ hybridization and IF staining demonstrated that miR-6954-3p was expressed in TG neurons and co-expressed with SCN2B. Furthermore, intraganglionic injection of miR-6954-3p agomir into the TG of CCI-ION mice resulted in the downregulation of SCN2B and increased the HWT. These findings suggest that the downregulation of miR-6954-3p in the TG promotes orofacial neuropathic pain by promoting SCN2B expression following trigeminal nerve injury. PERSPECTIVE: This study points to the important role of SCN2B in orofacial neuropathic pain. Furthermore, miR-6954-3p is proven to regulate the expression of SCN2B by binding to the 3'-untranslated region of Scn2b mRNA. These findings indicate that SCN2B and miR-6954-3p are potential therapeutic targets for the treatment of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Honglin Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhonghan Fang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qingfeng Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yajing Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chen Zhou
- Laboratory of Anesthesia and Critical Care Medicine & Translational Neuroscience Center & West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Keles M, Grein S, Froese N, Wirth D, Trogisch FA, Wardman R, Hemanna S, Weinzierl N, Koch PS, Uhlig S, Lomada S, Dittrich GM, Szaroszyk M, Haustein R, Hegermann J, Martin-Garrido A, Bauersachs J, Frank D, Frey N, Bieback K, Cordero J, Dobreva G, Wieland T, Heineke J. Endothelial derived, secreted long non-coding RNAs Gadlor1 and Gadlor2 aggravate cardiac remodeling. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102306. [PMID: 39281699 PMCID: PMC11402397 DOI: 10.1016/j.omtn.2024.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Pathological cardiac remodeling predisposes individuals to developing heart failure. Here, we investigated two co-regulated long non-coding RNAs (lncRNAs), termed Gadlor1 and Gadlor2, which are upregulated in failing hearts of patients and mice. Cardiac overexpression of Gadlor1 and Gadlor2 aggravated myocardial dysfunction and enhanced hypertrophic and fibrotic remodeling in mice exposed to pressure overload. Compound Gadlor1/2 knockout (KO) mice showed markedly reduced myocardial hypertrophy, fibrosis, and dysfunction, while exhibiting increased angiogenesis during short and prolonged periods of pressure overload. Paradoxically, Gadlor1/2 KO mice suffered from sudden death during prolonged overload, possibly due to cardiac arrhythmia. Gadlor1 and Gadlor2, which are mainly expressed in endothelial cells (ECs) in the heart, where they inhibit pro-angiogenic gene expression, are strongly secreted within extracellular vesicles (EVs). These EVs transfer Gadlor lncRNAs to cardiomyocytes, where they bind and activate calmodulin-dependent kinase II, and impact pro-hypertrophic gene expression and calcium homeostasis. Therefore, we reveal a crucial lncRNA-based mechanism of EC-cardiomyocyte crosstalk during heart failure, which could be specifically modified in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Merve Keles
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Steve Grein
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Model Systems for Infection and Immunity, 38124 Braunschweig, Germany
| | - Felix A Trogisch
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Rhys Wardman
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shruthi Hemanna
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Nina Weinzierl
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Uhlig
- CFPM, FlowCore, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Santosh Lomada
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Experimental Pharmacology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Gesine M Dittrich
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Malgorzata Szaroszyk
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Ricarda Haustein
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Derk Frank
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- DZHK, partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Norbert Frey
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Karen Bieback
- CFPM, FlowCore, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Julio Cordero
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Gergana Dobreva
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Thomas Wieland
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Experimental Pharmacology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Lee DY. Emerging Circulating Biomarkers for Enhanced Cardiovascular Risk Prediction. J Lipid Atheroscler 2024; 13:262-279. [PMID: 39355403 PMCID: PMC11439747 DOI: 10.12997/jla.2024.13.3.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 10/03/2024] Open
Abstract
