1
|
Lin QY, Yu WJ, Bai J, Jiang WX, Li HH. Mac-1 deficiency ameliorates pressure overloaded heart failure through inhibiting macrophage polarization and activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167048. [PMID: 38296117 DOI: 10.1016/j.bbadis.2024.167048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.
Collapse
Affiliation(s)
- Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Public Health, Dalian Medical University, Dalian, China
| | - Wen-Xi Jiang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Hui-Hua Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China.
| |
Collapse
|
2
|
Zhang YL, Bai J, Yu WJ, Lin QY, Li HH. CD11b mediates hypertensive cardiac remodeling by regulating macrophage infiltration and polarization. J Adv Res 2024; 55:17-31. [PMID: 36822392 PMCID: PMC10770112 DOI: 10.1016/j.jare.2023.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Leukocyte infiltration is an early event during cardiac remodeling frequently leading to heart failure (HF). Integrins mediate leukocyte infiltration during inflammation. However, the importance of specific integrins in hypertensive cardiac remodeling is still unclear. OBJECTIVES To elucidate the significance of CD11b in hypertensive cardiac remodeling. METHODS Angiotensin (Ang II) or deoxycorticosterone acetate (DOCA)-salt was used to induce cardiac remodeling in mice of gene knockout (KO), bone marrow (BM) chimera, and the CD11b neutralizing antibody or agonist leukadherin-1 (LA1) treatment. RESULTS Our microarray data showed that integrin subunits Itgam (CD11b) and Itgb2 (CD18) were the most highly upregulated in Ang II-infused hearts. CD11b expression and CD11b/CD18+ myelomonocytes were also time-dependently increased. KO or pharmacological blockade of CD11b greatly attenuated cardiac remodeling and macrophage infiltration and M1 polarization induced by Ang II or DOCA-salt. This protection was verified in wild-type mice transplanted with CD11b-deficient BM cells. Conversely, administration of CD11b agonist LA1 showed the opposite effects. Further, CD11b KO reduced Ang II-induced macrophage adhesion and M1 polarization, leading to reduction of cardiomyocyte enlargement and fibroblast differentiation in vitro. The numbers of CD14+CD11b+CD18+ monocytes and CD15+CD11b+CD18+ granulocytes were obviously higher in HF patients than in normal controls. CONCLUSION Our data demonstrate an important role of CD11b+ myeloid cells in hypertensive cardiac remodeling, and suggest that HF may benefit from targeting CD11b.
Collapse
Affiliation(s)
- Yun-Long Zhang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, No.193, Lianhe Road, Xigang District, Dalian 116011, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China.
| |
Collapse
|
3
|
Chen J, Oggero S, Cecconello C, Dalli J, Hayat H, Hjiej Andaloussi A, Sanni S, Jonassen TE, Perretti M. The Annexin-A1 mimetic RTP-026 promotes acute cardioprotection through modulation of immune cell activation. Pharmacol Res 2023; 198:107005. [PMID: 37992916 DOI: 10.1016/j.phrs.2023.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
AIMS The cardio-protective and immuno-regulatory properties of RTP-026, a synthetic peptide that spans the Annexin-A1 (AnxA1) N-terminal region, were tested in rat acute myocardial infarction. METHODS AND RESULTS In vitro, selective activation of formyl-peptide receptor type 2 (FPR2) by RTP-026 occurred with apparent EC50 in the 10-30 nM range. With human primary cells, RTP-026 counteracted extension of neutrophil life-span and augmented phagocytosis of fluorescent E.coli by blood myeloid cells. An in vivo model of rat acute infarction was used to quantify tissue injury and phenotype immune cells in myocardium and blood. The rat left anterior descending coronary artery was occluded and then reopened for 2-hour or 24-hour reperfusion. For the 2-hour reperfusion protocol, RTP-026 (25-500 µg/kg; given i.v. at the start of reperfusion) significantly reduced infarct size by ∼50 %, with maximal efficacy at 50 µg/kg. Analyses of cardiac immune cells showed that RTP-026 reduced neutrophil and classical monocyte recruitment to the damaged heart. In the blood, RTP-026 (50 µg/kg) attenuated activation of neutrophils and monocytes monitored through CD62L and CD54 expression. Modulation of vascular inflammation by RTP-026 was demonstrated by reduction in plasma levels of mediators like TNF-α, IL-1β, KC, PGE2 and PGF2α⊡ For the 24-hour reperfusion protocol, RTP-026 (30 µg/kg given i.v. at 0, 3 and 6 h reperfusion) reduced necrotic myocardium by ∼40 %. CONCLUSIONS RTP-026 modulate immune cell responses and decreases infarct size of the heart in preclinical settings. Tempering over-exuberant immune cell activation by RTP-026 is a suitable approach to translate the biology of AnxA1 for therapeutic purposes.
Collapse
Affiliation(s)
- Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Silvia Oggero
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Chiara Cecconello
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Hedayatullah Hayat
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Ahmad Hjiej Andaloussi
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
4
|
Pan J, Wang Z, Huang X, Xue J, Zhang S, Guo X, Zhou S. Bacteria-Derived Outer-Membrane Vesicles Hitchhike Neutrophils to Enhance Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301779. [PMID: 37358255 DOI: 10.1002/adma.202301779] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Indexed: 06/27/2023]
Abstract
The treatment of reperfusion injury after ischemic stroke remains unsatisfactory since the blood-brain barrier (BBB) prevents most neuroprotective agents from entering the brain. Here, a strategy is proposed based on bacteria-derived outer-membrane vesicle (OMV) hitchhiking on the neutrophils for enhanced brain delivery of pioglitazone (PGZ) to treat ischemic stroke. By encapsulating PGZ into OMV, the resulting OMV@PGZ nanoparticles inherit the functions associated with the bacterial outer membrane, making them ideal decoys for neutrophil uptake. The results show that OMV@PGZ simultaneously inhibits the activation of nucleotide oligomerization-like receptor protein 3 (NLRP3) inflammasomes and ferroptosis and reduces the reperfusion injury to exert a neuroprotective effect. Notably, the transcription factors Pou2f1 and Nrf1 of oligodendrocytes are identified for the first time to be involved in this process and promoted neural repair by single-nucleus RNA sequencing (snRNA-seq).
Collapse
Affiliation(s)
- Jingmei Pan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zhenhua Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuehui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Juan Xue
- Shanghai OE Biotech Co., Ltd, Shanghai, 201114, P. R. China
| | - Suling Zhang
- Shanghai OE Biotech Co., Ltd, Shanghai, 201114, P. R. China
| | - Xing Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
5
|
Mukherjee AG, Renu K, Gopalakrishnan AV, Jayaraj R, Dey A, Vellingiri B, Ganesan R. Epicardial adipose tissue and cardiac lipotoxicity: A review. Life Sci 2023; 328:121913. [PMID: 37414140 DOI: 10.1016/j.lfs.2023.121913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat 131001, India; Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
6
|
Wang L, Liu Y, Tian R, Zuo W, Qian H, Wang L, Yang X, Liu Z, Zhang S. What do we know about platelets in myocardial ischemia-reperfusion injury and why is it important? Thromb Res 2023; 229:114-126. [PMID: 37437517 DOI: 10.1016/j.thromres.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), the joint result of ischemic injury and reperfusion injury, is associated with poor outcomes in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Accumulating evidence demonstrates that activated platelets directly contribute to the pathogenesis of MIRI through participating in the formation of microthrombi, interaction with leukocytes, secretion of active substances, constriction of microvasculature, and activation of spinal afferent nerves. The molecular mechanisms underlying the above detrimental effects of activated platelets include the homotypic and heterotypic interactions through surface receptors, transduction of intracellular signals, and secretion of active substances. Revealing the roles of platelet activation in MIRI and the associated mechanisms would provide potential targets/strategies for the clinical evaluation and treatment of MIRI. Further studies are needed to characterize the temporal (ischemia phase vs. reperfusion phase) and spatial (systemic vs. local) distributions of platelet activation in MIRI by multi-omics strategies. To improve the likelihood of translating novel cardioprotective interventions into clinical practice, basic researches maximally replicating the complexity of clinical scenarios would be necessary.
