1
|
De Bartolo A, Romeo N, Angelone T, Rocca C. Specialized Pro-Resolving Mediators as Emerging Players in Cardioprotection: From Inflammation Resolution to Therapeutic Potential. Acta Physiol (Oxf) 2025; 241:e70062. [PMID: 40433738 DOI: 10.1111/apha.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
AIM Timely myocardial reperfusion is essential for restoring blood flow to post-ischemic tissue, thereby reducing cardiac injury and limiting infarct size. However, this process can paradoxically result in additional, irreversible myocardial damage, known as myocardial ischemia-reperfusion injury (MIRI). The goal of this review is to explore the role of specialized pro-resolving mediators (SPMs) in atherosclerosis and MIRI, and to assess the therapeutic potential of targeting inflammation resolution in these cardiovascular conditions. METHODS This review summarizes current preclinical and clinical evidence on the involvement of SPMs in the pathogenesis of atherosclerosis and MIRI, acknowledging that several cellular and molecular aspects of their mechanisms of action remain to be fully elucidated. RESULTS MIRI is a complex phenomenon in which inflammation, initially triggered during ischemia and further amplified upon reperfusion, plays a central role in its pathogenesis. Various cellular and molecular players mediate the initial pro-inflammatory response and the subsequent anti-inflammatory reparative phase following acute myocardial infarction (AMI), contributing both to ischemia- and reperfusion-induced damage as well as to the healing process. SPMs have emerged as key endogenous immunoresolvents with potent anti-inflammatory, antioxidant, and pro-resolving properties that contribute to limit excessive acute inflammation and promote tissue repair. While dysregulated SPM-related signaling has been linked to various cardiovascular diseases (CVD), their precise role in AMI and MIRI remains incompletely understood. CONCLUSION Targeting inflammation resolution may represent a promising therapeutic strategy for mitigating atheroprogression and addressing a complex condition such as MIRI.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST), University of Calabria, Cosenza, Italy
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST), University of Calabria, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST), University of Calabria, Cosenza, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. And E. S. (DiBEST), University of Calabria, Cosenza, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
2
|
Xue J, Zeng W, John S, Attiq N, Ottolia M, Jiang Y. Structural mechanisms of PIP 2 activation and SEA0400 inhibition in human cardiac sodium-calcium exchanger NCX1. eLife 2025; 14:RP105396. [PMID: 40433952 DOI: 10.7554/elife.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
Na+/Ca2+ exchangers (NCXs) transport Ca2+ across the plasma membrane in exchange for Na+ and play a vital role in maintaining cellular Ca2+ homeostasis. Our previous structural study of human cardiac NCX1 (HsNCX1) reveals the overall architecture of the eukaryotic exchanger and the formation of the inactivation assembly by the intracellular regulatory domain that underlies the cytosolic Na+-dependent inactivation and Ca2+ activation of NCX1. Here, we present the cryo-EM structures of HsNCX1 in complex with a physiological activator phosphatidylinositol 4,5-bisphosphate (PIP2), or pharmacological inhibitor SEA0400, that enhances the inactivation of the exchanger. We demonstrate that PIP2 binding stimulates NCX1 activity by inducing a conformational change at the interface between the transmembrane (TM) and cytosolic domains that destabilizes the inactivation assembly. In contrast, SEA0400 binding in the TM domain of NCX1 stabilizes the exchanger in an inward-facing conformation that facilitates the formation of the inactivation assembly, thereby promoting the Na+-dependent inactivation of NCX1. Thus, this study reveals the structural basis of PIP2 activation and SEA0400 inhibition of NCX1 and provides some mechanistic understandings of cellular regulation and pharmacology of NCX family proteins.
Collapse
Affiliation(s)
- Jing Xue
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Weizhong Zeng
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, United States
| | - Nicole Attiq
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States
| | - Youxing Jiang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
3
|
Wang M, Preckel B, Zuurbier CJ, Weber NC. Effects of SGLT2 inhibitors on ion channels in heart failure: focus on the endothelium. Basic Res Cardiol 2025:10.1007/s00395-025-01115-y. [PMID: 40366385 DOI: 10.1007/s00395-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Heart failure (HF) is a life-threatening cardiovascular disease associated with high mortality, diminished quality of life, and a significant economic burden on both patients and society. The pathogenesis of HF is closely related to the endothelium, where endothelial ion channels play an important role in regulating intracellular Ca2+ signals. These ion channels are essential to maintain vascular function, including endothelium-dependent vascular tone, inflammation response, and oxidative stress. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promising cardiovascular benefits in HF patients, reducing mortality risk and hospitalization in several large clinical trials. Clinical and preclinical studies indicate that the cardioprotective effects of SGLT2i in HF are mediated by endothelial nitric oxide (NO) pathways, as well as by reducing inflammation and reactive oxygen species in cardiac endothelial cells. Additionally, SGLT2i may confer endothelial protection by lowering intracellular Ca2+ level through the inhibition of sodium-hydrogen exchanger 1 (NHE1) and sodium-calcium exchanger (NCX) in endothelial cells. In this review, we discuss present knowledge regarding the expression and role of Ca2+-related ion channels in endothelial cells in HF, focusing on the effects of SGLT2i on endothelial NHE1, NCX as well as on vascular tone.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Xue J, Zeng W, John S, Attiq N, Ottolia M, Jiang Y. Structural mechanisms of PIP 2 activation and SEA0400 inhibition in human cardiac sodium-calcium exchanger NCX1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.627058. [PMID: 39677781 PMCID: PMC11643123 DOI: 10.1101/2024.12.05.627058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Na+/Ca2+ exchangers (NCXs) transport Ca2+ across the plasma membrane in exchange for Na+ and play a vital role in maintaining cellular Ca2+ homeostasis. Our previous structural study of human cardiac NCX1 (HsNCX1) reveals the overall architecture of the eukaryotic exchanger and the formation of the inactivation assembly by the intracellular regulatory domain that underlies the cytosolic Na+-dependent inactivation and Ca2+ activation of NCX1. Here we present the cryo-EM structures of HsNCX1 in complex with a physiological activator phosphatidylinositol 4,5-bisphosphate (PIP2), or pharmacological inhibitor SEA0400 that enhances the inactivation of the exchanger. We demonstrate that PIP2 binding stimulates NCX1 activity by inducing a conformational change at the interface between the TM and cytosolic domains that destabilizes the inactivation assembly. In contrast, SEA0400 binding in the TM domain of NCX1 stabilizes the exchanger in an inward-facing conformation that facilitates the formation of the inactivation assembly, thereby promoting the Na+-dependent inactivation of NCX1. Thus, this study reveals the structural basis of PIP2 activation and SEA0400 inhibition of NCX1 and provides some mechanistic understandings of cellular regulation and pharmacology of NCX family proteins.
Collapse
Affiliation(s)
- Jing Xue
- Howard Hughes Medical Institute and Department of Physiology, the University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, the University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, the University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, the University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, California, USA
| | - Nicole Attiq
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, the University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, the University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Odaka R, Sekiguchi K, Hamaguchi S, Namekata I, Tanaka H. Involvement of the Na +/Ca 2+ Exchanger in the Automaticity of the Cardiomyocytes from the Guinea Pig Pulmonary Vein but Not the Sinus Node. Biol Pharm Bull 2025; 48:151-161. [PMID: 39993746 DOI: 10.1248/bpb.b24-00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Fluorescence imaging analysis was performed in cardiomyocytes from the sinus node, the orthotopic pacemaker, and the pulmonary vein, a potential ectopic pacemaker that may cause atrial fibrillation, focusing on the role of the Na+/Ca2+ exchanger (NCX). Isolated cardiomyocytes from the guinea pig pulmonary vein and sinus node showing automaticity were loaded with fluorescence probes for analysis. Inhibition of NCX by SEA0400 decreased the Ca2+ transient frequency in the pulmonary vein cardiomyocytes but not in the sinus node. The basal intracellular Ca2+ concentration, as well as the number of Ca2+ sparks in the subsarcolemmal region, was higher in the pulmonary vein cardiomyocytes than in the sinus node. By contrast, the intracellular Na+ concentration was not different between the pulmonary vein and sinus node cardiomyocytes. The equilibrium potential for NCX (ENCX) was estimated to be less negative in the pulmonary vein cardiomyocytes than in the sinus node. In conclusion, the forward mode NCX is involved in spontaneous activity in the pulmonary vein cardiomyocytes but not in the sinus node; this is probably because the Ca2+ supply and the driving force for the forward mode NCX are both larger in the pulmonary vein cardiomyocytes than in the sinus node.
