1
|
Daghbouche-Rubio N, Álvarez-Miguel I, Flores VA, Rojo-Mencía J, Navedo M, Nieves-Citrón M, Cidad P, Pérez-García MT, López-López JR. The P2Y6 Receptor as a Potential Keystone in Essential Hypertension. FUNCTION 2024; 5:zqae045. [PMID: 39322240 DOI: 10.1093/function/zqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Essential hypertension (HT) is a highly prevalent cardiovascular disease of unclear physiopathology. Pharmacological studies suggest that purinergic P2Y6 receptors (P2ry6) play important roles in cardiovascular function and may contribute to angiotensin II (AgtII) pathophysiological effects. Here, we tested the hypothesis that functional coupling between P2ry6 and AgtII receptors mediates altered vascular reactivity in HT. For this, a multipronged approach was implemented using mesenteric vascular smooth muscle cells (VSMCs) and arteries from Blood Pressure Normal (BPN) and Blood Pressure High (BPH) mice. Differential transcriptome profiling of mesenteric artery VSMCs identified P2ry6 purinergic receptor mRNA as one of the top upregulated transcripts in BPH. P2Y receptor activation elicited distinct vascular responses in mesenteric arteries from BPN and BPH mice. Accordingly, 10 µm UTP produced a contraction close to half-maximal activation in BPH arteries but no response in BPN vessels. AgtII-induced contraction was also higher in BPH mice despite having lower AgtII receptor type-1 (Agtr1) expression and was sensitive to P2ry6 modulators. Proximity ligation assay and super-resolution microscopy showed closer localization of Agtr1 and P2ry6 at/near the membrane of BPH mice. This proximal association was reduced in BPN mice, suggesting a functional role for Agtr1-P2ry6 complexes in the hypertensive phenotype. Intriguingly, BPN mice were resistant to AgtII-induced HT and showed reduced P2ry6 expression in VSMCs. Altogether, results suggest that increased functional coupling between P2ry6 and Agtr1 may contribute to enhanced vascular reactivity during HT. In this regard, blocking P2ry6 could be a potential pharmacological strategy to treat HT.
Collapse
MESH Headings
- Animals
- Essential Hypertension/metabolism
- Essential Hypertension/genetics
- Mice
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Mice, Inbred C57BL
- Angiotensin II/pharmacology
- Blood Pressure/genetics
Collapse
Affiliation(s)
- Nuria Daghbouche-Rubio
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - Inés Álvarez-Miguel
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | | | - Jorge Rojo-Mencía
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - Manuel Navedo
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | | | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| |
Collapse
|
2
|
Favero AM, Rosales TO, Scheschowitsch K, Gonçalves MC, Benedet PO, Sordi R, Nardi GM, Assreuy J. Blockade of sympathetic ganglia improves vascular dysfunction in septic shock. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6551-6562. [PMID: 38457039 DOI: 10.1007/s00210-024-03032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Sepsis/septic shock activates the sympathetic nervous system (SNS) to deal with the infection stress. However, an imbalanced or maladaptive response due to excessive or uncontrolled activation characterizes autonomic dysfunction. Our hypothesis was that reducing this excessive activation of the autonomic nervous system would impact positively in sepsis. Using ganglionic blockers as a pharmacological approach, the main aim of the present report was to assess the role of ganglionic transmission in the vascular dysfunction associated with sepsis.Sepsis was induced in rats by cecal ligation and puncture (CLP). One hour after CLP surgery, rats were treated subcutaneously with hexamethonium (15 mg/kg; ganglionic blocker), pentolinium (5 mg/kg; a blocker with a higher selectivity for sympathetic ganglia compared to hexamethonium), or vehicle (PBS). Basal blood pressure and the response to adrenergic agonists were evaluated at 6 and 24 h after CLP surgery. Reactivity to vasoconstrictors, nitric oxide (NO) synthase 2 (NOS-2) expression, IL-1 and TNF plasma levels, and density of α1 adrenergic receptors were evaluated in the aorta 24 h after CLP.Septic shock resulted in hypotension and hyporesponsiveness to norepinephrine and phenylephrine, increased plasma cytokine levels and NOS-2 expression in the aorta, and decreased α1 receptor density in the same vessel. Pentolinium but not hexamethonium recovered responsiveness and α1 adrenergic receptor density in the aorta. Both blockers normalized the in vivo response to vasoconstrictors, and reduced plasma IL-1 and NOx levels and NOS-2 expression in the aorta.Blockade of ganglionic sympathetic transmission reduced the vascular dysfunction in experimental sepsis. This beneficial effect seems to be, at least in part, due to the preservation of α1 adrenergic receptor density and to reduced NOS-2 expression and may lead to adjuvant ways to treat human sepsis.