Collapse
Affiliation(s)
- Lun Wang
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yifan Liu
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Wei Zuo
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Liang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Xinglin Yang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
7
|
Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022; 10:1082095. [PMID: 36561366 PMCID: PMC9763599 DOI: 10.3389/fcell.2022.1082095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the most common cause of death worldwide and in particular, ischemic heart disease holds the most considerable position. Even if it has been deeply studied, myocardial ischemia-reperfusion injury (IRI) is still a side-effect of the clinical treatment for several heart diseases: ischemia process itself leads to temporary damage to heart tissue and obviously the recovery of blood flow is promptly required even if it worsens the ischemic injury. There is no doubt that mitochondria play a key role in pathogenesis of IRI: dysfunctions of these important organelles alter cell homeostasis and survival. It has been demonstrated that during IRI the system of mitochondrial quality control undergoes alterations with the disruption of the complex balance between the processes of mitochondrial fusion, fission, biogenesis and mitophagy. The fundamental role of mitochondria is carried out thanks to the finely regulated connection to other organelles such as plasma membrane, endoplasmic reticulum and nucleus, therefore impairments of these inter-organelle communications exacerbate IRI. This review pointed to enhance the importance of the mitochondrial network in the pathogenesis of IRI with the aim to focus on potential mitochondria-targeting therapies as new approach to control heart tissue damage after ischemia and reperfusion process.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| |
Collapse
|
8
|
Tomczyk M, Braczko A, Mierzejewska P, Podlacha M, Krol O, Jablonska P, Jedrzejewska A, Pierzynowska K, Wegrzyn G, Slominska EM, Smolenski RT. Rosiglitazone Ameliorates Cardiac and Skeletal Muscle Dysfunction by Correction of Energetics in Huntington’s Disease. Cells 2022; 11:cells11172662. [PMID: 36078070 PMCID: PMC9454785 DOI: 10.3390/cells11172662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare neurodegenerative disease that is accompanied by skeletal muscle atrophy and cardiomyopathy. Tissues affected by HD (central nervous system [CNS], skeletal muscle, and heart) are known to suffer from deteriorated cellular energy metabolism that manifests already at presymptomatic stages. This work aimed to test the effects of peroxisome proliferator-activated receptor (PPAR)-γ agonist—rosiglitazone on grip strength and heart function in an experimental HD model—on R6/1 mice and to address the mechanisms. We noted that rosiglitazone treatment lead to improvement of R6/1 mice grip strength and cardiac mechanical function. It was accompanied by an enhancement of the total adenine nucleotides pool, increased glucose oxidation, changes in mitochondrial number (indicated as increased citric synthase activity), and reduction in mitochondrial complex I activity. These metabolic changes were supported by increased total antioxidant status in HD mice injected with rosiglitazone. Correction of energy deficits with rosiglitazone was further indicated by decreased accumulation of nucleotide catabolites in HD mice serum. Thus, rosiglitazone treatment may not only delay neurodegeneration but also may ameliorate cardio- and myopathy linked to HD by improvement of cellular energetics.
Collapse
Affiliation(s)
- Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: (M.T.); (R.T.S.)
| |
Collapse
|
9
|
Weber BY, Brenner GB, Kiss B, Gergely TG, Sayour NV, Tian H, Makkos A, Görbe A, Ferdinandy P, Giricz Z. Rosiglitazone Does Not Show Major Hidden Cardiotoxicity in Models of Ischemia/Reperfusion but Abolishes Ischemic Preconditioning-Induced Antiarrhythmic Effects in Rats In Vivo. Pharmaceuticals (Basel) 2022; 15:ph15091055. [PMID: 36145276 PMCID: PMC9503202 DOI: 10.3390/ph15091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical observations are highly inconsistent with the use of the antidiabetic rosiglitazone regarding its associated increased risk of myocardial infarction. This may be due to its hidden cardiotoxic properties that have only become evident during post-marketing studies. Therefore, we aimed to investigate the hidden cardiotoxicity of rosiglitazone in ischemia/reperfusion (I/R) injury models. Rats were treated orally with either 0.8 mg/kg/day rosiglitazone or vehicle for 28 days and subjected to I/R with or without cardioprotective ischemic preconditioning (IPC). Rosiglitazone did not affect mortality, arrhythmia score, or infarct size during I/R. However, rosiglitazone abolished the antiarrhythmic effects of IPC. To investigate the direct effect of rosiglitazone on cardiomyocytes, we utilized adult rat cardiomyocytes (ARCMs), AC16, and differentiated AC16 (diffAC16) human cardiac cell lines. These were subjected to simulated I/R in the presence of rosiglitazone. Rosiglitazone improved cell survival of ARCMs at 0.3 μM. At 0.1 and 0.3 μM, rosiglitazone improved cell survival of AC16s but not that of diffAC16s. This is the first demonstration that chronic administration of rosiglitazone does not result in major hidden cardiotoxic effects in myocardial I/R injury models. However, the inhibition of the antiarrhythmic effects of IPC may have some clinical relevance that needs to be further explored.
Collapse
Affiliation(s)
- Bennet Y. Weber
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Gábor B. Brenner
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Bernadett Kiss
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Tamás G. Gergely
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Nabil V. Sayour
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Huimin Tian
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - András Makkos
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Anikó Görbe
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Péter Ferdinandy
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Zoltán Giricz
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, H-6722 Szeged, Hungary
- Correspondence:
| |
Collapse
|
10
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 480] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
11
|
Zou G, Zhou Z, Xi X, Huang R, Hu H. Pioglitazone Ameliorates Renal Ischemia-Reperfusion Injury via Inhibition of NF-κB Activation and Inflammation in Rats. Front Physiol 2021; 12:707344. [PMID: 34349671 PMCID: PMC8326914 DOI: 10.3389/fphys.2021.707344] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 11/15/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is considered as a major cause of acute kidney injury. In this study, we investigated the role of the NF-κB signaling pathway and inflammation in the amelioration of renal IRI using pioglitazone. Sprague–Dawley (SD) rats were subjected to bilateral renal artery clamping for 45 min followed by perfusion restoration for establishing a simulated renal IRI model. At 24 h post-operatively, we assessed the serum levels of creatinine and urea nitrogen, expression levels of peroxisome proliferator-activated receptor gamma (PPAR-γ) and NF-κB-related (p-IKK-β and IκB-α) proteins, and mRNA expression levels of the inflammatory cytokines, including TNF-α and MCP-1, in the renal tissue of various study groups. The histopathological evaluation of renal tissue was also conducted. In rat renal tissue, pioglitazone treatment decreased the serum levels of post-renal IRI creatinine and urea nitrogen, as well as necrosis. Furthermore, it elevated the expression of PPAR-γ protein and decreased the expression of NF-κB-related proteins. Pioglitazone also decreased the mRNA expression of TNF-α and MCP-1 in the renal tissue. Thus, pioglitazone ameliorates renal IRI by inhibiting the NF-κB signaling pathway and inflammatory response in rats.
Collapse
Affiliation(s)
- Gaode Zou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyu Zhou
- Department of Pathology, College of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Weighted Gene Co-Expression Network Analysis Reveals Key Genes and Potential Drugs in Abdominal Aortic Aneurysm. Biomedicines 2021; 9:biomedicines9050546. [PMID: 34068179 PMCID: PMC8152975 DOI: 10.3390/biomedicines9050546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent aortic disease that causes high mortality due to asymptomatic gradual expansion and sudden rupture. The underlying molecular mechanisms and effective pharmaceutical therapy for preventing AAA progression have not been fully identified. In this study, we identified the key modules and hub genes involved in AAA growth from the GSE17901 dataset in the Gene Expression Omnibus (GEO) database through the weighted gene co-expression network analysis (WGCNA). Key genes were further selected and validated in the mouse dataset (GSE12591) and human datasets (GSE7084, GSE47472, and GSE57691). Finally, we predicted drug candidates targeting key genes using the Drug-Gene Interaction database. Overall, we identified key modules enriched in the mitotic cell cycle, GTPase activity, and several metabolic processes. Seven key genes (CCR5, ADCY5, ADCY3, ACACB, LPIN1, ACSL1, UCP3) related to AAA progression were identified. A total of 35 drugs/compounds targeting the key genes were predicted, which may have the potential to prevent AAA progression.
Collapse
|
13
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. They are ligand-activated transcription factors and exist in three different isoforms, PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs regulate a variety of functions, including glucose and lipid homeostasis, inflammation, and development. They exhibit tissue and cell type-specific expression patterns and functions. Besides the established notion of the therapeutic potential of PPAR agonists for the treatment of glucose and lipid disorders, more recent data propose specific PPAR ligands as potential therapies for cardiovascular diseases. In this review, we focus on the knowledge of PPAR function in myocardial infarction, a severe pathological condition for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
14
|
Protective Effects of Polyphenols against Ischemia/Reperfusion Injury. Molecules 2020; 25:molecules25153469. [PMID: 32751587 PMCID: PMC7435883 DOI: 10.3390/molecules25153469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality across the world. It manifests as an imbalance between blood demand and blood delivery in the myocardium, which leads to cardiac ischemia and myocardial necrosis. While it is not easy to identify the first pathogenic cause of MI, the consequences are characterized by ischemia, chronic inflammation, and tissue degeneration. A poor MI prognosis is associated with extensive cardiac remodeling. A loss of viable cardiomyocytes is replaced with fibrosis, which reduces heart contractility and heart function. Recent advances have given rise to the concept of natural polyphenols. These bioactive compounds have been studied for their pharmacological properties and have proven successful in the treatment of cardiovascular diseases. Studies have focused on their various bioactivities, such as their antioxidant and anti-inflammatory effects and free radical scavenging. In this review, we summarized the effects and benefits of polyphenols on the cardiovascular injury, particularly on the treatment of myocardial infarction in animal and human studies.