Cardiovascular disease (CVD) continues to be the primary cause of mortality worldwide, underscoring the importance of identifying additional cardiovascular risk factors. The consensus is that lipid levels alone do not fully reflect the status of atherosclerosis, thus necessitating extensive research on cardiovascular biomarkers. This review encompasses a wide spectrum of methodologies for identifying novel risk factors or biomarkers for CVD. Inflammation, oxidative stress, plaque instability, cardiac remodeling, and fibrosis play pivotal roles in CVD pathogenesis. We introduce and discuss several promising biomarkers-namely, osteocalcin, angiogenin, lipoprotein-associated phospholipase A2, growth differentiation factor 15, galectin-3, growth stimulation expressed gene 2, and microRNAs, all of which have potential implications in the assessment and management of cardiovascular risk.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Zhang L, Wang M, Liao R, Han Q. Clinical Significance and Potential Mechanism of Circ_00008842 in Acute Myocardial Infarction. Int Heart J 2024; 65:703-712. [PMID: 39010224 DOI: 10.1536/ihj.24-009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This study aimed to evaluate the clinical value of circ_0008842 in acute myocardial infarction (AMI) and explore the potential mechanisms.GSE149051 and GSE160717 datasets analyze common differentially expressed circRNAs (coDEcircRNA) in AMI. RT-qPCR analysis of circ_0008842 mRNA levels in patients with AMI. ROC curve assesses the diagnostic value of circ_0008842 in AMI. A cell model of AMI was constructed by hypoxia-reoxygenation (H/R) -induced H9c2. Cell viability and apoptosis were examined by CCK-8 and flow cytometry. Enzyme-linked immunosorbent assay was used to explore myocardial injury markers CK-MB and cTnI secretion. Dual luciferase reporter assays validate circ_0008842 binding to miRNA. PPI network and gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment reveal potential functions and pathways of targets from the miRNA in AMI.circ_0008842 is recognized as coDEcircRNA in AMI-related databases. circ_0008842 was greatly lower and miR-574-5p was significantly higher in patients with AMI than in healthy individuals. miR-574-5p is a target of circ_0008842. The sensitivity and specificity of circ_0008842 for diagnosing patients with AMI were 87.40% and 83.50%, respectively. Overexpression of circ_0008842 inhibited H/R induced apoptosis, increased cell viability, and decreased CK-MB and cTnI levels, which were partially abrogated by overexpression of miR-574-5p. Calmodulin-like protein 4 (CALML4) was the most connected hub gene in the PPI network of miR-574-5p predicted target genes.circ_0008842 is a diagnostic biomarker for AMI and participates in myocardial injury in AMI by regulating miR-574-5p. Our study provides new insights into the diagnosis for AMI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No.1 People's Hospital
| | - Ming Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Jiujiang University
| | - Ran Liao
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No.1 People's Hospital
| | - Qing Han
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No.1 People's Hospital
| |
Collapse
|
14
|
Mallaredy V, Roy R, Cheng Z, Gurrala CT, Benedict C, Truongcao M, Joladarashi D, Magadum A, Ibetti J, Cimini M, Gonzalez C, Garikipati VNS, Koch WJ, Kishore R. Tipifarnib Reduces Extracellular Vesicles and Protects From Heart Failure. Circ Res 2024; 135:280-297. [PMID: 38847080 PMCID: PMC11223950 DOI: 10.1161/circresaha.123.324110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.
Collapse
Affiliation(s)
- Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Rajika Roy
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Zhongjian Cheng
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Charan Thej Gurrala
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Jessica Ibetti
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
| | - Venkata Naga Srikanth Garikipati
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Walter J. Koch
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| |
Collapse
|
15
|
Yue Z, Cheng K. "Tip" the Scale of Cardiac Repair via Reducing Pathological Extracellular Vesicles. Circ Res 2024; 135:298-300. [PMID: 38963869 PMCID: PMC11285627 DOI: 10.1161/circresaha.124.324955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Affiliation(s)
- Zhang Yue
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
- Department of Cardiovascular Surgery, Union Hospital,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University,
New York, NY, USA
| |
Collapse
|
16
|
Wang QL, Meng LC, Zhao Z, Du JF, Li P, Jiang Y, Li HJ. Ultrasensitive upconverting nanoprobes for in situ imaging of drug-induced liver injury using miR-122 as the biomarker. Talanta 2024; 274:126108. [PMID: 38640602 DOI: 10.1016/j.talanta.2024.126108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/09/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Drug-induced liver injury (DILI) is a frequent adverse drug reaction. The current clinical diagnostic methods are inadequate for accurate and early detection of DILI due to the lack of effective diagnostic biomarkers. Hepatocyte-specific miR-122 is released from injured hepatocytes promptly and its efflux is significantly correlated with the progression of DILI. Therefore, achieving precise in situ detection of miR-122 with high sensitivity is vital for early visualization of DILI. Herein, a new nanoprobe, consisting of miR-122 aptamer, upconversion nanoparticles (UCNPs) and Prussian blue nanoparticles (PBNPs) was introduced for the early and sensitive detection of DILI in situ. As the nanoprobes reached in the liver, miR-122 aptamer-based entropy-driven strand displacement (ESDR) signal amplification reaction was triggered and luminescence resonance energy transfer (LRET) between UCNPs and PBNPs was responded to achieve the high-fidelity detection of DILI. A negative correlation was observed between the intensity of upconversion luminescence (UCL) and the concentration of miR-122. UCL imaging conducted both in vivo and ex vivo indicated that a reduction in miR-122 concentration led to an increase in UCL intensity, revealing a precise state of DILI. The detection technique demonstrated a positive correlation between signal intensity and severity, offering a more straightforward and intuitive method of visualizing DILI.