Collapse
MESH Headings
- Animals
- Shock, Septic/physiopathology
- Shock, Septic/drug therapy
- Shock, Septic/metabolism
- Male
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/physiopathology
- Ganglia, Sympathetic/metabolism
- Ganglionic Blockers/pharmacology
- Rats, Wistar
- Nitric Oxide Synthase Type II/metabolism
- Rats
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/drug effects
- Blood Pressure/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Ana Maria Favero
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | | - Karin Scheschowitsch
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Muryel Carvalho Gonçalves
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia Oliveira Benedet
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Geisson Marcos Nardi
- Department of Morphological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
3
|
Matthews JR, Herat LY, Schlaich MP, Matthews VB. Sympathetic Activation Promotes Sodium Glucose Co-Transporter-1 Protein Expression in Rodent Skeletal Muscle. Biomedicines 2024; 12:1456. [PMID: 39062029 PMCID: PMC11275186 DOI: 10.3390/biomedicines12071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The hyperactivation of the sympathetic nervous system (SNS) is linked to obesity, hypertension, and type 2 diabetes, which are characterized by elevated norepinephrine (NE) levels. Previous research has shown increased sodium-dependent glucose cotransporter 1 (SGLT1) protein levels in kidneys of hypertensive rodents, prompting investigation into the expression of SGLT1 in various tissues, such as skeletal muscle. This study aimed to assess (i) whether skeletal muscle cells and tissue express SGLT1 and SGLT2 proteins; (ii) if NE increases SGLT1 levels in skeletal muscle cells, and (iii) whether the skeletal muscle of neurogenically hypertensive mice exhibits increased SGLT1 expression. We found that (i) skeletal muscle cells and tissue are a novel source of the SGLT2 protein and that (ii) NE significantly elevated SGLT1 levels in skeletal muscle cells. As SGLT2 inhibition (SGLT2i) with Empagliflozin increased SGLT1 levels, in vivo studies with the dual inhibitor SGLT1/2i, Sotagliflozin were warranted. The treatment of neurogenically hypertensive mice using Sotagliflozin significantly reduced blood pressure. Our findings suggest that SNS activity upregulates the therapeutic target, SGLT1, in skeletal muscle, potentially worsening cardiometabolic control. As clinical trial data suggest cardiorenal benefits from SGLT2i, future studies should aim to utilize SGLT1i by itself, which may offer a therapeutic strategy for conditions with heightened SNS activity, such as hypertension, diabetes, and obesity.
Collapse
Affiliation(s)
- Jennifer R. Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, and Royal Perth Hospital Research Foundation, Crawley, WA 6000, Australia; (J.R.M.); (L.Y.H.)
| | - Lakshini Y. Herat
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, and Royal Perth Hospital Research Foundation, Crawley, WA 6000, Australia; (J.R.M.); (L.Y.H.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, School of Medicine—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6000, Australia;
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, and Royal Perth Hospital Research Foundation, Crawley, WA 6000, Australia; (J.R.M.); (L.Y.H.)
| |
Collapse
|
4
|
Hinton A, Kirabo A. α2δ-1 as a New Target for Immunosuppressant-Induced Hypertension. Circ Res 2023; 133:628-630. [PMID: 37708245 PMCID: PMC10513733 DOI: 10.1161/circresaha.123.323500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
5
|
Jelinic M, Jackson KL, O'Sullivan K, Singh J, Giddy T, Deo M, Parry LJ, Ritchie RH, Woodman OL, Head GA, Leo CH, Qin CX. Endothelium-dependent relaxation is impaired in Schlager hypertensive (BPH/2J) mice by region-specific mechanisms in conductance and resistance arteries. Life Sci 2023; 320:121542. [PMID: 36871935 DOI: 10.1016/j.lfs.2023.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIMS Endothelial dysfunction and arterial stiffness are hallmarks of hypertension, and major risk factors for cardiovascular disease. BPH/2J (Schlager) mice are a genetic model of spontaneous hypertension, but little is known about the vascular pathophysiology of these mice and the region-specific differences between vascular beds. Therefore, this study compared the vascular function and structure of large conductance (aorta and femoral) and resistance (mesenteric) arteries of BPH/2J mice with their normotensive BPN/2J counterparts. MAIN METHODS Blood pressure was measured in BPH/2J and BPN/3J mice via pre-implanted radiotelemetry probes. At endpoint, vascular function and passive mechanical wall properties were assessed using wire and pressure myography, qPCR and histology. KEY FINDINGS Mean arterial blood pressure was elevated in BPH/2J mice compared to BPN/3J controls. Endothelium-dependent relaxation to acetylcholine was attenuated in both the aorta and mesenteric arteries of BPH/2J mice, but through different mechanisms. In the aorta, hypertension reduced the contribution of prostanoids. Conversely, in the mesenteric arteries, hypertension reduced the contribution of both nitric oxide and endothelium-dependent hyperpolarization. Hypertension reduced volume compliance in both femoral and mesenteric arteries, but hypertrophic inward remodelling was only observed in the mesenteric arteries of BPH/2J mice. SIGNIFICANCE This is the first comprehensive investigation of vascular function and structural remodelling in BPH/2J mice. Overall, hypertensive BPH/2J mice exhibited endothelial dysfunction and adverse vascular remodelling in the macro- and microvasculature, underpinned by distinct region-specific mechanisms. This highlights BPH/2J mice as a highly suitable model for evaluating novel therapeutics to treat hypertension-associated vascular dysfunction.
