1
|
Letarte LA, Raje V, Feliberti JP, Antoine SM, Bindra AS, Yaranov DM, Yehya A, Garcia RA, Patel P, Fudim M, Howard B, Rao VN, Hicks A, Mahmood K, Gupta R, Rollins A, Alam A, McCann P, Raval NY. Beyond GDMT: bridging the therapeutic gap in heart failure. Heart Fail Rev 2025:10.1007/s10741-025-10512-3. [PMID: 40304825 DOI: 10.1007/s10741-025-10512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Guideline-directed medical therapy is the backbone of heart failure treatment. However, patients continue to experience heart failure symptoms, impaired quality of life, and reduced functional status despite guideline-directed medical and device treatment. There is a void in treatment alternatives between guideline-directed therapy and the advanced heart failure surgical options of heart transplant (HT) and left ventricular assist device (LVAD). Cardiac contractility modulation and baroreceptor activation therapies are shown to improve heart failure symptoms, quality of life, and exertional capacity in select patients and complement our current treatment paradigm. The purpose of this paper is to review these novel Food and Drug Administration (FDA)-approved heart failure therapies and facilitate the identification of appropriate candidates.
Collapse
Affiliation(s)
| | - Vikram Raje
- Georgia Heart Institute, Gainesville, GA, USA
| | | | | | | | | | - Amin Yehya
- Sentara Norfolk General Hospital, Norfolk, VA, USA
- Old Dominion University, Norfolk, VA, USA
| | | | | | | | | | - Vishal N Rao
- Advanced Heart Failure/Transplant Cardiology, Medical University of South Carolina, Charleston, United States
| | | | - Kiran Mahmood
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richa Gupta
- MedStar Washington Hospital Center, Washington, D.C., USA
- Georgetown University, Washington, D.C., USA
| | | | - Amit Alam
- New York University Langone Medical Center, New York, NY, USA
| | | | | |
Collapse
|
2
|
Jordan J, Tank J, Heusser K, Reuter H. Baroreflex activation therapy through electrical carotid sinus stimulation. Auton Neurosci 2024; 256:103219. [PMID: 39549378 DOI: 10.1016/j.autneu.2024.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
An imbalance between cardiovascular parasympathetic and sympathetic activity towards sympathetic predominance has been implicated in the pathogenesis of treatment-resistant arterial hypertension and heart failure. Arterial baroreceptors control efferent cardiovascular autonomic activity and have, therefore, been recognized as potential treatment targets. Baroreflex activation therapy through electrical carotid sinus stimulation is a device-based approach to modulate cardiovascular autonomic activity. Electrical carotid sinus stimulation lowered blood pressure in various hypertensive animal models and improved cardiac remodeling and survival in preclinical models of heart failure. In human mechanistic profiling studies, electrical carotid sinus stimulation lowered blood pressure through sympathetic inhibition with substantial inter-individual variability. The first-generation device reduced blood pressure in controlled and uncontrolled clinical trials. Controlled clinical trials proving efficacy in blood pressure reduction in patients with hypertension do not exist for the currently available second-generation carotid sinus stimulator. Investigations in heart failure patients showed improved symptoms, quality of life, and natriuretic peptide biomarkers. Electrical carotid sinus stimulation is an interesting technology to modulate cardiovascular autonomic control. However, controlled trials with hard clinical endpoints are required.
Collapse
Affiliation(s)
- Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany.
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hannes Reuter
- Department for Cardiology, Angiology, Pneumology and Intensive Care Medicine, University of Cologne, Germany; Department of Cardiology and Intensive Care Medicine, Ev. Krankenhaus Köln-Weyertal, Cologne, Germany
| |
Collapse
|
3
|
Schäfer AKC, Wallbach M, Schroer C, Lehnig LY, Lüders S, Hasenfuß G, Wachter R, Koziolek MJ. Effects of baroreflex activation therapy on cardiac function and morphology. ESC Heart Fail 2024; 11:3360-3367. [PMID: 38970313 PMCID: PMC11424325 DOI: 10.1002/ehf2.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
AIMS Arterial hypertension (aHTN) plays a fundamental role in the pathogenesis and prognosis of heart failure with preserved ejection fraction (HFpEF). The risk of heart failure increases with therapy-resistant arterial hypertension (trHTN), defined as inadequate blood pressure (BP) control ≥140/90 mmHg despite taking ≥3 antihypertensive medications including a diuretic. This study investigates the effects of the BP lowering baroreflex activation therapy (BAT) on cardiac function and morphology in patients with trHTN with and without HFpEF. METHODS Sixty-four consecutive patients who had been diagnosed with trHTN and received BAT implantation between 2012 and 2016 were prospectively observed. Office BP, electrocardiographic and echocardiographic data were collected before and after BAT implantation. RESULTS Mean patients' age was 59.1 years, 46.9% were male, and mean body mass index (BMI) was 33.2 kg/m2. The prevalence of diabetes mellitus was 38.8%, atrial fibrillation was 12.2%, and chronic kidney disease (CKD) stage ≥3 was 40.8%. Twenty-eight patients had trHTN with HFpEF, and 21 patients had trHTN without HFpEF. Patients with HFpEF were significantly older (64.7 vs. 51.6 years, P < 0.0001), had a lower BMI (30.0 vs. 37.2 kg/m2, P < 0.0001), and suffered more often from CKD-stage ≥3 (64 vs. 20%, P = 0.0032). After BAT implantation, mean office BP dropped in patients with and without HFpEF (from 169 ± 5/86 ± 4 to 143 ± 4/77 ± 3 mmHg [P = 0.0019 for systolic BP and 0.0403 for diastolic BP] and from 170 ± 5/95 ± 4 to 149 ± 6/88 ± 5 mmHg [P = 0.0019 for systolic BP and 0.0763 for diastolic BP]), while a significant reduction of the intake of calcium-antagonists, α2-agonists and direct vasodilators, as well as a decrease in average dosage of ACE-inhibitors and α2-agonists could be seen. Within the study population, a decrease in heart rate from 74 ± 2 to 67 ± 2 min-1 (P = 0.0062) and lengthening of QRS-time from 96 ± 3 to 106 ± 4 ms (P = 0.0027) and QTc-duration from 422 ± 5 to 432 ± 5 ms (P = 0.0184) were detectable. The PQ duration was virtually unchanged. In patients without HF, no significant changes of echocardiographic parameters could be seen. In patients with HFpEF, posterior wall diameter decreased significantly from 14.0 ± 0.5 to 12.7 ± 0.3 mm (P = 0.0125), left ventricular mass (LVM) declined from 278.1 ± 15.8 to 243.9 ± 13.4 g (P = 0.0203), and e' lateral increased from 8.2 ± 0.4 to 9.0 ± 0.4 cm/s (P = 0.0471). CONCLUSIONS BAT reduced systolic and diastolic BP and was associated with morphological and functional improvement of HFpEF.
Collapse
Affiliation(s)
- Ann-Kathrin C Schäfer
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Manuel Wallbach
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | - Charlotte Schroer
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Luca-Yves Lehnig
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Stephan Lüders
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- St. Josefs Hospital, Cloppenburg, Germany
| | - Gerhard Hasenfuß
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
- Department of Cardiology and Pulmonology, University Medical Centre, Göttingen, Germany
| | - Rolf Wachter
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
- Department of Cardiology and Pulmonology, University Medical Centre, Göttingen, Germany
| | - Michael J Koziolek
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| |
Collapse
|
4
|
Shi R, Sun T, Wang M, Xiang Q, Ding Y, Yin S, Chen Y, Shen L, Yu P, Chen X. Baroreflex activation therapy for heart failure with reduced ejection fraction: A comprehensive systematic review and meta-analysis. Heliyon 2024; 10:e24177. [PMID: 38293445 PMCID: PMC10827448 DOI: 10.1016/j.heliyon.2024.e24177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/26/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Background In recent years, baroreflex activation therapy (BAT) has been utilized to treat heart failure with reduced ejection fraction (HFrEF). However, the supporting literature on its efficacy and safety is still limited. This investigation elucidates the effects of BAT in HFrEF patients to provide a reference for future clinical applications. Methods This investigation follows Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines. Relevant investigations on the use of BAT in HFrEF patients were searched and selected from 5 databases, including Web of Science, MEDLINE, PubMed, Embase, and Cochrane Library, from inception to December 2022. The methodological quality of eligible articles was assessed via the Cochrane risk of bias tool, and for meta-analysis, RevMan (5.3) was used. Results Randomized controlled trials comprising 343 participants were selected for the meta-analysis, which revealed that in HFrEF patients, BAT enhanced the levels of LVEF (MD: 2.97, 95 % CI: 0.53 to 5.41), MLHFQ (MD: -14.81, 95 % CI: -19.57 to -10.06) and 6MWT (MD: 68.18, 95 % CI: 51.62 to 84.74), whereas reduced the levels of LVEDV (MD: -15.79, 95 % CI: -32.96 to 1.37) and DBP (MD: -2.43, 95 % CI: -4.18 to -0.68). Conclusion It was concluded that BAT is an efficient treatment option for HFrEF patients. However, to validate this investigation, further randomized clinical trials with multiple centers and large sample sizes are needed.