Collapse
|
15
|
Jiang T, Liu Y, Chen B, Si L. Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury. ACTA ACUST UNITED AC 2020; 53:S0100-879X2020000900604. [PMID: 32696819 PMCID: PMC7372942 DOI: 10.1590/1414-431x20209717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a complex phenomenon that causes severe damage to the myocardium. However, the potential molecular mechanisms of MI/R injury have not been fully clarified. We identified potential molecular mechanisms and therapeutic targets in MI/R injury through analysis of Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were found between MI/R injury and normal samples, and overlapping DEGs were found between GSE61592 and GSE67308. Gene Ontology (GO) and pathway analysis were performed for overlapping DEGs by Database for Annotation, Visualization and Integration Discovery (DAVID). Then, a network of protein-protein interaction (PPI) was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) database. Potential microRNAs (miRNAs) and therapeutic small molecules were screened out using microRNA.org database and the Comparative Toxicogenomics database (CTD), respectively. Finally, we identified 21 overlapping DEGs related to MI/R injury. These DEGs were significantly enriched in IL-17 signaling pathway, cytosolic DNA-sensing pathway, chemokine signaling, and cytokine-cytokine receptor interaction pathway. According to the degree in the PPI network, CCL2, LCN2, HP, CCL7, HMOX1, CCL4, and S100A8 were found to be hub genes. Furthermore, we identified potential miRNAs (miR-24-3p, miR-26b-5p, miR-2861, miR-217, miR-4251, and miR-124-3p) and therapeutic small molecules like ozone, troglitazone, rosiglitazone, and n-3 polyunsaturated fatty acids for MI/R injury. These results identified hub genes and potential small molecule drugs, which could contribute to the understanding of molecular mechanisms and treatment for MI/R injury.
Collapse
Affiliation(s)
- Tao Jiang
- The Third Clinical Medical College, Chongqing Medical University, Chongqing, China
| | - Yingcun Liu
- The Third Clinical Medical College, Chongqing Medical University, Chongqing, China
| | - Biao Chen
- The Third Clinical Medical College, Chongqing Medical University, Chongqing, China
| | - Liangyi Si
- The Third Clinical Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Galindo DC, Banks WA, Rhea EM. The impact of acute rosiglitazone on insulin pharmacokinetics at the blood-brain barrier. Endocrinol Diabetes Metab 2020; 3:e00149. [PMID: 32704569 PMCID: PMC7375048 DOI: 10.1002/edm2.149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION CNS insulin levels are decreased and insulin receptor signalling is dampened in Alzheimer's disease (AD). Increasing CNS insulin levels through a variety of methods has been shown to improve memory. Indeed, medications routinely used to improve insulin resistance in type 2 diabetes are now being repurposed for memory enhancement. CNS insulin is primarily derived from the circulation, by an active transport system at the blood-brain barrier (BBB). The goal of this study was to determine whether rosiglitazone (RSG), a drug used to improve insulin sensitivity in type 2 diabetes, could enhance insulin transport at the BBB, as a potential therapeutic for improving memory. METHODS Using radioactively labelled insulin and the multiple-time regression analysis technique, we measured the rate of insulin BBB transport and level of vascular binding in mice pretreated with vehicle or 10 µg RSG in the presence or absence of an insulin receptor inhibitor. RESULTS Although we found acute RSG administration does not affect insulin transport at the BBB, it does restore BBB vascular binding of insulin in an insulin receptor-resistant state. CONCLUSIONS Acute RSG treatment does not alter insulin BBB transport in healthy mice but can restore insulin receptor binding at the BBB in an insulin-resistant state.
Collapse
Affiliation(s)
| | - William A. Banks
- Department of MedicineUniversity of WashingtonSeattleWAUSA
- Research and DevelopmentVeterans Affairs Puget Sound Healthcare SystemSeattleWAUSA
| | - Elizabeth M. Rhea
- Department of MedicineUniversity of WashingtonSeattleWAUSA
- Research and DevelopmentVeterans Affairs Puget Sound Healthcare SystemSeattleWAUSA
| |
Collapse
|
17
|
Riess ML, Elorbany R, Weihrauch D, Stowe DF, Camara AK. PPARγ-Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells 2020; 9:cells9010252. [PMID: 31968546 PMCID: PMC7017211 DOI: 10.3390/cells9010252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of anti-diabetic thiazolidinediones (TZDs) on contributing to heart failure and cardiac ischemia/reperfusion (IR) injury is controversial. In this study we investigated the effect of select TZDs on myocardial and mitochondrial function in Brown Norway rat isolated hearts. In a first set of experiments, the TZD rosiglitazone was given acutely before global myocardial IR, and pre- and post-IR function and infarct size were assessed. In a second set of experiments, different concentrations of rosiglitazone and pioglitazone were administered in the presence or absence of the specific PPARγ antagonist GW9662, and their effects on the mitochondrial redox state were measured by online NADH and FAD autofluorescence. The administration of rosiglitazone did not significantly affect myocardial function except for transiently increasing coronary flow, but it increased IR injury compared to the control hearts. Both TZDs resulted in dose-dependent, reversible increases in mitochondrial oxidation which was not attenuated by GW9662. Taken together, these data suggest that TZDs cause excessive mitochondrial uncoupling by a PPARγ-independent mechanism. Acute rosiglitazone administration before IR was associated with enhanced cardiac injury. If translated clinically, susceptible patients on PPARγ agonists may experience enhanced myocardial IR injury by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-(615)-936-0277; Fax: +1-(615)-343-3916
| | - Reem Elorbany
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
| | - David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
18
|
Wei W, Chen X, Lin X, Shan F, Lin S, Shen Q, Zhang L. Serum PPARγ level and PPARγ gene polymorphism as well as severity and prognosis of brain injury in patients with arteriosclotic cerebral infarction. Exp Ther Med 2018; 16:4058-4062. [PMID: 30344683 PMCID: PMC6176134 DOI: 10.3892/etm.2018.6660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
The aim of the study was to study the serum peroxisome proliferator-activated receptor gamma (PPARγ) level and PPARγ gene polymorphism as well as the severity and prognosis of brain injury in patients with arteriosclotic cerebral infarction (ACI). A total of 246 ACI patients presenting at the Department of Neurology of Zengcheng District People's Hospital of Guangzhou between April 2009 and July 2015 were selected as the case group, and 382 control subjects were enrolled as the control group. The hepatic and renal functions and homocysteine (Hcy) expression levels were measured. Enzyme-linked immunosorbent assay (ELISA) kit was used to detect the serum PPARγ levels of the ACI patients. Polymerase chain reaction-restriction fragment length polymorphism method was applied to measure the PPARγ gene polymorphism. The proportions of hypertension patients, diabetes patients and smoking people in the case group were significantly higher than those in the control group. The levels of cholesterol and fasting blood glucose in the case group were elevated obviously compared with those in the control group. The levels of indexes related to the hepatic function and renal function in the case group were remarkably higher than those in the control group. The serum PPARγ levels were increased progressively at acute stage. The distribution frequencies of PPARγ genotypes CC, CT and TT in the case group were higher than those in the control group; compared with that in the control group, the proportion of C allele in the case group was raised obviously, while that of T allele was significantly decreased. The serum PPARγ level has a close correlation with the PPARγ gene polymorphism in ACI patients, and PPARγ is also remarkably related to the severity of brain injury; therefore, PPARγ has great significance in the diagnosis and treatment of cerebral infarction.