Collapse
Affiliation(s)
- Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kristy L Jackson
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kelly O'Sullivan
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jaideep Singh
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Thomas Giddy
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Owen L Woodman
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Science, Math and Technology, Singapore University of Technology & Design, Singapore.
| | - Cheng Xue Qin
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
6
|
The Effects of SGLT2 Inhibitors on Liver Cirrhosis Patients with Refractory Ascites: A Literature Review. J Clin Med 2023; 12:jcm12062253. [PMID: 36983252 PMCID: PMC10056954 DOI: 10.3390/jcm12062253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Decompensated liver cirrhosis is often complicated by refractory ascites, and intractable ascites are a predictor of poor prognosis in patients with liver cirrhosis. The treatment of ascites in patients with cirrhosis is based on the use of aldosterone blockers and loop diuretics, and occasionally vasopressin receptor antagonists are also used. Recent reports suggest that sodium–glucose cotransporter 2 (SGLT2) inhibitors may be a new treatment for refractory ascites with a different mechanism with respect to conventional agents. The main mechanisms of ascites reduction with SGLT2 inhibitors appear to be natriuresis and osmotic diuresis. However, other mechanisms, including improvements in glucose metabolism and nutritional status, hepatoprotection by ketone bodies and adiponectin, amelioration of the sympathetic nervous system, and inhibition of the renin–angiotensin–aldosterone system, may also contribute to the reduction of ascites. This literature review describes previously reported cases in which SGLT2 inhibitors were used to effectively treat ascites caused by liver cirrhosis. The discussion of the mechanisms involved is expected to contribute to establishing SGLT2 therapy for ascites in the future.
Collapse
|
7
|
Matthews J, Hibbs M, Herat L, Schlaich M, Matthews V. The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney. Biomedicines 2023; 11:biomedicines11030819. [PMID: 36979798 PMCID: PMC10045340 DOI: 10.3390/biomedicines11030819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Hyperactivation of the sympathetic nervous system (SNS) has been demonstrated in various conditions including obesity, hypertension and type 2 diabetes. Elevated levels of the major neurotransmitter of the SNS, norepinephrine (NE), is a cardinal feature of these conditions. Increased levels of the sodium glucose cotransporter 1 (SGLT1) protein have been shown to occur in the parotid and submandibular glands of hypertensive rodents compared to normotensive controls. However, there was a need to examine SGLT1 expression in other tissues, such as the kidneys. Whether NE may directly affect SGLT1 protein expression has not yet been investigated, although such a link has been shown for sodium glucose cotransporter 2 (SGLT2). Hence, we aimed to determine (i) whether our murine model of neurogenic hypertension displays elevated renal SGLT1 expression and (ii) whether NE may directly promote elevations of SGLT1 in human proximal tubule (HK2) cells. We did indeed demonstrate that in vivo, in our mouse model of neurogenic hypertension, hyperactivation of the SNS promotes SGLT1 expression in the kidneys. In subsequent in vitro experiments in HK2 cells, we found that NE increased SGLT1 protein expression and translocation as assessed by both specific immunohistochemistry and/or a specific SGLT1 ELISA. Additionally, NE promoted a significant elevation in interleukin-6 (IL-6) levels which resulted in the promotion of SGLT1 expression and proliferation in HK2 cells. Our findings suggest that the SNS upregulates SGLT1 protein expression levels with potential adverse consequences for cardiometabolic control. SGLT1 inhibition may therefore provide a useful therapeutic target in conditions characterized by increased SNS activity, such as chronic kidney disease.