Collapse
Affiliation(s)
- Ruijie Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Sun
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Yin
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Ruddy JM, Kroman A, Baicu CF, Zile MR. Baroreflex Activation Therapy in Patients with Heart Failure with a Reduced Ejection Fraction. Heart Fail Clin 2024; 20:39-50. [PMID: 37953020 DOI: 10.1016/j.hfc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A randomized, controlled trial of baroreflex activation therapy (BAT) in patients with heart failure and reduced ejection fraction demonstrated that BAT was safe and significantly improved patient-centered symptomatic outcomes, increasing exercise capacity, improving quality of life, decreasing n-terminal pro B-type natriuretic peptide (NT-proBNP), and improving functional class. BAT was approved by the FDA for improvement of symptoms of heart failure for patients who remain symptomatic despite treatment with guideline-directed management, are New York Heart Association Class III or Class II (with a recent history of Class III), have a left ventricular ejection fraction ≤ 35%, an NT-proBNP < 1600 pg/mL and excluding patients indicated for cardiac resynchronization therapy.
Collapse
Affiliation(s)
- Jean M Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA; Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA.
| | - Anne Kroman
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Catalin F Baicu
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Michael R Zile
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Fisher SM, Murally AR, Rajabally Z, Almas T, Azhar M, Cheema FH, Malone A, Hasan B, Aslam N, Saidi J, O'Neill J, Hameed A. Large animal models to study effectiveness of therapy devices in the treatment of heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev 2024; 29:257-276. [PMID: 37999821 DOI: 10.1007/s10741-023-10371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Our understanding of the complex pathophysiology of Heart failure with preserved ejection fraction (HFpEF) is limited by the lack of a robust in vivo model. Existing in-vivo models attempt to reproduce the four main phenotypes of HFpEF; ageing, obesity, diabetes mellitus and hypertension. To date, there is no in vivo model that represents all the haemodynamic characteristics of HFpEF, and only a few have proven to be reliable for the preclinical evaluation of potentially new therapeutic targets. HFpEF accounts for 50% of all the heart failure cases and its incidence is on the rise, posing a huge economic burden on the health system. Patients with HFpEF have limited therapeutic options available. The inadequate effectiveness of current pharmaceutical therapeutics for HFpEF has prompted the development of device-based treatments that target the hemodynamic changes to reduce the symptoms of HFpEF. However, despite the potential of device-based solutions to treat HFpEF, most of these therapies are still in the developmental stage and a relevant HFpEF in vivo model will surely expedite their development process. This review article outlines the major limitations of the current large in-vivo models in use while discussing how these designs have helped in the development of therapy devices for the treatment of HFpEF.
Collapse
Affiliation(s)
- Shane Michael Fisher
- Health Sciences Centre, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Anjali Rosanna Murally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Zahra Rajabally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Talal Almas
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Maimoona Azhar
- Graduate Entry Medicine, School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, 123 St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Faisal H Cheema
- Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX, USA
| | - Andrew Malone
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Babar Hasan
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Nadeem Aslam
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Jemil Saidi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Jim O'Neill
- Department of Cardiology, Connolly Hospital, Blanchardstown, Dublin, Ireland.
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland.
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
7
|
Boden K, Pongratanakul P, Vogel J, Willemsen N, Jülke EM, Balitzki J, Tinel H, Truebel H, Dinh W, Mondritzki T. Telemetric long-term assessment of autonomic function in experimental heart failure. J Pharmacol Toxicol Methods 2023; 124:107480. [PMID: 37979811 DOI: 10.1016/j.vascn.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Despite medical advances in the treatment of heart failure (HF), mortality remains high. It has been shown that alterations of the autonomic-nervous-system (ANS) are associated with HF progression and increased mortality. Preclinical models are required to evaluate the effectiveness of novel treatments modulating the autonomic imbalance. However, there are neither standard models nor diagnostic methods established to measure sympathetic and parasympathetic outflow continuously. Digital technologies might be a reliable tool for continuous assessment of autonomic function within experimental HF models. Telemetry devices and pacemakers were implanted in beagle dogs (n = 6). HF was induced by ventricular pacing. Cardiac hemodynamics, plasma catecholamines and parameter describing the ANS ((heart rate variability (HRV), deceleration capacity (DC), and baroreflex sensitivity (BRS)) were continuously measured at baseline, during HF conditions and during recovery phase. The pacing regime led to the expected depression in cardiac hemodynamics. Telemetric assessment of the ANS function showed a significant decrease in Total power, DC, and Heart rate recovery, whereas BRS was not significantly affected. In contrast, plasma catecholamines, revealing sympathetic activity, showed only a significant increase in the recovery phase. A precise diagnostic of the ANS in the context of HF is becoming increasingly important in experimental models. Up to now, these models have shown many limitations. Here we present the continuous assessment of the autonomic function in the progression of HF. We could demonstrate the advantage of highly resolved ANS measurement by HR and BP derived parameters due to early detection of an autonomic imbalance in the progression of HF.
Collapse
Affiliation(s)
- Katharina Boden
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany
| | | | - Julia Vogel
- University of Witten/Herdecke, Witten, Germany; Clinic for Cardiology and Angiology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Nicola Willemsen
- Bayer AG, Wuppertal, Germany; University of Duisburg-, Essen, Germany
| | | | - Jakob Balitzki
- Bayer AG, Wuppertal, Germany; Hannover Medical School, Hannover, Germany
| | | | | | - Wilfried Dinh
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany; Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Thomas Mondritzki
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany.
| |
Collapse
|
8
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Cai M, Wang H, Kline G, Ding Y, Ross SE, Davis S, Mallet RT, Shi X. Habitual physical activity improves vagal cardiac modulation and carotid baroreflex function in elderly women. Exp Biol Med (Maywood) 2023; 248:991-1000. [PMID: 37092743 PMCID: PMC10525404 DOI: 10.1177/15353702231160334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 04/25/2023] Open
Abstract
The impact of habitual physical activity on vagal-cardiac function and baroreflex sensitivity in elderly women is poorly characterized. This study compared vagal-cardiac modulation and carotid baroreflex (CBR) function in eight physically active (67.6 ± 1.9 years; peak O2 uptake 29.1 ± 2.5 mL/min/kg) versus eight sedentary (67.3 ± 1.8 years; peak O2 uptake 18.6 ± 0.9 mL/min/kg) elderly women. Heart rate (HR) variabilities and maximal changes of HR and mean arterial pressure (MAP) elicited by 5-s pressure pulses between +40 and -80 mmHg applied to the carotid sinus were measured at rest and during carotid baroreceptor unloading effected by -15 mmHg lower-body negative pressure (LBNP). HR variability was greater in active than sedentary women in both low (0.998 ± 0.286 versus 0.255 ± 0.063 bpm2; P = 0.036) and high (0.895 ± 0.301 versus 0.156 ± 0.045 bpm2; P = 0.044) frequency domains. CBR-HR gains (bpm/mmHg) were greater (fitness factor P < 0.001) in active versus sedentary women at rest (-0.146 ± 0.014 versus -0.088 ± 0.011) and during LBNP (-0.105 ± 0.014 versus -0.065 ± 0.008). CBR-MAP gains (mmHg/mmHg) tended to be greater (fitness factor P = 0.077) in active versus sedentary women at rest (-0.132 ± 0.013 versus -0.110 ± 0.011) and during LBNP (-0.129 ± 0.015 versus -0.113 ± 0.013). However, LBNP did not potentiate CBR-MAP gains in either sedentary or active women (LBNP factor P = 0.94), and it depressed CBR-HR gains in both groups (LBNP factor P = 0.003). CBR-HR gains in the sedentary women did not differ (sex factor P = 0.65) from gains reported in age-matched sedentary men, although CBR-MAP gains tended to be greater (sex factor P = 0.109) in the men. Thus, tonic vagal modulation indicated by HR variability and dynamic vagal responses assessed by CBR-HR gain were augmented in physically active women. Enhanced vagal-cardiac function may protect against senescence-associated cardiac electrical and hemodynamic instability in elderly women.
Collapse
Affiliation(s)
- Ming Cai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hong Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Geoffrey Kline
- Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yanfeng Ding
- Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sarah E Ross
- Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sandra Davis
- Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Xiangrong Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Zucker IH, Xia Z, Wang HJ. Potential Neuromodulation of the Cardio-Renal Syndrome. J Clin Med 2023; 12:803. [PMID: 36769450 PMCID: PMC9917464 DOI: 10.3390/jcm12030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The cardio-renal syndrome (CRS) type 2 is defined as a progressive loss of renal function following a primary insult to the myocardium that may be either acute or chronic but is accompanied by a decline in myocardial pump performance. The treatment of patients with CRS is difficult, and the disease often progresses to end-stage renal disease that is refractory to conventional therapy. While a good deal of information is known concerning renal injury in the CRS, less is understood about how reflex control of renal sympathetic nerve activity affects this syndrome. In this review, we provide insight into the role of the renal nerves, both from the afferent or sensory side and from the efferent side, in mediating renal dysfunction in CRS. We discuss how interventions such as renal denervation and abrogation of systemic reflexes may be used to alleviate renal dysfunction in the setting of chronic heart failure. We specifically focus on a novel cardiac sensory reflex that is sensitized in heart failure and activates the sympathetic nervous system, especially outflow to the kidney. This so-called Cardiac Sympathetic Afferent Reflex (CSAR) can be ablated using the potent neurotoxin resinferitoxin due to the high expression of Transient Receptor Potential Vanilloid 1 (TRPV1) receptors. Following ablation of the CSAR, several markers of renal dysfunction are reversed in the post-myocardial infarction heart failure state. This review puts forth the novel idea of neuromodulation at the cardiac level in the treatment of CRS Type 2.
