1
|
Zappa M, Golino M, Verdecchia P, Angeli F. Genetics of Hypertension: From Monogenic Analysis to GETomics. J Cardiovasc Dev Dis 2024; 11:154. [PMID: 38786976 PMCID: PMC11121881 DOI: 10.3390/jcdd11050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Arterial hypertension is the most frequent cardiovascular risk factor all over the world, and it is one of the leading drivers of the risk of cardiovascular events and death. It is a complex trait influenced by heritable and environmental factors. To date, the World Health Organization estimates that 1.28 billion adults aged 30-79 years worldwide have arterial hypertension (defined by European guidelines as office systolic blood pressure ≥ 140 mmHg or office diastolic blood pressure ≥ 90 mmHg), and 7.1 million die from this disease. The molecular genetic basis of primary arterial hypertension is the subject of intense research and has recently yielded remarkable progress. In this review, we will discuss the genetics of arterial hypertension. Recent studies have identified over 900 independent loci associated with blood pressure regulation across the genome. Comprehending these mechanisms not only could shed light on the pathogenesis of the disease but also hold the potential for assessing the risk of developing arterial hypertension in the future. In addition, these findings may pave the way for novel drug development and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Martina Zappa
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Michele Golino
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23223, USA
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS, 06100 Perugia, Italy
- Division of Cardiology, Hospital S. Maria della Misericordia, 06100 Perugia, Italy
| | - Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS, 21049 Tradate, Italy
| |
Collapse
|
2
|
Mani A. Update in genetic and epigenetic causes of hypertension. Cell Mol Life Sci 2024; 81:201. [PMID: 38691164 PMCID: PMC11062952 DOI: 10.1007/s00018-024-05220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Hypertension is a heritable disease that affects one-fourth of the population and accounts for about 50% of cardiovascular deaths. The genetic basis of hypertension is multifaceted, involving both monogenic and most commonly complex polygenic forms. With the advent of the human genome project, genome-wide association studies (GWAS) have identified a plethora of loci linked to hypertension by examining common genetic variations. It's notable, however, that the majority of these genetic variants do not affect the protein-coding sequences, posing a considerable obstacle in pinpointing the actual genes responsible for hypertension. Despite these challenges, precise mapping of GWAS-identified loci is emerging as a promising strategy to reveal novel genes and potential targets for the pharmacological management of blood pressure. This review provides insight into the monogenic and polygenic causes of hypertension. Special attention is given to PRDM6, among the earliest functionally characterized GWAS-identified genes. Moreover, this review delves into the roles of genes contributing to renal and vascular forms of hypertension, offering insights into their genetic and epigenetic mechanisms of action.
Collapse
Affiliation(s)
- Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, Yale Cardiovascular Research Center, 300 George Street, New Haven, CT, 06511, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Charoensri S, Auchus RJ. Therapeutic management of congenital forms of endocrine hypertension. Eur J Endocrinol 2023; 189:R11-R22. [PMID: 37847213 DOI: 10.1093/ejendo/lvad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Congenital forms of endocrine hypertension are rare and potentially life-threatening disorders, primarily caused by genetic defects affecting adrenal steroid synthesis and activation pathways. These conditions exhibit diverse clinical manifestations, which can be distinguished by their unique molecular mechanisms and steroid profiles. Timely diagnosis and customized management approach are crucial to mitigate unfavorable outcomes associated with uncontrolled hypertension and other related conditions. Treatment options for these disorders depend on the distinct underlying pathophysiology, which involves specific pharmacological therapies or surgical adrenalectomy in some instances. This review article summarizes the current state of knowledge on the therapeutic management of congenital forms of endocrine hypertension, focusing on familial hyperaldosteronism (FH), congenital adrenal hyperplasia, apparent mineralocorticoid excess, and Liddle syndrome. We provide an overview of the genetic and molecular pathogenesis underlying each disorder, describe the clinical features, and discuss the various therapeutic approaches available and their risk of adverse effects, aiming to improve outcomes in patients with these rare and complex conditions.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- Endocrinology & Metabolism Section, Medicine Service, LTC Charles S. Kettles VA Medical Center, Ann Arbor, MI 48104, United States
| |
Collapse
|
4
|
Habeeb E, Aldosari S, Saghir SA, Cheema M, Momenah T, Husain K, Omidi Y, Rizvi SA, Akram M, Ansari RA. Role of environmental toxicants in the development of hypertensive and cardiovascular diseases. Toxicol Rep 2022; 9:521-533. [PMID: 35371924 PMCID: PMC8971584 DOI: 10.1016/j.toxrep.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of hypertension with diabetes mellitus (DM) as a co-morbid condition is on the rise worldwide. In 2000, an estimated 972 million adults had hypertension, which is predicted to grow to 1.56 billion by 2025. Hypertension often leads to diabetes mellitus that strongly puts the patients at an increased risk of cardiovascular, kidney, and/or atherosclerotic diseases. Hypertension has been identified as a major risk factor for the development of diabetes; patients with hypertension are at two-to-three-fold higher risk of developing diabetes than patients with normal blood pressure (BP). Causes for the increase in hypertension and diabetes are not well understood, environmental factors (e.g., exposure to environmental toxicants like heavy metals, organic solvents, pesticides, alcohol, and urban lifestyle) have been postulated as one of the reasons contributing to hypertension and cardiovascular diseases (CVD). The mechanism of action(s) of these toxicants in developing hypertension and CVDs is not well defined. Research studies have linked hypertension with the chronic consumption of alcohol and exposure to metals like lead, mercury, and arsenic have also been linked to hypertension and CVD. Workers chronically exposed to styrene have a higher incidence of CVD. Recent studies have demonstrated that exposure to particulate matter (PM) in diesel exhaust and urban air contributes to increased CVD and mortality. In this review, we have imparted the role of environmental toxicants such as heavy metals, organic pollutants, PM, alcohol, and some drugs in hypertension and CVD along with possible mechanisms and limitations in extrapolating animal data to humans.
Collapse
Affiliation(s)
- Ehsan Habeeb
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Saad Aldosari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Shakil A. Saghir
- The Scotts Company LLC, Marysville, OH 43041, USA
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mariam Cheema
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Tahani Momenah
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Kazim Husain
- Department of Gastrointestinal Oncology (FOB-2), Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Syed A.A. Rizvi
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, VA 23668, USA
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| |
Collapse
|
5
|
Pearce D, Manis AD, Nesterov V, Korbmacher C. Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch 2022; 474:869-884. [PMID: 35895103 PMCID: PMC9338908 DOI: 10.1007/s00424-022-02732-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Collapse
Affiliation(s)
- David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Anna D. Manis
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| |
Collapse
|
6
|
Jones E, Rayner B. The importance of the epithelial sodium channel in determining salt sensitivity in people of African origin. Pediatr Nephrol 2021; 36:237-243. [PMID: 31897716 DOI: 10.1007/s00467-019-04427-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
Hypertension is highly prevalent in Black Africans and has been found to be associated with worse blood pressure (BP) control and more cardiovascular disease. Black Africans are more salt sensitive with low renin and aldosterone levels. This can be explained in part by variants in the epithelial sodium channel (ENaC) causing an increase in channel activity resulting in sodium and water retention. These variants in the ENaC are increased in the Black African populations presumably due to selective pressure for sodium retention in traditionally low-salt diets. Furthermore, increased endothelial sodium channel activity contributes to the risk of vascular stiffness, which may also result in more difficult to control hypertension. Patients with increased activity of the ENaC are more likely to respond to amiloride (a selective sodium channel antagonist), which has implications for the management of severe and resistant hypertension in Black Africans. A large-scale controlled trial on the use of amiloride compared to usual care is warranted in Blacks with severe or resistant hypertension.