Collapse
Affiliation(s)
- Weiming Wei
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Xuwen Chen
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Xueying Lin
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Fulan Shan
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Shaopeng Lin
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Qingyu Shen
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Li Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
- Correspondence to: Li Zhang, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxi Road, Guangzhou, Guangdong 510000, P.R. China, E-mail:
| |
Collapse
|
19
|
Feng L, Yang J, Liu W, Wang Q, Wang H, Shi L, Fu L, Xu Q, Wang B, Li T. Lipid Biomarkers in Acute Myocardial Infarction Before and After Percutaneous Coronary Intervention by Lipidomics Analysis. Med Sci Monit 2018; 24:4175-4182. [PMID: 29913478 PMCID: PMC6038721 DOI: 10.12659/msm.908732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Reperfusion injury is one of the leading causes of myocardial cell death and heart failure. This study was performed to identify new candidate lipid biomarkers for the purpose of optimizing the diagnosis of myocardial ischemia reperfusion (I/R) injury, assessing the severity of myocardial I/R injury and trying to find the novel mechanism related to lipids. Material/Methods Forty patients who were diagnosed with ST-segment elevation myocardial infarction (STEMI) were randomly selected for this study. Serum samples from all the patients with STEMI were collected at 3 time periods: after STEMI diagnosis but prior to reperfusion (T0); and then at 2 hours (T2) and 24 hours (T24) after the end of the percutaneous coronary intervention procedure. Plasma lipidomics profiling analysis was performed to identify the lipid metabolic signatures of myocardial I/R injury using lipidomics. Results Sixteen types of potential lipid biomarkers at different time periods (T0, T2, T24) were identified by using lipidomics technology. The T0 time periods exhibited 16 differentially metabolized lipid peaks in the patients after STEMI diagnosis but prior to reperfusion. With the increase of reperfusion times, the contents of these 16 lipid biomarkers decreased gradually, but there was a 1.5- to 2-fold increase of those 16 lipid biomarkers contents at T2 compared with T24. Conclusions Lipidomics analysis demonstrated differential change before and after reperfusion, suggesting a potential role of some of these lipids as biomarkers for optimizing the diagnosis of myocardial I/R, as well as for therapeutic targets against myocardial I/R injury.
Collapse
Affiliation(s)
- Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Wennan Liu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Qing Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Huijie Wang
- Department of Cardiology, Traditional Chinese Medicine Hospital of Tianjin Beichen District, Tianjin, China (mainland)
| | - Le Shi
- Department of Cardiology, Traditional Chinese Medicine Hospital of Tianjin Beichen District, Tianjin, China (mainland)
| | - Liyan Fu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Qiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Tian Li
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| |
Collapse
|
20
|
Expression of adhesion molecules on granulocytes and monocytes following myocardial infarction in rats drinking white wine. PLoS One 2018; 13:e0196842. [PMID: 29746525 PMCID: PMC5945017 DOI: 10.1371/journal.pone.0196842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/20/2018] [Indexed: 11/29/2022] Open
Abstract
Neutrophils and monocytes through their CD15s, CD11b and CD44 adhesion molecules are implicated in the initiation and resolution of cardiac inflammation as well as in healing processes after the myocardial infarction (MI). The aim of this study was to determine the effect of white wine consumption on granulocyte and monocyte CD15s, CD11b, and CD44 expression 24h after the surgically inflicted MI. Granulocytes and monocytes were analyzed by flow cytometry, using whole blood of male Sprague–Dawley rats that consumed white wine for 4 weeks. This group was compared with water only drinking controls, sham animals (subject to surgery without myocardial infarction) and baseline group (intact animals that received no intervention prior to being sacrificed). Sham animals did not differ from baseline animals in CD11b+CD44+ percentage and CD44+ median fluorescence intensity. Wine drinking was associated with striking increase in CD44 expression on monocyte subpopulations. Its expression was three and fourfold increased on monocytes and large monocytes, respectively, relative to the water only drinking controls. Because of known role of CD44 on suppression of post-infarction inflammation, its upregulation on granulocytes and monocytes may significantly contribute to the microenvironment favourable for the cardiac regeneration.
Collapse
|
21
|
Oikonomou E, Mourouzis K, Fountoulakis P, Papamikroulis GA, Siasos G, Antonopoulos A, Vogiatzi G, Tsalamadris S, Vavuranakis M, Tousoulis D. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018; 23:389-408. [PMID: 29453696 DOI: 10.1007/s10741-018-9682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece.
| | - Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgios Angelos Papamikroulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Alexis Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| |
Collapse
|
22
|
Feng L, Liu W, Yang J, Wang Q, Wen S. Effect of Hexadecyl Azelaoyl Phosphatidylcholine on Cardiomyocyte Apoptosis in Myocardial Ischemia-Reperfusion Injury: A Hypothesis. Med Sci Monit 2018; 24:2661-2667. [PMID: 29706617 PMCID: PMC5949054 DOI: 10.12659/msm.907578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reperfusion after myocardial ischemia can induce cardiomyocyte death, known as myocardial reperfusion injury. The pathophysiology of the process of reperfusion suggests the confluence multiple pathways. Recent studies have focused on the inflammatory response, which is considered to be the main mechanism during the process of myocardial ischemia-reperfusion injury and can cause cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors gamma activated by endogenous ligands and exogenous ligand can decrease the inflammatory response in cardiomyocytes. Thiazolidinediones are synthetic, high-affinity, selective ligands for peroxisome proliferator-activated receptors gamma, and can inhibit the inflammatory response, decrease myocardial infarct size, and protect cardiac function. However, thiazolidinediones, including rosiglitazone and pioglitazone, can also contribute to adverse cardiovascular events such as congestive heart failure. Therefore, there are some limitations to the use of thiazolidinediones. Most endogenous ligands were of low affinity until hexadecyl azelaoyl phosphatidylcholine was identified as a high-affinity ligand and agonist for peroxisome proliferator-activated receptors gamma. Hexadecyl azelaoyl phosphatidylcholine binds recombinant peroxisome proliferator-activated receptors with an affinity (Kd(app) ≈40 nM) which is equivalent to rosiglitazone. Therefore, hexadecyl azelaoyl phosphatidylcholine is a specific peroxisome proliferator-activated receptors gamma agonist. Given these findings, we hypothesized that the use of hexadecyl azelaoyl phosphatidylcholine can activate the peroxisome proliferator-activated receptors gamma signal pathways and prevent the inflammatory response process of myocardial ischemia-reperfusion injury, with reduced cardiomyocyte apoptosis and death.
Collapse
Affiliation(s)
- Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Wennan Liu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Qing Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shiwu Wen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
23
|
Penas FN, Carta D, Dmytrenko G, Mirkin GA, Modenutti CP, Cevey ÁC, Rada MJ, Ferlin MG, Sales ME, Goren NB. Treatment with a New Peroxisome Proliferator-Activated Receptor Gamma Agonist, Pyridinecarboxylic Acid Derivative, Increases Angiogenesis and Reduces Inflammatory Mediators in the Heart of Trypanosoma cruzi-Infected Mice. Front Immunol 2017; 8:1738. [PMID: 29312293 PMCID: PMC5732351 DOI: 10.3389/fimmu.2017.01738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.
Collapse
Affiliation(s)
- Federico Nicolás Penas
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Davide Carta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ganna Dmytrenko
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO)-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerado A Mirkin
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Carlos Pablo Modenutti
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ágata Carolina Cevey
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Maria Jimena Rada
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Maria Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - María Elena Sales
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO)-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora Beatriz Goren
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
24
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
26
|
Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin Sci (Lond) 2017; 131:897-915. [PMID: 28473471 DOI: 10.1042/cs20160491] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
Abstract
Diabetes increases the risk of heart failure approximately 2.5-fold, independent of coronary artery disease and other comorbidities. This process, termed diabetic cardiomyopathy, is characterized by initial impairment of left ventricular (LV) relaxation followed by LV contractile dysfunction. Post-mortem examination reveals that human diastolic dysfunction is closely associated with LV damage, including cardiomyocyte hypertrophy, apoptosis and fibrosis, with impaired coronary microvascular perfusion. The pathophysiological mechanisms underpinning the characteristic features of diabetic cardiomyopathy remain poorly understood, although multiple factors including altered lipid metabolism, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum (ER) stress, inflammation, as well as epigenetic changes, are implicated. Despite a recent rise in research interrogating these mechanisms and an increased understanding of the clinical importance of diabetic cardiomyopathy, there remains a lack of specific treatment strategies. How the chronic metabolic disturbances observed in diabetes lead to structural and functional changes remains a pertinent question, and it is hoped that recent advances, particularly in the area of epigenetics, among others, may provide some answers. This review hence explores the temporal onset of the pathological features of diabetic cardiomyopathy, and their relative contribution to the resultant disease phenotype, as well as both current and potential therapeutic options. The emergence of glucose-optimizing agents, namely glucagon-like peptide-1 (GLP-1) agonists and sodium/glucose co-transporter (SGLT)2 inhibitors that confer benefits on cardiovascular outcomes, together with novel experimental approaches, highlight a new and exciting era in diabetes research, which is likely to result in major clinical impact.