Collapse
Affiliation(s)
- Qiao-Lei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Chang Meng
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing, China
| | - Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-Fa Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Caller T, Rotem I, Shaihov-Teper O, Lendengolts D, Schary Y, Shai R, Glick-Saar E, Dominissini D, Motiei M, Katzir I, Popovtzer R, Nahmoud M, Boomgarden A, D'Souza-Schorey C, Naftali-Shani N, Leor J. Small Extracellular Vesicles From Infarcted and Failing Heart Accelerate Tumor Growth. Circulation 2024; 149:1729-1748. [PMID: 38487879 PMCID: PMC11220912 DOI: 10.1161/circulationaha.123.066911] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/20/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.
Collapse
Affiliation(s)
- Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Itai Rotem
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Olga Shaihov-Teper
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Daria Lendengolts
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Yeshai Schary
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Ruty Shai
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Cancer Research Center (R.S.), Sheba Medical Center, Tel Hashomer, Israel
| | - Efrat Glick-Saar
- Cancer Research Center and Wohl Centre for Translational Medicine (E.G.-S., D.D.), Sheba Medical Center, Tel Hashomer, Israel
| | - Dan Dominissini
- Cancer Research Center and Wohl Centre for Translational Medicine (E.G.-S., D.D.), Sheba Medical Center, Tel Hashomer, Israel
| | - Menachem Motiei
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | - Idan Katzir
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | - Rachela Popovtzer
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | | | - Alex Boomgarden
- Department of Biological Sciences, University of Notre Dame, IN (A.B., C.D'S.-S.)
| | | | - Nili Naftali-Shani
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
18
|
Rizzuto AS, Gelpi G, Mangini A, Carugo S, Ruscica M, Macchi C. Exploring the role of epicardial adipose-tissue-derived extracellular vesicles in cardiovascular diseases. iScience 2024; 27:109359. [PMID: 38510143 PMCID: PMC10951984 DOI: 10.1016/j.isci.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat depot located between the myocardium and the visceral layer of the epicardium, which, owing to its location, can influence surrounding tissues and can act as a local transducer of systemic inflammation. The mechanisms upon which such influence depends on are however unclear. Given the role EAT undoubtedly has in the scheme of cardiovascular diseases (CVDs), understanding the impact of its cellular components is of upmost importance. Extracellular vesicles (EVs) constitute promising candidates to fill the gap in the knowledge concerning the unexplored mechanisms through which EAT promotes onset and progression of CVDs. Owing to their ability of transporting active biomolecules, EAT-derived EVs have been reported to be actively involved in the pathogenesis of ischemia/reperfusion injury, coronary atherosclerosis, heart failure, and atrial fibrillation. Exploring the precise functions EVs exert in this context may aid in connecting the dots between EAT and CVDs.