Collapse
Affiliation(s)
- Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiqiu Xia
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Barthelemy JC, Pichot V, Hupin D, Berger M, Celle S, Mouhli L, Bäck M, Lacour JR, Roche F. Targeting autonomic nervous system as a biomarker of well-ageing in the prevention of stroke. Front Aging Neurosci 2022; 14:969352. [PMID: 36185479 PMCID: PMC9521604 DOI: 10.3389/fnagi.2022.969352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke prediction is a key health issue for preventive medicine. Atrial fibrillation (AF) detection is well established and the importance of obstructive sleep apneas (OSA) has emerged in recent years. Although autonomic nervous system (ANS) appears strongly implicated in stroke occurrence, this factor is more rarely considered. However, the consequences of decreased parasympathetic activity explored in large cohort studies through measurement of ANS activity indicate that an ability to improve its activity level and equilibrium may prevent stroke. In support of these observations, a compensatory neurostimulation has already proved beneficial on endothelium function. The available data on stroke predictions from ANS is based on many long-term stroke cohorts. These data underline the need of repeated ANS evaluation for the general population, in a medical environment, and remotely by emerging telemedicine digital tools. This would help uncovering the reasons behind the ANS imbalance that would need to be medically adjusted to decrease the risk of stroke. This ANS unbalance help to draw attention on clinical or non-clinical evidence, disclosing the vascular risk, as ANS activity integrates the cumulated risk from many factors of which most are modifiable, such as metabolic inadaptation in diabetes and obesity, sleep ventilatory disorders, hypertension, inflammation, and lack of physical activity. Treating these factors may determine ANS recovery through the appropriate management of these conditions. Natural aging also decreases ANS activity. ANS recovery will decrease global circulating inflammation, which will reinforce endothelial function and thus protect the vessels and the associated organs. ANS is the whistle-blower of vascular risk and the actor of vascular health. Such as, ANS should be regularly checked to help draw attention on vascular risk and help follow the improvements in response to our interventions. While today prediction of stroke relies on classical cardiovascular risk factors, adding autonomic biomarkers as HRV parameters may significantly increase the prediction of stroke.
Collapse
Affiliation(s)
- Jean-Claude Barthelemy
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
- *Correspondence: Jean-Claude Barthelemy,
| | - Vincent Pichot
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
| | - David Hupin
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
- Section of Translational Cardiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Mathieu Berger
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
- Centre d’Investigation et de Recherche sur le Sommeil, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sébastien Celle
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
| | - Lytissia Mouhli
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- Département de Neurologie, Hôpital Universitaire Nord, Saint-Étienne, France
| | - Magnus Bäck
- Section of Translational Cardiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-René Lacour
- Laboratoire de Physiologie, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Frederic Roche
- Physical Exercise and Clinical Physiology Department, CHU Nord, Saint-Étienne, France
- INSERM U1059 Santé Ingénierie Biologie, Université Jean Monnet, Saint-Étienne, France
| |
Collapse
|
12
|
Coats AJ, Abraham WT, Zile MR, Lindenfeld JA, Weaver FA, Fudim M, Bauersachs J, Duval S, Galle E, Zannad F. Baroreflex activation therapy with the Barostim™ device in patients with heart failure with reduced ejection fraction: a patient level meta-analysis of randomized controlled trials. Eur J Heart Fail 2022; 24:1665-1673. [PMID: 35713888 PMCID: PMC9796660 DOI: 10.1002/ejhf.2573] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS Heart failure with reduced ejection fraction (HFrEF) remains associated with high morbidity and mortality, poor quality of life (QoL) and significant exercise limitation. Sympatho-vagal imbalance has been shown to predict adverse prognosis and symptoms in HFrEF, yet it has not been specifically targeted by any guideline-recommended device therapy to date. Barostim™, which directly addresses this imbalance, is the first Food and Drug Administration approved neuromodulation technology for HFrEF. We aimed to analyse all randomized trial evidence to evaluate the effect of baroreflex activation therapy (BAT) on heart failure symptoms, QoL and N-terminal pro-brain natriuretic peptide (NT-proBNP) in HFrEF. METHODS AND RESULTS An individual patient data (IPD) meta-analysis was performed on all eligible trials that randomized HFrEF patients to BAT + guideline-directed medical therapy (GDMT) or GDMT alone (open label). Endpoints included 6-month changes in 6-min hall walk (6MHW) distance, Minnesota Living With Heart Failure (MLWHF) QoL score, NT-proBNP, and New York Heart Association (NYHA) class in all patients and three subgroups. A total of 554 randomized patients were included. In all patients, BAT provided significant improvement in 6MHW distance of 49 m (95% confidence interval [CI] 33, 64), MLWHF QoL of -13 points (95% CI -17, -10), and 3.4 higher odds of improving at least one NYHA class (95% CI 2.3, 4.9) when comparing from baseline to 6 months. These improvements were similar, or better, in patients who had baseline NT-proBNP <1600 pg/ml, regardless of the cardiac resynchronization therapy indication status. CONCLUSION An IPD meta-analysis suggests that BAT improves exercise capacity, NYHA class, and QoL in HFrEF patients receiving GDMT. These clinically meaningful improvements were consistent across the range of patients studies. BAT was also associated with an improvement in NT-proBNP in subjects with a lower baseline NT-proBNP.
Collapse
Affiliation(s)
| | - William T. Abraham
- Division of Cardiovascular MedicineThe Ohio State UniversityColumbusOHUSA
| | - Michael R. Zile
- The Medical University of South Carolina and the RHJ Department of Veterans Affairs Medical CenterCharlestonSCUSA
| | | | - Fred A. Weaver
- Division of Vascular Surgery and Endovascular Therapy, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Marat Fudim
- Duke University Medical CenterDurhamNCUSA,Duke Clinical Research InstituteDurhamNCUSA
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Sue Duval
- Cardiovascular DivisionUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | | | - Faiez Zannad
- Université de Lorraine, Inserm Centre d'Investigation, CHUUniversité de LorraineNancyFrance
| |
Collapse
|
13
|
Abstract
Autonomic imbalance with a sympathetic dominance is acknowledged to be a critical determinant of the pathophysiology of chronic heart failure with reduced ejection fraction (HFrEF), regardless of the etiology. Consequently, therapeutic interventions directly targeting the cardiac autonomic nervous system, generally referred to as neuromodulation strategies, have gained increasing interest and have been intensively studied at both the pre-clinical level and the clinical level. This review will focus on device-based neuromodulation in the setting of HFrEF. It will first provide some general principles about electrical neuromodulation and discuss specifically the complex issue of dose-response with this therapeutic approach. The paper will thereafter summarize the rationale, the pre-clinical and the clinical data, as well as the future prospectives of the three most studied form of device-based neuromodulation in HFrEF. These include cervical vagal nerve stimulation (cVNS), baroreflex activation therapy (BAT), and spinal cord stimulation (SCS). BAT has been approved by the Food and Drug Administration for use in patients with HfrEF, while the other two approaches are still considered investigational; VNS is currently being investigated in a large phase III Study.