Collapse
|
27
|
Bhandari U, Kumar V, Kumar P, Tripathi CD, Khanna G. Protective effect of pioglitazone on cardiomyocyte apoptosis in low-dose streptozotocin & high-fat diet-induced type-2 diabetes in rats. Indian J Med Res 2016; 142:598-605. [PMID: 26658596 PMCID: PMC4743348 DOI: 10.4103/0971-5916.171290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Cardiomyocyte apoptosis is one of the pathologic phenomena associated with diabetes and related conditions including obesity, insulin resistance and hyperlipidaemia. In the present study, the protective effects of pioglitazone on cardiomyocyte apoptosis was evaluated in experimental diabetes induced by low dose of streptozoticin (STZ) combined with high fat diet (HFD) in rats. METHODS Male Wistar rats (150-200 g) were injected with low-dose STZ (45 mg/kg, i.v., single dose) and orally fed with a HFD (20 g/day/rat) for a period of 28 days and simultaneously treated with pioglitazone (20 mg/kg/p.o.) for a period of 21 days (from 8 th day to 28 th day). On 29 th day blood was collected, serum separated and used for biochemical parameters. Heart tissue was used for cardiomyocyte apoptosis measurement and also for histopathological examination. RESULTS Pioglitazone treatment resulted in a decrease in cardiomyocyte apoptosis as revealed by a decrease in cardiac caspase-3, lactate dehydrogenase (LDH) levels and DNA fragmentation, and an increase in Na+K+ATPase levels in diabetic rats. Cardiac histology of diabetic control rats showed dense focal fatty infiltration in the myocardial cells whereas normal architecture with regular morphology and well preserved cytoplasm was observed with pioglitazone treatment. Pioglitazone treatment significantly reduced the heart rate, mean arterial blood pressure, body mass index (BMI) and levels of serum glucose, leptin, insulin, HOMA-IR, total cholesterol (TC) and triglycerides (TGs), apoliproprotein-B glycosylated haemoglobin (HbA1c) levels and atherogenic index, and increased the levels of serum high density lipoprotein cholesterol (HDL-C) and cardiac antioxidant enzymes. INTERPRETATION & CONCLUSIONS The present study results suggest that pioglitazone possesses cardiac anti-apoptotic potential in diabetic rat model and can be further explored for its use for treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Uma Bhandari
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | | | | | | | | |
Collapse
|
28
|
Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther 2016; 168:75-97. [PMID: 27598860 DOI: 10.1016/j.pharmthera.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ever-growing global burden of congestive heart failure (CHF) and type 2 diabetes mellitus (T2DM) as well as their co-existence necessitate that anti-diabetic pharmacotherapy will modulate the cardiovascular risk inherent to T2DM while complying with the accompanying restrictions imposed by CHF. The thiazolidinedione (TZD) family of peroxisome proliferator-activated receptor γ (PPARγ) agonists initially provided a promising therapeutic option in T2DM owing to anti-diabetic efficacy combined with pleiotropic beneficial cardiovascular effects. However, the utility of TZDs in T2DM has declined in the past decade, largely due to concomitant adverse effects of fluid retention and edema formation attributed to salt-retaining effects of PPARγ activation on the nephron. Presumably, the latter effects are potentially deleterious in the context of pre-existing fluid retention in CHF. However, despite a considerable body of evidence on mechanisms responsible for TZD-induced fluid retention suggesting that this class of drugs is rightfully prohibited from use in CHF patients, there is a paucity of experimental and clinical studies that investigate the effects of TZDs on salt and water homeostasis in the CHF setting. In an attempt to elucidate whether TZDs actually exacerbate the pre-existing fluid retention in CHF, our review summarizes the pathophysiology of fluid retention in CHF. Moreover, we thoroughly review the available data on TZD-induced fluid retention and proposed mechanisms in animals and patients. Finally, we will present recent studies challenging the common notion that TZDs worsen renal salt and water retention in CHF.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Joseph Winaver
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Laboratory Medicine, Rambam Human Health Care Campus, Haifa, Israel.
| |
Collapse
|
29
|
Chang YJ, Chen YJ, Huang CW, Fan SC, Huang BM, Chang WT, Tsai YS, Su FC, Wu CC. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation. Front Bioeng Biotechnol 2016; 4:27. [PMID: 27047938 PMCID: PMC4800178 DOI: 10.3389/fbioe.2016.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/07/2016] [Indexed: 11/16/2022] Open
Abstract
Thiazolidinedione (TZD), a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, was developed to control blood glucose in diabetes patients. However, several side effects were reported that increased the risk of heart failure. We used C2C12 myoblasts to investigate the role of PPARs and their transcriptional activity during myotube formation. The role of mechanical stretch during myogenesis was also explored by applying cyclic stretch to the differentiating C2C12 myoblasts with 10% strain deformation at 1 Hz. The myogenesis medium (MM), composed of Dulbecco’s modified Eagle’s medium with 2% horse serum, facilitated myotube formation with increased myosin heavy chain and α-smooth muscle actin (α-SMA) protein expression. The PPARγ protein and PPAR response element (PPRE) promoter activity decreased during MM induction. Cyclic stretch further facilitated the myogenesis in MM with increased α-SMA and decreased PPARγ protein expression and inhibited PPRE promoter activity. Adding a PPARγ agonist (TZD) to the MM stopped the myogenesis and restored the PPRE promoter activity, whereas a PPARγ antagonist (GW9662) significantly increased the myotube number and length. During the myogenesis induction, application of cyclic stretch rescued the inhibitory effects of TZD. These results provide novel perspectives for mechanical stretch to interplay and rescue the dysfunction of myogenesis with the involvement of PPARγ and its target drugs.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ju Chen
- Department of Microbiology, College of Medicine, National Taiwan University , Taipei , Taiwan
| | - Chia-Wei Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Occupational Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chen Fan
- Department of Occupational Therapy, I-Shou University , Kaohsiung , Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University , Tainan , Taiwan
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University , Tainan , Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
Santos MHH, de Lourdes Higuchi M, Tucci PJF, Garavelo SM, Reis MM, Antonio EL, Serra AJ, Maranhão RC. Previous exercise training increases levels of PPAR-α in long-term post-myocardial infarction in rats, which is correlated with better inflammatory response. Clinics (Sao Paulo) 2016; 71:163-8. [PMID: 27074178 PMCID: PMC4785847 DOI: 10.6061/clinics/2016(03)08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/21/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Exercise is a protective factor for cardiovascular morbidity and mortality, with unclear mechanisms. Changing the myocardial metabolism causes harmful consequences for heart function and exercise contributes to metabolic adjustment modulation. Peroxisome proliferator-activated receptors (PPARs) are also myocardium metabolism regulators capable of decreasing the inflammatory response. We hypothesized that PPAR-α is involved in the beneficial effects of previous exercise on myocardial infarction (MI) and cardiac function, changing the expression of metabolic and inflammatory response regulators and reducing myocardial apoptosis, which partially explains the better outcome. METHODS AND RESULTS Exercised rats engaged in swimming sessions for 60 min/day, 5 days/week, for 8 weeks. Both the exercised rats and sedentary rats were randomized to MI surgery and followed for 1 week (EI1 or SI1) or 4 weeks (EI4 or SI4) of healing or to sham groups. Echocardiography was employed to detect left ventricular function and the infarct size. Additionally, the TUNEL technique was used to assess apoptosis and immunohistochemistry was used to quantitatively analyze the PPAR-α, TNF-α and NF-κB antigens in the infarcted and non-infarcted myocardium. MI-related mortality was higher in SI4 than in EI4 (25% vs 12%), without a difference in MI size. SI4 exhibited a lower shortening fraction than EI4 did (24% vs 35%) and a higher apoptosis/area rate (3.97±0.61 vs 1.90±1.82) in infarcted areas (both p=0.001). Immunohistochemistry also revealed higher TNF-α levels in SI1 than in EI1 (9.59 vs 4.09, p<0.001) in infarcted areas. In non-infarcted areas, EI4 showed higher levels of TNF-α and positive correlations between PPAR-α and NF-κB (r=0.75, p=0.02), in contrast to SI4 (r=0.05, p=0.87). CONCLUSION Previously exercised animals had better long-term ventricular function post-MI, in addition to lower levels of local inflammatory markers and less myocardial apoptosis, which seemed to be related to the presence of PPAR-α.