Collapse
Affiliation(s)
- Jennifer Matthews
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Moira Hibbs
- Research Centre, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Lakshini Herat
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Markus Schlaich
- Dobney Hypertension Centre, Medical School—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9224-0239
| |
Collapse
|
8
|
Cardiovascular and renal profiles in rat offspring that do not undergo catch-up growth after exposure to maternal protein restriction. J Dev Orig Health Dis 2023; 14:426-436. [PMID: 36647740 DOI: 10.1017/s2040174422000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Maternal protein restriction is often associated with structural and functional sequelae in offspring, particularly affecting growth and renal-cardiovascular function. However, there is little understanding as to whether hypertension and kidney disease occur because of a primary nephron deficit or whether controlling postnatal growth can result in normal renal-cardiovascular phenotypes. To investigate this, female Sprague-Dawley rats were fed either a low-protein (LP, 8.4% protein) or normal-protein (NP, 19.4% protein) diet prior to mating and until offspring were weaned at postnatal day (PN) 21. Offspring were then fed a non 'growth' (4.6% fat) which ensured that catch-up growth did not occur. Offspring growth was determined by weight and dual energy X-ray absorptiometry. Nephron number was determined at PN21 using the disector-fractionator method. Kidney function was measured at PN180 and PN360 using clearance methods. Blood pressure was measured at PN360 using radio-telemetry. Body weight was similar at PN1, but by PN21 LP offspring were 39% smaller than controls (Pdiet < 0.001). This difference was due to proportional changes in lean muscle, fat, and bone content. LP offspring remained smaller than NP offspring until PN360. In LP offspring, nephron number was 26% less in males and 17% less in females, than NP controls (Pdiet < 0.0004). Kidney function was similar across dietary groups and sexes at PN180 and PN360. Blood pressure was similar in LP and NP offspring at PN360. These findings suggest that remaining on a slow growth trajectory after exposure to a suboptimal intrauterine environment does not lead to the development of kidney dysfunction and hypertension.
Collapse
|
9
|
Morris-Blanco KC, Chokkalla AK, Kim T, Bhatula S, Bertogliat MJ, Gaillard AB, Vemuganti R. High-Dose Vitamin C Prevents Secondary Brain Damage After Stroke via Epigenetic Reprogramming of Neuroprotective Genes. Transl Stroke Res 2022; 13:1017-1036. [PMID: 35306630 PMCID: PMC9485293 DOI: 10.1007/s12975-022-01007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
Abstract
Vitamin C has recently been identified as an epigenetic regulator by activating ten-eleven translocases (TETs), enzymes involved in generating DNA hydroxymethylcytosine (5hmC). Currently, we investigated whether high-dose vitamin C promotes neuroprotection through epigenetic modulation of 5hmC, if there are sex-specific differences in outcome, and the therapeutic potential of vitamin C in stroke-related comorbidities in adult mice. Post-stroke treatment with ascorbate (reduced form), but not dehydroascorbate (oxidized form), increased TET3 activity and 5hmC levels and reduced infarct following focal ischemia. Hydroxymethylation DNA immunoprecipitation sequencing showed that ascorbate increased 5hmC across the genome and specifically in promoters of several stroke pathophysiology-related genes, particularly anti-inflammatory genes. Ascorbate also decreased markers of oxidative stress, mitochondrial fragmentation, and apoptosis in cortical peri-infarct neurons and promoted motor and cognitive functional recovery in both sexes via TET3. Furthermore, post-stroke ascorbate treatment reduced infarct volume and improved motor function recovery in aged, hypertensive and diabetic male and female mice. Delayed ascorbate treatment at 6 h of reperfusion was still effective at reducing infarct volume and motor impairments in adult mice. Collectively, this study shows that post-stroke treatment with high-dose ascorbate protects the brain through epigenetic reprogramming and may function as a robust therapeutic against stroke injury.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
| | - Saivenkateshkomal Bhatula
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
| | - Alexis B Gaillard
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail code CSC-8660, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Hall S, Ward ND, Patel R, Amin-Javaheri A, Lanford H, Grespin RT, Couch C, Xiong Y, Mukherjee R, Jones JA, Ruddy JM. Mechanical activation of the angiotensin II type 1 receptor contributes to abdominal aortic aneurysm formation. JVS Vasc Sci 2021; 2:194-206. [PMID: 34761239 PMCID: PMC8567200 DOI: 10.1016/j.jvssci.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Objective The angiotensin II type 1 receptor (AT1R) can be activated under conditions of mechanical stretch in some cellular systems. Whether this activity influences signaling within the abdominal aorta to promote to abdominal aortic aneurysm (AAA) development remains unknown. We evaluated the hypothesis that mechanical AT1R activation can occur under conditions of hypertension (HTN) and contribute to AAA formation. Methods BPH/2 mice, which demonstrate spontaneous neurogenic, low-renin HTN, and normotensive BPN/3 mice underwent AAA induction via the calcium chloride model, with or without an osmotic minipump delivering 30 mg/kg/d of the AT1R blocker Losartan. Systolic blood pressure (SBP) was measured at baseline and weekly via a tail cuff. The aortic diameter (AoD) was measured at baseline and terminal surgery at 21 days by digital microscopy. Aortic tissue was harvested for immunoblotting (phosphorylated extracellular signal-regulated kinase-1 and -2 [pERK1/2] to ERK1/2 ratio) and expressed as the fold-change from the BPN/3 control mice. Aortic vascular smooth muscle cells (VSMCs) underwent stretch with or without Losartan (1 μM) treatment to assess the mechanical stimulation of ERK1/2 activity. Statistical analysis