Collapse
Affiliation(s)
- Ryosuke Odaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kana Sekiguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Shogo Hamaguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
6
|
Skovgaard AC, Mohammadnejad A, Beck HC, Tan Q, Soerensen M. Multi-omics association study of DNA methylation and gene expression levels and diagnoses of cardiovascular diseases in Danish Twins. Clin Epigenetics 2024; 16:117. [PMID: 39187864 PMCID: PMC11348607 DOI: 10.1186/s13148-024-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. RESULTS In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases). CONCLUSION We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Afsaneh Mohammadnejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Biochemistry, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| |
Collapse
|
7
|
Yoshimoto K, Maki K, Adachi T, Kamei KI. Cyclic Stretching Enhances Angiocrine Signals at Liver Bud Stage from Human Pluripotent Stem Cells in Two-Dimensional Culture. Tissue Eng Part A 2024; 30:426-439. [PMID: 38062736 DOI: 10.1089/ten.tea.2023.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Angiocrine signals during the development and growth of organs, including the liver, intestine, lung, and bone, are essential components of intercellular communication. The signals elicited during the liver bud stage are critical for vascularization and enhanced during the intercellular communication between the cells negative for kinase insert domain receptor (KDR) (KDR- cells) and the cells positive for KDR (KDR+ cells), which constitute the liver bud. However, the use of a human pluripotent stem cell (hPSC)-derived system has not facilitated the generation of a perfusable vascularized liver organoid that allows elucidation of liver development and has great potential for liver transplantation. This is largely owing to the lack of fundamental understanding to induce angiocrine signals in KDR- and KDR+ cells during the liver bud stage. We hypothesized that mechanical stimuli of cyclic stretching/pushing by the fetal heart adjacent to the liver bud could be the main contributor to promoting angiocrine signals in KDR- and KDR+ cells during the liver bud stage. In this study, we show that an organ-on-a-chip platform allows the emulation of an in vivo-like mechanical environment for the liver bud stage in vitro and investigate the role of cyclic mechanical stretching (cMS) to angiocrine signals in KDR- and KDR+ cells derived from hPSCs. RNA sequencing revealed that the expression of genes associated with epithelial-to-mesenchymal transition, including angiocrine signals, such as hepatocyte growth factor (HGF) and matrix metallopeptidase 9 (MMP9), were increased by cMS in cocultured KDR- and KDR+ cells. The expression and secretions of HGF and MMP9 were increased by 1.98- and 1.69-fold and 3.23- and 3.72-fold with cMS in the cocultured KDR- and KDR+ cells but were not increased by cMS in the monocultured KDR- and KDR+ cells, respectively. Finally, cMS during the liver bud stage did not lead to the dedifferentiation of hepatocytes, as the cells with cMS showed hepatic maker expression (CYP3A4, CYP3A7, ALB, and AAT) and 1.71-fold higher CYP3A activity than the cells without cMS, during 12 day-hepatocyte maturation after halting cMS. Our findings provide new insights into the mechanical factors during the liver bud stage and directions for future improvements in the engineered liver tissue.
Collapse
Affiliation(s)
- Koki Yoshimoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichiro Maki
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, China
- Programs of Biology and Bioengineering, Divisions of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
8
|
Xue J, Zeng W, Han Y, John S, Ottolia M, Jiang Y. Structural mechanisms of the human cardiac sodium-calcium exchanger NCX1. Nat Commun 2023; 14:6181. [PMID: 37794011 PMCID: PMC10550945 DOI: 10.1038/s41467-023-41885-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Na+/Ca2+ exchangers (NCX) transport Ca2+ in or out of cells in exchange for Na+. They are ubiquitously expressed and play an essential role in maintaining cytosolic Ca2+ homeostasis. Although extensively studied, little is known about the global structural arrangement of eukaryotic NCXs and the structural mechanisms underlying their regulation by various cellular cues including cytosolic Na+ and Ca2+. Here we present the cryo-EM structures of human cardiac NCX1 in both inactivated and activated states, elucidating key structural elements important for NCX ion exchange function and its modulation by cytosolic Ca2+ and Na+. We demonstrate that the interactions between the ion-transporting transmembrane (TM) domain and the cytosolic regulatory domain define the activity of NCX. In the inward-facing state with low cytosolic [Ca2+], a TM-associated four-stranded β-hub mediates a tight packing between the TM and cytosolic domains, resulting in the formation of a stable inactivation assembly that blocks the TM movement required for ion exchange function. Ca2+ binding to the cytosolic second Ca2+-binding domain (CBD2) disrupts this inactivation assembly which releases its constraint on the TM domain, yielding an active exchanger. Thus, the current NCX1 structures provide an essential framework for the mechanistic understanding of the ion transport and cellular regulation of NCX family proteins.
Collapse
Affiliation(s)
- Jing Xue
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Han
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott John
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
10
|
Wu SJ, He RL, Zhao L, Yu XY, Jiang YN, Guan X, Chen QY, Ren FF, Xie ZY, Wu LP, Li L. Cardiac-Specific Overexpression of Caveolin-1 in Rats With Ischemic Cardiomyopathy Improves Arrhythmogenicity and Cardiac Remodelling. Can J Cardiol 2023; 39:73-86. [PMID: 36240973 DOI: 10.1016/j.cjca.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ischemic cardiomyopathy (ICM) is associated with electrical and structural remodelling, leading to arrhythmias. Caveolin-1 (Cav1) is a membrane protein involved in the pathogenesis of ischemic injury. Cav1 deficiency has been associated with arrhythmogenicity. The current study aimed to determine how Cav1 overexpression inhibits arrhythmias and cardiac remodelling in ICM. METHODS ICM was modelled using left anterior descending (LAD) artery ligation for 4 weeks. Cardiac-specific Cav1 overexpression in ICM on arrhythmias, excitation-contraction coupling, and cardiac remodelling were investigated using the intramyocardial injection of an adeno-associated virus serotype 9 (AAV-9) system, carrying a specific sequence expressing Cav1 (AAVCav1) under the cardiac troponin T (cTnT) promoter. RESULTS Cav1 overexpression decreased susceptibility to arrhythmias by upregulating gap junction connexin 43 (CX43) and reducing spontaneous irregular proarrhythmogenic Ca2+ waves in ventricular cardiomyocytes. It also alleviated ischemic injury-induced contractility weakness by improving Ca2+ cycling through normalizing Ca2+-handling protein levels and improving Ca2+ homeostasis. Masson stain and immunoblotting revealed that the deposition of excessive fibrosis was attenuated by Cav1 overexpression, inhibiting the transforming growth factor-β (TGF-β)/Smad2 signalling pathway. Coimmunoprecipitation assays demonstrated that the interaction between Cav1 and cSrc modulated CX43 expression and Ca2+-handling protein levels. CONCLUSIONS Cardiac-specific overexpression of Cav1 attenuated ventricular arrhythmia, improved Ca2+ cycling, and attenuated cardiac remodelling. These effects were attributed to modulation of CX43, normalized Ca2+-handling protein levels, improved Ca2+ homeostasis, and attenuated cardiac fibrosis.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Rui-Lin He
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lin Zhao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiao-Yu Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yi-Na Jiang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuan Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Qiao-Ying Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Fang-Fang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zuo-Yi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lian-Pin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
12
|
Yang X, Ribeiro AJS, Pang L, Strauss DG. Use of Human iPSC-CMs in Nonclinical Regulatory Studies for Cardiac Safety Assessment. Toxicol Sci 2022; 190:117-126. [PMID: 36099065 DOI: 10.1093/toxsci/kfac095] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a human-relevant platform for cardiac function assessment. Alternative assays using hiPSC-CMs are increasingly being employed for regulatory decision-making. A retrospective review revealed steady use of hiPSC-CM-based in vitro assays in nonclinical studies of drug-induced cardiotoxicity in regulatory submissions to the U.S. Food and Drug Administration (FDA). Most of the hiPSC-CMs data were obtained in exploratory studies and submitted as supportive evidence in concordance with other nonclinical data. Some of those studies were used to inform clinical trial design. This article provides an overview of the use of hiPSC-CMs in regulatory applications to FDA, with a focus on the integration of human-relevant in vitro data into proarrhythmic and non-proarrhythmic risk assessment. By identifying the regulatory submissions including hiPSC-CMs data, we explore their utility and discuss their limitations for predicting human cardiac safety in clinical trials. An important take-home message is that regulatory acceptance of hiPSC-CMs data is dependent on both the context of use and accurate data interpretation.
Collapse
Affiliation(s)
- Xi Yang
- Division of Pharmacology & Toxicology, Office of Cardiology, Hematology, Endocrinology, & Nephrology, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, USA
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, USA
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arizona 72079, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, USA
| |
Collapse
|
13
|
Osuru HP, Lavallee M, Thiele RH. Molecular and Cellular Response of the Myocardium (H9C2 Cells) Towards Hypoxia and HIF-1α Inhibition. Front Cardiovasc Med 2022; 9:711421. [PMID: 35928940 PMCID: PMC9343679 DOI: 10.3389/fcvm.2022.711421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Oxidative phosphorylation is an essential feature of Animalian life. Multiple adaptations have developed to protect against hypoxia, including hypoxia-inducible-factors (HIFs). The major role of HIFs may be in protecting against oxidative stress, not the preservation of high-energy phosphates. The precise mechanism(s) of HIF protection is not completely understood. Materials and Methods To better understand the role of hypoxia-inducible-factor-1, we exposed heart/myocardium cells (H9c2) to both normoxia and hypoxia, as well as cobalt chloride (prolyl hydroxylase inhibitor), echniomycin (HIF inhibitor), A2P (anti-oxidant), and small interfering RNA to beclin-1. We measured cell viability, intracellular calcium and adenosine triphosphate, NADP/NADPH ratios, total intracellular reactive oxidative species levels, and markers of oxidative and antioxidant levels measured. Results Hypoxia (1%) leads to increased intracellular Ca2+ levels, and this response was inhibited by A2P and echinomycin (ECM). Exposure of H9c2 cells to hypoxia also led to an increase in both mRNA and protein expression for Cav 1.2 and Cav 1.3. Exposure of H9c2 cells to hypoxia led to a decrease in intracellular ATP levels and a sharp reduction in total ROS, SOD, and CAT levels. The impact of hypoxia on ROS was reversed with HIF-1 inhibition through ECM. Exposure of H9c2 cells to hypoxia led to an increase in Hif1a, VEGF and EPO protein expression, as well as a decrease in mitochondrial DNA. Both A2P and ECM attenuated this response to varying degrees. Conclusion Hypoxia leads to increased intracellular Ca2+, and inhibition of HIF-1 attenuates the increase in intracellular Ca2+ that occurs with hypoxia. HIF-1 expression leads to decreased adenosine triphosphate levels, but the role of HIF-1 on the production of reactive oxidative species remains uncertain. Anti-oxidants decrease HIF-1 expression in the setting of hypoxia and attenuate the increase in Ca2+ that occurs during hypoxia (with no effect during normoxia). Beclin-1 appears to drive autophagy in the setting of hypoxia (through ATG5) but not in normoxia. Additionally, Beclin-1 is a powerful driver of reactive oxidative species production and plays a role in ATP production. HIF-1 inhibition does not affect autophagy in the setting of hypoxia, suggesting that there are other drivers of autophagy that impact beclin-1.