Collapse
Affiliation(s)
- Veronica Dusi
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Department of Veteran's Affairs Medical Center , Charleston, SC , USA
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| |
Collapse
|
14
|
Mehra R, Tjurmina OA, Ajijola OA, Arora R, Bolser DC, Chapleau MW, Chen PS, Clancy CE, Delisle BP, Gold MR, Goldberger JJ, Goldstein DS, Habecker BA, Handoko ML, Harvey R, Hummel JP, Hund T, Meyer C, Redline S, Ripplinger CM, Simon MA, Somers VK, Stavrakis S, Taylor-Clark T, Undem BJ, Verrier RL, Zucker IH, Sopko G, Shivkumar K. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation: A Report From the National Heart, Lung, and Blood Institute and the National Institutes of Health Office of the Director Workshop. JACC Basic Transl Sci 2022; 7:265-293. [PMID: 35411324 PMCID: PMC8993767 DOI: 10.1016/j.jacbts.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022]
Abstract
This virtual workshop was convened by the National Heart, Lung, and Blood Institute, in partnership with the Office of Strategic Coordination of the Office of the National Institutes of Health Director, and held September 2 to 3, 2020. The intent was to assemble a multidisciplinary group of experts in basic, translational, and clinical research in neuroscience and cardiopulmonary disorders to identify knowledge gaps, guide future research efforts, and foster multidisciplinary collaborations pertaining to autonomic neural mechanisms of cardiopulmonary regulation. The group critically evaluated the current state of knowledge of the roles that the autonomic nervous system plays in regulation of cardiopulmonary function in health and in pathophysiology of arrhythmias, heart failure, sleep and circadian dysfunction, and breathing disorders. Opportunities to leverage the Common Fund's SPARC (Stimulating Peripheral Activity to Relieve Conditions) program were characterized as related to nonpharmacologic neuromodulation and device-based therapies. Common themes discussed include knowledge gaps, research priorities, and approaches to develop novel predictive markers of autonomic dysfunction. Approaches to precisely target neural pathophysiological mechanisms to herald new therapies for arrhythmias, heart failure, sleep and circadian rhythm physiology, and breathing disorders were also detailed.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- AD, autonomic dysregulation
- AF, atrial fibrillation
- ANS, autonomic nervous system
- Ach, acetylcholine
- CNS, central nervous system
- COPD, chronic obstructive pulmonary disease
- CSA, central sleep apnea
- CVD, cardiovascular disease
- ECG, electrocardiogram
- EV, extracellular vesicle
- GP, ganglionated plexi
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HRV, heart rate variability
- LQT, long QT
- MI, myocardial infarction
- NE, norepinephrine
- NHLBI, National Heart, Lung, and Blood Institute
- NPY, neuropeptide Y
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PAH, pulmonary arterial hypertension
- PV, pulmonary vein
- REM, rapid eye movement
- RV, right ventricular
- SCD, sudden cardiac death
- SDB, sleep disordered breathing
- SNA, sympathetic nerve activity
- SNSA, sympathetic nervous system activity
- TLD, targeted lung denervation
- asthma
- atrial fibrillation
- autonomic nervous system
- cardiopulmonary
- chronic obstructive pulmonary disease
- circadian
- heart failure
- pulmonary arterial hypertension
- sleep apnea
- ventricular arrhythmia
Collapse
Affiliation(s)
- Reena Mehra
- Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Olga A. Tjurmina
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Rishi Arora
- Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | | | - Mark W. Chapleau
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | - Michael R. Gold
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - David S. Goldstein
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Beth A. Habecker
- Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - M. Louis Handoko
- Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - James P. Hummel
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Marc A. Simon
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- University of California-San Francisco, San Francisco, California, USA
| | | | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - Richard L. Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - George Sopko
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
15
|
Nottebohm PI, Dumitrescu D, Hamacher S, Hohmann C, Madershahian N, Baldus S, Reuter H, Halbach M. Cardiopulmonary function during exercise in heart failure with reduced ejection fraction following baroreflex activation therapy. Ther Adv Cardiovasc Dis 2022; 16:17539447221131203. [PMID: 36305639 PMCID: PMC9619265 DOI: 10.1177/17539447221131203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023] Open
Abstract
PURPOSE Baroreflex activation therapy has favorable effects in heart failure patients. We report the results of a single-center study of baroreflex activation therapy in heart failure with reduced ejection fraction including cardiopulmonary exercise testing for the first time to show the effect on exercise capacity. METHODS A total of 17 patients were treated with baroreflex activation therapy. Eligibility criteria were the New York Heart Association class ⩾III and ejection fraction ⩽35% on guideline-directed medical and device therapy. The New York Heart Association class, quality of life, and 6-min hall walk distance were assessed in all patients. Twelve patients underwent cardiopulmonary exercise testing before and 8.9 ± 6.4 months after initiation of baroreflex activation therapy. RESULTS The New York Heart Association class and 6-min hall walk distance improved after baroreflex activation therapy, while quality of life remained stable. Weight-adapted peak oxygen uptake increased significantly from 10.1 (8.2-12.9) ml/min/kg to 12.1 (10.4-14.6) ml/min/kg (p = 0.041). Maximal heart rate was stable. Maximal oxygen pulse increased from 9.7 (5.5-11.3) to 9.9 (7.1-12.1) ml/heartbeat (p = 0.047) in 10 patients with low maximal oxygen pulse at baseline (<16.5 ml/heartbeat). There was no significant change in maximal oxygen pulse in the whole cohort. Ventilatory efficiency remained stable. CONCLUSION Weight-adapted peak oxygen uptake improved after baroreflex activation therapy, pointing to an enhanced exercise capacity. Ventilatory efficiency and heart rate did not change, while oxygen pulse increased in patients with low oxygen pulse at baseline, indicating an improvement in circulatory efficiency, that is, a beneficial effect on stroke volume and peripheral oxygen extraction.
Collapse
Affiliation(s)
- Pia I. Nottebohm
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Stefanie Hamacher
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Christopher Hohmann
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Navid Madershahian
- Department of Cardiac Surgery, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Stephan Baldus
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
| | - Hannes Reuter
- Department of Internal Medicine III, Cologne University Hospital – Heart Center, Cologne, Germany
- Klinik für Innere Medizin – Kardiologie, Evangelisches Klinikum Köln Weyertal, Cologne, Germany
| | | |
Collapse
|
16
|
Kay MW, Jain V, Panjrath G, Mendelowitz D. Targeting Parasympathetic Activity to Improve Autonomic Tone and Clinical Outcomes. Physiology (Bethesda) 2022; 37:39-45. [PMID: 34486396 PMCID: PMC8742722 DOI: 10.1152/physiol.00023.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this review we will briefly summarize the evidence that autonomic imbalance, more specifically reduced parasympathetic activity to the heart, generates and/or maintains many cardiorespiratory diseases and will discuss mechanisms and sites, from myocytes to the brain, that are potential translational targets for restoring parasympathetic activity and improving cardiorespiratory health.
Collapse
Affiliation(s)
- Matthew W. Kay
- 1Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Vivek Jain
- 2Division of Pulmonary Medicine, Department of Medicine, George Washington University, Washington, District of Columbia
| | - Gurusher Panjrath
- 3Division of Cardiology, Department of Medicine, George Washington University, Washington, District of Columbia
| | - David Mendelowitz
- 4Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
17
|
Malangu B, Lanier GM, Frishman WH. Nonpharmacologic Treatment for Heart Failure: A Review of Implantable Carotid Baroreceptor Stimulators As a Therapeutic Option. Cardiol Rev 2021; 29:48-53. [PMID: 32282391 DOI: 10.1097/crd.0000000000000307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There has been significant interest in research for the development of device-based therapy as a treatment option of heart failure (HF), whether it is with reduced or preserved ejection fraction. This is due to the high morbidity and mortality rate in patients with HF despite recent advances in pharmacologic treatment. Following the success of cardiac resynchronization therapy, baroreceptor activation therapy has emerged as another novel device-based treatment for HF. The Barostim neo was developed by CVRx Minneapolis, MN for the treatment of mild to severe HF. The device works by electrically activating the baroreceptor reflex with the goal to restore the maladaptive autonomic imbalance that is seen in patients with HF. Preliminary clinical investigations have given promising results with an encouraging safety profile. Baroreceptor activation therapy as a treatment option is still investigational at this time; however, several trials in different patient populations have already shown benefit with a very good safety profile. In this review, we will summarize the current state of technology and the available literature of the use of baroreceptor activation therapy in patients with different comorbidities, with a focus on this device-based therapy in patients with HF.
Collapse
Affiliation(s)
- Boniface Malangu
- From the Department of Internal Medicine, Rutgers-New Jersey Medical School, Newark, NJ
| | - Gregg M Lanier
- Department of Medicine, Division of Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- Department of Medicine, Division of Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
18
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
19
|
Pelat M, Barbe F, Daveu C, Ly-Nguyen L, Lartigue T, Marque S, Tavares G, Ballet V, Guillon JM, Steinmeyer K, Wirth K, Gögelein H, Arndt P, Rackelmann N, Weston J, Bellevergue P, McCort G, Trellu M, Lucats L, Beauverger P, Pruniaux-Harnist MP, Janiak P, Chézalviel-Guilbert F. SAR340835, a Novel Selective Na +/Ca 2+ Exchanger Inhibitor, Improves Cardiac Function and Restores Sympathovagal Balance in Heart Failure. J Pharmacol Exp Ther 2021; 377:293-304. [PMID: 33602875 DOI: 10.1124/jpet.120.000238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
In failing hearts, Na+/Ca2+ exchanger (NCX) overactivity contributes to Ca2+ depletion, leading to contractile dysfunction. Inhibition of NCX is expected to normalize Ca2+ mishandling, to limit afterdepolarization-related arrhythmias, and to improve cardiac function in heart failure (HF). SAR340835/SAR296968 is a selective NCX inhibitor for all NCX isoforms across species, including human, with no effect on the native voltage-dependent calcium and sodium currents in vitro. Additionally, it showed in vitro and in vivo antiarrhythmic properties in several models of early and delayed afterdepolarization-related arrhythmias. Its effect on cardiac function was studied under intravenous infusion at 250,750 or 1500 µg/kg per hour in dogs, which were either normal or submitted to chronic ventricular pacing at 240 bpm (HF dogs). HF dogs were infused with the reference inotrope dobutamine (10 µg/kg per minute, i.v.). In normal dogs, NCX inhibitor increased cardiac contractility (dP/dtmax) and stroke volume (SV) and tended to reduce heart rate (HR). In HF dogs, NCX inhibitor significantly and dose-dependently increased SV from the first dose (+28.5%, +48.8%, and +62% at 250, 750, and 1500 µg/kg per hour, respectively) while significantly increasing dP/dtmax only at 1500 (+33%). Furthermore, NCX inhibitor significantly restored sympathovagal balance and spontaneous baroreflex sensitivity (BRS) from the first dose and reduced HR at the highest dose. In HF dogs, dobutamine significantly increased dP/dtmax and SV (+68.8%) but did not change HR, sympathovagal balance, or BRS. Overall, SAR340835, a selective potent NCX inhibitor, displayed a unique therapeutic profile, combining antiarrhythmic properties, capacity to restore systolic function, sympathovagal balance, and BRS in HF dogs. NCX inhibitors may offer new therapeutic options for acute HF treatment. SIGNIFICANCE STATEMENT: HF is facing growing health and economic burden. Moreover, patients hospitalized for acute heart failure are at high risk of decompensation recurrence, and no current acute decompensated HF therapy definitively improved outcomes. A new potent, Na+/Ca2+ exchanger inhibitor SAR340835 with antiarrhythmic properties improved systolic function of failing hearts without creating hypotension, while reducing heart rate and restoring sympathovagal balance. SAR340835 may offer a unique and attractive pharmacological profile for patients with acute heart failure as compared with current inotrope, such as dobutamine.