of the blood pressure, AoD, and VSMC ERK1/2 activity was performed using analysis of variance. However, the data distribution was determined to be log-normal (Shapiro-Wilk test) for ERK1/2 activity. Therefore, it was logarithmically transformed before analysis of variance. Results At baseline, the SBP was elevated in the BPH/2 mice relative to the BPN/3 mice (P < .05). Losartan treatment significantly reduced the SBP in both mouse strains (P < .05). AAA induction did not affect the SBP. At 21 days after induction, the percentage of increase in the AoD from baseline was significantly greater in the BPH/2 mice than in the BPN/3 mice (101.28% ± 4.19% vs 75.59% ± 1.67% above baseline; P < .05). Losartan treatment significantly attenuated AAA growth in both BPH/2 and BPN/3 mice (33.88% ± 2.97% and 43.96% ± 3.05% above baseline, respectively; P < .05). ERK1/2 activity was increased approximately fivefold in the BPH/2 control mice relative to the BPN/3 control mice (P < .05). In the BPH/2 and BPN/3 mice with AAA, ERK1/2 activity was significantly increased relative to the respective baseline control (P < .05) and effectively reduced by concomitant Losartan therapy (P < .05). Biaxial stretch of the VSMCs in the absence of angiotensin II demonstrated increased ERK1/2 activation (P < .05 vs static control), which was significantly inhibited by Losartan. Conclusions In BPH/2 mice with spontaneous neurogenic, low-renin HTN, AAA growth was amplified compared with the normotensive control and was effectively attenuated using Losartan. ERK1/2 activity was significantly elevated in the BPH/2 mice and after AAA induction in the normotensive and hypertensive mice but was attenuated by Losartan treatment. These data suggest that AT1R activation contributes to AAA development. Therefore, further investigation into this signaling pathway could establish targets for pharmacotherapeutic engineering to slow AAA growth. (JVS-Vascular Science 2021;2:194-206.). Clinical Relevance Hypertension (HTN) and abdominal aortic aneurysm (AAA) have been epidemiologically linked for decades; however, a biomechanical link has not yet been identified. Using a murine model of spontaneous neurogenic HTN experimentally demonstrated to have low circulating renin, mechanical activation of the angiotensin II type 1 receptor (AT1R) was identified with elevated blood pressure and AAA induction. HTN amplified AAA growth. However, more importantly, blocking the activation of AT1R with the angiotensin receptor blocker Losartan effectively abrogated AAA development. Although inhibiting the production of angiotensin II has previously been unsuccessful in altering AAA growth, the results from the present study suggest that blocking the activation of AT1R through direct ligand binding or mechanical stimulation might alter aortic wall signaling and warrants further investigation.
Collapse
Affiliation(s)
- SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Nicholas D Ward
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Raj Patel
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Armaan Amin-Javaheri
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Hayes Lanford
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - R Tyler Grespin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Christine Couch
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jeffrey A Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
11
|
Paterson MR, Jackson KL, Dona MSI, Farrugia GE, Visniauskas B, Watson AMD, Johnson C, Prieto MC, Evans RG, Charchar F, Pinto AR, Marques FZ, Head GA. Deficiency of MicroRNA-181a Results in Transcriptome-Wide Cell-Specific Changes in the Kidney and Increases Blood Pressure. Hypertension 2021; 78:1322-1334. [PMID: 34538100 PMCID: PMC8573069 DOI: 10.1161/hypertensionaha.121.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Madeleine R. Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia; Monash University, Melbourne, Australia
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kristy L. Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville, Australia
| | - Malathi S. I. Dona
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Bruna Visniauskas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, the USA
| | - Anna M. D. Watson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Chad Johnson
- Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Minolfa C. Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, the USA
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Fadi Charchar
- Health Innovation and Transformation Centre, Federation University, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Alexander R. Pinto
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia; Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Geoffrey A. Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Pharmacology, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Jama HA, Muralitharan RR, Xu C, O'Donnell JA, Bertagnolli M, Broughton BRS, Head GA, Marques FZ. Rodent models of hypertension. Br J Pharmacol 2021; 179:918-937. [PMID: 34363610 DOI: 10.1111/bph.15650] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated blood pressure (BP), or hypertension, is the main risk factor for cardiovascular disease. As a multifactorial and systemic disease that involves multiple organs and systems, hypertension remains a challenging disease to study. Models of hypertension are invaluable to support the discovery of the specific genetic, cellular and molecular mechanisms underlying essential hypertension, as well as to test new possible treatments to lower BP. Rodent models have proven to be an invaluable tool for advancing the field. In this review, we discuss the strengths and weaknesses of rodent models of hypertension through a systems approach. We highlight the ways how target organs and systems including the kidneys, vasculature, the sympathetic nervous system (SNS), immune system and the gut microbiota influence BP in each rodent model. We also discuss often overlooked hypertensive conditions such as pulmonary hypertension and hypertensive-pregnancy disorders, providing an important resource for researchers.