Collapse
|
14
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
15
|
Gager GM, von Lewinski D, Sourij H, Jilma B, Eyileten C, Filipiak K, Hülsmann M, Kubica J, Postula M, Siller-Matula JM. Effects of SGLT2 Inhibitors on Ion Homeostasis and Oxidative Stress associated Mechanisms in Heart Failure. Biomed Pharmacother 2021; 143:112169. [PMID: 34560555 DOI: 10.1016/j.biopha.2021.112169] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors present a class of antidiabetic drugs, which inhibit renal glucose reabsorption resulting in the elevation of urinary glucose levels. Within the past years, SGLT2 inhibitors have become increasingly relevant due to their effects beyond glycemic control in patients with type 2 diabetes (T2DM). Although dedicated large trials demonstrated cardioprotective effects of SGLT2 inhibitors, the exact mechanisms responsible for those benefits have not been fully identified. Alterations in Ca2+ signaling and oxidative stress accompanied by excessive reactive oxygen species (ROS) production, fibrosis and inflammatory processes form cornerstones of potential molecular targets for SGLT2 inhibitors. This review focused on three hypotheses for SGLT2 inhibitor-mediated cardioprotection: ion homeostasis, oxidative stress and endothelial dysfunction.
Collapse
Affiliation(s)
- Gloria M Gager
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Krzysztof Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Martin Hülsmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - Jacek Kubica
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Jolanta M Siller-Matula
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.
| |
Collapse
|
16
|
Fill M, Gillespie D. Simulating cardiac Ca 2+ release units: effects of RyR cluster size and Ca 2+ buffers on diastolic Ca 2+ leak. Pflugers Arch 2021; 473:435-446. [PMID: 33608799 DOI: 10.1007/s00424-021-02539-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Leak of Ca2+ out of the cardiac sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) during diastole is vital to regulate SR Ca2+ levels. This leak can become deleterious when large spontaneous RyR-mediated Ca2+ release events evoke proarrhythmic Ca2+ waves that can lead to delayed after-depolarizations. Here, we model diastolic SR Ca2+ leak at individual SR Ca2+ release sites using computer simulations of RyR arrays like those in the dyadic cleft. The results show that RyR arrays size has a significant effect on SR Ca2+ leak, with bigger arrays producing larger and more frequent Ca2+ release events. Moreover, big RyR arrays are more susceptible to small changes in the levels of dyadic Ca2+ buffers. Such changes in buffering shift Ca2+ leak from small Ca2+ release events (involving few open RyRs) to larger events (with many open RyRs). Moreover, by analyzing a large parameter space of possible buffering and SR Ca2+ loads, we find further evidence for the hypothesis that SR Ca2+ leak by RyR arrays can undergo a sudden phase transition.
Collapse
Affiliation(s)
- Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Dirk Gillespie
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
17
|
Kaya I, Sämfors S, Levin M, Borén J, Fletcher JS. Multimodal MALDI Imaging Mass Spectrometry Reveals Spatially Correlated Lipid and Protein Changes in Mouse Heart with Acute Myocardial Infarction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2133-2142. [PMID: 32897704 PMCID: PMC7587215 DOI: 10.1021/jasms.0c00245] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na+ and Ca2+ overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In this work, we demonstrate an application of multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which provided comprehensive molecular information in situ within the same mouse heart tissue sections with myocardial infarction. MALDI-IMS (at 30 μm per pixel) revealed infarct-associated spatial alterations of several lipid species of sphingolipids, glycerophospholipids, lysophospholipids, and cardiolipins along with the acyl carnitines. Further, we performed multimodal MALDI-IMS (IMS3) where dual polarity lipid imaging was combined with subsequent protein MALDI-IMS analysis (at 30 μm per pixel) within the same tissue sections, which revealed accumulations of core histone proteins H4, H2A, and H2B along with post-translational modification products, acetylated H4 and H2A, on the borders of the infarcted region. This methodology allowed us to interpret the lipid and protein molecular pathology of the very same infarcted region in a mouse model of myocardial infarction. Therefore, the presented data highlight the potential of multimodal MALDI imaging mass spectrometry of the same tissue sections as a powerful approach for simultaneous investigation of spatial infarct-associated lipid and protein changes of myocardial infarction.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry,
Sahlgrenska Academy at the University of Gothenburg, 431 80
Mölndal, Sweden
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
| | - Sanna Sämfors
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine,
Institute of Medicine at University of Gothenburg and Sahlgrenska
University Hospital, 405 30 Gothenburg, Sweden
| | - John S. Fletcher
- Department of Chemistry and Molecular Biology,
University of Gothenburg, 405 30 Gothenburg,
Sweden
| |
Collapse
|
18
|
Magi S, Piccirillo S, Preziuso A, Amoroso S, Lariccia V. Mitochondrial localization of NCXs: Balancing calcium and energy homeostasis. Cell Calcium 2020; 86:102162. [DOI: 10.1016/j.ceca.2020.102162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/04/2023]
|
19
|
Sampieri R, Fuentes E, Carrillo ED, Hernández A, García MC, Sánchez JA. Pharmacological Preconditioning Using Diazoxide Regulates Store-Operated Ca 2 + Channels in Adult Rat Cardiomyocytes. Front Physiol 2020; 10:1589. [PMID: 32009985 PMCID: PMC6972595 DOI: 10.3389/fphys.2019.01589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 01/31/2023] Open
Abstract
Voltage-dependent Ca2+ channels and store-operated Ca2+ channels (SOCs) are the major routes of Ca2+ entry into mammalian cells. Previously, we reported that pharmacological preconditioning (PPC) leads to a decrease in the amplitude of L-type calcium channel current in the heart. In this study, we examined PPC-associated changes in SOC function. We measured adult cardiomyocyte membrane currents using the whole-cell patch-clamp technique, and we evaluated reactive oxygen species (ROS) production and intracellular Ca2+ levels in cardiomyocytes using fluorescent probes. Diazoxide (Dzx) and thapsigargin (Tg) were used to induce PPC and to deplete internal stores of Ca2+, respectively. Ca2+ store depletion generated inward currents with strong rectification, which were suppressed by the SOC blocker GSK-7975-A. These currents were completely abolished by PPC, an effect that could be countered with 5-hydroxydecanoate (5-HD; a selective mitochondrial ATP-sensitive K+ channel blocker), an intracellular mitochondrial energizing solution, or Ni2+ [a blocker of sodium-calcium exchanger (NCX)]. Buffering of ROS and intracellular Ca2+ also prevented PPC effects on SOC currents. Refilling of intracellular stores was largely suppressed by PPC, as determined by measuring intracellular Ca2+ with a fluorescent Ca2+ indicator. These results indicate that influx of Ca2+ through SOCs is inhibited by their ROS and Ca2+-dependent inactivation during PPC and that NCX is a likely source of PPC-inactivating Ca2+. We further showed that NCX associates with Orai1. Down-regulation of SOCs by PPC may play a role in cardioprotection following ischemia-reperfusion.
Collapse
Affiliation(s)
- Raúl Sampieri
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Eridani Fuentes
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Elba D Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ascención Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - María C García
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Jorge A Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
20
|
Tran QK. Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System. Front Endocrinol (Lausanne) 2020; 11:568203. [PMID: 33133016 PMCID: PMC7550652 DOI: 10.3389/fendo.2020.568203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
17β-Estradiol (E2) is the main estrogenic hormone in the body and exerts many cardiovascular protective effects. Via three receptors known to date, including estrogen receptors α (ERα) and β (ERβ) and the G protein-coupled estrogen receptor 1 (GPER, aka GPR30), E2 regulates numerous calcium-dependent activities in cardiovascular tissues. Nevertheless, effects of E2 and its receptors on components of the calcium signaling machinery (CSM), the underlying mechanisms, and the linked functional impact are only beginning to be elucidated. A picture is emerging of the reciprocality between estrogen biology and Ca2+ signaling. Therein, E2 and GPER, via both E2-dependent and E2-independent actions, moderate Ca2+-dependent activities; in turn, ERα and GPER are regulated by Ca2+ at the receptor level and downstream signaling via a feedforward loop. This article reviews current understanding of the effects of E2 and its receptors on the cardiovascular CSM and vice versa with a focus on mechanisms and combined functional impact. An overview of the main CSM components in cardiovascular tissues will be first provided, followed by a brief review of estrogen receptors and their Ca2+-dependent regulation. The effects of estrogenic agonists to stimulate acute Ca2+ signals will then be reviewed. Subsequently, E2-dependent and E2-independent effects of GPER on components of the Ca2+ signals triggered by other stimuli will be discussed. Finally, a case study will illustrate how the many mechanisms are coordinated to moderate Ca2+-dependent activities in the cardiovascular system.