Collapse
Affiliation(s)
- Erika Jones
- Division of Nephrology and Hypertension, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- Division of Nephrology and Hypertension, University of Cape Town, Cape Town, South Africa. .,E13 Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
7
|
S Machado IB, Tofanelli MR, Saldanha da Silva AA, Simões E Silva AC. Factors Associated with Primary Hypertension in Pediatric Patients: An Up-to-Date. Curr Pediatr Rev 2021; 17:15-37. [PMID: 33430749 DOI: 10.2174/1573396317999210111200222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arterial hypertension in children is considered a common alteration nowadays, mainly because obesity is a growing worldwide problem closely related to increased blood pressure. Childhood hypertension can be classified as primary or secondary, depending on the etiology. Primary or essential hypertension still has its pathophysiology not fully elucidated, and there is no consensus in the literature on most underlying mechanisms. In this review, genetic and environmental factors, including sodium and potassium intake, socioeconomic status, ethnicity, family structure, obesity, sedentary lifestyle, prematurity and low birth weight, prenatal and postnatal exposures are highlighted. OBJECTIVE The present study aimed to perform an update on primary hypertension in childhood, providing clinicians and researchers an overview of the current state of the literature regarding the influence of genetic and environmental factors. METHODS This integrative review searched for articles on genetic and environmental factors related to primary hypertension in pediatric patients. The databases evaluated were PubMed and Scopus. RESULTS The studies have provided insights regarding many genetic and environmental factors, in addition to their association with the pathophysiology of primary hypertension in childhood. Findings corroborated the idea that primary hypertension is a multifactorial disease. Further studies in the pediatric population are needed to elucidate the underlying mechanisms. CONCLUSION The study of primary hypertension in pediatrics has utmost importance for the adoption of preventive measures and the development of more efficient treatments, therefore reducing childhood morbidity and the incidence of cardiovascular diseases and other health consequences later in life.
Collapse
Affiliation(s)
- Isabella Barreto S Machado
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Matheus Rampinelli Tofanelli
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ariadna A Saldanha da Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Song C, Yue Q, Moseley A, Al-Khalili O, Wynne BM, Ma H, Wang L, Eaton DC. Myristoylated alanine-rich C kinase substrate-like protein-1 regulates epithelial sodium channel activity in renal distal convoluted tubule cells. Am J Physiol Cell Physiol 2020; 319:C589-C604. [PMID: 32639874 DOI: 10.1152/ajpcell.00218.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial sodium channel (ENaC) regulates blood pressure by fine-tuning distal nephron sodium reabsorption. Our previous work has shown that ENaC gating is regulated by anionic phospholipid phosphates, including phosphatidylinositol 4,5-bisphosphate (PIP2). The PIP2-dependent regulation of ENaC is mediated by the myristoylated alanine-rich protein kinase C substrate-like protein-1 (MLP-1). MLP-1 binds to and is a reversible source of PIP2 at the plasma membrane. We examined MLP-1 regulation of ENaC in distal convoluted tubule clonal cell line DCT-15 cells. Wild-type MLP-1 runs at an apparent molecular mass of 52 kDa despite having a predicted molecular mass of 21 kDa. Native MLP-1 consists of several distinct structural elements: an effector domain that is highly positively charged, sequesters PIP2, contains serines that are the target of PKC, and controls MLP-1 association with the membrane; a myristoylation domain that promotes association with the membrane; and a multiple homology 2 domain of previously unknown function. To further examine MLP-1 in DCT-15 cells, we constructed several MLP-1 mutants: WT, a full-length wild-type protein; S3A, three substitutions in the effector domain to prevent phosphorylation; S3D mimicked constitutive phosphorylation by replacing three serines with aspartates; and GA replaced the myristoylation site glycine with alanine, so GA could not be myristoylated. Each mutant was tagged with either NH2-terminal 3XFLAG or COOH-terminal mCherry or V5. Transfection with MLP mutants modified ENaC activity in DCT-15 cells: activity was highest in S3A and lowest in S3D, and the activity after transfection with either construct was significantly different from WT. In Western blots, when transfected with 3XFLAG-tagged MLP-1 mutants, the expression of the full length of MLP-1 at 52 kDa increased in mutant S3A-MLP-1-transfected DCT-15 cells and decreased in S3D-MLP-1-transfected DCT-15 cells. Several lower molecular mass bands were also detected that correspond to potential presumptive calpain cleavage products. Confocal imaging shows that the different mutants localize in different subcellular compartments consistent with their preferred location in the membrane or in the cytosol. Activation of protein kinase C increases phosphorylation of endogenous MLP-1 and reduces ENaC activity. Our results suggest a complicated role for proteolytic processing in MLP-1 regulation of ENaC.
Collapse
Affiliation(s)
- Chang Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia.,Department of Physiology, Emory University, Atlanta, Georgia
| | - Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Brandi M Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, Georgia
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Abstract
Hypertension is still the number one global killer. No matter what causes are, lowering blood pressure can significantly reduce cardiovascular complications, cardiovascular death, and total death. Unfortunately, some hypertensive individuals simply do not know having hypertension. Some knew it but either not being treated or treated but blood pressure does not achieve goal. The reasons for inadequate control of blood pressure are many. One important reason is that we are not very familiar with antihypertensive agents and less attention has been paid to comorbidities, complications as well as the hypertension-modified target organ damage in patients with hypertension. The right antihypertensive drug was not given to the right hypertensive patients at right time. This reviewer studied comprehensively the literature, hopefully that the review will help improve antihypertensive drug selection and antihypertensive therapy.
Collapse
Affiliation(s)
- Rutai Hui
- Chinese Academy of Medical Sciences FUWAI Hospital Hypertension Division, 167 Beilishilu West City District, 100037, Beijing People's Republic of China, China.
| |
Collapse
|
10
|
Gasimova U, Elhamamsy S. Medical therapy refractory salt-sensitive hypertension: Liddle’s syndrome. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2019. [DOI: 10.1016/j.jecr.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Raina R, Krishnappa V, Das A, Amin H, Radhakrishnan Y, Nair NR, Kusumi K. Overview of Monogenic or Mendelian Forms of Hypertension. Front Pediatr 2019; 7:263. [PMID: 31312622 PMCID: PMC6613461 DOI: 10.3389/fped.2019.00263] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
Monogenic or Mendelian forms of hypertension are described as a group of conditions characterized by insults to the normal regulation of blood pressure by the kidney and adrenal gland. These alterations stem from single mutations that lead to maladaptive overabsorption of electrolytes with fluid shift into the vasculature, and consequent hypertension. Knowledge of these various conditions is essential in diagnosing pediatric or early-onset adult hypertension as they directly affect treatment strategies. Precise diagnosis with specific treatment regimens aimed at the underlying physiologic derangement can restore normotension and prevent the severe sequelae of chronic hypertension.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General, Akron, OH, United States.,Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, OH, United States.,Department of Pediatric Nephrology, Akron Children's Hospital, Akron, OH, United States
| | - Vinod Krishnappa
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, OH, United States.,Department of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Abhijit Das
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Harshesh Amin
- Department of Internal Medicine, Carolinas Health Care System Blue Ridge, Morganton, NC, United States
| | | | - Nikhil R Nair
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Kirsten Kusumi
- Department of Pediatric Nephrology, Akron Children's Hospital, Akron, OH, United States
| |
Collapse
|
12
|
Pathophysiological Links Between Diabetes and Blood Pressure. Can J Cardiol 2018; 34:585-594. [DOI: 10.1016/j.cjca.2018.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
|
13
|
Elias SO, Sofola OA, Jaja SI. Epithelial sodium channel blockade and new β-ENaC polymorphisms among normotensive and hypertensive adult Nigerians. Clin Exp Hypertens 2018; 41:144-151. [PMID: 29580127 DOI: 10.1080/10641963.2018.1451538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We sought to determine the effect of amiloride on blood pressure (BP) and the presence of polymorphisms of the β-subunit of the epithelial sodium channel (ENaC) among normotensive (NT) and hypertensive (HT) Nigerians. Healthy volunteers-47 NT and 53 age-matched HT were recruited after giving informed consent. Subjects were salt-loaded with 200 mmol of NaCl daily for 5 days. Following a week washout period, salt-loading was repeated in addition to the administration of 5 mg amiloride daily for five days. Blood pressure, plasma and urine electrolytes were measured at baseline, after salt-loading and after salt-loading plus amiloride. PCR amplicons were sequenced for β-ENaC polymorphisms. Salt-loading led to a significant increase (p < 0.05) in SBP among NT and HT and in DBP (p < 0.001) only among HT. Amiloride reduced SBP and DBP to below baseline levels in NT (p < 0.05) and HT (p < 0.001) subjects. Five of the subjects had the β-T594M polymorphism, HT 3/53; NT 2/47 (p = 0.75). Four previously unreported β-ENaC mutations were recorded: E632V and E636V, respectively, among two HT subjects, D638Y in another HT and L628Q in one NT subject. We showed the presence of β-ENaC polymorphisms among our populace and the possible usefulness of amiloride as a single antihypertensive among Nigerians.