Collapse
Affiliation(s)
| | - Guido Gelpi
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Mangini
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 283.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Liu Y, Zhong C, Chen S, Xue Y, Wei Z, Dong L, Kang L. Circulating exosomal mir-16-2-3p is associated with coronary microvascular dysfunction in diabetes through regulating the fatty acid degradation of endothelial cells. Cardiovasc Diabetol 2024; 23:60. [PMID: 38336726 PMCID: PMC10858495 DOI: 10.1186/s12933-024-02142-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a frequent complication of diabetes mellitus (DM) characterized by challenges in both diagnosis and intervention. Circulating levels of microRNAs are increasingly recognized as potential biomarkers for cardiovascular diseases. METHODS Serum exosomes from patients with DM, DM with coronary microvascular dysfunction (DM-CMD) or DM with coronary artery disease (DM-CAD) were extracted for miRNA sequencing. The expression of miR-16-2-3p was assessed in high glucose-treated human aortic endothelial cells and human cardiac microvascular endothelial cells. Fluorescence in situ hybridization (FISH) was used to detect miR-16-2-3p within the myocardium of db/db mice. Intramyocardial injection of lentivirus overexpressing miR-16-2-3p was used to explore the function of the resulting gene in vivo. Bioinformatic analysis and in vitro assays were carried out to explore the downstream function and mechanism of miR-16-2-3p. Wound healing and tube formation assays were used to explore the effect of miR-16-2-3p on endothelial cell function. RESULTS miR-16-2-3p was upregulated in circulating exosomes from DM-CMD, high glucose-treated human cardiac microvascular endothelial cells and the hearts of db/db mice. Cardiac miR-16-2-3p overexpression improved cardiac systolic and diastolic function and coronary microvascular reperfusion. In vitro experiments revealed that miR-16-2-3p could regulate fatty acid degradation in endothelial cells, and ACADM was identified as a potential downstream target. MiR-16-2-3p increased cell migration and tube formation in microvascular endothelial cells. CONCLUSIONS Our findings suggest that circulating miR-16-2-3p may serve as a biomarker for individuals with DM-CMD. Additionally, miR-16-2-3p appears to alleviate coronary microvascular dysfunction in diabetes by modulating ACADM-mediated fatty acid degradation in endothelial cells.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Chongxia Zhong
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Shan Chen
- Department of General Medicine, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Yanan Xue
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Zhonghai Wei
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Li Dong
- Department of Geriatrics, Nanjing Central Hospital, Nanjing, 210018, China.
| | - Lina Kang
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China.
| |
Collapse
|
21
|
Wu X, Liu H, Hu Q, Wang J, Zhang S, Cui W, Shi Y, Bai H, Zhou J, Han L, Li L, Wu Y, Luo J, Wang T, Guo C, Wang Q, Ge S, Qu Y. Astrocyte-Derived Extracellular Vesicular miR-143-3p Dampens Autophagic Degradation of Endothelial Adhesion Molecules and Promotes Neutrophil Transendothelial Migration after Acute Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305339. [PMID: 38044319 PMCID: PMC10837358 DOI: 10.1002/advs.202305339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Pivotal roles of extracellular vesicles (EVs) in the pathogenesis of central nervous system (CNS) disorders including acute brain injury are increasingly acknowledged. Through the analysis of EVs packaged miRNAs in plasma samples from patients with intracerebral hemorrhage (ICH), it is discovered that the level of EVs packaged miR-143-3p (EVs-miR-143-3p) correlates closely with perihematomal edema and neurological outcomes. Further study reveals that, upon ICH, EVs-miR-143-3p is robustly secreted by astrocytes and can shuttle into brain microvascular endothelial cells (BMECs). Heightened levels of miR-143-3p in BMECs induce the up-regulated expression of cell adhesion molecules (CAMs) that bind to circulating neutrophils and facilitate their transendothelial cell migration (TEM) into brain. Mechanism-wise, miR-143-3p directly targets ATP6V1A, resulting in impaired lysosomal hydrolysis ability and reduced autophagic degradation of CAMs. Importantly, a VCAM-1-targeting EVs system to selectively deliver miR-143-3p inhibitor to pathological BMECs is created, which shows satisfactory therapeutic effects in both ICH and traumatic brain injury (TBI) mouse models. In conclusion, the study highlights the causal role of EVs-miR-143-3p in BMECs' dysfunction in acute brain injury and demonstrates a proof of concept that engineered EVs can be devised as a potentially applicable nucleotide drug delivery system for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Xun Wu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Haixiao Liu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Qing Hu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Jin Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Shenghao Zhang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Wenxing Cui