Collapse
|
21
|
Watanabe Y. Cardiac Na +/Ca 2+ exchange stimulators among cardioprotective drugs. J Physiol Sci 2019; 69:837-849. [PMID: 31664641 PMCID: PMC10717683 DOI: 10.1007/s12576-019-00721-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
We previously reviewed our study of the pharmacological properties of cardiac Na+/Ca2+ exchange (NCX1) inhibitors among cardioprotective drugs, such as amiodarone, bepridil, dronedarone, cibenzoline, azimilide, aprindine, and benzyl-oxyphenyl derivatives (Watanabe et al. in J Pharmacol Sci 102:7-16, 2006). Since then we have continued our studies further and found that some cardioprotective drugs are NCX1 stimulators. Cardiac Na+/Ca2+ exchange current (INCX1) was stimulated by nicorandil (a hybrid ATP-sensitive K+ channel opener), pinacidil (a non-selective ATP-sensitive K+ channel opener), flecainide (an antiarrhythmic drug), and sodium nitroprusside (SNP) (an NO donor). Sildenafil (a phosphodiesterase-5 inhibitor) further increased the pinacidil-induced augmentation of INCX1. In paper, here I review the NCX stimulants that enhance NCX function among the cardioprotective agents we examined such as nicorandil, pinacidil, SNP, sildenafil and flecainide, in addition to atrial natriuretic (ANP) and dofetilide, which were reported by other investigators.
Collapse
Affiliation(s)
- Yasuhide Watanabe
- Division of Pharmacological Science, Department of Health Science, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
22
|
Lemnalol Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes. Mar Drugs 2019; 17:md17110619. [PMID: 31671563 PMCID: PMC6891404 DOI: 10.3390/md17110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Sepsis, an inflammatory response to infection provoked by lipopolysaccharide (LPS), is associated with high mortality, as well as ischemic stroke and new-onset atrial arrhythmia. Severe bacterial infections causing sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction and finally death. LPS challenge-induced inflammatory responses during sepsis may increase the likelihood of the arrhythmogenesis. Lemnalol is known to possess potent anti-inflammatory effects. This study examined whether Lemnalol (0.1 μM) could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes under the influence of LPS (1μg/mL). Under challenge with LPS, Lemnalol-treated LA myocytes, had a longer AP duration at 20%, 50% and 90% repolarization of the amplitude, compared to the LPS-treated cells. LPS-challenged LA myocytes showed increased late sodium current, Na+-Ca2+ exchanger current, transient outward current, rapid component of delayed rectifier potassium current, tumor necrosis factor-α, NF-κB and increased phosphorylation of ryanodine receptor (RyR), but a lower L-type Ca2+ current than the control LA myocytes. Exposure to Lemnalol reversed the LPS-induced effects. The LPS-treated and control groups of LA myocytes, with or without the existence of Lemnalol. showed no apparent alterations in the sodium current amplitude or Cav1.2 expression. The expression of sarcoendoplasmic reticulum calcium transport ATPase (SERCA2) was reduced by LPS treatment, while Lemnalol ameliorated the LPS-induced alterations. The phosphorylation of RyR was enhanced by LPS treatment, while Lemnalol attenuated the LPS-induced alterations. In conclusion, Lemnalol modulates LPS-induced alterations of LA calcium homeostasis and blocks the NF-κB pathways, which may contribute to the attenuation of LPS-induced arrhythmogenesis.
Collapse
|
23
|
Huang Y, Wen LL, Xie JD, Ouyang HD, Chen DT, Zeng WA. Antinociceptive effectiveness of the inhibition of NCX reverse-mode action in rodent neuropathic pain model. Mol Pain 2019; 15:1744806919864511. [PMID: 31370728 PMCID: PMC6681272 DOI: 10.1177/1744806919864511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Chronic neuropathic pain is a debilitating condition that remains difficult
to treat. The Na+-Ca2+ exchanger (NCX) is a
transporter that can exchange Ca2+ with Na+ in either
direction to maintain intracellular Ca2+ homeostasis. However,
the effect of NCX on neuropathic pain remains unclear. Therefore, in this
study, we aimed to clarify whether neuropathic pain is altered by NCX. Methods Adult Sprague–Dawley rats and mice (NCX2 knockout and wild type) were
randomized to receive spinal nerve ligation surgery or intrathecal
injection. Using behavioral testing to analyze the withdrawal thresholds and
thermal withdrawal latency of rats after surgery or intrathecal injection.
Immunohistochemistry and Western blotting were used to analyze the changes
of NCX protein and downstream signaling pathways in rats dorsal root
ganglion. We isolated the dorsal root ganglion neurons of adult rats using
Fluo-4AM to detect the Ca2+ imaging in neurons after drug
treatment. Results NCX was expressed in the sensory neurons of rodent dorsal root ganglia. NCX
expression was altered in ipsilateral L4–6 dorsal root ganglion neurons in
spinal nerve ligation rats. Intrathecal injection of an inhibitor of
reverse-mode NCX activity (KB-R7943 5∼20 µg) had an antinociceptive effect
in spinal nerve ligation rats, and the effect lasted for 3 h. We measured
the expression of signaling pathway molecules in dorsal root ganglion
neurons, and only the p-extracellular signal-regulated kinase (ERK) 1/2
level was reduced after intrathecal injection in the spinal nerve ligation
group compared to the control group. In cultured dorsal root ganglion
neurons, inhibitors of reverse-mode NCX activity (KB-R7943 and ORM-10103)
restrained Ca2+ overload after tumor necrosis factor alpha
(TNF-α) or lipopolysaccharide (LPS) treatment. NCX2 knockout mice presented
an antinociceptive effect that lasted for more than 28 days after spinal
nerve ligation surgery. The p-ERK1/2 level in NCX2 knockout mice ipsilateral
L4–6 dorsal root ganglion neurons was lower than that in wild-type mice. Conclusions NCX proteins may mediate neuropathic pain progression via the Ca2+
and ERK pathways. NCX represents a potential target for the treatment of
neuropathic pain.
Collapse
Affiliation(s)
- Yang Huang
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,2 State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,3 Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Li Wen
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,2 State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,3 Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Dun Xie
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,2 State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,3 Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Han-Dong Ouyang
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,2 State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,3 Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong-Tai Chen
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,2 State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,3 Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-An Zeng
- 1 Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,2 State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,3 Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Magi S, Piccirillo S, Amoroso S. The dual face of glutamate: from a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell Mol Life Sci 2019; 76:1473-1488. [PMID: 30599069 PMCID: PMC11105246 DOI: 10.1007/s00018-018-3002-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Beyond this function, glutamate also plays a key role in intermediary metabolism in all organs and tissues, linking carbohydrate and amino acid metabolism via the tricarboxylic acid cycle. Under both physiological and pathological conditions, we have recently found that the ability of glutamate to fuel cell metabolism selectively relies on the activity of two main transporters: the sodium-calcium exchanger (NCX) and the sodium-dependent excitatory amino-acid transporters (EAATs). In ischemic settings, when glutamate is administered at the onset of the reoxygenation phase, the coordinate activity of EAAT and NCX allows glutamate to improve cell viability by stimulating ATP production. So far, this phenomenon has been observed in both cardiac and neuronal models. In this review, we focus on the most recent findings exploring the unusual activity of glutamate as a potential survival factor in different settings.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
25
|
Xie A, Zhou A, Liu H, Shi G, Liu M, Boheler KR, Dudley SC. Mitochondrial Ca2+ flux modulates spontaneous electrical activity in ventricular cardiomyocytes. PLoS One 2018; 13:e0200448. [PMID: 30001390 PMCID: PMC6042741 DOI: 10.1371/journal.pone.0200448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction Ca2+ release from sarcoplasmic reticulum (SR) is known to contribute to automaticity via the cytoplasmic Na+-Ca2+ exchanger (NCX). Mitochondria participate in Ca2+ cycling. We studied the role of mitochondrial Ca2+ flux in ventricular spontaneous electrical activity. Methods Spontaneously contracting mouse embryonic stem cells (ESC)-derived ventricular cardiomyocytes (CMs) were differentiated from wild type and ryanodine receptor type 2 (RYR2) knockout mouse ESCs and differentiated for 19–21 days. Automaticity was also observed in human induced pluripotent stem cell (hiPSC)-derived ventricular CMs differentiated for 30 days, and acute isolated adult mouse ventricular cells in ischemic simulated buffer. Action potentials (APs) were recorded by perforated whole cell current-clamp. Cytoplasmic and mitochondrial Ca2+ transients were determined by fluorescent imaging. Results In mouse ESC-derived ventricular CMs, spontaneous beating was dependent on the L-type Ca2+ channel, cytoplasmic NCX and mitochondrial NCX. Spontaneous beating was modulated by SR Ca2+ release from RYR2 or inositol trisphosphate receptors (IP3R), the pacemaker current (If) and mitochondrial Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU). In RYR2 knockout mouse ESC-derived ventricular CMs, mitochondrial Ca2+ flux influenced spontaneous beating independently of the SR Ca2+ release from RYR2, and the mitochondrial effect was dependent on IP3R SR Ca2+ release. Depolarization of mitochondria and preservation of ATP could terminate spontaneous beating. A contribution of mitochondrial Ca2+ flux to automaticity was confirmed in hiPSC-derived ventricular CMs and ischemic adult mouse ventricular CMs, confirming the findings across species and cell maturity levels. Conclusions Mitochondrial and sarcolemma NCX fluxes are required for ventricular automaticity. Mitochondrial Ca2+ uptake plays a modulatory role. Mitochondrial Ca2+ uptake through MCU is influenced by IP3R-dependent SR Ca2+ release.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Anyu Zhou
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Guangbin Shi
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Man Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, Hong Kong, P.R. China
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
26
|
Lillo MA, Gaete PS, Puebla M, Ardiles NM, Poblete I, Becerra A, Simon F, Figueroa XF. Critical contribution of Na +-Ca 2+ exchanger to the Ca 2+-mediated vasodilation activated in endothelial cells of resistance arteries. FASEB J 2018; 32:2137-2147. [PMID: 29217667 DOI: 10.1096/fj.201700365rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Na+-Ca2+ exchanger (NCX) contributes to control the intracellular free Ca2+ concentration ([Ca2+]i), but the functional activation of NCX reverse mode (NCXrm) in endothelial cells is controversial. We evaluated the participation of NCXrm-mediated Ca2+ uptake in the endothelium-dependent vasodilation of rat isolated mesenteric arterial beds. In phenylephrine-contracted mesenteries, the acetylcholine (ACh)-induced vasodilation was abolished by treatment with the NCXrm blockers SEA0400, KB-R7943, or SN-6. Consistent with that, the ACh-induced hyperpolarization observed in primary cultures of mesenteric endothelial cells and in smooth muscle of isolated mesenteric resistance arteries was attenuated by KB-R7943 and SEA0400, respectively. In addition, both blockers abolished the NO production activated by ACh in intact mesenteric arteries. In contrast, the inhibition of NCXrm did not affect the vasodilator responses induced by the Ca2+ ionophore, ionomycin, and the NO donor, S-nitroso- N-acetylpenicillamine. Furthermore, SEA0400, KB-R7943, and a small interference RNA directed against NCX1 blunted the increase in [Ca2+]i induced by ACh or ATP in cultured endothelial cells. The analysis by proximity ligation assay showed that the NO-synthesizing enzyme, eNOS, and NCX1 were associated in endothelial cell caveolae of intact mesenteric resistance arteries. These results indicate that the activation of NCXrm has a central role in Ca2+-mediated vasodilation initiated by ACh in endothelial cells of resistance arteries.-Lillo, M. A., Gaete, P. S., Puebla, M., Ardiles, N. M., Poblete, I., Becerra, A., Simon, F., Figueroa, X. F. Critical contribution of Na+-Ca2+ exchanger to the Ca2+-mediated vasodilation activated in endothelial cells of resistance arteries.