Collapse
Affiliation(s)
- Simiat O Elias
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| | - Olusoga A Sofola
- Department of Physiology, College of Medicine University of Lagos, Lagos, Nigeria
| | - Smith I Jaja
- Department of Physiology, College of Medicine University of Lagos, Lagos, Nigeria
| |
Collapse
|
14
|
Chen L, Higgins PJ, Zhang W. Development and Diseases of the Collecting Duct System. Results Probl Cell Differ 2017; 60:165-203. [PMID: 28409346 DOI: 10.1007/978-3-319-51436-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The collecting duct of the mammalian kidney is important for the regulation of extracellular volume, osmolarity, and pH. There are two major structurally and functionally distinct cell types: principal cells and intercalated cells. The former regulates Na+ and water homeostasis, while the latter participates in acid-base homeostasis. In vivo lineage tracing using Cre recombinase or its derivatives such as CreGFP and CreERT2 is a powerful new technique to identify stem/progenitor cells in their native environment and to decipher the origins of the tissue that they give rise to. Recent studies using this technique in mice have revealed multiple renal progenitor cell populations that differentiate into various nephron segments and collecting duct. In particular, emerging evidence suggests that like principal cells, most of intercalated cells originate from the progenitor cells expressing water channel Aquaporin 2. Mutations or malfunctions of the channels, pumps, and transporters expressed in the collecting duct system cause various human diseases. For example, gain-of-function mutations in ENaC cause Liddle's syndrome, while loss-of-function mutations in ENaC lead to Pseudohypoaldosteronism type 1. Mutations in either AE1 or V-ATPase B1 result in distal renal tubular acidosis. Patients with disrupted AQP2 or AVPR2 develop nephrogenic diabetes insipidus. A better understanding of the function and development of the collecting duct system may facilitate the discovery of new therapeutic strategies for treating kidney disease.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, NHLBI, Bethesda, MD, 20892-1603, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
15
|
Samson R, Qi A, Jaiswal A, Le Jemtel TH, Oparil S. Obesity-Associated Hypertension: the Upcoming Phenotype in African-American Women. Curr Hypertens Rep 2017; 19:41. [DOI: 10.1007/s11906-017-0738-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
|
17
|
|
18
|
Abstract
The heritability of hypertension (HTN) is widely recognized and as a result, extensive studies ranging from genetic linkage analyses to genome-wide association studies are actively ongoing to elucidate the etiology of both monogenic and polygenic forms of HTN. Due to the complex nature of essential HTN, however, single genes affecting blood pressure (BP) variability remain difficult to isolate and identify and have rendered the development of single-gene targeted therapies challenging. The roles of other causative factors in modulating BP, such as gene-environment interactions and epigenetic factors, are increasingly being brought to the forefront. In this review, we discuss the various monogenic HTN syndromes and corresponding pathophysiologic mechanisms, the different methodologies employed in genetic studies of essential HTN, the mechanisms for epigenetic modulation of essential HTN, pharmacogenomics and HTN, and finally, recent advances in genetic studies of essential HTN in the pediatric population.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| | - Charu Gupta
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
19
|
Ilatovskaya DV, Palygin O, Staruschenko A. Functional and therapeutic importance of purinergic signaling in polycystic kidney disease. Am J Physiol Renal Physiol 2016; 311:F1135-F1139. [PMID: 27654892 DOI: 10.1152/ajprenal.00406.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney diseases (PKD) are a group of inherited nephropathies marked with the formation of fluid-filled cysts along the nephron. This renal disorder affects millions of people worldwide, but current treatment strategies are unfortunately limited to supportive therapy, dietary restrictions, and, eventually, renal transplantation. Recent advances in PKD management are aimed at targeting exaggerated cell proliferation and dedifferentiation to interfere with cyst growth. However, not nearly enough is known about the ion transport properties of the cystic cells, or specific signaling pathways modulating channels and transporters in this condition. There is growing evidence that abnormally elevated concentrations of adenosine triphosphate (ATP) in PKD may contribute to cyst enlargement; change in the profile of purinergic receptors may also result in promotion of cystogenesis. The current mini-review is focused on the role of ATP and associated signaling affecting ion transport properties of the renal cystic epithelia.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
20
|
Iatrino R, Manunta P, Zagato L. Salt Sensitivity: Challenging and Controversial Phenotype of Primary Hypertension. Curr Hypertens Rep 2016; 18:70. [DOI: 10.1007/s11906-016-0677-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Nesterov V, Krueger B, Bertog M, Dahlmann A, Palmisano R, Korbmacher C. In Liddle Syndrome, Epithelial Sodium Channel Is Hyperactive Mainly in the Early Part of the Aldosterone-Sensitive Distal Nephron. Hypertension 2016; 67:1256-62. [DOI: 10.1161/hypertensionaha.115.07061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Viatcheslav Nesterov
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bettina Krueger
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marko Bertog
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anke Dahlmann
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ralf Palmisano
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Tu W, Decker BS, He Z, Erdel BL, Eckert GJ, Hellman RN, Murray MD, Oates JA, Pratt JH. Triamterene Enhances the Blood Pressure Lowering Effect of Hydrochlorothiazide in Patients with Hypertension. J Gen Intern Med 2016; 31:30-6. [PMID: 26194642 PMCID: PMC4700022 DOI: 10.1007/s11606-015-3469-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Triamterene, because of its potassium-sparing properties, is frequently used in combination with hydrochlorothiazide (HCTZ) to treat patients with hypertension. By inhibiting the epithelial sodium channel (ENaC) in the cortical collecting duct, triamterene reduces potassium secretion, thus reducing the risk of hypokalemia. Whether triamterene has an independent effect on blood pressure (BP) has not been well studied. OBJECTIVE To determine if triamterene provides an effect to further lower BP in patients treated with HCTZ. DESIGN We conducted an observational study using electronic medical record data from the Indiana Network for Patient Care. Participants were 17,291 patients with the diagnosis of hypertension between 2004 and 2012. MAIN MEASURES BP was the primary outcome. We compared the BP between patients who were taking HCTZ, with and without triamterene, either alone or in combination with other antihypertensive medications, by using a propensity score analysis. For each medication combination, we estimated the propensity score (i.e., probability) of a patient receiving triamterene using a logistic regression model. Patients with similar propensity scores were stratified into subclasses and BP was compared between those taking triamterene or not within each subclass; the effect of triamterene was then assessed by combining BP differences estimated from all subclasses. KEY RESULTS The mean systolic BP in the triamterene + HCTZ group was 3.8 mmHg lower than in the HCTZ only group (p < 0.0001); systolic BP was similarly lower for patients taking triamterene with other medication combinations. Systolic BP reduction was consistently observed for different medication combinations. The range of systolic BP reduction was between 1 and 4 mm Hg, depending on the concurrently used medications. CONCLUSIONS In the present study, triamterene was found to enhance the effect of HCTZ to lower BP. In addition to its potassium-sparing action, triamterene's ability to lower BP should also be considered.