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yingwu Shi
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Hao Bai
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Jinpeng Zhou
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Liying Han
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Leiyang Li
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yang Wu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebei050000China
| | - Jianing Luo
- Department of NeurosurgeryWest Theater General HospitalChengduSichuan610083China
| | - Tinghao Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Chengxuan Guo
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Qiang Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Shunnan Ge
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yan Qu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| |
Collapse
|
22
|
Ding W, Zhang X, Xiao D, Chang W. Decreased in n-3 DHA enriched triacylglycerol in small extracellular vesicles of diabetic patients with cardiac dysfunction. J Diabetes 2023; 15:1070-1080. [PMID: 37593852 PMCID: PMC10755605 DOI: 10.1111/1753-0407.13457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE Diabetic cardiomyopathy is the leading cause of death in diabetic patients, and the mechanism by which factors other than hyperglycemia contribute to the development of diabetic cardiomyopathy is unknown. Serum small extracellular vesicles (sEVs) carry bioactive proteins or nuclei, which enter into remote tissues and modulate cell functions. However, in diabetic conditions, the changes of lipids carried by sEVs has not been identified. Our study aims to explore the changes of lipids in sEVs in diabetic patients with cardiovascular disease, we hope to provide new ideas for understanding the role of lipid metabolism in the pathogenesis of diabetic cardiomyopathy. METHODS SEVs samples derived from serum of health controls (Ctrl), diabetic patients without cardiovascular diseases (DM), and diabetic patients with cardiovascular diseases (DM-CAD) were used for lipidomics analysis. Because AC16 cells are also treated with those sEVs to confirm the entrance of cells and effects on insulin sensitivity, a lipidomics analysis on cells was also performed. RESULTS AND CONCLUSIONS In this study, we found that docosahexaenoic acid (DHA)-triacylglycerides of sEVs from serums of DM-CAD patients decreased significantly, and those sEVs could enter into AC16 cells and diminish insulin sensitivity. In addition, DHA-triacylglycerides were also decreased in cells treated with sEVs from DM-CAD. Therefore, DHA-triacylglycerides carried by sEVs may mediate intercellular signaling and be associated with the incidence of diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Medicine, The Affiliated Hospital, College of MedicineQingdao UniversityQingdaoChina
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital, College of MedicineQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic Medical Sciences, College of MedicineQingdao UniversityQingdaoChina
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
23
|
Kim SJ, Mesquita FCP, Hochman-Mendez C. New Biomarkers for Cardiovascular Disease. Tex Heart Inst J 2023; 50:e238178. [PMID: 37846107 PMCID: PMC10658139 DOI: 10.14503/thij-23-8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Early detection and treatment of cardiovascular disease are crucial for patient survival and long-term health. Despite advances in cardiovascular disease biomarkers, the prevalence of cardiovascular disease continues to increase worldwide as the global population ages. To address this problem, novel biomarkers that are more sensitive and specific to cardiovascular diseases must be developed and incorporated into clinical practice. Exosomes are promising biomarkers for cardiovascular disease. These small vesicles are produced and released into body fluids by all cells and carry specific information that can be correlated with disease progression. This article reviews the advantages and limitations of existing biomarkers for cardiovascular disease, such as cardiac troponin and cytokines, and discusses recent evidence suggesting the promise of exosomes as cardiovascular disease biomarkers.