Collapse
Affiliation(s)
- Marília Harumi Higuchi Santos
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Coração (InCor), Laboratório de Patologia Cardíaca, São Paulo/, SP, Brazil
- E-mail:
| | - Maria de Lourdes Higuchi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Coração (InCor), Laboratório de Patologia Cardíaca, São Paulo/, SP, Brazil
| | | | - Shérrira M Garavelo
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Coração (InCor), Laboratório de Patologia Cardíaca, São Paulo/, SP, Brazil
| | - Márcia M Reis
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Coração (InCor), Laboratório de Patologia Cardíaca, São Paulo/, SP, Brazil
| | | | | | - Raul Cavalcante Maranhão
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Coração (InCor), Laboratório de Patologia Cardíaca, São Paulo/, SP, Brazil
| |
Collapse
|
31
|
Barlaka E, Galatou E, Mellidis K, Ravingerova T, Lazou A. Role of Pleiotropic Properties of Peroxisome Proliferator-Activated Receptors in the Heart: Focus on the Nonmetabolic Effects in Cardiac Protection. Cardiovasc Ther 2016; 34:37-48. [DOI: 10.1111/1755-5922.12166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eleftheria Barlaka
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Eleftheria Galatou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Kyriakos Mellidis
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Tanya Ravingerova
- Institute for Heart Research; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Antigone Lazou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
32
|
Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5810908. [PMID: 26682010 PMCID: PMC4670684 DOI: 10.1155/2016/5810908] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/09/2015] [Indexed: 12/20/2022]
Abstract
We hypothesized that fibroblast growth factor-9 (FGF-9) would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p < 0.05). Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p < 0.05). Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p < 0.05). Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p < 0.05). Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function.
Collapse
|
33
|
Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions. PPAR Res 2015; 2015:271983. [PMID: 26587015 PMCID: PMC4637490 DOI: 10.1155/2015/271983] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and comprise three different isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ. The main role of PPARs is to regulate the expression of genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia. However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class of drugs.
Collapse
|
34
|
Apigenin Attenuates β-Receptor-Stimulated Myocardial Injury Via Safeguarding Cardiac Functions and Escalation of Antioxidant Defence System. Cardiovasc Toxicol 2015; 16:286-97. [DOI: 10.1007/s12012-015-9336-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Niro S, Hennebert O, Morfin R. A native steroid hormone derivative triggers the resolution of inflammation. Horm Mol Biol Clin Investig 2015; 1:11-9. [PMID: 25961967 DOI: 10.1515/hmbci.2010.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/27/2009] [Indexed: 12/12/2022]
Abstract
Inflamed tissues produce both prostaglandins (PGs) and 7α-hydroxylated derivatives of native circulating 3β-hydroxysteroids. These 7α-hydroxysteroids are in turn transformed into 7β-hydroxylated epimers by 11β-hydroxysteroid dehydrogenase type 1 in the tissue. 7β-Hydroxy-epiandrosterone (7β-hydroxy-EpiA) affects PG production in two models of inflammation, dextran sodium sulfate-induced colitis in the rat and TNF-α-induced activation of PG production and PG synthase expression in cultured human peripheral blood monocytes (hPBMC). Treatment with 7β-hydroxy-EpiA led to a shift from high to low colonic PGE2 levels and from low to high 15-deoxy-Δ12-14-PGJ2 (15d-PGJ2) levels, together with changes in the expression of the respective PG synthases and resolution of colonic inflammation. Addition of 7β-hydroxy-EpiA to hPBMC also changed the expression of PG synthases and decreased PGE2 while increasing 15d-PGJ2 production. These effects were only observed with 7β-hydroxy-EpiA and not with 7α-hydroxy- or 7β-hydroxy-dehydroepiandrosterone (7α-hydroxy-DHEA and 7β-hydroxy-DHEA). 15d-PGJ2, which is the native ligand for peroxisome proliferator-activated receptor subtype γ, contributes to cell protection and to the resolution of inflammation. Our results therefore suggest that 7β-hydroxy-EpiA may facilitate inflammatory resolution by shifting PG production from PGE2 to PGD2 and 15d-PGJ2. The finding that 7β-hydroxy-EpiA was effective at nM concentrations, whereas the two structurally closely related hydroxysteroids 7α-hydroxy-DHEA and 7β-hydroxy-DHEA were inactive suggests that the effects of 7β-hydroxy-EpiA are specific to this steroid and may be mediated by a specific receptor.
Collapse
|
36
|
Rongen GA, Wever KE. Cardiovascular pharmacotherapy: Innovation stuck in translation. Eur J Pharmacol 2015; 759:200-4. [PMID: 25814253 DOI: 10.1016/j.ejphar.2015.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Abstract
Systematic reviews of animal studies have revealed serious limitations in internal and external validity strongly affecting the reliability of this research. In addition inter-species differences are likely to further limit the predictive value of animal research for the efficacy and tolerability of new drugs in humans. Important changes in the research process are needed to allow efficient translation of preclinical discoveries to the clinic, including improvements in the laboratory and publication practices involving animal research and early incorporation of human proof-of-concept studies to optimize the interpretation of animal data for its predictive value for humans and the design of clinical trials.
Collapse
Affiliation(s)
- Gerard A Rongen
- Department of Pharmacology-Toxicology and Internal Medicine, Radboud university medical center, P.O. box 9101, Internal post address: 137, 6500 HB Nijmegen, The Netherlands.
| | - Kimberley E Wever
- SYstematic Review Centre for Laboratory animal Experimentation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Abdel-Kawy HS. Chronic pantoprazole administration and ischemia--reperfusion arrhythmias in vivo in rats--antiarrhythmic or arrhythmogenic? Cardiovasc Ther 2015; 33:27-34. [PMID: 25677801 DOI: 10.1111/1755-5922.12107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The safety of all proton pump inhibitors (PPIs) in patients with intrinsic cardiac disease has not been well studied. In the present study, the effect of PPI pantoprazole on ventricular arrhythmias induced by either ischemia or ischemia-reperfusion (I/R) was studied. METHODS The left main coronary artery (LAD) was ligated for 30 or 10 min followed by a 30-min reperfusion in anesthetized rats. Rats were pretreated with pantoprazole (1.3 mg/kg) or vehicle by gastric gavage (daily for 3 weeks) before ligation. Serum electrolytes levels were measured by the end of the third week before coronary ligation. Lactate dehydrogenase (LDH) activity and nitric oxide (NO) concentrations were measured at the end of the ischemia and IR injury. RESULTS Pantoprazole caused significant hyperkalemia by the end of third week compared with vehicle-treated rats. After LAD ligation (30 min), ventricular premature contractions (VPC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were recorded in rats of the vehicle ischemia group. Pantoprazole pretreatment aggravate these arrhythmias and increased mortality. A 10-min period of ischemia followed by a 30-min reperfusion induced high incidence of VT (100%) and VF (80%) in the vehicle-treated group. The group of rats administered pantoprazole had significantly lower incidence and durations of VT and VF together with reduction of mortality rate. Pantoprazole significantly reduced serum LDH activity and NO release from myocardial tissue after both ischemia and I/R injury. CONCLUSION Pantoprazole aggravated ischemia-induced arrhythmias but had a significant antiarrhythmic effect on I/R-induced ventricular arrhythmias.
Collapse
|
38
|
Abou Daya K, Abu Daya H, Nasser Eddine M, Nahhas G, Nuwayri-Salti N. Effects of rosiglitazone (PPAR γ agonist) on the myocardium in non-hypertensive diabetic rats (PPAR γ). J Diabetes 2015; 7:85-94. [PMID: 24548695 DOI: 10.1111/1753-0407.12140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/06/2013] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND There is ongoing controversy regarding the safety of rosiglitazone and its effects on the myocardium, in some cases causing severe cardiac pathology and even in some instances mortality. In this study we aimed at examining the effects of pharmacologic doses of rosiglitazone on cardiomyocytes in diabetic non-cardiac rats receiving sub-optimal doses of insulin. METHODS Animals were distributed into six groups: normal, diabetic, and diabetic receiving insulin, each subdivided into a control group and an experimental group receiving pharmacologic doses of rosiglitazone. Cardiomyocyte hypertrophy was assessed using heart to body weight index and microscopic examination using the number of cardiomyocytes per quadrant of high power field and intercalated disks in a sector of 100 × field. Fibrosis was assessed using Masson Trichrome staining. A number of sections of each group were stained with periodic acid Shiff and others with Sudan III for glycogen and fat accumulation, respectively. One way ANOVA was used for statistical analysis as appropriate. RESULTS Diffuse cardiomyopathic changes in diabetic control animals were observed consisting of cardiomyocyte hypertrophy, loss of striations and widespread vacuolation. These changes were reduced and even prevented by treatment with insulin and rosiglitazone. Masson staining showed that all rat groups had no more than +1 fibrosis that is equal to what was present in the normal controls. CONCLUSION Rosiglitazone, in combination with even sub-optimal doses of insulin therapy, has protective effects on cardiac muscle in diabetic animals especially those expressed as muscle hypertrophy, muscle cell death, and fibrosis.