Collapse
Affiliation(s)
- Wanzhu Tu
- Department of Biostatistics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN, 46202, USA. .,Indiana University Center for Aging Research, Indianapolis, IN, 46202, USA.
| | - Brian S Decker
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Zangdong He
- Department of Biostatistics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN, 46202, USA
| | - Blake L Erdel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George J Eckert
- Department of Biostatistics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN, 46202, USA
| | - Richard N Hellman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael D Murray
- Indiana University Center for Aging Research, Indianapolis, IN, 46202, USA.,Purdue University College of Pharmacy, West Lafayette, IN, 47907, USA
| | - John A Oates
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 46202, USA
| | - J Howard Pratt
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW NEDD4-2 is an ubiquitin-protein ligase that was originally identified as an interactor of the epithelial Na+ channel (ENaC); this interaction is defective in Liddle's syndrome, causing elevated ENaC activity and salt-sensitive hypertension. In this review we aim to highlight progress achieved in recent years demonstrating that NEDD4-2 is involved in the control of Na+ transporters that are different from ENaC, but which also play a role in salt-sensitive hypertension. RECENT FINDINGS It has been shown that NEDD4-2 interacts with ubiquitylates and negatively regulates the thiazide-sensitive NCC (Na+,Cl- -cotransporter), both in vitro and in vivo in inducible, nephron-specific Nedd4-2 knockout mice. Moreover, evidence has been provided that NEDD4-2 is also involved in the regulation of human NHE3 (Na+,H+-exchanger 3) and NKCC2 (Na+,K+,2Cl- -cotransporter 2). SUMMARY The emerging role of NEDD4-2 in the regulation of different Na+ transporters along the nephron and the identification of human polymorphisms in the NEDD4-2 gene (Nedd4L) related to salt-sensitive hypertension makes this ubiquitin-protein ligase an interesting target for the development of antihypertensive drugs.
Collapse
|
24
|
Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA. Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol Renal Physiol 2015; 309:F280-99. [DOI: 10.1152/ajprenal.00093.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic driving forces for water reabsorption. The antinatriuretic effects of AVP are mediated by the regulation of sodium transport throughout the distal nephron, from the thick ascending limb through to the collecting duct, which in turn partially facilitates osmotic movement of water. In this review, we will discuss the regulatory role of AVP in sodium transport and summarize the effects of AVP on various molecular targets, including the sodium-potassium-chloride cotransporter NKCC2, the thiazide-sensitive sodium-chloride cotransporter NCC, and the epithelial sodium channel ENaC.
Collapse
Affiliation(s)
- M. L. A. Kortenoeven
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| | - N. B. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; and
| | - L. L. Rosenbaek
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R. A. Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Zhang W. Epigenetics of epithelial Na + channel-dependent sodium uptake and blood pressure regulation. World J Nephrol 2015; 4:363-366. [PMID: 26167459 PMCID: PMC4491926 DOI: 10.5527/wjn.v4.i3.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/08/2014] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
The epithelial Na+ channel (ENaC) consists of α, β, γ subunits. Its expression and function are regulated by aldosterone at multiple levels including transcription. ENaC plays a key role in Na+ homeostasis and blood pressure. Mutations in ENaC subunit genes result in hypertension or hypotension, depending on the nature of the mutations. Transcription of αENaC is considered as the rate-limiting step in the formation of functional ENaC. As an aldosterone target gene, αENaC is activated upon aldosterone- mineralocorticoid receptor binding to the cis-elements in the αENaC promoter, which is packed into chromatin. However, how aldosterone alters chromatin structure to induce changes in transcription is poorly understood. Studies by others and us suggest that Dot1a-Af9 complex represses αENaC by directly binding and regulating targeted histone H3 K79 hypermethylation at the specific subregions of αENaC promoter. Aldosterone decreases Dot1a-Af9 formation by impairing expression of Dot1a and Af9 and by inducing Sgk1, which, in turn, phosphorylates Af9 at S435 to weaken Dot1a-Af9 interaction. MR attenuates Dot1a-Af9 effect by competing with Dot1a for binding Af9. Af17 relieves repression by interfering with Dot1a-Af9 interaction and promoting Dot1a nuclear export. Af17-/- mice exhibit defects in ENaC expression, renal Na+ retention, and blood pressure control. This review gives a brief summary of these novel findings.
Collapse
|
26
|
Wen D, Yuan Y, Warner PC, Wang B, Cornelius RJ, Wang-France J, Li H, Boettger T, Sansom SC. Increased Epithelial Sodium Channel Activity Contributes to Hypertension Caused by Na+-HCO3- Cotransporter Electrogenic 2 Deficiency. Hypertension 2015; 66:68-74. [PMID: 25941340 DOI: 10.1161/hypertensionaha.115.05394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
The gene SLC4A5 encodes the Na(+)-HCO3 (-) cotransporter electrogenic 2, which is located in the distal nephron. Genetically deleting Na(+)-HCO3 (-) cotransporter electrogenic 2 (knockout) causes Na(+)-retention and hypertension, a phenotype that is diminished with alkali loading. We performed experiments with acid-loaded mice and determined whether overactive epithelial Na(+) channels (ENaC) or the Na(+)-Cl(-) cotransporter causes the Na(+) retention and hypertension in knockout. In untreated mice, the mean arterial pressure was higher in knockout, compared with wild-type (WT); however, treatment with amiloride, a blocker of ENaC, abolished this difference. In contrast, hydrochlorothiazide, an inhibitor of Na(+)-Cl(-) cotransporter, decreased mean arterial pressure in WT, but not knockout. Western blots showed that quantity of plasmalemmal full-length ENaC-α was significantly higher in knockout than in WT. Amiloride treatment caused a 2-fold greater increase in Na(+) excretion in knockout, compared with WT. In knockout, but not WT, amiloride treatment decreased plasma [Na(+)] and urinary K(+) excretion, but increased hematocrit and plasma [K(+)] significantly. Micropuncture with microelectrodes showed that the [K(+)] was significantly higher and the transepithelial potential (Vte) was significantly lower in the late distal tubule of the knockout compared with WT. The reduced Vte in knockout was amiloride sensitive and therefore revealed an upregulation of electrogenic ENaC-mediated Na(+) reabsorption in this segment. These results show that, in the absence of Na(+)-HCO3 (-) cotransporter electrogenic 2 in the late distal tubule, acid-loaded mice exhibit disinhibition of ENaC-mediated Na(+) reabsorption, which results in Na(+) retention, K(+) wasting, and hypertension.
Collapse
Affiliation(s)
- Donghai Wen
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Yang Yuan
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Paige C Warner
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Bangchen Wang
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Ryan J Cornelius
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Jun Wang-France
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Huaqing Li
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Thomas Boettger
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.)
| | - Steven C Sansom
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (D.W., Y.Y., P.C.W., B.W., R.J.C., J.W.-F., H.L., S.C.S.); and Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.).
| |
Collapse
|
27
|
Magill SB. Pathophysiology, diagnosis, and treatment of mineralocorticoid disorders. Compr Physiol 2015; 4:1083-119. [PMID: 24944031 DOI: 10.1002/cphy.c130042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a major regulator of blood pressure control, fluid, and electrolyte balance in humans. Chronic activation of mineralocorticoid production leads to dysregulation of the cardiovascular system and to hypertension. The key mineralocorticoid is aldosterone. Hyperaldosteronism causes sodium and fluid retention in the kidney. Combined with the actions of angiotensin II, chronic elevation in aldosterone leads to detrimental effects in the vasculature, heart, and brain. The adverse effects of excess aldosterone are heavily dependent on increased dietary salt intake as has been demonstrated in animal models and in humans. Hypertension develops due to complex genetic influences combined with environmental factors. In the last two decades, primary aldosteronism has been found to occur in 5% to 13% of subjects with hypertension. In addition, patients with hyperaldosteronism have more end organ manifestations such as left ventricular hypertrophy and have significant cardiovascular complications including higher rates of heart failure and atrial fibrillation compared to similarly matched patients with essential hypertension. The pathophysiology, diagnosis, and treatment of primary aldosteronism will be extensively reviewed. There are many pitfalls in the diagnosis and confirmation of the disorder that will be discussed. Other rare forms of hyper- and hypo-aldosteronism and unusual disorders of hypertension will also be reviewed in this article.