Collapse
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Chudan Xu
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Mariane Bertagnolli
- Laboratory of Maternal-child Health, Hospital Sacre-Coeur Research Center, CIUSSS Nord-de-l'Île-de-Montréal, Montreal, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada
| | - Bradley R S Broughton
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Geoffrey A Head
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia.,Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
13
|
Dragoljevic D, Veiga CB, Michell DL, Shihata WA, Al-Sharea A, Head GA, Murphy AJ, Kraakman MJ, Lee MKS. A spontaneously hypertensive diet-induced atherosclerosis-prone mouse model of metabolic syndrome. Biomed Pharmacother 2021; 139:111668. [PMID: 34243630 DOI: 10.1016/j.biopha.2021.111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic Syndrome (MetS) is a complex and multifactorial condition often characterised by obesity, hypertension, hyperlipidaemia, insulin resistance, glucose intolerance and fasting hyperglycaemia. Collectively, MetS can increase the risk of atherosclerotic-cardiovascular disease, which is the leading cause of death worldwide. However, no animal model currently exists to study MetS in the context of atherosclerosis. In this study we developed a pre-clinical mouse model that recapitulates the spectrum of MetS features while developing atherosclerosis. When BPHx mice were placed on a western type diet for 16 weeks, all the classical characteristics of MetS were observed. Comprehensive metabolic analyses and atherosclerotic imaging revealed BPHx mice to be obese and hypertensive, with elevated total plasma cholesterol and triglyceride levels, that accelerated atherosclerosis. Altogether, we demonstrate that the BPHx mouse has all the major components of MetS, and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Dragana Dragoljevic
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | - Camilla Bertuzzo Veiga
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia
| | | | - Waled A Shihata
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Annas Al-Sharea
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | | | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Mouat MA, Jackson KL, Coleman JLJ, Paterson MR, Graham RM, Head GA, Smith NJ. Deletion of Orphan G Protein-Coupled Receptor GPR37L1 in Mice Alters Cardiovascular Homeostasis in a Sex-Specific Manner. Front Pharmacol 2021; 11:600266. [PMID: 33633567 PMCID: PMC7901490 DOI: 10.3389/fphar.2020.600266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
GPR37L1 is a family A orphan G protein-coupled receptor (GPCR) with a putative role in blood pressure regulation and cardioprotection. In mice, genetic ablation of Gpr37l1 causes sex-dependent effects; female mice lacking Gpr37l1 (GPR37L1-/-) have a modest but significant elevation in blood pressure, while male GPR37L1-/- mice are more susceptible to cardiovascular dysfunction following angiotensin II-induced hypertension. Given that this receptor is highly expressed in the brain, we hypothesize that the cardiovascular phenotype of GPR37L1-/- mice is due to changes in autonomic regulation of blood pressure and heart rate. To investigate this, radiotelemetry was employed to characterize baseline cardiovascular variables in GPR37L1-/- mice of both sexes compared to wildtype controls, followed by power spectral analysis to quantify short-term fluctuations in blood pressure and heart rate attributable to alterations in autonomic homeostatic mechanisms. Additionally, pharmacological ganglionic blockade was performed to determine vasomotor tone, and environmental stress tests were used to assess whether cardiovascular reactivity was altered in GPR37L1-/- mice. We observed that mean arterial pressure was significantly lower in female GPR37L1-/- mice compared to wildtype counterparts, but was unchanged in male GPR37L1-/- mice. GPR37L1-/- genotype had a statistically significant positive chronotropic effect on heart rate across both sexes when analyzed by two-way ANOVA. Power spectral analysis of these data revealed a reduction in power in the heart rate spectrum between 0.5 and 3 Hz in female GPR37L1-/- mice during the diurnal active period, which indicates that GPR37L1-/- mice may have impaired cardiac vagal drive. GPR37L1-/- mice of both sexes also exhibited attenuated depressor responses to ganglionic blockade with pentolinium, indicating that GPR37L1 is involved in maintaining sympathetic vasomotor tone. Interestingly, when these mice were subjected to aversive and appetitive behavioral stressors, the female GPR37L1-/- mice exhibited an attenuation of cardiovascular reactivity to aversive, but not appetitive, environmental stimuli. Together, these results suggest that loss of GPR37L1 affects autonomic maintenance of blood pressure, giving rise to sex-specific cardiovascular changes in GPR37L1-/- mice.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Madeleine R Paterson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