Collapse
Affiliation(s)
- Stephanie J. Kim
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
- Department of Biosciences, Rice University, Houston, Texas
| | | | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
| |
Collapse
|
24
|
Tian C, Ziegler JN, Zucker IH. Extracellular Vesicle MicroRNAs in Heart Failure: Pathophysiological Mediators and Therapeutic Targets. Cells 2023; 12:2145. [PMID: 37681877 PMCID: PMC10486980 DOI: 10.3390/cells12172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging mediators of intracellular and inter-organ communications in cardiovascular diseases (CVDs), especially in the pathogenesis of heart failure through the transference of EV-containing bioactive substances. microRNAs (miRNAs) are contained in EV cargo and are involved in the progression of heart failure. Over the past several years, a growing body of evidence has suggested that the biogenesis of miRNAs and EVs is tightly regulated, and the sorting of miRNAs into EVs is highly selective and tightly controlled. Extracellular miRNAs, particularly circulating EV-miRNAs, have shown promising potential as prognostic and diagnostic biomarkers for heart failure and as therapeutic targets. In this review, we summarize the latest progress concerning the role of EV-miRNAs in HF and their application in a therapeutic strategy development for heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Jessica N. Ziegler
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
25
|
Paluschinski M, Schira-Heinen J, Pellegrino R, Heij LR, Bednarsch J, Neumann UP, Longerich T, Stuehler K, Luedde T, Castoldi M. Uncovering Novel Roles of miR-122 in the Pathophysiology of the Liver: Potential Interaction with NRF1 and E2F4 Signaling. Cancers (Basel) 2023; 15:4129. [PMID: 37627157 PMCID: PMC10453129 DOI: 10.3390/cancers15164129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNA miR-122 plays a pivotal role in liver function. Despite numerous studies investigating this miRNA, the global network of genes regulated by miR-122 and its contribution to the underlying pathophysiological mechanisms remain largely unknown. To gain a deeper understanding of miR-122 activity, we employed two complementary approaches. Firstly, through transcriptome analysis of polyribosome-bound RNAs, we discovered that miR-122 exhibits potential antagonistic effects on specific transcription factors known to be dysregulated in liver disease, including nuclear respiratory factor-1 (NRF1) and the E2F transcription factor 4 (E2F4). Secondly, through proteome analysis of hepatoma cells transfected with either miR-122 mimic or antagomir, we discovered changes in several proteins associated with increased malignancy. Interestingly, many of these proteins were reported to be transcriptionally regulated by NRF1 and E2F4, six of which we validated as miR-122 targets. Among these, a negative correlation was observed between miR-122 and glucose-6-phosphate dehydrogenase levels in the livers of patients with hepatitis B virus-associated hepatocellular carcinoma. This study provides novel insights into potential alterations of molecular pathway occurring at the early stages of liver disease, driven by the dysregulation of miR-122 and its associated genes.
Collapse
Affiliation(s)
- Martha Paluschinski
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (T.L.)
| | - Jessica Schira-Heinen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
| | - Rossella Pellegrino
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (R.P.); (T.L.)
| | - Lara R. Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (L.R.H.); (J.B.); (U.P.N.)
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (L.R.H.); (J.B.); (U.P.N.)
| | - Ulf P. Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (L.R.H.); (J.B.); (U.P.N.)
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (R.P.); (T.L.)
| | - Kai Stuehler
- Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (T.L.)
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (T.L.)
| |
Collapse
|
26
|
Li S, Luo Z, Su S, Wen L, Xian G, Zhao J, Xu X, Xu D, Zeng Q. Targeted inhibition of PTPN22 is a novel approach to alleviate osteogenic responses in aortic valve interstitial cells and aortic valve lesions in mice. BMC Med 2023; 21:252. [PMID: 37443055 PMCID: PMC10347738 DOI: 10.1186/s12916-023-02888-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease and has high morbidity and mortality. CAVD is characterized by complex pathophysiological processes, including inflammation-induced osteoblastic differentiation in aortic valve interstitial cells (AVICs). Novel anti-CAVD agents are urgently needed. Protein tyrosine phosphatase nonreceptor type 22 (PTPN22), an intracellular nonreceptor-like protein tyrosine phosphatase, is involved in several chronic inflammatory diseases, including rheumatoid arthritis and diabetes. However, it is unclear whether PTPN22 is involved in the pathogenesis of CAVD. METHODS We obtained the aortic valve tissue from human and cultured AVICs from aortic valve. We established CAVD mice model by wire injury. Transcriptome sequencing, western bolt, qPCR, and immunofluorescence were performed to elucidate the molecular mechanisms. RESULTS Here, we determined that PTPN22 expression was upregulated in calcific aortic valve tissue, AVICs treated with osteogenic medium, and a mouse model of CAVD. In vitro, overexpression of PTPN22 induced osteogenic responses, whereas siRNA-mediated PTPN22 knockdown abolished osteogenic responses and mitochondrial stress in the presence of osteogenic medium. In vivo, PTPN22 ablation ameliorated aortic valve lesions in a wire injury-induced CAVD mouse model, validating the pathogenic role of PTPN22 in CAVD. Additionally, we discovered a novel compound, 13-hydroxypiericidin A 10-O-α-D-glucose (1 → 6)-β-D-glucoside (S18), in a marine-derived Streptomyces strain that bound to PTPN22 with high affinity and acted as a novel inhibitor. Incubation with S18 suppressed osteogenic responses and mitochondrial stress in human AVICs induced by osteogenic medium. In mice with aortic valve injury, S18 administration markedly alleviated aortic valve lesions. CONCLUSION PTPN22 plays an essential role in the progression of CAVD, and inhibition of PTPN22 with S18 is a novel option for the further development of potent anti-CAVD drugs. Therapeutic inhibition of PTPN22 retards aortic valve calcification through modulating mitochondrial dysfunction in AVICs.