Collapse
Affiliation(s)
- Steven B Magill
- Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Menomonee Falls, Wisconsin
| |
Collapse
|
28
|
Mansley MK, Neuhuber W, Korbmacher C, Bertog M. Norepinephrine stimulates the epithelial Na+ channel in cortical collecting duct cells via α2-adrenoceptors. Am J Physiol Renal Physiol 2014; 308:F450-8. [PMID: 25520009 DOI: 10.1152/ajprenal.00548.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is good evidence for a causal link between excessive sympathetic drive to the kidney and hypertension. We hypothesized that sympathetic regulation of tubular Na(+) absorption may occur in the aldosterone-sensitive distal nephron, where the fine tuning of renal Na(+) excretion takes place. Here, the appropriate regulation of transepithelial Na(+) transport, mediated by the amiloride-sensitive epithelial Na(+) channel (ENaC), is critical for blood pressure control. To explore a possible effect of the sympathetic transmitter norepinephrine on ENaC-mediated Na(+) transport, we performed short-circuit current (Isc) measurements on confluent mCCDcl1 murine cortical collecting duct cells. Norepinephrine caused a complex Isc response with a sustained increase of amiloride-sensitive Isc by ∼44%. This effect was concentration dependent and mediated via basolateral α2-adrenoceptors. In cells pretreated with aldosterone, the stimulatory effect of norepinephrine was reduced. Finally, we demonstrated that noradrenergic nerve fibers are present in close proximity to ENaC-expressing cells in murine kidney slices. We conclude that the sustained stimulatory effect of locally elevated norepinephrine on ENaC-mediated Na(+) absorption may contribute to the hypertensive effect of increased renal sympathetic activity.
Collapse
Affiliation(s)
| | - Winfried Neuhuber
- Lehrstuhl für Anatomie I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie and
| |
Collapse
|
29
|
Gleason CE, Frindt G, Cheng CJ, Ng M, Kidwai A, Rashmi P, Lang F, Baum M, Palmer LG, Pearce D. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J Clin Invest 2014; 125:117-28. [PMID: 25415435 DOI: 10.1172/jci73935] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/23/2014] [Indexed: 12/17/2022] Open
Abstract
The epithelial Na+ channel (ENaC) is essential for Na+ homeostasis, and dysregulation of this channel underlies many forms of hypertension. Recent studies suggest that mTOR regulates phosphorylation and activation of serum/glucocorticoid regulated kinase 1 (SGK1), which is known to inhibit ENaC internalization and degradation; however, it is not clear whether mTOR contributes to the regulation of renal tubule ion transport. Here, we evaluated the effect of selective mTOR inhibitors on kidney tubule Na+ and K+ transport in WT and Sgk1-/- mice, as well as in isolated collecting tubules. We found that 2 structurally distinct competitive inhibitors (PP242 and AZD8055), both of which prevent all mTOR-dependent phosphorylation, including that of SGK1, caused substantial natriuresis, but not kaliuresis, in WT mice, which indicates that mTOR preferentially influences ENaC function. PP242 also substantially inhibited Na+ currents in isolated perfused cortical collecting tubules. Accordingly, patch clamp studies on cortical tubule apical membranes revealed that mTOR inhibition markedly reduces ENaC activity, but does not alter activity of K+ inwardly rectifying channels (ROMK channels). Together, these results demonstrate that mTOR regulates kidney tubule ion handling and suggest that mTOR regulates Na+ homeostasis through SGK1-dependent modulation of ENaC activity.
Collapse
|
30
|
Horita S, Nakamura M, Shirai A, Yamazaki O, Satoh N, Suzuki M, Seki G. Regulatory roles of nitric oxide and angiotensin II on renal tubular transport. World J Nephrol 2014; 3:295-301. [PMID: 25374825 PMCID: PMC4220364 DOI: 10.5527/wjn.v3.i4.295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/05/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Renal tubules regulate blood pressure and humoral homeostasis. Mediators that play a significant role in regulating the transport of solutes and water include angiotensin II (AngII) and nitric oxide (NO). AngIIcan significantly raise blood pressure via effects on the heart, vasculature, and renal tubules. AngII generally stimulates sodium reabsorption by triggering sodium and fluid retention in almost all segments of renal tubules. Stimulation of renal proximal tubule (PT) transport is thought to be essential for AngII-mediated hypertension. However, AngII has a biphasic effect on in vitro PT transport in mice, rats, and rabbits: stimulation at low concentrations and inhibition at high concentrations. On the other hand, NO is generally thought to inhibit renal tubular transport. In PTs, NO seems to be involved in the inhibitory effect of AngII. A recent study reports a surprising finding: AngII has a monophasic stimulatory effect on human PT transport. Detailed analysis of signalling mechanisms indicates that in contrast to other species, the human NO/guanosine 3’,5’-cyclic monophosphate/extracellular signal-regulated kinase pathway seems to mediate this effect of Ang II on PT transport. In this review we will discuss recent progress in understanding the effects of AngII and NO on renal tubular transport.
Collapse
|
31
|
Luft FC. Preparation for hypertension specialists: genomics reveals the pathogenesis of hypertension. ACTA ACUST UNITED AC 2014; 8:607-11. [PMID: 25151324 DOI: 10.1016/j.jash.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Capdevila JH, Pidkovka N, Mei S, Gong Y, Falck JR, Imig JD, Harris RC, Wang W. The Cyp2c44 epoxygenase regulates epithelial sodium channel activity and the blood pressure responses to increased dietary salt. J Biol Chem 2013; 289:4377-86. [PMID: 24368771 DOI: 10.1074/jbc.m113.508416] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertension is a major risk factor for cerebral, cardiovascular, and renal disease, and its prevalence and devastating consequences raises a need for new strategies for its early diagnosis and treatment. We show here that lack of a Cyp2c44 epoxygenase causes dietary salt-sensitive hypertension, a common form of the human disease. Cyp2c44(-/-) mice on normal salt diets are normotensive but become hypertensive when fed high salt. Hypertensive Cyp2c44(-/-) mice show a hyperactive kidney epithelial sodium channel (ENaC) and reductions in ERK1/2 and ENaC subunit phosphorylation. The demonstration that amiloride, an ENaC inhibitor, lowers the blood pressure of hypertensive Cyp2c44(-/-) mice identifies a role for the channel in the hypertensive phenotype of the animals. These studies: (a) identify an antihypertensive role for the kidney Cyp2c44 epoxygenase and for its epoxyeicosatrienoic acid (EET) metabolites in the in vivo control of ENaC activity and the activation of mitogenic kinase pathways; (b) provide evidence for a Cyp2c44 epoxygenase, EET-mediated mechanism of ENaC regulation involving an ERK1/2-catalyzed threonine phosphorylation of the channel γ subunit: and (c) characterize a common scientific platform that could explain the seemingly unrelated biological activities attributed to the epoxygenase metabolites in cell proliferation, angiogenesis, channel activity, and blood pressure control. It is expected that these results will serve as a basis for the development of novel strategies for the early diagnosis and treatment of hypertension and of pathophysiologies associated with dysfunctional mitogenic signaling.