15
|
Asirvatham-Jeyaraj N, Gauthier MM, Banek CT, Ramesh A, Garver H, Fink GD, Osborn JW. Renal Denervation and Celiac Ganglionectomy Decrease Mean Arterial Pressure Similarly in Genetically Hypertensive Schlager (BPH/2J) Mice. Hypertension 2021; 77:519-528. [PMID: 33390041 PMCID: PMC7803455 DOI: 10.1161/hypertensionaha.119.14069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Renal denervation (RDNX) lowers mean arterial pressure (MAP) in patients with resistant hypertension. Less well studied is the effect of celiac ganglionectomy (CGX), a procedure which involves the removal of the nerves innervating the splanchnic vascular bed. We hypothesized that RDNX and CGX would both lower MAP in genetically hypertensive Schlager (BPH/2J) mice through a reduction in sympathetic tone. Telemeters were implanted into the femoral artery in mice to monitor MAP before and after RDNX (n=5), CGX (n=6), or SHAM (n=6). MAP, systolic blood pressure, diastolic blood pressure, and heart rate were recorded for 14 days postoperatively. The MAP response to hexamethonium (10 mg/kg, IP) was measured on control day 3 and postoperative day 10 as a measure of global neurogenic pressor activity. The efficacy of denervation was assessed by measurement of tissue norepinephrine. Control MAP was similar among the 3 groups before surgical treatments (≈130 mm Hg). On postoperative day 14, MAP was significantly lower in RDNX (−11±2 mm Hg) and CGX (−11±1 mm Hg) groups compared with their predenervation values. This was not the case in SHAM mice (−5±3 mm Hg). The depressor response to hexamethonium in the RDNX group was significantly smaller on postoperative day 10 (−10±5 mm Hg) compared with baseline control (−25±10 mm Hg). This was not the case in mice in the SHAM (day 10; −28±5 mm Hg) or CGX (day 10; −34±7 mm Hg) group. In conclusion, both renal and splanchnic nerves contribute to hypertension in BPH/2J mice, but likely through different mechanisms.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.).,Department of Biotechnology, Indian Institute of Technology Madras, Chennai (N.A.-J.)
| | | | - Christopher T Banek
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.).,Department of Physiology, University of Arizona, Tucson (M.M.G., C.T.B.)
| | - Abhismitha Ramesh
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.)
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing (H.G., G.D.F.)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing (H.G., G.D.F.)
| | - John W Osborn
- From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (M.M.G., C.T.B., A.R., J.W.O.)
| |
Collapse
|
16
|
Jackson KL, Gueguen C, Lim K, Eikelis N, Stevenson ER, Charchar FJ, Lambert GW, Burke SL, Paterson MR, Marques FZ, Head GA. Neural suppression of miRNA-181a in the kidney elevates renin expression and exacerbates hypertension in Schlager mice. Hypertens Res 2020; 43:1152-1164. [PMID: 32427944 DOI: 10.1038/s41440-020-0453-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 11/09/2022]
Abstract
BPH/2J mice are a genetic model of hypertension with overactivity of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS). BPH/2J display higher renal renin mRNA and low levels of its negative regulator microRNA-181a (miR-181a). We hypothesise that high renal SNS activity may reduce miR-181a expression, which contributes to elevated RAS activity and hypertension in BPH/2J. Our aim was to determine whether in vivo administration of a renal-specific miR-181a mimic or whether renal denervation could increase renal miR-181a abundance to reduce renal renin mRNA, RAS activity and hypertension in BPH/2J mice. Blood pressure (BP) in BPH/2J and normotensive BPN/3J mice was measured via radiotelemetry probes. Mice were administered miR-181a mimic or a negative control (1-25 nmol, i.v., n = 6-10) with BP measured for 48 h after each dose or they underwent renal denervation or sham surgery (n = 7-9). Injection of 5-25 nmol miR-181a mimic reduced BP in BPH/2J mice after 36-48 h (-5.3 ± 1.8, -6.1 ± 1.9 mmHg, respectively, P < 0.016). Treatment resulted in lower renal renin and inflammatory marker (TLR4) mRNA levels in BPH/2J. The mimic abolished the hypotensive effect of blocking the RAS with enalaprilat (P < 0.01). No differences between mimic or vehicle were observed in BPN/3J mice except for a higher level of renal angiotensinogen in the mimic-treated mice. Renal miR-181a levels that were lower in sham BPH/2J mice were greater following renal denervation and were thus similar to those of BPN/3J. Our findings suggest that the reduced renal miR-181a may partially contribute to the elevated BP in BPH/2J mice, through an interaction between the renal sympathetic nerves and miR-181a regulation of the RAS.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Nina Eikelis
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Emily R Stevenson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Fadi J Charchar