Collapse
Affiliation(s)
- Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University, Göttingen, Germany
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Nehl D, Goody PR, Maus K, Pfeifer A, Aikawa E, Bakthiary F, Zimmer S, Nickenig G, Jansen F, Hosen MR. Human and porcine aortic valve endothelial and interstitial cell isolation and characterization. Front Cardiovasc Med 2023; 10:1151028. [PMID: 37408661 PMCID: PMC10318150 DOI: 10.3389/fcvm.2023.1151028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Background Calcific aortic valve stenosis (AVS) is defined by pathological changes in the aortic valve (AV) and their predominant cell types: valvular interstitial (VICs) and endothelial cells (VECs). Understanding the cellular and molecular mechanisms of this disease is a prerequisite to identify potential pharmacological treatment strategies. In this study, we present a unique aortic valve cell isolation technique to acquire specific human and porcine cell populations and compared VICs and VECs of these species with each other for the first time. Methods AV cells were isolated from tissue obtained from human patients undergoing surgical aortic valve replacement (SAVR) or from porcine hearts. Functional analysis and in vitro experiments revealed that endothelial-to-mesenchymal transition (EndMT) can be induced in hVECs, leading to a significant increase in mesenchymal markers. In vitro calcification experiments of VICs demonstrated pronounced expression of calcification markers and visible calcific deposits in Alizarin Red staining in both species after incubation with pro-calcific media. Results Cells isolated from patient-derived AVs showed mesenchymal and endothelial-specific gene signatures (VIC and VEC, respectively). For instance, von Willebrand factor (vWF) and platelet endothelial adhesion molecule-1 (PECAM1) were upregulated in VECs, while the myofibroblastic markers alpha-smooth muscle actin (α-SMA) and vimentin (VIM) were downregulated in VECs compared to VICs. Analysis of cell function by migration revealed that VECs are more migratory than VICs. Induction of EndMT in vitro in VECs displayed increased expression of EndMT markers and decreased expression of endothelial markers, confirming their mesenchymal transdifferentiation ability. In vitro calcification of VICs revealed upregulation of alkaline phosphatase (ALPL), a hallmark of calcification. In addition, other calcification-related genes such as osteocalcin (BGLAP) and runt-related factor 2 (RUNX2) were upregulated. Alizarin red staining of calcified cells provided a further layer of confirmation that the isolated cells were VICs with osteoblastic differentiation capacity. Conclusion This study aims to take a first step towards standardizing a reproducible isolation technique for specific human and porcine VEC and VIC populations. A comparison of human and porcine aortic valve cells demonstrated that porcine cells may serve as an alternative cellular model system in settings where human tissue is difficult to obtain.