Collapse
Affiliation(s)
- Jorge H Capdevila
- From the Department of Medicine, Vanderbilt University, Nashville Tennessee 37232
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wiemuth D, Lefèvre CMT, Heidtmann H, Gründer S. Bile acids increase the activity of the epithelial Na+ channel. Pflugers Arch 2013; 466:1725-33. [PMID: 24292109 DOI: 10.1007/s00424-013-1403-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/29/2013] [Accepted: 11/07/2013] [Indexed: 01/08/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a key regulator of Na(+) absorption in various epithelia including the distal nephron and the distal colon. ENaC is a constitutively active channel, but its activity is modulated by a number of mechanisms. These include proteolytic activation, ubiquitination and cell surface expression, phosphorylation, intracellular Na(+) concentration, and shear stress. ENaC is related to the bile acid-sensitive ion channel (BASIC), a channel that is expressed in the epithelial cells of bile ducts. BASIC is activated by millimolar concentrations of extracellular bile acids. Bile acids are synthesized by the liver and secreted into the duodenum to aid lipolysis. A large fraction of the secreted bile acids is absorbed by the ileum and recirculated into the liver, but a small fraction passes the colon and is excreted. Bile acids can influence the ion transport processes in the intestinal tract including the colon. In this study, we show that various bile acids present in rat bile potently and reversibly increase the activity of rat ENaC expressed in Xenopus oocytes, suggesting that bile acids are natural modulators of ENaC activity.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
34
|
Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, Mattson DL, Sorokin A, Lombard JH, Cowley AW, Staruschenko A. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol 2013; 24:1053-62. [PMID: 23599382 DOI: 10.1681/asn.2012080839] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various stimuli, including hormones and growth factors, modulate epithelial sodium channels (ENaCs), which fine-tune Na(+) absorption in the kidney. Members of the EGF family are important for maintaining transepithelial Na(+) transport, but whether EGF influences ENaC, perhaps mediating salt-sensitive hypertension, is not well understood. Here, the ENaC inhibitor benzamil attenuated the development of hypertension in Dahl salt-sensitive rats. Feeding these salt-sensitive rats a high-salt diet led to lower levels of EGF in the kidney cortex and enhanced the expression and activity of ENaC compared with feeding a low-salt diet. To directly evaluate the role of EGF in the development of hypertension and its effect on ENaC activity, we infused EGF intravenously while continuously monitoring BP of the salt-sensitive rats. Infusion of EGF decreased ENaC activity, prevented the development of hypertension, and attenuated glomerular and renal tubular damage. Taken together, these findings indicate that cortical EGF levels decrease with a high-salt diet in salt-sensitive rats, promoting ENaC-mediated Na(+) reabsorption in the collecting duct and the development of hypertension.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, Chiga M, Kikuchi E, Nomura N, Mori Y, Matsuo H, Murata T, Nomura S, Asano T, Kawaguchi H, Nonoyama S, Rai T, Sasaki S, Uchida S. Impaired KLHL3-Mediated Ubiquitination of WNK4 Causes Human Hypertension. Cell Rep 2013; 3:858-68. [DOI: 10.1016/j.celrep.2013.02.024] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/25/2013] [Accepted: 02/13/2013] [Indexed: 11/28/2022] Open
|
36
|
Raji I, Mugabo P, Obikeze K. The contributions of muscarinic receptors and changes in plasma aldosterone levels to the anti-hypertensive effect of Tulbaghia violacea. Altern Ther Health Med 2013; 13:13. [PMID: 23311308 PMCID: PMC3631126 DOI: 10.1186/1472-6882-13-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/12/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tulbaghia violacea Harv. (Alliaceae) is used to treat various ailments, including hypertension (HTN) in South Africa. This study aims to evaluate the contributions of muscarinic receptors and changes in plasma aldosterone levels to its anti-hypertensive effect. METHODS In the acute experiments, methanol leaf extracts (MLE) of T. violacea (30-120 mg/kg), muscarine (0.16 -10 μg/kg), and atropine (0.02 - 20.48 mg/kg), and/or the vehicle (dimethylsulfoxide (DMSO) and normal saline (NS)) were respectively and randomly administered intravenously in a group of spontaneously hypertensive (SHR) weighing 300 to 350 g and aged less than 5 months. Subsequently, T. violacea (60 mg/kg) or muscarine (2.5 μg/kg) was infused into eight SHRs, 20 min after atropine (5.12 mg/kg) pre-treatment. In the chronic (21 days) experiments, the SHRs were randomly divided into three groups, and given the vehicle (0.2 ml/day of DMSO and NS), T. violacea (60 mg/kg/day) and captopril (10 mg/kg/day) respectively into the peritoneum, to investigate their effects on blood pressure (BP), heart rate (HR), and plasma aldosterone levels. Systolic BP and HR were measured using tail-cuff plethysmography during the intervention. BP and HR were measured via a pressure transducer connecting the femoral artery and the Powerlab at the end of each intervention in the acute experiment; and on day 22 in the chronic experiment. RESULTS In the acute experiments, T. violacea, muscarine, and atropine significantly (p < 0.05) reduced BP dose-dependently. T. violacea and muscarine produced dose-dependent decreases in HR, while the effect of atropine on HR varied. After atropine pre-treatment, dose-dependent increases in BP and HR were observed with T. violacea; while the BP and HR effects of muscarine were nullified. In the chronic experiments, the T. violacea-treated and captropril-treated groups had signicantly lower levels of aldosterone in plasma when compared to vehicle-treated group. Compared to the vehicle-treated group, significant reduction in BP was only seen in the captopril-treated group; while no difference in HR was observed among the groups. CONCLUSION The results obtained in this study suggest that stimulation of the muscarinic receptors and a reduction in plasma aldosterone levels contribute to the anti-hypertesive effect of T. violacea.
Collapse
|
37
|
Pidkovka N, Rao R, Mei S, Gong Y, Harris RC, Wang WH, Capdevila JH. Epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel activity by extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated phosphorylation. J Biol Chem 2013; 288:5223-31. [PMID: 23283969 DOI: 10.1074/jbc.m112.407981] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epithelial sodium channel (ENaC) participates in the regulation of plasma sodium and volume, and gain of function mutations in the human channel cause salt-sensitive hypertension. Roles for the arachidonic acid epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs), in ENaC activity have been identified; however, their mechanisms of action remain unknown. In polarized M1 cells, 14,15-EET inhibited amiloride-sensitive apical to basolateral sodium transport as effectively as epidermal growth factor (EGF). The EET effects were associated with increased threonine phosphorylation of the ENaC β and γ subunits and abolished by inhibitors of (a) mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal regulated kinases 1 and 2 (MEK/ERK1/2) and (b) EGF receptor signaling. CYP2C44 epoxygenase knockdown blunted the sodium transport effects of EGF, and its 14,15-EET metabolite rescued the knockdown phenotype. The relevance of these findings is indicated by (a) the hypertension that results in mice administered cetuximab, an inhibitor of EGF receptor binding, and (b) immunological data showing an association between the pressure effects of cetuximab and reductions in ENaCγ phosphorylation. These studies (a) identify an ERK1/2-dependent mechanism for ENaC inhibition by 14,15-EET, (b) point to ENaC as a proximal target for EET-activated ERK1/2 mitogenic kinases, (c) characterize a mechanistic commonality between EGF and epoxygenase metabolites as ENaC inhibitors, and (d) suggest a CYP2C epoxygenase-mediated pathway for the regulation of distal sodium transport.