Collapse
Affiliation(s)
- Khodor Abou Daya
- School of Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | |
Collapse
|
39
|
Zhang L, Qu S, Liang A, Jiang H, Wang H. Gene expression microarray analysis of the sciatic nerve of mice with diabetic neuropathy. Int J Mol Med 2014; 35:333-9. [PMID: 25435094 PMCID: PMC4292761 DOI: 10.3892/ijmm.2014.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/07/2014] [Indexed: 01/18/2023] Open
Abstract
The present study aimed to explore novel target genes that regulate the development of diabetic neuropathy (DN) by analyzing gene expression profiles in the sciatic nerve of infected mice. The GSE11343 microarray dataset, which was downloaded from Gene Expression Omnibus, included data on 4 control samples and 5 samples from mice with diabetes induced by streptozotocin (STZ), 5 samples from normal mice treated with rosiglitazone (Rosi) and 5 samples from mice with diabetes induced by STZ and treated with Rosi. Differentially expressed genes (DEGs) between the different groups were identified using the substitution augmentation modification redefinition (SAMR) model. The Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Regulatory and protein‑protein interaction networks were searched using BioCarta and STRING, respectively. The protein structures of potential regulatory genes were predicted using the SYBYL program. Compared with the controls, 1,384 DEGs were identified in the mice with STZ-induced diabetes and 7 DEGs were identified in the mice treated with Rosi. There were 518 DEGs identified between the mice in the STZ + Rosi and STZ groups. We identified 45 GO items, and the calmodulin nerve phosphatase and chemokine signaling pathways were identified as the main pathways. Three genes [myristoylated alanine-rich protein kinase C substrate (Marcks), GLI pathogenesis-related 2 (Glipr2) and centrosomal protein 170 kDa (Cep170)] were found to be co-regulated by both STZ and Rosi, the protein structure of which was predicted and certain binding activity to Rosi was docked. Our study demonstrates that the Marcks, Glipr2 and Cep170 genes may be underlying drug targets in the treatment of DN.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Special Needs Medical Branch, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Shen Qu
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Aibin Liang
- Department of Hematology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Hong Jiang
- Department of Radiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Hao Wang
- Department of Special Needs Medical Branch, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
40
|
Ching J, Amiridis S, Stylli SS, Morokoff AP, O'Brien TJ, Kaye AH. A novel treatment strategy for glioblastoma multiforme and glioma associated seizures: increasing glutamate uptake with PPARγ agonists. J Clin Neurosci 2014; 22:21-8. [PMID: 25439749 DOI: 10.1016/j.jocn.2014.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The established role of glutamate in the pathogenesis of glioma-associated seizures (GAS) led us to investigate a novel treatment method using an established drug class, peroxisome proliferator activated receptor (PPAR) gamma agonists. Previously, sulfasalazine has been shown to prevent release of glutamate from glioma cells and prevent GAS in rodent models. However, raising protein mediated glutamate transport via excitatory amino acid transporter 2 (EAAT2) has not been investigated previously to our knowledge. PPAR gamma agonists are known to upregulate functional EAAT2 expression in astrocytes and prevent excitotoxicity caused by glutamate excess. These agents are also known to have anti-neoplastic mechanisms. Herein we discuss and review the potential mechanisms of these drugs and highlight a novel potential treatment for GAS.
Collapse
Affiliation(s)
- Jared Ching
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Stephanie Amiridis
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
41
|
Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: Challenges and opportunities in development of PPAR agonists. Mol Endocrinol 2014; 28:1756-68. [PMID: 25148456 PMCID: PMC5414793 DOI: 10.1210/me.2013-1427] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 08/08/2014] [Indexed: 01/06/2023] Open
Abstract
The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity.
Collapse
Affiliation(s)
- Matthew B Wright
- F. Hoffmann-La Roche Pharmaceuticals (M.B.W., M.Bor., M.Bop.), CH-4070 Basel, Switzerland; and MediTech Media (M.T.), London EC1V 9AZ, United Kingdom
| | | | | | | |
Collapse
|
42
|
Effect of peroxisome proliferator-activated receptor gamma agonist on heart of rabbits with acute myocardial ischemia/reperfusion injury. ASIAN PAC J TROP MED 2014; 7:271-5. [PMID: 24507674 DOI: 10.1016/s1995-7645(14)60036-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore protective effect of rosiglitazone on myocardial ischemia reperfusion injury. METHODS A total of 48 male SD rats were randomly divided into control group (A), I/R group(B), high dose of rosiglitazone (C), low dose of rosiglitazone (D). Plasm concentration of creatine kinase (CK), CK-MB, hsCRP, Superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), nitric oxide (NO) and endothelin (ET) were measured 1 h later after I/R. 24 h after I/R hearts were harvested to observe pathological and ultrastructural changes. Immunohistochemistry and western blotting was used to test CD40 expression in myocardial tissue. Area of myocardial infarction were tested, arrhythmia rate during I/R was recorded. RESULTS Plasm concentration of creatine kinase (CK), CK-MB, hsCRP, NO, MDA and ET were decreased in group C, D compared with group B. Plasm concentration of T-SOD and GSH-Px was increased significantly in group C, D compared with group B. Compared with group B, pathological and ultrastructural changes in group C, D were slightly. Myocardial infarction area and arrhythmia rate were lower in group C, D compare with group B. CONCLUSIONS Rosiglitazone can protect myocardium from I/R injury by enhancing T-SOD and GSH-Px concentration, inhibit inflammatory reaction, improve endothelial function, reduce oxidative stress and calcium overload.
Collapse
|
43
|
Variable effects of anti-diabetic drugs in animal models of myocardial ischemia and remodeling: a translational perspective for the cardiologist. Int J Cardiol 2014; 169:385-93. [PMID: 24383120 DOI: 10.1016/j.ijcard.2013.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes and heart failure are very prevalent, and affect each other's incidence and severity. Novel therapies to reduce post-myocardial infarction (MI) remodeling that progresses into heart failure are urgently needed, especially in diabetic patients. Clinical studies have suggested that some oral anti-diabetic agents like metformin exert cardiovascular protective effects in heart failure patients with diabetes, whereas other agents may be deleterious. In the current review, we provide an overview of the cardio-specific effects of oral anti-diabetic drugs in animal models of acute MI, post-MI remodeling, and heart failure. Metformin has consistently been shown to ameliorate cardiac remodeling after ischemia/reperfusion (I/R) injury, as well as in several models of heart failure. Sulfonylurea derivatives are controversial with respect to their direct effects on the cardiovascular system. Thiazolidinediones protect against myocardial I/R injury, but their effects on post-MI remodeling are less clear and clinical studies raised concerns about their cardiovascular safety. Glucagon-like peptide-1 analogs have potential beneficial effects on the cardiovascular system that require further confirmation, whereas the results with dipeptidyl peptidase-4 inhibitors are equivocal. Current clinical guidelines, in the absence of prospective clinical trials that evaluated if certain oral anti-diabetic agents are superior over others, only provide generic recommendations, and do not take into account interesting experimental and mechanistic data. The available experimental evidence indicates that some anti-diabetic agents should be preferred over others if cardioprotective effects are warranted. These experimental clues need to be confirmed by clinical trials.
Collapse
|
44
|
Shim CY, Song B, Cha M, Hwang K, Park S, Hong G, Kang S, Lee JE, Ha J, Chung N. Combination of a peroxisome proliferator-activated receptor-gamma agonist and an angiotensin II receptor blocker attenuates myocardial fibrosis and dysfunction in type 2 diabetic rats. J Diabetes Investig 2014; 5:362-371. [PMID: 25411595 PMCID: PMC4210065 DOI: 10.1111/jdi.12153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023] Open
Abstract
AIMS/INTRODUCTION We aimed to examine the effect of an angiotensin II receptor blocker (ARB), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, and their combination on myocardial fibrosis and function in type 2 diabetic rats. MATERIALS AND METHODS Five male Long-Evans Tokushima Otsuka (LETO) rats and 20 male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used. OLETF rats were assigned to four groups (n = 5 per group) at 28 weeks-of-age: untreated, losartan-treated, rosiglitazone-treated and combination-treated. The ARB, losartan, was administered at a dose of 5 mg/kg/day, and the PPAR-gamma agonist, rosiglitazone, was administered at a dose of 3 mg/kg/day by oral gavage for 12 weeks. Urine and blood samples were collected, and two-dimensional echocardiograms and strain rate imaging were obtained at 28 and 40 weeks. Cytokines were evaluated by reverse transcriptase polymerase chain reaction, and histological analysis was carried out at 40 weeks. RESULTS At 40 weeks, the global radial strains of the losartan-treated (55.7 ± 4.5%, P = 0.021) and combination-treated groups (59.3 ± 6.7%, P = 0.001) were significantly higher compared with the untreated OLETFs (44.3 ± 10.5%). No difference was observed when compared with LETO rats. Although the rosiglitazone-treated group showed a better metabolic profile than the untreated OLETF group, there was no difference in the global radial strain (49.8 ± 6.0 vs 44.3 ± 10.5, P = 0.402). The expression of pro-inflammatory cytokines, and collagen type I and III were consistently attenuated in the losartan-treated and combination-treated OLETF groups, but not in the rosiglitazone-treated group. CONCLUSIONS A combination of rosiglitazone and losartan attenuates myocardial fibrosis and dysfunction in type 2 diabetic rats.