Collapse
Affiliation(s)
- Michel Pelat
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Fabrice Barbe
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Cyril Daveu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laetitia Ly-Nguyen
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Thomas Lartigue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Suzanne Marque
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Georges Tavares
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Véronique Ballet
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Jean-Michel Guillon
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Steinmeyer
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Klaus Wirth
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Heinz Gögelein
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Petra Arndt
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Nils Rackelmann
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - John Weston
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Patrice Bellevergue
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Gary McCort
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marc Trellu
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Laurence Lucats
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philippe Beauverger
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Marie-Pierre Pruniaux-Harnist
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Philip Janiak
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| | - Frédérique Chézalviel-Guilbert
- Cardiovascular and Metabolism TSU (M.P., F.B., C.D., T.L., S.M., G.T., L.L., Ph.B., M.-P.P.-H., P.J., F.C.-G.) and Integrated Drug Discovery (Pa.B.), Sanofi R&D, Chilly Mazarin, France; Preclinical Safety, Sanofi R&D, Alfortville, France (L.L.-N., V.B., J.-M.G., M.T.); Sanofi R&D, Industriepark Höchst, Frankfurt, Germany (K.S., K.W., H.G., P.A., N.R., J.W.); and Integrated Drug Discovery, Sanofi R&D, Vitry sur Seine, France (G.M.)
| |
Collapse
|
20
|
Sharif ZI, Galand V, Hucker WJ, Singh JP. Evolving Cardiac Electrical Therapies for Advanced Heart Failure Patients. Circ Arrhythm Electrophysiol 2021; 14:e009668. [PMID: 33858178 DOI: 10.1161/circep.120.009668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Symptomatic heart failure (HF) patients despite optimal medical therapy and advances such as invasive hemodynamic monitoring remain challenging to manage. While cardiac resynchronization therapy remains a highly effective therapy for a subset of HF patients with wide QRS, a majority of symptomatic HF patients are poor candidates for such. Recently, cardiac contractility modulation, neuromodulation based on carotid baroreceptor stimulation, and phrenic nerve stimulation have been approved by the US Food and Drug Administration and are emerging as therapeutic options for symptomatic HF patients. This state-of-the-art review examines the role of these evolving electrical therapies in advanced HF.
Collapse
Affiliation(s)
- Zain I Sharif
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| | - Vincent Galand
- Division of Cardiology, Université de Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, France (V.G.).,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| | - William J Hucker
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| | - Jagmeet P Singh
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (Z.I.S., V.G., W.J.H., J.P.S.)
| |
Collapse
|
21
|
Izumi Y, Mennerick SJ, Doherty JJ, Zorumski CF. Oxysterols Modulate the Acute Effects of Ethanol on Hippocampal N-Methyl-d-Aspartate Receptors, Long-Term Potentiation, and Learning. J Pharmacol Exp Ther 2021; 377:181-188. [PMID: 33441369 PMCID: PMC8051516 DOI: 10.1124/jpet.120.000376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ethanol is a noncompetitive inhibitor of N-methyl-d-aspartate receptors (NMDARs) and acutely disrupts hippocampal synaptic plasticity and learning. In the present study, we examined the effects of oxysterol positive allosteric modulators (PAMs) of NMDARs on ethanol-mediated inhibition of NMDARs, block of long-term potentiation (LTP) and long-term depression (LTD) in rat hippocampal slices, and defects in one-trial learning in vivo. We found that 24S-hydroxycholesterol and a synthetic oxysterol analog, SGE-301, overcame effects of ethanol on NMDAR-mediated synaptic responses in the CA1 region but did not alter acute effects of ethanol on LTD; the synthetic oxysterol, however, overcame acute inhibition of LTP. In addition, both oxysterols overcame persistent effects of ethanol on LTP in vitro, and the synthetic analog reversed defects in one-trial inhibitory avoidance learning in vivo. These results indicate that effects of ethanol on both LTP and LTD arise by complex mechanisms beyond NMDAR antagonism and that oxysterol NMDAR PAMS may represent a novel approach for preventing and reversing acute ethanol-mediated changes in cognition. SIGNIFICANCE STATEMENT: Ethanol acutely inhibits hippocampal NMDARs, LTP, and learning. This study found that certain oxysterols that are NMDAR-positive allosteric modulators can overcome the acute effects of ethanol on NMDARs, LTP, and learning. Oxysterols differ in their effects from agents that inhibit integrated cellular stress responses.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Steven J Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - James J Doherty
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (Y.I., S.J.M., C.F.Z.); and Sage Therapeutics, Cambridge, Massachusetts (J.J.D.)
| |
Collapse
|
22
|
Sobowale CO, Hori Y, Ajijola OA. Neuromodulation Therapy in Heart Failure: Combined Use of Drugs and Devices. J Innov Card Rhythm Manag 2020; 11:4151-4159. [PMID: 32724706 PMCID: PMC7377644 DOI: 10.19102/icrm.2020.110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the fastest-growing cardiovascular disease globally. The autonomic nervous system plays an important role in the regulation and homeostasis of cardiac function but, once there is HF, it takes on a detrimental role in cardiac function that makes it a rational target. In this review, we cover the remodeling of the autonomic nervous system in HF and the latest treatments available targeting it.
Collapse
Affiliation(s)
- Christopher O Sobowale
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Cardiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
23
|
Zile MR, Lindenfeld J, Weaver FA, Zannad F, Galle E, Rogers T, Abraham WT. Baroreflex Activation Therapy in Patients With Heart Failure With Reduced Ejection Fraction. J Am Coll Cardiol 2020; 76:1-13. [DOI: 10.1016/j.jacc.2020.05.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
24
|
Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic Modulation of Cardiac Arrhythmias: Methods to Assess Treatment and Outcomes. JACC Clin Electrophysiol 2020; 6:467-483. [PMID: 32439031 PMCID: PMC7370838 DOI: 10.1016/j.jacep.2020.02.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of multiple cardiac arrhythmias, including atrial fibrillation and ventricular tachycardia. As such, autonomic modulation represents an attractive therapeutic approach in these conditions. Notably, autonomic modulation exploits the plasticity of the neural tissue to induce neural remodeling and thus obtain therapeutic benefit. Different forms of autonomic modulation include vagus nerve stimulation, tragus stimulation, renal denervation, baroreceptor activation therapy, and cardiac sympathetic denervation. This review seeks to highlight these autonomic modulation therapeutic modalities, which have shown promise in early preclinical and clinical trials and represent exciting alternatives to standard arrhythmia treatment. We also present an overview of the various methods used to assess autonomic tone, including heart rate variability, skin sympathetic nerve activity, and alternans, which can be used as surrogate markers and predictors of the treatment effect. Although the use of autonomic modulation to treat cardiac arrhythmias is supported by strong preclinical data and preliminary studies in humans, in light of the disappointing results of a number of recent randomized clinical trials of autonomic modulation therapies in heart failure, the need for optimization of the stimulation parameters and rigorous patient selection based on appropriate biomarkers cannot be overemphasized.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | - Kanchan Kulkarni
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
25
|
Zeitler EP, Abraham WT. Novel Devices in Heart Failure. JACC-HEART FAILURE 2020; 8:251-264. [DOI: 10.1016/j.jchf.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
|
26
|
Schmidt R, Rodrigues CG, Schmidt KH, Irigoyen MCC. Safety and efficacy of baroreflex activation therapy for heart failure with reduced ejection fraction: a rapid systematic review. ESC Heart Fail 2020; 7:3-14. [PMID: 31965746 PMCID: PMC7083497 DOI: 10.1002/ehf2.12543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
To retrieve and assess the available data in the literature about the safety and efficacy of baroreflex activation therapy (BAT) in heart failure with reduced ejection fraction (HFrEF) patients, through a rapid systematic review of clinical studies. Rapid systematic review of literature. Searched electronic databases included PubMed, EMBASE, CENTRAL, Scopus, and Web of Science using Mesh and free terms for heart failure and BAT. No language restriction was used for the searches. We included full peer reviewed publications of clinical studies (randomized or not), including patients with HFrEF undergoing BAT, with or without control group, assessing safety and efficacy outcomes. One reviewer conducted the analysis of the selected abstracts and the full-text articles, performed data extraction, and evaluated the methodological quality of the selected articles. The methodological quality was assessed according to the Cochrane Collaboration instruments. A descriptive summary of the results is provided. Of the 441 citations screened, 10 publications were included (three were only conference abstracts), reporting data from three studies. Only one study was a randomized clinical trial. Two studies reported a 6 month following, and the other study analysed outcomes up to 41 months. The procedure seems to be safe when performed by a well-trained multi-professional team. An 86% rate of system and procedure-related complication-free was reported, with no cranial nerve injuries. Improvements in New York Heart Association class of heart failure, quality of life, 6 min walk test, and hospitalization rates, as well as in muscle sympathetic nerve activity. No meta-analysis was conducted because of the lack of homogeneity across studies; the results from each study are reported individually. BAT procedure seems to be safe if appropriate training is provided. Improvements in clinical outcomes were described in all included studies. However, several limitations do not allow us to make conclusive statements on the efficacy of BAT for HFrEF. New well-designed trials are still needed.