Collapse
Affiliation(s)
- Nataliya Pidkovka
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ilatovskaya DV, Pavlov TS, Levchenko V, Staruschenko A. ROS production as a common mechanism of ENaC regulation by EGF, insulin, and IGF-1. Am J Physiol Cell Physiol 2012; 304:C102-11. [PMID: 23135700 DOI: 10.1152/ajpcell.00231.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a key transporter participating in the fine tuning of Na(+) reabsorption in the nephron. ENaC activity is acutely upregulated by epidermal growth factor (EGF), insulin, and insulin-like growth factor-1 (IGF-1). It was also proposed that reactive oxygen species (ROS) have a stimulatory effect on ENaC. Here we studied whether effects of EGF, insulin, and IGF-1 correlate with ROS production in the mouse cortical collecting duct (mpkCCD(c14)) cells. Western blotting confirmed the expression of the NADPH oxidase complex subunits in these cells. Treatment of mpkCCD(c14) cells with EGF, insulin, or IGF-1 evoked an increase in ROS production as measured by CM-H(2)DCF-DA fluorescence. ROS production caused by a xanthine-xanthine oxidase reaction also resulted in a significant elevation in short-circuit current through the mpkCCD(c14) monolayer. Transepithelial current measurements showed an acute increase of amiloride-sensitive current through the mpkCCD(c14) monolayer in response to EGF, insulin, or IGF-1. Pretreatment with the nonselective NADPH oxidase activity inhibitor apocynin blunted both ROS production and increase in ENaC-mediated current in response to these drugs. To further test whether NADPH oxidase subunits are involved in the effect of EGF, we used a stable M-1 cell line with a knockdown of Rac1, which is one of the key subunits of the NADPH oxidase complex, and measured amiloride-sensitive currents in response to EGF. In contrast to control cells, EGF had no effect in Rac1 knockdown cells. We hypothesize that EGF, insulin, and IGF-1 have a common stimulatory effect on ENaC mediated by ROS production.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Medical College of Wisconsin, Dept. of Physiology, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
39
|
Nesterov V, Dahlmann A, Krueger B, Bertog M, Loffing J, Korbmacher C. Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. Am J Physiol Renal Physiol 2012; 303:F1289-99. [DOI: 10.1152/ajprenal.00247.2012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone is thought to be the main hormone to stimulate the epithelial sodium channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), the connecting tubule (CNT) and the entire collecting duct (CD). There is immunohistochemical evidence for an axial gradient of ENaC expression along the ASDN with highest expression in the DCT2 and CNT. However, most of our knowledge about renal ENaC function stems from studies in the cortical collecting duct (CCD). Here we investigated ENaC function in the transition zone of DCT2/CNT or CNT/CCD microdissected from mice maintained on different sodium diets to vary plasma aldosterone levels. Single-channel recordings demonstrated amiloride-sensitive Na+ channels in DCT2/CNT with biophysical properties typical for ENaC previously described in CNT/CCD. In animals maintained on a standard salt diet, the average ENaC-mediated whole cell current (Δ Iami) was higher in DCT2/CNT than in CNT/CCD. A low salt diet increased Δ Iami in CNT/CCD but had little effect on Δ Iami in DCT2/CNT. To investigate whether aldosterone is necessary for ENaC activity in the DCT2/CNT, we used aldosterone synthase knockout (AS−/−) mice that lack aldosterone. In CNT/CCD of AS−/− mice, Δ Iami was lower than that in wild-type (WT) animals and was not stimulated by a low salt diet. In contrast, in DCT2/CNT of AS−/− mice, Δ Iami was similar to that in DCT2/CNT of WT animals both on a standard and on a low salt diet. We conclude that ENaC function in the DCT2/CNT is largely independent of aldosterone which is in contrast to its known aldosterone sensitivity in CNT/CCD.
Collapse
Affiliation(s)
- Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Anke Dahlmann
- Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; and
| | - Bettina Krueger
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
40
|
Haerteis S, Krappitz M, Diakov A, Krappitz A, Rauh R, Korbmacher C. Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the γ subunit of the human epithelial sodium channel. ACTA ACUST UNITED AC 2012; 140:375-89. [PMID: 22966015 PMCID: PMC3457690 DOI: 10.1085/jgp.201110763] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteolytic activation of the epithelial sodium channel (ENaC) involves cleavage of its γ subunit in a critical region targeted by several proteases. Our aim was to identify cleavage sites in this region that are functionally important for activation of human ENaC by plasmin and chymotrypsin. Sequence alignment revealed a putative plasmin cleavage site in human γENaC (K189) that corresponds to a plasmin cleavage site (K194) in mouse γENaC. We mutated this site to alanine (K189A) and expressed human wild-type (wt) αβγENaC and αβγK189AENaC in Xenopus laevis oocytes. The γK189A mutation reduced but did not abolish activation of ENaC whole cell currents by plasmin. Mutating a putative prostasin site (γRKRK178AAAA) had no effect on the stimulatory response to plasmin. In contrast, a double mutation (γRKRK178AAAA;K189A) prevented the stimulatory effect of plasmin. We conclude that in addition to the preferential plasmin cleavage site K189, the putative prostasin cleavage site RKRK178 may serve as an alternative site for proteolytic channel activation by plasmin. Interestingly, the double mutation delayed but did not abolish ENaC activation by chymotrypsin. The time-dependent appearance of cleavage products at the cell surface nicely correlated with the stimulatory effect of chymotrypsin on ENaC currents in oocytes expressing wt or double mutant ENaC. Delayed proteolytic activation of the double mutant channel with a stepwise recruitment of so-called near-silent channels was confirmed in single-channel recordings from outside-out patches. Mutating two phenylalanines (FF174) in the vicinity of the prostasin cleavage site prevented proteolytic activation by chymotrypsin. This indicates that chymotrypsin preferentially cleaves at FF174. The close proximity of FF174 to the prostasin site may explain why mutating the prostasin site impedes channel activation by chymotrypsin. In conclusion, this study supports the concept that different proteases have distinct preferences for certain cleavage sites in γENaC, which may be relevant for tissue-specific proteolytic ENaC activation.
Collapse
Affiliation(s)
- Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Elias SO, Sofola S, Jaja S. Effect of Epithelial Sodium Channel Blockade in Hypertensive Nigerians. FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.1068.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Soga Sofola
- PhysiologyCollege of MedicineUniversity of LagosIdiarabaLagosNigeria
| | - Smith Jaja
- PhysiologyCollege of MedicineUniversity of LagosIdiarabaLagosNigeria
| |
Collapse
|
42
|
Karpushev AV, Levchenko V, Ilatovskaya DV, Pavlov TS, Staruschenko A. Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. Hypertension 2011; 57:996-1002. [PMID: 21464391 DOI: 10.1161/hypertensionaha.110.157784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption in the aldosterone-sensitive distal nephron. Consequently, ENaC is a major effector impacting systemic blood volume and pressure. We have shown recently that Rac1 increases ENaC activity, whereas Cdc42 fails to change channel activity. Here we tested whether Rac1 signaling plays a physiological role in modulating ENaC in native tissue and polarized epithelial cells. We found that Rac1 inhibitor NSC23766 markedly decreased ENaC activity in freshly isolated collecting ducts. Knockdown of Rac1 in native principal cells decreased ENaC-mediated sodium reabsorption and the number of channels at the apical plasma membrane. Members of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in the control of the actin cytoskeleton. N-WASP functions downstream of Cdc42, whereas WAVEs are effectors of Rac1 activity. N-WASP and all 3 isoforms of WAVE significantly increased ENaC activity when coexpressed in Chinese hamster ovary cells. However, wiskostatin, an inhibitor of N-WASP, had no effect on ENaC activity. Immunoblotting demonstrated the presence of WAVE1 and WAVE2 and absence of N-WASP and WAVE3 in mpkCCD(c14) and M-1 principal cells. Immunohistochemistry analysis also revealed localization of WAVE1 and WAVE2 but not N-WASP in the cortical collecting duct of Sprague-Dawley rat kidneys. Moreover, patch clamp analysis revealed that Rac1 and WAVE1/2 are parts of the same signaling pathway with respect to activation of ENaC. Thus, our findings suggest that Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins.