Collapse
Affiliation(s)
- Mauricio A Lillo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo S Gaete
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M Ardiles
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Inés Poblete
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alvaro Becerra
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Deporte y Recreación, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Zhang Z, Li P, Kong XY, Xie G, Qian Y, Wang Z, Tian Y, Wen L, Jiang L. Bioinspired Heterogeneous Ion Pump Membranes: Unidirectional Selective Pumping and Controllable Gating Properties Stemming from Asymmetric Ionic Group Distribution. J Am Chem Soc 2018; 140:1083-1090. [DOI: 10.1021/jacs.7b11472] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Zhang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pei Li
- Key
Laboratory of Bio-inspired Smart Interfacial Science and Technology
of Ministry of Education School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| | - Xiang-Yu Kong
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ganhua Xie
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongchao Qian
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziqi Wang
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ye Tian
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liping Wen
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key
Laboratory of Bio-inspired Smart Interfacial Science and Technology
of Ministry of Education School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key
Laboratory of Bio-inspired Smart Interfacial Science and Technology
of Ministry of Education School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Bai XJ, Hao JT, Wang J, Zhang WF, Yan CP, Zhao JH, Zhao ZQ. Curcumin inhibits cardiac hypertrophy and improves cardiovascular function via enhanced Na +/Ca 2+ exchanger expression after transverse abdominal aortic constriction in rats. Pharmacol Rep 2017; 70:60-68. [PMID: 29331788 DOI: 10.1016/j.pharep.2017.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study tested the hypothesis that inhibition of cardiac hypertrophy and preservation of cardiac/endothelial function by the natural yellow pigment curcumin are associated with upregulated expression of Na+/Ca2+ exchanger (NCX) after transverse aortic constriction (TAC). METHODS Male Wistar rats were subjected to TAC for 10 weeks and curcumin (50 mg/kg/day) was fed by gastric gavage during TAC. Expression of NCX and endothelial nitric oxide synthase (eNOS) was analyzed by Western blot and immunohistochemistry. RESULTS Compared with the animals in the TAC group, curcumin significantly increased the survival rate and reduced the ratio of heart or left ventricle (LV) to body weight and the cross sectional area of cardiomyocytes. In coincidence with improved LV systolic pressure and reduced LV end-diastolic pressure, curcumin significantly reduced LV end-systolic and diastolic diameter/dimension, and enhanced LV ejection fraction and LV fractional shortening as measured by echocardiography. Furthermore, endothelium-dependent relaxation of aortic rings in response to acetylcholine was significantly improved by curcumin. Along with these modifications, the expression and localization of NCX and eNOS in the myocardium and vascular endothelium were significantly upregulated by curcumin. The protective effect of curcumin on endothelium-dependent relaxation was partly blocked by pretreatment with the NCX inhibitor, KB-R7943. CONCLUSIONS These results demonstrate that inhibition of cardiac hypertrophy, improvement of cardiac systolic/diastolic function and preservation of vascular endothelium by curcumin might be associated with upregulated NCX expression level in response to increased afterload.
Collapse
Affiliation(s)
- Xiao-Jie Bai
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Jun-Tao Hao
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Jin Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Wei-Fang Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Cai-Ping Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jia-Hui Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
29
|
Sasi SP, Yan X, Zuriaga-Herrero M, Gee H, Lee J, Mehrzad R, Song J, Onufrak J, Morgan J, Enderling H, Walsh K, Kishore R, Goukassian DA. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiat Res 2017; 188:191-203. [PMID: 28613990 DOI: 10.1667/rr14667.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deep-space travel presents risks of exposure to ionizing radiation composed of a spectrum of low-fluence protons (1H) and high-charge and energy (HZE) iron nuclei (e.g., 56Fe). When exposed to galactic cosmic rays, each cell in the body may be traversed by 1H every 3-4 days and HZE nuclei every 3-4 months. The effects of low-dose sequential fractionated 1H or HZE on the heart are unknown. In this animal model of simulated ionizing radiation, middle-aged (8-9 months old) male C57BL/6NT mice were exposed to radiation as follows: group 1, nonirradiated controls; group 2, three fractionated doses of 17 cGy 1H every other day (1H × 3); group 3, three fractionated doses of 17 cGy 1H every other day followed by a single low dose of 15 cGy 56Fe two days after the final 1H dose (1H × 3 + 56Fe); and group 4, a single low dose of 15 cGy 56Fe followed (after 2 days) by three fractionated doses of 17 cGy 1H every other day (56Fe + 1H × 3). A subgroup of mice from each group underwent myocardial infarction (MI) surgery at 28 days postirradiation. Cardiac structure and function were assessed in all animals at days 7, 14 and 28 after MI surgery was performed. Compared to the control animals, the treatments that groups 2 and 3 received did not induce negative effects on cardiac function or structure. However, compared to all other groups, the animals in group 4, showed depressed left ventricular (LV) functions at 1 month with concomitant enhancement in cardiac fibrosis and induction of cardiac hypertrophy signaling at 3 months. In the irradiated and MI surgery groups compared to the control group, the treatments received by groups 2 and 4 did not induce negative effects at 1 month postirradiation and MI surgery. However, in group 3 after MI surgery, there was a 24% increase in mortality, significant decreases in LV function and a 35% increase in post-infarction size. These changes were associated with significant decreases in the angiogenic and cell survival signaling pathways. These data suggest that fractionated doses of radiation induces cellular and molecular changes that result in depressed heart functions both under basal conditions and particularly after myocardial infarction.
Collapse
Affiliation(s)
- Sharath P Sasi
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Xinhua Yan
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts.,b Tufts University School of Medicine, Boston, Massachusetts
| | - Marian Zuriaga-Herrero
- f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Hannah Gee
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Juyong Lee
- c Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut
| | - Raman Mehrzad
- d Steward Carney Hospital, Dorchester, Massachusetts
| | - Jin Song
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Jillian Onufrak
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - James Morgan
- b Tufts University School of Medicine, Boston, Massachusetts.,d Steward Carney Hospital, Dorchester, Massachusetts
| | - Heiko Enderling
- e Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Walsh
- f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Raj Kishore
- 7 Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - David A Goukassian
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts.,f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,7 Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Discrepant effects of heart failure on electrophysiological property in right ventricular outflow tract and left ventricular outflow tract cardiomyocytes. Clin Sci (Lond) 2017; 131:1317-1327. [DOI: 10.1042/cs20170121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/19/2017] [Accepted: 05/08/2017] [Indexed: 01/18/2023]
Abstract
Ventricular arrhythmias commonly arise from the right (RVOT) and left ventricular outflow tracts (LVOT) in patients without structural heart disease. Heart failure (HF) significantly increases the risk of ventricular arrhythmias. The regional differences and how HF affects the electrophysiological characteristics of RVOT and LVOT cardiomyocytes remain unclear. The whole-cell patch-clamp technique was used to investigate the action potentials and ionic currents in isolated single RVOT and LVOT cardiomyocytes from control rabbits and rabbits with HF induced by rapid ventricular pacing. Comparison with control LVOT cardiomyocytes showed that control RVOT cardiomyocytes have a shorter action potential duration (APD), smaller late Na+ currents (INa-late), larger transient outward (Ito) and larger delayed rectifier K+ currents (IKr-tail), but had similar L-type Ca2+ currents (ICa-L) and Na+/Ca2+ exchanger (NCX) current. HF increased APD, INa-late and NCX, but decreased ICa-L and Ito in RVOT cardiomyocytes. In contrast with this, HF decreased APD and ICa-L, but increased Ito and IKr-tail in LVOT cardiomyocytes. In conclusion, RVOT and LVOT cardiomyocytes had distinctive electrophysiological characteristics. HF differentially modulates action potential morphology and ionic currents in RVOT and LVOT cardiomyocytes.