Collapse
Affiliation(s)
- Rodrigo Schmidt
- Heart Institute (InCor), Medical SchoolUniversity of Sao PauloSao PauloBrazil
- Institute for Neuro‐Immune MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Miami Veterans Affairs Healthcare SystemMiamiFLUSA
| | | | - Kelen Heinrich Schmidt
- Institute for Neuro‐Immune MedicineNova Southeastern UniversityFort LauderdaleFLUSA(W.O.C.)
| | | |
Collapse
|
27
|
Abstract
Despite availability of effective drugs for hypertension therapy, significant numbers of hypertensive patients fail to achieve recommended blood pressure levels on ≥3 antihypertensive drugs of different classes. These individuals have a high prevalence of adverse cardiovascular events and are defined as having resistant hypertension (RHT) although nonadherence to prescribed antihypertensive medications is common in patients with apparent RHT. Furthermore, apparent and true RHT often display increased sympathetic activity. Based on these findings, technology was developed to treat RHT by suppressing sympathetic activity with electrical stimulation of the carotid baroreflex and catheter-based renal denervation (RDN). Over the last 15 years, experimental and clinical studies have provided better understanding of the physiological mechanisms that account for blood pressure lowering with baroreflex activation and RDN and, in so doing, have provided insight into which patients in this heterogeneous hypertensive population are most likely to respond favorably to these device-based therapies. Experimental studies have also played a role in modifying device technology after early clinical trials failed to meet key endpoints for safety and efficacy. At the same time, these studies have exposed potential differences between baroreflex activation and RDN and common challenges that will likely impact antihypertensive treatment and clinical outcomes in patients with RHT. In this review, we emphasize physiological studies that provide mechanistic insights into blood pressure lowering with baroreflex activation and RDN in the context of progression of clinical studies, which are now at a critical point in determining their fate in RHT management.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson
| | - John E Hall
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson.,Mississippi Center for Obesity Research (J.E.H.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
28
|
Kunz M, Lauder L, Ewen S, Böhm M, Mahfoud F. The Current Status of Devices for the Treatment of Resistant Hypertension. Am J Hypertens 2020; 33:10-18. [PMID: 31570933 DOI: 10.1093/ajh/hpz161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial hypertension is associated with increased cardiovascular morbidity and mortality. Although blood pressure-lowering therapies significantly reduce the risk of major cardiovascular events, blood pressure control remains unsatisfactorily low. Several device-based antihypertensive therapies have been investigated in patients with treatment-resistant hypertension and in patients unable or unwilling to adhere to antihypertensive medication. As the field of device-based therapies is subject to constant change, this review aims at providing an up-to-date overview of different device-based approaches for the treatment of hypertension. These approaches target the sympathetic nervous system (renal denervation, baroreflex amplification therapy, baroreflex activation therapy, and carotid body ablation) or alter mechanical arterial properties by creating an iliac arteriovenous fistula. Notably, the use of all of these treatment options is not recommended for the routine treatment of hypertension by current guidelines but should be investigated in the context of controlled clinical studies.
Collapse
Affiliation(s)
- Michael Kunz
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Lucas Lauder
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Sebastian Ewen
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg/Saar, Germany
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Device therapy in heart failure with reduced ejection fraction-cardiac resynchronization therapy and more. Herz 2019; 43:415-422. [PMID: 29744528 DOI: 10.1007/s00059-018-4710-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In patients with heart failure with reduced ejection fraction (HFrEF), optimal medical treatment includes beta-blockers, ACE inhibitors/angiotensinreceptor-neprilysin inhibitors (ARNI), mineralocorticoid receptor antagonists, and ivabradine when indicated. In device therapy of HFrEF, implantable cardioverter-defibrillators and cardiac resynchronization therapy (CRT) have been established for many years. CRT is the therapy of choice (class I indication) in symptomatic patients with HFrEF and a broad QRS complex with a left bundle branch block (LBBB) morphology. However, the vast majority of heart failure patients show a narrow QRS complex or a non-LBBB morphology. These patients are not candidates for CRT and alternative electrical therapies such as baroreflex activation therapy (BAT) and cardiac contractility modulation (CCM) may be considered. BAT modulates vegetative dysregulation in heart failure. CCM improves contractility, functional capacity, and symptoms. Although a broad data set is available for BAT and CCM, mortality data are still lacking for both methods. This article provides an overview of the device-based therapeutic options for patients with HFrEF.
Collapse
|
30
|
Wang J, Yu Q, Dai M, Zhang Y, Cao Q, Luo Q, Tan T, Zhou Y, Shu L, Bao M. Carotid baroreceptor stimulation improves cardiac performance and reverses ventricular remodelling in canines with pacing-induced heart failure. Life Sci 2019; 222:13-21. [DOI: 10.1016/j.lfs.2019.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
|
31
|
Devgun J, Jobanputra YB, Arustamyan M, Chait R, Ghumman W. Devices and interventions for the prevention of adverse outcomes of tachycardia on heart failure. Heart Fail Rev 2019; 23:507-516. [PMID: 29430580 DOI: 10.1007/s10741-018-9680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is the leading cause of hospitalization in the USA. Despite advances in pharmacologic management, the incidence of HF is on the rise and survivability is persistently reduced. Sympathetic overdrive is implicated in the pathophysiology of HF, particularly HF with reduced ejection fraction (HFrEF). Tachycardia can be particularly deleterious and thus has spurred significant investigation to mitigate its effects. Various modalities including vagus nerve stimulation, baroreceptor activation therapy, spinal cord stimulation, renal sympathetic nerve denervation, left cardiac sympathetic denervation, and carotid body removal will be discussed. However, the effects of these modalities on tachycardia and its outcomes in HFrEF have not been well-studied. Further studies to characterize this are necessary in the future.
Collapse
Affiliation(s)
- Jasneet Devgun
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Avenue Third Floor, Columbus, OH, 43210, USA.
| | - Yash B Jobanputra
- Department of Internal Medicine, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| | | | - Robert Chait
- Department of Cardiology, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| | - Waqas Ghumman
- Department of Cardiology, University of Miami Miller School of Medicine Regional Campus, Atlantis, FL, USA
| |
Collapse
|
32
|
Katayama PL, Castania JA, Fazan R, Salgado HC. Interaction between baroreflex and chemoreflex in the cardiorespiratory responses to stimulation of the carotid sinus/nerve in conscious rats. Auton Neurosci 2018; 216:17-24. [PMID: 30598121 DOI: 10.1016/j.autneu.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/29/2022]
Abstract
Electrical stimulation of the carotid baroreflex has been thoroughly investigated for treating drug-resistant hypertension in humans. However, a previous study from our laboratory, performed in conscious rats, has demonstrated that electrical stimulation of the carotid sinus/nerve (CS) activated both the carotid baroreflex as well as the carotid chemoreflex, resulting in hypotension. Additionally, we also demonstrated that the carotid chemoreceptor deactivation potentiated this hypotensive response. Therefore, to further investigate this carotid baroreflex/chemoreflex interaction, besides the hemodynamic responses, we evaluated the respiratory responses to the electrical stimulation of the CS in both intact (CONT) and carotid chemoreceptors deactivated (CHEMO-X) conscious rats. CONT rats showed increased ventilation in response to electrical stimulation of the CS as measured by the respiratory frequency (fR), tidal volume (VT) and minute ventilation (VE), suggesting a carotid chemoreflex activation. The carotid chemoreceptor deactivation abolished all respiratory responses to the electrical stimulation of the CS. Regarding the hemodynamic responses, the electrical stimulation of the CS caused hypotensive responses in CONT rats, which were potentiated by the carotid chemoreceptors deactivation. Heart rate (HR) responses did not differ between groups. In conclusion, the present study showed that the electrical stimulation of the CS, in conscious rats, activates both the carotid baroreflex and the carotid chemoreflex driving an increase in ventilation and a decrease in AP. These findings further contribute to our understanding of the electrical stimulation of CS.
Collapse
Affiliation(s)
- Pedro L Katayama
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaci A Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
33
|
First granted example of novel FDA trial design under Expedited Access Pathway for premarket approval: BeAT-HF. Am Heart J 2018; 204:139-150. [PMID: 30118942 DOI: 10.1016/j.ahj.2018.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND The Food and Drug Administration (FDA) initiated the Expedited Access Pathway (EAP) to accelerate approval of novel therapies targeting unmet needs for life-threatening conditions. EAP allows for the possibility of initial FDA approval using intermediate end points with postapproval demonstration of improved outcomes. OBJECTIVE Describe the EAP process using the BeAT-HF trial as a case study. METHODS BeAT-HF will examine the safety and effectiveness of baroreflex activation therapy (BAT) in heart failure patients with reduced ejection fraction using an Expedited and Extended Phase design. In the Expedited Phase, BAT plus guideline-directed medical therapy (GDMT) will be compared at 6 months postimplant to GDMT alone using 3 intermediate end points: 6-minute hall walk distance, Minnesota Living with Heart Failure Questionnaire, and N-terminal pro-B-type natriuretic peptide. The rate of heart failure morbidity and cardiovascular mortality will be compared between the arms to evaluate early trending using predictive probability modeling. Sample size of 264 patients randomized 1:1 to BAT + GDMT versus GDMT alone provides 81% power for the Expedited Phase intermediate end points. For the Extended Phase, the heart failure morbidity and cardiovascular mortality end point is based on an expected event rate of 0.4 events/patient/year in the GDMT arm. With an adaptive sample size selection design for robustness to inaccurate assumptions, a sample size of 480-960 randomized patients followed ≥2 years allows detecting a 30% reduction in the primary end point with a power of 97.5%. CONCLUSION Through a unique collaboration with FDA under the EAP, the BeAT-HF trial design allows for the possibility of approval of BAT, initially for symptom relief and subsequently for outcomes improvement.