Collapse
Affiliation(s)
- Alexey V Karpushev
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
43
|
Navar LG. Counterpoint: Activation of the intrarenal renin-angiotensin system is the dominant contributor to systemic hypertension. J Appl Physiol (1985) 2011; 109:1998-2000; discussion 2015. [PMID: 21148349 DOI: 10.1152/japplphysiol.00182.2010a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- L Gabriel Navar
- Department of Physiology, Center of Biomedical Research Excellence in Hypertension and Renal Biology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL39 New Orleans, LA 70112, USA.
| |
Collapse
|
44
|
Diakov A, Nesterov V, Mokrushina M, Rauh R, Korbmacher C. Protein kinase B alpha (PKBα) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms. Cell Physiol Biochem 2011; 26:913-24. [PMID: 21220922 DOI: 10.1159/000324000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 11/19/2022] Open
Abstract
Kinases contribute to the regulation of the epithelial sodium channel (ENaC) in a complex manner. For example, SGK1 (serum- and glucocorticoid-inducible kinase type 1) enhances ENaC surface expression by phosphorylating Nedd4-2, thereby preventing ENaC retrieval and degradation. An additional mechanism of ENaC activation by SGK1 involves an SGK consensus motif ((616)RSRYWS(621)) in the C-terminus of the channel's α-subunit. This consensus motif may also be a target for ENaC regulation by protein kinase B α (PKBα) known to be activated by insulin and growth factors. Therefore, we investigated a possible role of PKBα in the regulation of rat ENaC heterologously expressed in Xenopus laevis oocytes. We found that recombinant PKBα included in the pipette solution increased ENaC currents in outside-out patches by about 4-fold within 15-20 min. Replacing the serine residue S621 of the SGK consensus motif by an alanine (S621A) abolished this stimulatory effect. In co-expression experiments active PKBα but not catalytically inactive PKBα significantly increased ENaC whole-cell currents and surface expression by more than 50 % within 24 hours of co-expression. Interestingly, this stimulatory effect was preserved in oocytes expressing ENaC with the S621A mutation. We conclude that the acute stimulatory effect of PKBα involves a specific kinase consensus motif in the C-terminus of the channel's α-subunit. In contrast, the increase in channel surface expression caused by co-expression of PKBα does not depend on this site in the channel and is probably mediated by an effect on channel trafficking.
Collapse
Affiliation(s)
- Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
45
|
Leenen FH. The central role of the brain aldosterone–“ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1132-9. [DOI: 10.1016/j.bbadis.2010.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/02/2010] [Accepted: 03/07/2010] [Indexed: 11/29/2022]
|
46
|
Abstract
PURPOSE OF REVIEW We integrate recent evidence that demonstrates the importance of the gastric (HKalpha1) and nongastric (HKalpha2)-containing hydrogen potassium adenosine triphosphatases (H,K-ATPases) on physiological function and their role in potassium (K), sodium (Na), and acid-base balance. RECENT FINDINGS Previous studies focused on the primary role of H,K-ATPases as a mechanism of K conservation during states of K deprivation. Both isoforms function in H secretion and K absorption in vivo during K deprivation, but recent findings show that these pumps also function in acid secretion in animals fed normal K-replete diets. The complicated pharmacological inhibition of both pumps is reviewed. Interestingly, HKalpha2-null mice have a reduced expression and activity of the renal epithelial Na channel alpha subunit in the colon. When the human nongastric isoform was studied in a heterologous expression system with its cognate beta subunit (NaKbeta1), the pump exhibited substantial Na affinity at the 'K'-binding site. Evidence cited herein raises the possibility that either directly or indirectly the renal HKalpha2-containing H,K-ATPase may affect Na balance. SUMMARY Both H,K-ATPase isoforms are active in normal animals and not just under conditions of K depletion. The possibility that either one or both isoforms contribute to Na absorption, particularly in humans, raises important clinical implications for these pumps in the kidney.
Collapse
|
47
|
Role of the ubiquitin system in regulating ion transport. Pflugers Arch 2010; 461:1-21. [PMID: 20972579 DOI: 10.1007/s00424-010-0893-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 12/22/2022]
Abstract
Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.
Collapse
|
48
|
Levchenko V, Zheleznova NN, Pavlov TS, Vandewalle A, Wilson PD, Staruschenko A. EGF and its related growth factors mediate sodium transport in mpkCCDc14 cells via ErbB2 (neu/HER-2) receptor. J Cell Physiol 2010; 223:252-9. [PMID: 20049896 DOI: 10.1002/jcp.22033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amiloride-sensitive sodium entry, via the epithelial sodium channel (ENaC), is the rate-limiting step for Na(+) absorption. Epidermal growth factor (EGF) is involved in the regulation of Na(+) transport and ENaC activity. However it is still controversial exactly how EGF regulates ENaC and Na(+) absorption. The aim of the present study was to characterize the EGF regulation of Na(+) transport in cultured mouse renal collecting duct principal mpkCCD(c14) cells, a highly differentiated cell line which retains many characteristics of the cortical collecting duct (CCD). EGF dose dependently regulates basal transepithelial Na(+) transport in two phases: an acute phase (<4 h) and a chronic phase (>8 h). Similar effects were observed with TGF-alpha, HB-EGF, and amphiregulin which also belong to the EGF-related peptide growth factor family. Inhibition of MEK1/2 by PD98059 or U0126 increased acute effects and disrupted chronic effects of EGF on Na(+) reabsorption. Inhibition of PI3-kinase with LY294002 abolished acute effect of EGF. As assessed by Western blotting, ErbB2 is the most predominant member of the ErbB family detected in mpkCCD(c14) cells. Immunohistochemistry analysis revealed localization of ErbB2 in the CCD in Sprague-Dawley rat kidneys. Both acute and long-term effects of EGF were abolished when cells were treated with tyrphostin AG-825 and ErbB2 inhibitor II, chemically dissimilar selective inhibitors of the ErbB2 receptor. Thus, we conclude that EGF and its related growth factors are important for maintaining transepithelial Na(+) transport and that EGF biphasically modulates sodium transport in mpkCCD(c14) cells via the ErbB2 receptor.
Collapse
Affiliation(s)
- Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
49
|
Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H, Cassiman JJ, Dötsch J, Sticht H, Korbmacher C. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J Physiol 2010; 588:1211-25. [PMID: 20194130 DOI: 10.1113/jphysiol.2009.180224] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increased activity of the epithelial sodium channel (ENaC) in the respiratory airways contributes to the pathophysiology of cystic fibrosis (CF), a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In some patients suffering from atypical CF a mutation can be identified in only one CFTR allele. We recently identified in this group of CF patients a heterozygous mutation (W493R) in the alpha-subunit of ENaC. Here, we investigate the functional effects of this mutation by expressing wild-type alpha beta gamma ENaC or mutant alpha(W493R)beta gamma ENaC in Xenopus oocytes. The alpha W493R mutation stimulated amiloride-sensitive whole-cell currents (Delta I(ami)) by approximately 4-fold without altering the single-channel conductance or surface expression of ENaC. As these data suggest that the open probability (P(o)) of the mutant channel is increased, we investigated the proteolytic activation of ENaC by chymotrypsin. Single-channel recordings revealed that chymotrypsin activated near-silent channels in outside-out membrane patches from oocytes expressing wild-type ENaC, but not in membrane patches from oocytes expressing the mutant channel. In addition, the alpha W493R mutation abolished Na(+) self inhibition of ENaC, which might also contribute to its gain-of-function effects. We conclude that the alpha W493R mutation promotes constitutive activation of ENaC by reducing the inhibitory effect of extracellular Na(+) and decreasing the pool of near-silent channels. The resulting gain-of-function phenotype of the mutant channel might contribute to the pathophysiology of CF in patients carrying this mutation.
Collapse
Affiliation(s)
- Robert Rauh
- Department of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|