Collapse
|
31
|
Hwang HR, Tai BY, Cheng PY, Chen PN, Sung PJ, Wen ZH, Hsu CH. Excavatolide B Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes. Mar Drugs 2017; 15:md15020025. [PMID: 28125029 PMCID: PMC5334606 DOI: 10.3390/md15020025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Severe bacterial infections caused by sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction, and finally death. The lipopolysaccharide (LPS) provokes an inflammatory response under sepsis, which may increase propensity to arrhythmogenesis. Excavatolide B (EXCB) possesses potent anti-inflammatory effects. However, it is not clear whether EXCB could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes. This study investigated the effects of EXCB on the atrial myocytes exposed to lipopolysaccharide. A whole-cell patch clamp and indo-1 fluorimetric ratio technique was employed to record the action potential (AP), ionic currents, and intracellular calcium ([Ca2+]i) in single, isolated rabbit left atrial (LA) cardiomyocytes, with and without LPS (1 μg/mL) and LPS + EXCB administration (10 μM) for 6 ± 1 h, in order to investigate the role of EXCB on atrial electrophysiology. In the presence of LPS, EXCB-treated LA myocytes (n = 13) had a longer AP duration at 20% (29 ± 2 vs. 20 ± 2 ms, p < 0.05), 50% (52 ± 4 vs. 40 ± 3 ms, p < 0.05), and 90% (85 ± 5 vs. 68 ± 3 ms, p < 0.05), compared to the LPS-treated cells (n = 12). LPS-treated LA myocytes showed a higher late sodium current, Na+/Ca2+ exchanger current, transient outward current, and delayed rectifier potassium current, but a lower l-type Ca2+ current, than the control LA myocytes. Treatment with EXCB reversed the LPS-induced alterations of the ionic currents. LPS-treated, EXCB-treated, and control LA myocytes exhibited similar Na+ currents. In addition, the LPS-treated LA myocytes exhibited a lower [Ca2+]i content and higher sarcoplasmic reticulum calcium content, than the controls. EXCB reversed the LPS-induced calcium alterations. In conclusion, EXCB modulates LPS-induced LA electrophysiological characteristics and calcium homeostasis, which may contribute to attenuating LPS-induced arrhythmogenesis.
Collapse
Affiliation(s)
- Hwong-Ru Hwang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Division of Cardiology, Department of Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Buh-Yuan Tai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Department of Traditional Medicine, Jianan Mental Hospital, Tainan 717, Taiwan.
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics and Graduate Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan.
| | - Ping-Nan Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 114, Taiwan.
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung 804, Taiwan.
| | - Chih-Hsueng Hsu
- Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
32
|
Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 227:39-58. [PMID: 28980039 DOI: 10.1007/978-3-319-56895-9_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.
Collapse
|
33
|
Grover AK. Sodium-Calcium Exchanger in Pig Coronary Artery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:145-170. [PMID: 28212796 DOI: 10.1016/bs.apha.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the sodium-calcium exchangers (NCX) in the left anterior descending coronary artery smooth muscle. Bathing tissues in Na+-substituted solutions caused them to contract. In cultured smooth muscle cells, it increased the cytosolic Ca2+ concentration and extracellular entry of 45Ca2+. All three activities were attributed to NCX since they were inhibited by NCX inhibitors. The tissues also expressed the sarco/endoplasmic reticulum (SER) Ca2+ pump SERCA2b whose activity was much greater than that of NCX. Inhibiting SERCA2b with thapsigargin decreased the NCX-mediated 45Ca2+ accumulation by the cells. The decrease was not observed in cells loaded with the Ca2+-chelator BAPTA. The results are consistent with a limited diffusional space model with a proximity between NCX and SERCA2b. NCX molecules appear to be colocalized with the subsarcolemmal SERCA2b based on studies on membrane flotation experiments and microscopic fluorescence imaging of antibody-labeled cells. Thapsigargin inhibition of SERCA2b moved NCX even closer to SER. This provides a model for the NCX-mediated Ca2+ refilling of SER in the arterial smooth muscle. The model for the NCX-mediated refilling of the depleted SER proposed for smooth muscle did not apply to endothelium in which NCX levels were greater and SERCA levels were lower than in smooth muscle. The effect of thapsigargin on the NCX-mediated Ca2+ accumulation which was observed in smooth muscle was absent in the endothelium. We propose that the coupling between NCX and smooth muscle may be tissue dependent.
Collapse
Affiliation(s)
- A K Grover
- McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
34
|
Wasson S, Reddy HK, Dohrmann ML. Current Perspectives of Electrical Remodeling and Its Therapeutic Implications. J Cardiovasc Pharmacol Ther 2016; 9:129-44. [PMID: 15309249 DOI: 10.1177/107424840400900208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrical remodeling involves alterations in the electrophysiologic milieu of myocardium in various disease states, such as ventricular hypertrophy, heart failure, atrial tachyarrhythmias, myocardial ischemia, and infarction that are associated with cardiac arrhythmias. Although research in this area dates back to early part of the 19th century, we still lack the exact knowledge of ionic remodeling, the role of various genes and channel proteins, and their relevance for the newer antiarrhythmic therapies. Structural remodeling may also have an impact on the electrical remodeling process, although differences in both structural and electrical remodeling are associated with different disease states. Various electrophysiologic, cellular, and structural alterations, including anisotropic conduction, increased intracellular calcium levels, and gap junction remodeling predispose to increased dispersion of action potential duration and refractoriness. This constitutes a favorable substrate for early and late afterdepolarizations and reentrant arrhythmias. Studying the role of ionic remodeling in the initiation and propagation of cardiac arrhythmias has significant relevance for developing newer antiarrhythmic therapies, for identifying patients at risk of developing fatal arrhythmias, and for implementing effective preventive measures. Further research is required to understand the specific effects of individual ion channel remodeling, to understand the signal transduction mechanisms, and to address whether detrimental effects of electrical remodeling can be altered.
Collapse
Affiliation(s)
- Sanjeev Wasson
- Division of Cardiology, University of Missouri Hospital, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
35
|
Ujihara Y, Iwasaki K, Takatsu S, Hashimoto K, Naruse K, Mohri S, Katanosaka Y. Induced NCX1 overexpression attenuates pressure overload-induced pathological cardiac remodelling. Cardiovasc Res 2016; 111:348-61. [PMID: 27229460 DOI: 10.1093/cvr/cvw113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/22/2016] [Indexed: 11/12/2022] Open
Abstract
AIMS Although increased Na(+)/Ca(2+) exchanger 1 (NCX1) expression is observed during heart failure (HF), the pathological role of NCX1 during the progression of HF remains unclear. We examined alterations of NCX1 expression and activity in hearts after transverse aortic constriction (TAC) surgery and explored whether NCX1 influences pressure overload-induced pathological cardiac remodelling. METHODS AND RESULTS We generated novel transgenic mice in which NCX1 expression is controlled by a cardiac-specific, doxycycline (DOX)-dependent promoter. In the absence of DOX, TAC surgery caused substantial chamber dilation with a gradual decrease in contractility by 16 weeks. Cardiomyocytes showed a decline in contractility with abnormal Ca(2+) handling during excitation-contraction (E-C) coupling. Reduced NCX1 activity was observed 8 weeks after TAC and was still apparent at 17 weeks. Induced NCX1 overexpression by DOX treatment starting 8 weeks after TAC returned NCX1 activity to pre-TAC levels and prevented chamber dilation with cardiac dysfunction. DOX treatment not only upregulated NCX1 expression in TAC-operated hearts but also returned L-type Ca(2+) channel and sarcoplasmic reticulum (SR) Ca(2+) ATPase expression levels to those in sham-operated hearts. In DOX-treated myocytes, contractility, T-tubule integrity, synchrony of Ca(2+) release from the SR, and Ca(2+) handling during E-C coupling was preserved 16 weeks after TAC surgery. In addition, DOX treatment attenuated the down-regulation of survival signalling and up-regulation of apoptosis signalling 16 weeks after TAC surgery. CONCLUSION Induced overexpression of NCX1 attenuated pressure overload-induced pathological cardiac remodelling. Thus, maintaining NCX1 activity may be a potential therapeutic strategy for preventing the progression of HF.
Collapse
Affiliation(s)
- Yoshihiro Ujihara
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Keiichiro Iwasaki
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satomi Takatsu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Hashimoto
- Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Mohri
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuki Katanosaka
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
36
|
Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK, Kim DH. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One 2015; 10:e0122509. [PMID: 25767890 PMCID: PMC4358957 DOI: 10.1371/journal.pone.0122509] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023] Open
Abstract
MicroRNA (miRNA) is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17), a marker of CaMKIIδ activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure.
Collapse
Affiliation(s)
- Jin Ock Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Dong Woo Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Jeong Kwon
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seong-Eui Hong
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hong Ki Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Choon Kee Min
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| |
Collapse
|
37
|
Yan X, Sasi SP, Gee H, Lee J, Yang Y, Mehrzad R, Onufrak J, Song J, Enderling H, Agarwal A, Rahimi L, Morgan J, Wilson PF, Carrozza J, Walsh K, Kishore R, Goukassian DA. Cardiovascular risks associated with low dose ionizing particle radiation. PLoS One 2014; 9:e110269. [PMID: 25337914 PMCID: PMC4206415 DOI: 10.1371/journal.pone.0110269] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022] Open
Abstract
Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.