Collapse
|
34
|
Dai X, Hua L, Chen Y, Wang J, Li J, Wu F, Zhang Y, Su J, Wu Z, Liang C. Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). Int J Mol Med 2018; 42:3-12. [PMID: 29620247 PMCID: PMC5979885 DOI: 10.3892/ijmm.2018.3605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
A variety of cells and cytokines have been shown to be involved in the whole process of hypertension. Data from experimental and clinical studies on hypertension have confirmed the key roles of immune cells and inflammation in the process. Dysfunction of the thymus, which modulates the development and maturation of lymphocytes, has been shown to be associated with the severity of hypertension. Furthermore, gradual atrophy, functional decline or loss of the thymus has been revealed to be associated with aging. The restoration or enhancement of thymus function via upregulation in the expression of thymus transcription factors forkhead box N1 or thymus transplantation may provide an option to halt or reverse the pathological process of hypertension. Therefore, the thymus may be key in hypertension and associated target organ damage, and may provide a novel treatment strategy for the clinical management of patients with hypertension in addition to different commercial drugs. The purpose of this review is to summarize and discuss the advances in our understanding of the impact of thymus function on hypertension from data from animal and human studies, and the potential mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jiamei Wang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jingyi Li
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Feng Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanda Zhang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiyuan Su
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
35
|
Porzionato A, Macchi V, Stecco C, De Caro R. The Carotid Sinus Nerve-Structure, Function, and Clinical Implications. Anat Rec (Hoboken) 2018; 302:575-587. [PMID: 29663677 DOI: 10.1002/ar.23829] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/24/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Interest has been renewed in the anatomy and physiology of the carotid sinus nerve (CSN) and its targets (carotid sinus and carotid body, CB), due to recent proposals of surgical procedures for a series of common pathologies, such as carotid sinus syndrome, hypertension, heart failure, and insulin resistance. The CSN originates from the glossopharyngeal nerve soon after its appearance from the jugular foramen. It shows frequent communications with the sympathetic trunk (usually at the level of the superior cervical ganglion) and the vagal nerve (main trunk, pharyngeal branches, or superior laryngeal nerve). It courses on the anterior aspect of the internal carotid artery to reach the carotid sinus, CB, and/or intercarotid plexus. In the carotid sinus, type I (dynamic) carotid baroreceptors have larger myelinated A-fibers; type II (tonic) baroreceptors show smaller A- and unmyelinated C-fibers. In the CB, afferent fibers are mainly stimulated by acetylcholine and ATP, released by type I cells. The neurons are located in the petrosal ganglion, and centripetal fibers project on to the solitary tract nucleus: chemosensory inputs to the commissural subnucleus, and baroreceptor inputs to the commissural, medial, dorsomedial, and dorsolateral subnuclei. The baroreceptor component of the CSN elicits sympatho-inhibition and the chemoreceptor component stimulates sympatho-activation. Thus, in refractory hypertension and heart failure (characterized by increased sympathetic activity), baroreceptor electrical stimulation, and CB removal have been proposed. Instead, denervation of the carotid sinus has been proposed for the "carotid sinus syndrome." Anat Rec, 302:575-587, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Carla Stecco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Abstract
Heart failure (HF) is associated with significant morbidity and mortality. The disease is characterised by autonomic imbalance with increased sympathetic activity and withdrawal of parasympathetic activity. Despite the use of medical therapies that target, in part, the neurohormonal axis, rates of HF progression, morbidity and mortality remain high. Emerging therapies centred on neuromodulation of autonomic control of the heart provide an alternative device-based approach to restoring sympathovagal balance. Preclinical studies have proven favourable, while clinical trials have had mixed results. This article highlights the importance of understanding structural/functional organisation of the cardiac nervous system as mechanistic-based neuromodulation therapies evolve.
Collapse
Affiliation(s)
- Peter Hanna
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Jeffrey L Ardell
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| |
Collapse
|
37
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Trembach N, Zabolotskikh I. Arterial baroreflex sensitivity: Relationship with peripheral chemoreflex in patients with chronic heart failure. Artery Res 2018. [DOI: 10.1016/j.artres.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
39
|
Abboud FM, Singh MV. Autonomic regulation of the immune system in cardiovascular diseases. ADVANCES IN PHYSIOLOGY EDUCATION 2017; 41:578-593. [PMID: 29138216 PMCID: PMC6105770 DOI: 10.1152/advan.00061.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 05/27/2023]
Abstract
The autonomic nervous system is a powerful regulator of circulatory adjustments to acute hemodynamic stresses. Here we focus on new concepts that emphasize the chronic influence of the sympathetic and parasympathetic systems on cardiovascular pathology. The autonomic neurohumoral system can dramatically influence morbidity and mortality from cardiovascular disease through newly discovered influences on the innate and adaptive immune systems. Specifically, the end-organ damage in heart failure or hypertension may be worsened or alleviated by pro- or anti-inflammatory pathways of the immune system, respectively, that are activated through neurohumoral transmitters. These concepts provide a major new perspective on potentially life-saving therapeutic interventions in the deadliest of diseases.
Collapse
Affiliation(s)
- François M Abboud
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Madhu V Singh
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
40
|
van Bilsen M, Patel HC, Bauersachs J, Böhm M, Borggrefe M, Brutsaert D, Coats AJS, de Boer RA, de Keulenaer GW, Filippatos GS, Floras J, Grassi G, Jankowska EA, Kornet L, Lunde IG, Maack C, Mahfoud F, Pollesello P, Ponikowski P, Ruschitzka F, Sabbah HN, Schultz HD, Seferovic P, Slart RHJA, Taggart P, Tocchetti CG, Van Laake LW, Zannad F, Heymans S, Lyon AR. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2017; 19:1361-1378. [PMID: 28949064 DOI: 10.1002/ejhf.921] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future?
Collapse
Affiliation(s)
- Marc van Bilsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Hospital, Maastricht, the Netherlands
| | - Hitesh C Patel
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Baker Heart and Diabetes Institute, Melbourne, Vic, Australia
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | - Michael Böhm
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Martin Borggrefe
- First Department of Medicine, Cardiology Division, University Medical Centre Mannheim, Mannheim, Germany.,German Centre for Cardiovascular Research, Mannheim, Germany
| | - Dirk Brutsaert
- Department of Cardiology, Antwerp University, Antwerp, Belgium
| | - Andrew J S Coats
- Department of Medicine, Monash University, Melbourne, Vic, Australia.,Department of Medicine, University of Warwick, Coventry, UK
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Gerasimos S Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - John Floras
- University Health Network and Sinai Health System Division of Cardiology, Peter Munk Cardiac Centre, Toronto General and Lunenfeld-Tanenbaum Research Institutes, University of Toronto, Toronto, ON, Canada
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Lilian Kornet
- Medtronic, Inc., Bakken Research Centre, Maastricht, the Netherlands
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Christoph Maack
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Felix Mahfoud
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | | | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Peter Taggart
- Department of Cardiovascular Science, University College London, Barts Heart Centre, London, UK
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Linda W Van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Faiez Zannad
- INSERM, Centre for Clinical Investigation 9501, Unit 961, University Hospital Centre, Nancy, France.,Department of Cardiology, Nancy University, University of the Lorraine, Nancy, France
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, the Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| | - Alexander R Lyon
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
41
|
Lataro RM, Silva LEV, Silva CAA, Salgado HC, Fazan R. Baroreflex control of renal sympathetic nerve activity in early heart failure assessed by the sequence method. J Physiol 2017; 595:3319-3330. [PMID: 28261799 DOI: 10.1113/jp274065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS The integrity of the baroreflex control of sympathetic activity in heart failure (HF) remains under debate. We proposed the use of the sequence method to assess the baroreflex control of renal sympathetic nerve activity (RSNA). The sequence method assesses the spontaneous arterial pressure (AP) fluctuations and their related changes in heart rate (or other efferent responses), providing the sensitivity and the effectiveness of the baroreflex. Effectiveness refers to the fraction of spontaneous AP changes that elicits baroreflex-mediated variations in the efferent response. Using three different approaches, we showed that the baroreflex sensitivity between AP and RSNA is not altered in early HF rats. However, the sequence method provided evidence that the effectiveness of baroreflex in changing RSNA in response to AP changes is markedly decreased in HF. The results help us better understand the baroreflex control of the sympathetic nerve activity. ABSTRACT In heart failure (HF), the reflex control of the heart rate is known to be markedly impaired; however, the baroreceptor control of the sympathetic drive remains under debate. Applying the sequence method to a series of arterial pressure (AP) and renal sympathetic nerve activity (RSNA), we demonstrated a clear dysfunction in the baroreflex control of sympathetic activity in rats with early HF. We analysed the baroreflex control of the sympathetic drive using three different approaches: AP vs. RSNA curve, cross-spectral analysis and sequence method between AP and RSNA. The sequence method also provides the baroreflex effectiveness index (BEI), which represents the percentage of AP ramps that actually produce a reflex response. The methods were applied to control rats and rats with HF induced by myocardial infarction. None of the methods employed to assess the sympathetic baroreflex gain were able to detect any differences between the control and the HF group. However, rats with HF exhibited a lower BEI compared to the controls. Moreover, an optimum delay of 1 beat was observed, i.e. 1 beat is required for the RSNA to respond after AP changing, which corroborates with the findings related to the timing between these two variables. For delay 1, the BEI of the controls was 0.45 ± 0.03, whereas the BEI of rats with HF was 0.29 ± 0.09 (P < 0.05). These data demonstrate that while the gain of the baroreflex is not affected in early HF, its effectiveness is markedly decreased. The analysis of the spontaneous changes in AP and RSNA using the sequence method provides novel insights into arterial baroreceptor reflex function.