Collapse
Affiliation(s)
- D. Nehl
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - P. R. Goody
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - K. Maus
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - A. Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany
| | - E. Aikawa
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - F. Bakthiary
- Heart Center Bonn, Department of Cardiac Surgery, University Hospital Bonn, Bonn, Germany
| | - S. Zimmer
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - G. Nickenig
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - F. Jansen
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - M. R. Hosen
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
28
|
Maus K, Jansen F, Hosen MR. Targeting microRNA-10 in glioma; a focus with potential therapeutic application in genome editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:504-506. [PMID: 37346974 PMCID: PMC10280081 DOI: 10.1016/j.omtn.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Katharina Maus
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Felix Jansen
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Mohammed Rabiul Hosen
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
29
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
30
|
Jiang Q, Wang Q, Tan S, Cai J, Ye X, Su G, Yang P. Effects of Plasma-Derived Exosomal miRNA-19b-3p on Treg/T Helper 17 Cell Imbalance in Behçet's Uveitis. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37093132 PMCID: PMC10148662 DOI: 10.1167/iovs.64.4.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Purpose To explore the potential role of plasma-derived exosomal microRNAs (miRNAs) in the development of regulatory T cell (Treg)/T helper 17 (Th17) cell imbalances in Behçet's uveitis (BU). Methods The exosome treatment was conducted to evaluate the effects of plasma exosomes from patients with active BU and healthy controls on the Treg/Th17 cell balance. miRNA sequencing analysis of plasma exosomes was conducted to identify differentially expressed miRNAs between patients with active BU and healthy controls. miRTarBase analysis and dual-luciferase reporter assays were conducted to identify the target genes of miR-19b-3p. CD4+T cells were transfected with miR-19b-3p mimic or inhibitor to evaluate its regulation of the Treg/Th17 cell balance. The Treg/Th17 cell balance in CD4+T cells was evaluated by flow cytometry and enzyme-linked immunosorbent assay. Results Exosomes from patients with active BU promoted Th17 cell differentiation and inhibited Treg cell differentiation. MiRNA sequencing analysis revealed 177 upregulated and 274 downregulated miRNAs in plasma exosomes of patients with active BU. Among them, miR-19b-3p was significantly elevated, and its target genes were identified as being involved in T-cell differentiation. miR-19b-3p overexpression downregulated CD46 expression and the Treg/Th17 cell ratio in CD4+T cells from healthy controls, whereas miR-19b-3p inhibition reversed these regulatory effects and restored the Treg/Th17 cell balance of CD4+T cells from patients with active BU. Conclusions Plasma-derived exosomes from patients with active BU showed a markedly differential miRNA expression in comparison to healthy controls. Highly expressed miRNA-19b-3p could induce a Treg/Th17 cell imbalance, probably by downregulating CD46 expression.
Collapse
Affiliation(s)
- Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Jinyu Cai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Li Q, Li Z, Lu C. Letter by Li et al Regarding Article, "Circulating MicroRNA-122-5p Is Associated With a Lack of Improvement in Left Ventricular Function After Transcatheter Aortic Valve Replacement and Regulates Viability of Cardiomyocytes Through Extracellular Vesicles". Circulation 2023; 147:e66-e67. [PMID: 36689570 DOI: 10.1161/circulationaha.122.062221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qi Li
- School of Medicine, Nankai University, China. Department of Cardiology, Tianjin First Center Hospital, China
| | - Zhuqing Li
- School of Medicine, Nankai University, China. Department of Cardiology, Tianjin First Center Hospital, China
| | - Chengzhi Lu
- School of Medicine, Nankai University, China. Department of Cardiology, Tianjin First Center Hospital, China
| |
Collapse
|
32
|
Halushka MK, Witwer KW. Letter by Halushka and Witwer Regarding Article, "Circulating MicroRNA-122-5p Is Associated With a Lack of Improvement in Left Ventricular Function After Transcatheter Aortic Valve Replacement and Regulates Viability of Cardiomyocytes Through Extracellular Vesicles". Circulation 2023; 147:e64-e65. [PMID: 36689572 PMCID: PMC9883045 DOI: 10.1161/circulationaha.122.061834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University School of Medicine
| |
Collapse
|
33
|
Gutmann C, Stojkovic S, Mayr M. Letter by Gutmann et al Regarding Article, "Circulating MicroRNA-122-5p Is Associated With a Lack of Improvement in Left Ventricular Function After Transcatheter Aortic Valve Replacement and Regulates Viability of Cardiomyocytes Through Extracellular Vesicles". Circulation 2023; 147:e68-e69. [PMID: 36689571 DOI: 10.1161/circulationaha.122.062334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Clemens Gutmann
- King's College London, School of Cardiovascular and Metabolic Medicine and Sciences, United Kingdom (C.G., M.M.)
- Department of Cardiology, Innere Medizin II, Medical University Vienna, Austria (C.G., S.S., M.M)
| | - Stefan Stojkovic
- Department of Cardiology, Innere Medizin II, Medical University Vienna, Austria (C.G., S.S., M.M)
| | - Manuel Mayr
- King's College London, School of Cardiovascular and Metabolic Medicine and Sciences, United Kingdom (C.G., M.M.)
- Department of Cardiology, Innere Medizin II, Medical University Vienna, Austria (C.G., S.S., M.M)
| |
Collapse
|