Collapse
Affiliation(s)
- Xinhua Yan
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (DAG); (XY)
| | - Sharath P. Sasi
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Hannah Gee
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - JuYong Lee
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yongyao Yang
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Raman Mehrzad
- Steward Carney Hospital, Dorchester, Massachusetts, United States of America
| | - Jillian Onufrak
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Jin Song
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Akhil Agarwal
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Layla Rahimi
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - James Morgan
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Steward Carney Hospital, Dorchester, Massachusetts, United States of America
| | - Paul F. Wilson
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Joseph Carrozza
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Steward St. Elizabeth's Medical Center, Boston, Massachusetts, United States of America
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Raj Kishore
- Feinberg Cardiovascular Institute, Northwestern University, Chicago, Illinois, United States of America
| | - David A. Goukassian
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (DAG); (XY)
| |
Collapse
|
38
|
The beat goes on: Cardiac pacemaking in extreme conditions. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:52-60. [PMID: 25178563 DOI: 10.1016/j.cbpa.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 11/21/2022]
Abstract
In order for an animal to survive, the heart beat must go on in all environmental conditions, or at least restart its beat. This review is about maintaining a rhythmic heartbeat under the extreme conditions of anoxia (or very severe hypoxia) and high temperatures. It starts by considering the primitive versions of the protein channels that are responsible for initiating the heartbeat, HCN channels, divulging recent findings from the ancestral craniate, the Pacific hagfish (Eptatretus stoutii). It then explores how a heartbeat can maintain a rhythm, albeit slower, for hours without any oxygen, and sometimes without autonomic innervation. It closes with a discussion of recent work on fishes, where the cardiac rhythm can become arrhythmic when a fish experiences extreme heat.
Collapse
|
39
|
Hamada M, Ikeda S, Shigematsu Y. Advances in medical treatment of hypertrophic cardiomyopathy. J Cardiol 2014; 64:1-10. [PMID: 24735741 DOI: 10.1016/j.jjcc.2014.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
We reviewed the natural history of patients with hypertrophic cardiomyopathy (HCM). The effect of medical treatments on natural history, left ventricular (LV) functions and LV remodeling was also evaluated. Sudden cardiac death and end-stage heart failure are the most serious complications of HCM. Age <30 years and a family history of sudden premature death are risk factors for sudden cardiac death in HCM patients. End-stage heart failure is not a specific additional phenomenon observed in patients with HCM, but is the natural course of the disease in most of those patients. After the occurrence of heart failure, the progression to cardiac death is very rapid. Young age at diagnosis, a family history of HCM, and greater wall thickness are associated with a greater likelihood of developing end-stage heart failure. Neither beta-blockers nor calcium antagonists can prevent this transition. The class Ia antiarrhythmic drugs, disopyramide and cibenzoline are useful for the reduction of LV pressure gradient. Unlike disopyramide, cibenzoline has little anticholinergic activity; therefore, this drug can be easily adapted to long-term use. In addition to the reduction in LV pressure gradient, cibenzoline can improve LV diastolic dysfunction, and induce regression of LV hypertrophy in patients with HCM. A decrease in intracellular Ca(2+) concentration through the activation of the Na(+)/Ca(2+) exchanger associated with cibenzoline therapy is likely to be closely related with the improvement in HCM-related disorders. It is possible that cibenzoline can prevent the progression from typical HCM to end-stage heart failure.
Collapse
Affiliation(s)
- Mareomi Hamada
- Division of Cardiology, Uwajima City Hospital, 1-1 Goten-machi, Uwajima, Ehime 798-8510, Japan.
| | - Shuntaro Ikeda
- Division of Cardiology, Uwajima City Hospital, 1-1 Goten-machi, Uwajima, Ehime 798-8510, Japan
| | - Yuji Shigematsu
- Clinical Nursing, Ehime University Graduate School of Medicine, Shitsukawa, Toon-City, Ehime 791-0295, Japan
| |
Collapse
|
40
|
Monfredi O, Maltsev VA, Lakatta EG. Modern concepts concerning the origin of the heartbeat. Physiology (Bethesda) 2014; 28:74-92. [PMID: 23455768 DOI: 10.1152/physiol.00054.2012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physiological processes governing the heart beat have been under investigation for several hundred years. Major advances have been made in the recent past. A review of the present paradigm is presented here, including a look back at important steps that led us to where we are today, alongside a glimpse into the exciting future of pacemaker research.
Collapse
Affiliation(s)
- Oliver Monfredi
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
41
|
Magi S, Arcangeli S, Castaldo P, Nasti AA, Berrino L, Piegari E, Bernardini R, Amoroso S, Lariccia V. Glutamate-induced ATP synthesis: relationship between plasma membrane Na+/Ca2+ exchanger and excitatory amino acid transporters in brain and heart cell models. Mol Pharmacol 2013; 84:603-14. [PMID: 23913256 DOI: 10.1124/mol.113.087775] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is known that glutamate (Glu), the major excitatory amino acid in the central nervous system, can be an essential source for cell energy metabolism. Here we investigated the role of the plasma membrane Na(+)/Ca(2+) exchanger (NCX) and the excitatory amino acid transporters (EAATs) in Glu uptake and recycling mechanisms leading to ATP synthesis. We used different cell lines, such as SH-SY5Y neuroblastoma, C6 glioma and H9c2 as neuronal, glial, and cardiac models, respectively. We first observed that Glu increased ATP production in SH-SY5Y and C6 cells. Pharmacological inhibition of either EAAT or NCX counteracted the Glu-induced ATP synthesis. Furthermore, Glu induced a plasma membrane depolarization and an intracellular Ca(2+) increase, and both responses were again abolished by EAAT and NCX blockers. In line with the hypothesis of a mutual interplay between the activities of EAAT and NCX, coimmunoprecipitation studies showed a physical interaction between them. We expanded our studies on EAAT/NCX interplay in the H9c2 cells. H9c2 expresses EAATs but lacks endogenous NCX1 expression. Glu failed to elicit any significant response in terms of ATP synthesis, cell depolarization, and Ca(2+) increase unless a functional NCX1 was introduced in H9c2 cells by stable transfection. Moreover, these responses were counteracted by EAAT and NCX blockers, as observed in SH-SY5Y and C6 cells. Collectively, these data suggest that plasma membrane EAAT and NCX are both involved in Glu-induced ATP synthesis, with NCX playing a pivotal role.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica of Marche, Ancona, Italy (S.M., S.Ar., P.C., A.A.N., S.Am., V.L.); Department of Experimental Medicine, Second University of Naples, Naples, Italy (L.B., E.P.); and Department of Clinical and Molecular Biomedicine, School of Medicine, University of Catania, Catania, Italy (R.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu T, O'Rourke B. Regulation of the Na+/Ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes. J Biol Chem 2013; 288:31984-92. [PMID: 24045952 DOI: 10.1074/jbc.m113.496588] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cardiac Na(+)/Ca(2+) exchanger (NCX) is the major Ca(2+) efflux pathway on the sarcolemma, counterbalancing Ca(2+) influx via L-type Ca(2+) current during excitation-contraction coupling. Altered NCX activity modulates the sarcoplastic reticulum Ca(2+) load and can contribute to abnormal Ca(2+) handling and arrhythmias. NADH/NAD(+) is the main redox couple controlling mitochondrial energy production, glycolysis, and other redox reactions. Here, we tested whether cytosolic NADH/NAD(+) redox potential regulates NCX activity in adult cardiomyocytes. NCX current (INCX), measured with whole cell patch clamp, was inhibited in response to cytosolic NADH loaded directly via pipette or increased by extracellular lactate perfusion, whereas an increase of mitochondrial NADH had no effect. Reactive oxygen species (ROS) accumulation was enhanced by increasing cytosolic NADH, and NADH-induced INCX inhibition was abolished by the H2O2 scavenger catalase. NADH-induced ROS accumulation was independent of mitochondrial respiration (rotenone-insensitive) but was inhibited by the flavoenzyme blocker diphenylene iodonium. NADPH oxidase was ruled out as the effector because INCX was insensitive to cytosolic NADPH, and NADH-induced ROS and INCX inhibition were not abrogated by the specific NADPH oxidase inhibitor gp91ds-tat. This study reveals a novel mechanism of NCX regulation by cytosolic NADH/NAD(+) redox potential through a ROS-generating NADH-driven flavoprotein oxidase. The mechanism is likely to play a key role in Ca(2+) homeostasis and the response to alterations in the cytosolic pyridine nucleotide redox state during ischemia-reperfusion or other cardiovascular diseases.
Collapse
Affiliation(s)
- Ting Liu
- From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | | |
Collapse
|
43
|
Zhang H, Hou X, Zeng L, Yang F, Li L, Yan D, Tian Y, Jiang L. Bioinspired Artificial Single Ion Pump. J Am Chem Soc 2013; 135:16102-10. [DOI: 10.1021/ja4037669] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huacheng Zhang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xu Hou
- National Center for Nanoscience and Technology, Beijing 100190, P. R.