Collapse
Affiliation(s)
- Renata Maria Lataro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Eduardo Virgilio Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alberto Aguiar Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
42
|
Ad N. Baroreflex Activation Therapy for Patients With Heart Failure and Low Ejection Fraction is Safe and Effective. Semin Thorac Cardiovasc Surg 2017; 28:329-330. [PMID: 28043439 DOI: 10.1053/j.semtcvs.2016.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Niv Ad
- Department of Cardiovascular and Thoracic Surgery, Fairfax Hospital, Falls Church, Virginia.
| |
Collapse
|
43
|
Baroreflex Activation Therapy in Heart Failure With Reduced Ejection Fraction: Available Data and Future Perspective. Curr Heart Fail Rep 2016; 13:71-6. [PMID: 26879389 DOI: 10.1007/s11897-016-0286-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Progression of heart failure with reduced ejection fraction (HFrEF) is promoted by sympathovagal imbalance. Baroreflex activation therapy, i.e., electrical stimulation of baroreceptors at the carotid sinus, can restore sympathovagal balance. Large animal studies of baroreflex activation therapy revealed improvements in cardiac function, susceptibility to ventricular arrhythmias, and a survival benefit as compared to untreated controls. Recently, the first randomized and controlled trial of optimal medical and device therapy alone or plus baroreflex activation therapy in patients suffering from HFrEF was published. It demonstrated a reasonable safety profile in this severely ill patient population. Moreover, the study found significant improvements in New York Heart Association class, quality of life, 6-min walk distance, and NT-proBNP levels. This review provides an overview on baroreflex activation therapy for the treatment of HFrEF-from the concept and preclinical findings to most recent clinical data and upcoming trials.
Collapse
|
44
|
Pellegrino PR, Schiller AM, Haack KKV, Zucker IH. Central Angiotensin-II Increases Blood Pressure and Sympathetic Outflow via Rho Kinase Activation in Conscious Rabbits. Hypertension 2016; 68:1271-1280. [PMID: 27672026 DOI: 10.1161/hypertensionaha.116.07792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
Elevated sympathetic tone and activation of the renin-angiotensin system are pathophysiologic hallmarks of hypertension, and the interactions between these systems are particularly deleterious. The importance of Rho kinase as a mediator of the effects of angiotensin-II (AngII) in the periphery is clear, but the role of Rho kinase in sympathoexcitation caused by central AngII is not well established. We hypothesized that AngII mediates its effects in the brain by the activation of the RhoA/Rho kinase pathway. Chronically instrumented, conscious rabbits received the following intracerebroventricular infusion treatments for 2 weeks via osmotic minipump: AngII, Rho kinase inhibitor Fasudil, AngII plus Fasudil, or a vehicle control. AngII increased mean arterial pressure over the course of the infusion, and this effect was prevented by the coadministration of Fasudil. AngII increased cardiac and vascular sympathetic outflow as quantified by the heart rate response to metoprolol and the depressor effect of hexamethonium; coadministration of Fasudil abolished both of these effects. AngII increased baseline renal sympathetic nerve activity in conscious animals and impaired baroreflex control of sympathetic nerve activity; again Fasudil coinfusion prevented these effects. Each of these end points showed a statistically significant interaction between AngII and Fasudil. Quantitative immunofluorescence of brain slices confirmed that Rho kinase activity was increased by AngII and decreased by Fasudil. Taken together, these data indicate that hypertension, elevated sympathetic outflow, and baroreflex dysfunction caused by central AngII are mediated by Rho kinase activation and suggest that Rho kinase inhibition may be an important therapeutic target in sympathoexcitatory cardiovascular diseases.
Collapse
Affiliation(s)
- Peter R Pellegrino
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.)
| | - Alicia M Schiller
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.)
| | - Karla K V Haack
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.)
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (P.R.P., A.M.S., I.H.Z.); U.S. Army Institute of Surgical Research, Fort Sam Houston, TX (A.M.S.); and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (K.K.V.H.).
| |
Collapse
|
45
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
46
|
Grassi G, Brambilla G, Pizzalla DP, Seravalle G. Baroreflex Activation Therapy in Congestive Heart Failure: Novel Findings and Future Insights. Curr Hypertens Rep 2016; 18:60. [DOI: 10.1007/s11906-016-0667-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
48
|
Kishi T. Deep and future insights into neuromodulation therapies for heart failure. J Cardiol 2016; 68:368-372. [PMID: 27293020 DOI: 10.1016/j.jjcc.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
Major pathophysiology of heart failure is an autonomic nervous system dysfunction as a result of excess sympathoexcitation and/or withdrawal of vagal nerve activity. Although we already have various pharmacological and non-pharmacological therapies for heart failure, survival of heart failure patients remains around 50%. To achieve further reductions in morbidity and mortality of heart failure, neuromodulations with devices, such as baroreflex activating therapy, vagal nerve stimulation, renal sympathetic denervation, spinal cord stimulation, and left cardiac sympathetic denervation, have been expected. Although all of these neuromodulations have benefits on heart failure, efficacy, and safety in preclinical and small-sized clinical studies, the benefits on heart failure have been insufficient and controversial compared to our expectations in large-sized randomized trials. However, we should develop and apply these novel therapies for the patients with heart failure in the near future.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| |
Collapse
|
49
|
Smith S, Rossignol P, Willis S, Zannad F, Mentz R, Pocock S, Bisognano J, Nadim Y, Geller N, Ruble S, Linde C. Neural modulation for hypertension and heart failure. Int J Cardiol 2016; 214:320-30. [PMID: 27085120 DOI: 10.1016/j.ijcard.2016.03.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 01/08/2023]
Abstract
Hypertension (HTN) and heart failure (HF) have a significant global impact on health, and lead to increased morbidity and mortality. Despite recent advances in pharmacologic and device therapy for these conditions, there is a need for additional treatment modalities. Patients with sub-optimally treated HTN have increased risk for stroke, renal failure and heart failure. The outcome of HF patients remains poor despite modern pharmacological therapy and with established device therapies such as CRT and ICDs. Therefore, the potential role of neuromodulation via renal denervation, baro-reflex modulation and vagal stimulation for the treatment of resistant HTN and HF is being explored. In this manuscript, we review current evidence for neuromodulation in relation to established drug and device therapies and how these therapies may be synergistic in achieving therapy goals in patients with treatment resistant HTN and heart failure. We describe lessons learned from recent neuromodulation trials and outline strategies to improve the potential for success in future trials. This review is based on discussions between scientists, clinical trialists, and regulatory representatives at the 11th annual CardioVascular Clinical Trialist Forum in Washington, DC on December 5-7, 2014.
Collapse
Affiliation(s)
- S Smith
- The Ohio State University Wexner Medical Center, Department of Internal Medicine and Division of Cardiology, Columbus, OH, USA.
| | - P Rossignol
- Inserm, CIC 1433, Centre Hospitalier Universitaire, Universite´ de Lorraine, F-CRIN INI-CRCT, Nancy, France
| | - S Willis
- The Ohio State University Wexner Medical Center, Department of Internal Medicine and Division of Cardiology, Columbus, OH, USA
| | - F Zannad
- Inserm, CIC 1433, Centre Hospitalier Universitaire, Universite´ de Lorraine, F-CRIN INI-CRCT, Nancy, France
| | - R Mentz
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - S Pocock
- Medical Statistics Unit LSHTM, London, UK
| | - J Bisognano
- University of Rochester Medical Center, Department of Medicine, Cardiology, Rochester, NY, USA
| | - Y Nadim
- CVRx, Inc, Minneapolis, MN, USA
| | - N Geller
- Office of Biostatistics Research, Division of Cardiovascular Sciences, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - S Ruble
- Boston Scientific CRV, St. Paul, MN, USA
| | - C Linde
- Institution of Internal Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
50
|
Pinto TOCT, Lataro RM, Castania JA, Durand MT, Silva CAA, Patel KP, Fazan R, Salgado HC. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure. Am J Physiol Regul Integr Comp Physiol 2016; 310:R612-8. [DOI: 10.1152/ajpregu.00392.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022]
Abstract
Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12–13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control ( n = 12) and CHF ( n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.
Collapse
Affiliation(s)
- Tomás O. C. Teixeira Pinto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata M. Lataro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaci A. Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina T. Durand
- Department of Medicine, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; and
| | - Carlos A. A. Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio C. Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|