Collapse
Affiliation(s)
- Chi Young Shim
- Cardiology DivisionSeverance Cardiovascular HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Byeong‐Wook Song
- Cardiovascular Research InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Min‐Ji Cha
- Cardiovascular Research InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Ki‐Chul Hwang
- Cardiovascular Research InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Sungha Park
- Cardiology DivisionSeverance Cardiovascular HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Geu‐Ru Hong
- Cardiology DivisionSeverance Cardiovascular HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Seok‐Min Kang
- Cardiology DivisionSeverance Cardiovascular HospitalYonsei University College of MedicineSeoulSouth Korea
- Cardiovascular Research InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Jong Eun Lee
- Department of AnatomyYonsei University College of MedicineSeoulSouth Korea
| | - Jong‐Won Ha
- Cardiology DivisionSeverance Cardiovascular HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Namsik Chung
- Cardiology DivisionSeverance Cardiovascular HospitalYonsei University College of MedicineSeoulSouth Korea
- Cardiovascular Research InstituteYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
45
|
Jasińska-Stroschein M, Orszulak-Michalak D. The current approach into signaling pathways in pulmonary arterial hypertension and their implication in novel therapeutic strategies. Pharmacol Rep 2014; 66:552-64. [PMID: 24948054 DOI: 10.1016/j.pharep.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Abstract
Many mediators and signaling pathways, with their downstream effectors, have been implicated in the pathogenesis of pulmonary hypertension. Currently approved drugs, representing an option of specific therapy, target NO, prostacyclin or ET-1 pathways and provide a significant improvement in the symptomatic status of patients and a slower rate of clinical deterioration. However, despite such improvements in the treatment, PAH remains a chronic disease without a cure, the mortality associated with PAH remains high and effective therapeutic regimens are still required. Knowledge about the role of the pathways involved in PAH and their interactions provides a better understanding of the pathogenesis of the disease and may highlight directions for novel therapeutic strategies for PAH. This paper reviews some novel, promising PAH-associated signaling pathways, such as RAAS, RhoA/ROCK, PDGF, PPAR, and TGF, focusing also on their possible interactions with well-established ones such as NO, ET-1 and prostacyclin pathways.
Collapse
|
46
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
47
|
Spirig R, Schaub A, Kropf A, Miescher S, Spycher MO, Rieben R. Reconstituted high-density lipoprotein modulates activation of human leukocytes. PLoS One 2013; 8:e71235. [PMID: 23967171 PMCID: PMC3743844 DOI: 10.1371/journal.pone.0071235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/28/2013] [Indexed: 01/17/2023] Open
Abstract
An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL) has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC). Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA)-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40), IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2)- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Rolf Spirig
- Laboratory of Cardiovascular Research, Department of Clinical Research, University of Bern, Bern, Switzerland
- CSL Behring AG, Bern, Switzerland
| | | | | | | | | | - Robert Rieben
- Laboratory of Cardiovascular Research, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Kim T, Yang Q. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J Cardiol 2013; 5:164-174. [PMID: 23802046 PMCID: PMC3691497 DOI: 10.4330/wjc.v5.i6.164] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/06/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023] Open
Abstract
Peroxisome-proliferator-activated receptors (PPARs) comprise three subtypes (PPARα, δ and γ) to form a nuclear receptor superfamily. PPARs act as key transcriptional regulators of lipid metabolism, mitochondrial biogenesis, and anti-oxidant defense. While their roles in regulating lipid metabolism have been well established, the role of PPARs in regulating redox activity remains incompletely understood. Since redox activity is an integral part of oxidative metabolism, it is not surprising that changes in PPAR signaling in a specific cell or tissue will lead to alteration of redox state. The effects of PPAR signaling are directly related to PPAR expression, protein activities and PPAR interactions with their coregulators. The three subtypes of PPARs regulate cellular lipid and energy metabolism in most tissues in the body with overlapping and preferential effects on different metabolic steps depending on a specific tissue. Adding to the complexity, specific ligands of each PPAR subtype may also display different potencies and specificities of their role on regulating the redox pathways. Moreover, the intensity and extension of redox regulation by each PPAR subtype are varied depending on different tissues and cell types. Both beneficial and adverse effects of PPAR ligands against cardiovascular disorders have been extensively studied by many groups. The purpose of the review is to summarize the effects of each PPAR on regulating redox and the underlying mechanisms, as well as to discuss the implications in the cardiovascular system.
Collapse
|
49
|
Zeng XC, Li XS, Wen H. Telmisartan protects against microvascular dysfunction during myocardial ischemia/reperfusion injury by activation of peroxisome proliferator-activated receptor γ. BMC Cardiovasc Disord 2013; 13:39. [PMID: 23738781 PMCID: PMC3679831 DOI: 10.1186/1471-2261-13-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/31/2013] [Indexed: 11/15/2022] Open
Abstract
Background We investigated the potential of telmisartan to improve microvascular dysfunction induced by myocardial ischemia/reperfusion (I/R) injury by activating the peroxisome proliferator-activated receptor gamma (PPARG) pathway. Methods Forty-eight male rabbits were randomly allocated into sham-operated, I/R, GW9662, telmisartan, telmisartan–GW9662, or candesartan groups. Rabbits were anesthetized, and the left anterior descending coronary artery (LAD) was ligated for 60 minutes. Following reperfusion for 6 hours, angiotensin II content of the heart was determined using radioimmunoassay. Myocardial neutrophil accumulation and microvessel cross-sectional area were examined histologically. Myocardial capillaries were examined with transmission electron microscopy. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the myocardium were measured using enzyme-linked immunosorbent assay. Western blot was utilized for investigating the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and PPARG. Results Angiotensin II concentration was significantly increased in all treatment groups compared with the sham-operated group (P < 0.05, all). Accumulation of polymorphonuclear neutrophils was significantly lower, while microvessel cross-sectional area was significantly higher in the telmisartan, telmisartan-GW9662, and candesartan groups compared with the I/R group (P < 0.05). ICAM-1 and VCAM-1 levels were also significantly lower, and correlated with lower NF-κB expression in these groups. The effects were the most significant in the telmisartan group compared with the telmisartan–GW9662 and candesartan groups. Telmisartan significantly increased PPARG protein expression compared with all other groups (P < 0.05, all). Conclusions Except for the typical effects of angiotensin II-receptor blocker, telmisartan improved microvascular dysfunction during myocardial I/R injury via the PPARG pathway.
Collapse
Affiliation(s)
- Xiao-Cong Zeng
- Department of Cardiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | | | | |
Collapse
|
50
|
Lee TI, Kao YH, Chen YC, Huang JH, Hsiao FC, Chen YJ. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res Clin Pract 2013; 100:330-9. [PMID: 23369225 DOI: 10.1016/j.diabres.2013.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/23/2012] [Accepted: 01/03/2013] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). Chronic inflammation and derangement of myocardial energy and lipid homeostasis are common features of DM. The transcription factors of peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily, which are important in regulating energy and lipid homeostasis. There are three PPAR isoforms, α, γ, and δ, and their roles have been increasingly recognized to be important in CVD. These three isoforms are expressed in the heart and play pivotal roles in myocardial lipid metabolism, as well as glucose and energy homeostasis, and contribute to extra metabolic roles with effects on inflammation and oxidative stress. Moreover, regulation of PPARs may have significant effects on cardiac electrical activity and arrhythmogenesis. This review describes the roles of PPARs and their agonists in DM cardiomyopathy, inflammation, and cardiac electrophysiology.
Collapse
Affiliation(s)
- T-I Lee
- Department of General Medicine, College of Medicine, Taipei Medical University, Taiwan
| | | | | | | | | | | |
Collapse
|