China
| | | | | | | | | | - Ye Tian
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
44
|
Yamamura H, Cole WC, Kita S, Hotta S, Murata H, Suzuki Y, Ohya S, Iwamoto T, Imaizumi Y. Overactive bladder mediated by accelerated Ca2+ influx mode of Na+/Ca2+ exchanger in smooth muscle. Am J Physiol Cell Physiol 2013; 305:C299-308. [PMID: 23703524 DOI: 10.1152/ajpcell.00065.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) is thought to be a key molecule in the regulation of cytosolic Ca(2+) dynamics. The relative importance of the two Ca(2+) transport modes of NCX activity leading to Ca(2+) efflux (forward) and influx (reverse) in smooth muscle, however, remains unclear. Unexpectedly, spontaneous contractions of urinary bladder smooth muscle (UBSM) were enhanced in transgenic mice overexpressing NCX1.3 (NCX1.3(tg/tg)). The enhanced activity was attenuated by KB-R7943 or SN-6. Whole cell outward NCX current sensitive to KB-R7943 or Ni(2+) was readily detected in UBSM cells from NCX1.3(tg/tg) but not wild-type mice. Spontaneous Ca(2+) transients in myocytes of NCX1.3(tg/tg) were larger and frequently resulted in propagating events and global elevations in cytosolic Ca(2+) concentration. Significantly, NCX1.3(tg/tg) mice exhibited a pattern of more frequent urination of smaller volumes and this phenotype was reversed by oral administration of KB-R7943. On the other hand, KB-R7943 did not improve it in KB-R7943-insensitive (G833C-)NCX1.3(tg/tg) mice. We conclude that NCX1.3 overexpression is associated with abnormal urination owing to enhanced Ca(2+) influx via reverse mode NCX leading to prolonged, propagating spontaneous Ca(2+) release events and a potentiation of spontaneous UBSM contraction. These findings suggest the possibility that NCX is a candidate molecular target for overactive bladder therapy.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reverse mode of the sodium/calcium exchanger subtype 3 in interstitial cells of Cajal from rat bladder. Urology 2013; 82:254.e7-12. [PMID: 23688374 DOI: 10.1016/j.urology.2013.02.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/13/2013] [Accepted: 02/26/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate how the sodium/calcium exchanger subtype 3 (NCX3) and its reverse mode contribute to the function of interstitial cells of Cajal (ICCs) from the rat bladder. METHODS The study used 20 female Wistar rats. We observed the expression of the NCX3 expression in the bladder using reverse transcriptase-polymerase chain reaction and Western blotting. The NCX3 in ICCs was also confirmed by double-labeled fluorescence. NCX3 functions in reverse mode of ICCs were observed using confocal microscopy with preload fluo-3AM, and its currents were evaluated using the whole-cell patch clamp technique, with or without the NCX3 inhibitor KB-R7943 (5 and 30μM), with an afterward identification of ICCs using single-cell polymerase chain reaction. RESULTS NCX3 was confirmed in rat bladder ICCs. The time required for the intracellular calcium concentration [Ca(2+)]i of NCX3 was enhanced by KB-R7943 (5μM, P ≤.01). Moreover, KB-R7943 (5 and 30μM) significantly decreased the currents generated by the reverse mode of NCX3 from the ICCs (P <.05). CONCLUSION NCX3 is expressed in rat bladder ICCs. The reverse mode of NCX3 can generate [Ca(2+)]i of the bladder ICCs.
Collapse
|
46
|
Gaash R, Elazar M, Mizrahi K, Avramov-Mor M, Berezin I, Shaul O. Phylogeny and a structural model of plant MHX transporters. BMC PLANT BIOLOGY 2013; 13:75. [PMID: 23634958 PMCID: PMC3679957 DOI: 10.1186/1471-2229-13-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/13/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND The Arabidopsis thaliana MHX gene (AtMHX) encodes a Mg²⁺/H⁺ exchanger. Among non-plant proteins, AtMHX showed the highest similarity to mammalian Na⁺/Ca²⁺ exchanger (NCX) transporters, which are part of the Ca²⁺/cation (CaCA) exchanger superfamily. RESULTS Sequences showing similarity to AtMHX were searched in the databases or sequenced from cDNA clones. Phylogenetic analysis showed that the MHX family is limited to plants, and constitutes a sixth family within the CaCA superfamily. Some plants include, besides a full MHX gene, partial MHX-related sequences. More than one full MHX gene was currently identified only in Oryza sativa and Mimulus guttatus, but an EST for more than one MHX was identified only in M. guttatus. MHX genes are not present in the currently available chlorophyte genomes. The prevalence of upstream ORFs in MHX genes is much higher than in most plant genes, and can limit their expression. A structural model of the MHXs, based on the resolved structure of NCX1, implies that the MHXs include nine transmembrane segments. The MHXs and NCXs share 32 conserved residues, including a GXG motif implicated in the formation of a tight-turn in a reentrant-loop. Three residues differ between all MHX and NCX proteins. Altered mobility under reducing and non-reducing conditions suggests the presence of an intramolecular disulfide-bond in AtMHX. CONCLUSIONS The absence of MHX genes in non-plant genomes and in the currently available chlorophyte genomes, and the presence of an NCX in Chlamydomonas, are consistent with the suggestion that the MHXs evolved from the NCXs after the split of the chlorophyte and streptophyte lineages of the plant kingdom. The MHXs underwent functional diploidization in most plant species. De novo duplication of MHX occurred in O. sativa before the split between the Indica and Japonica subspecies, and was apparently followed by translocation of one MHX paralog from chromosome 2 to chromosome 11 in Japonica. The structural analysis presented and the identification of elements that differ between the MHXs and the NCXs, or between the MHXs of specific plant groups, can contribute to clarification of the structural basis of the function and ion selectivity of MHX transporters.
Collapse
Affiliation(s)
- Rachel Gaash
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Meirav Elazar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Keren Mizrahi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Meital Avramov-Mor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Irina Berezin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
47
|
Cui KZ, Liu D, Liu JW, Xu Y, Li YB, Sun YM, Su Y. Role of the Na(+)/Ca(2+) exchanger on the development of diabetes mellitus and its chronic complications. Biochem Biophys Res Commun 2012; 426:445-7. [PMID: 22982318 DOI: 10.1016/j.bbrc.2012.08.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
Abstract
Diabetes mellitus (DM) is a serious metabolic disorder with micro- and macrovascular complications that results in significant morbidity and mortality. It is well established that cytosolic Ca(2+) play an important role in controlling insulin secretion in pancreatic β-cells. The Na(+)/Ca(2+) exchanger (NCX), an ion transport protein, is expressed in the plasma membrane of virtually all animal cells. NCX is a reversible carrier that can mediate the transport of Ca(2+) across the plasma membrane in both directions. Therefore, great efforts have been made to identify NCX associated with DM. NCX is expressed in several tissues, and acts in the protection against intracellular calcium overload; in the regulation of insulin secretion by beta cells, and in improving vascular endothelium-dependent relaxation. All these mechanisms are associated with DM pathogenesis and its chronic complications. Therefore, NCX is a candidate protein for the development of these disorders. Only a few studies investigated NCX in relation to chronic complications of diabetes, with inconclusive results.
Collapse
Affiliation(s)
- Ke-Zhen Cui
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Cheng H, Zhang Y, Du C, Dempsey CE, Hancox JC. High potency inhibition of hERG potassium channels by the sodium-calcium exchange inhibitor KB-R7943. Br J Pharmacol 2012; 165:2260-73. [PMID: 21950687 DOI: 10.1111/j.1476-5381.2011.01688.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium-calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K(+) channels that underpin the cardiac rapid delayed rectifier potassium current, I(Kr) . EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (I(hERG) ) carried by wild-type or mutant hERG channels and of native rabbit ventricular I(Kr) . Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both I(hERG) and native I(Kr) rapidly on membrane depolarization with IC(50) values of ∼89 and ∼120 nM, respectively, for current tails at -40 mV following depolarizing voltage commands to +20 mV. Marked I(hERG) inhibition also occurred under ventricular action potential voltage clamp. I(hERG) inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited I(hERG) , but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits I(hERG) /I(Kr) with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG.
Collapse
|
49
|
Angermann JE, Forrest AS, Greenwood IA, Leblanc N. Activation of Ca2+-activated Cl- channels by store-operated Ca2+ entry in arterial smooth muscle cells does not require reverse-mode Na+/Ca2+ exchange. Can J Physiol Pharmacol 2012; 90:903-21. [PMID: 22734601 DOI: 10.1139/y2012-081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.
Collapse
Affiliation(s)
- Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
50
|
Sosunov EA, Anyukhovsky EP. Differential effects of ivabradine and ryanodine on pacemaker activity in canine sinus node and purkinje fibers. J Cardiovasc Electrophysiol 2012; 23:650-5. [PMID: 22353259 DOI: 10.1111/j.1540-8167.2011.02285.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION It is generally accepted that at least 2 major mechanisms contribute to sinus node (SN) pacemaking: a membrane voltage (mainly I(f) ) clock and a calcium (Ca) clock (localized submembrane sarcoplasmic reticulum Ca(2+) release during late diastolic depolarization). The aim of this study was to compare the contributions of each mechanism to pacemaker activity in SN and Purkinje fibers (PFs) exhibiting normal or abnormal automaticity. METHODS AND RESULTS Conventional microelectrodes were used to record action potentials in isolated spontaneously beating canine SN and free running PF in control and in the presence of 0.1 μM isoproterenol. Ryanodine (0.1-3 μM) and ivabradine (3 μM) were used to inhibit sarcoplasmic reticulum Ca(2+) release or I(f), respectively. To induce automaticity at low membrane potentials, PFs were superfused with BaCl(2). In SN, ivabradine reduced the rate whereas ryanodine had no effect. Isoproterenol significantly accelerated automatic rate, which was decreased by ivabradine and ryanodine. In normally polarized PFs, ryanodine had no effects on the automatic rate in the absence or presence of isoproterenol, whereas ivabradine inhibited both control and isoproterenol-accelerated automaticity. In PF depolarized with BaCl(2), ivabradine decreased BaCl(2) -induced automatic rate while ryanodine had no effect. CONCLUSION In canine SN, I(f) contributes to both basal automaticity and β-adrenergic-induced rate acceleration while the ryanodine-inhibited Ca clock appears more involved in β-adrenergic regulation of pacemaker rate. In PF, normal automaticity depends mainly on I(f). Inhibition of basal potassium conductance results in high automatic rates at depolarized membrane potentials with SN-like responses to inhibition of membrane and Ca clocks.
Collapse
Affiliation(s)
- Eugene A Sosunov
- Department of Pharmacology, Center for Molecular Therapeutics, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | | |
Collapse
|