- Faculty of Science and Technology, Federation University Australia, Ballarat, VIC, Australia
| | - Gavin W Lambert
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Sandra L Burke
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Madeleine R Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Francine Z Marques
- Faculty of Science and Technology, Federation University Australia, Ballarat, VIC, Australia.,Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Pharmacology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Head GA. Integrative Physiology: Update to the Grand Challenge 2020. Front Physiol 2020; 11:489. [PMID: 32499720 PMCID: PMC7243031 DOI: 10.3389/fphys.2020.00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Liu R, Yang L, Wei Q. miR-34a targets PAI-1 to regulate urinary microalbumin and renal function in hypertensive mice. Eur J Med Res 2020; 25:3. [PMID: 32178735 PMCID: PMC7077132 DOI: 10.1186/s40001-020-00404-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background The aim of the study is to investigate the effects of miR-34a targeted at PAI-1 on urinary microalbumin and renal function in hypertensive mice. Methods Twenty specific-pathogen-free (SPF) BPN/3J mice were selected in normal group, and 120 SPF BPH/2J mice were evenly divided into model group, negative control group, miR-34a mimic group, miR-34a inhibitor group, Si-PAI-1 group, and miR-34a inhibitor + Si-PAI-1 group. qRT-PCR was used to detect the expression of miR-34a and PAI-1 mRNA. The protein expressions of PAI-1, angiotensin-converting enzyme (ACE) and ACE2 were detected by Western blot. Serum levels of AngII and Ang1-7 were detected by ELISA. Results miR-34a negatively regulated the expression of PAI-1. Compared with the normal group, mice in the other groups had significantly lower body weight, increased systolic blood pressure and 24-h urinary microalbumin content, decreased miR-34a expression, superoxide dismutase (SOD) and nitric oxide (NO) content, and ACE2 protein expression, and increased PAI-1 expression, serum creatinine (Scr), blood urea nitrogen (BUN) malondialdehyde (MDA), AngII and Ang1-7 levels, and ACE protein expression (all P < 0.05). Compared with the model group, mice in the miR-34a mimic group and Si-PAI-1 group had no significant changes in body weight (all P > 0.05), while they had significantly lower systolic blood pressure and 24-h urinary microalbumin content, increased SOD and NO levels and ACE2 protein expression, and decreased PAI-1 expression, Scr, BUN, MDA, AngII and Ang1-7 levels, and ACE protein expression (all P < 0.05). Compared with the miR-34a inhibitor group, symptoms in miR-34a inhibitor + Si-PAI-1 group were significantly improved (all P < 0.05). Conclusions miR-34a can inhibit the expression of PAI-1, thereby reducing urinary microalbumin content in hypertensive mice and protecting their renal function.
Collapse
Affiliation(s)
- Ruitao Liu
- Department of Cardiovascular Medicine, Xingtai People's Hospital, No.16 Hongxing East Street, Qiaodong District, Xingtai, 054000, Hebei, China
| | - Lihong Yang
- Department of Cardiovascular Medicine, Xingtai People's Hospital, No.16 Hongxing East Street, Qiaodong District, Xingtai, 054000, Hebei, China
| | - Qingmin Wei
- Department of Cardiovascular Medicine, Xingtai People's Hospital, No.16 Hongxing East Street, Qiaodong District, Xingtai, 054000, Hebei, China.
| |
Collapse
|
19
|
Herat LY, Magno AL, Rudnicka C, Hricova J, Carnagarin R, Ward NC, Arcambal A, Kiuchi MG, Head GA, Schlaich MP, Matthews VB. SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC Basic Transl Sci 2020; 5:169-179. [PMID: 32140623 PMCID: PMC7046513 DOI: 10.1016/j.jacbts.2019.11.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 02/09/2023]
Abstract
SGLT2 inhibitors improve cardiovascular outcomes. SGLT2 inhibitor–induced sympathetic nervous system inhibition may be an underlying mechanism. Chemical denervation in neurogenic hypertensive mice reduces renal SGLT2 expression. SGLT2 inhibition lowered blood pressure and resulted in significantly reduced tyrosine hydroxylase and norepinephrine levels in the kidney tissue of neurogenic hypertensive mice. Crosstalk between the sympathetic nervous system and SGLT2 regulation appears as a key mechanism of the cardiorenal protective effects demonstrated with SGLT2 inhibition.
Recent clinical trial data suggest a cardiorenal protective effect of sodium glucose cotransporter 2 (SGLT2) inhibition. We demonstrate that chemical denervation in neurogenic hypertensive Schlager (BPH/2J) mice reduced blood pressure, improved glucose homeostasis, and reduced renal SGLT2 protein expression. Inhibition of SGLT2 prevented weight gain, reduced blood pressure, significantly reduced elevations of tyrosine hydroxylase and norepinephrine, and protects against endothelial dysfunction. These findings provide evidence for significant crosstalk between activation of the sympathetic nervous system and SGLT2 regulation and possible ancillary effects on endothelial function, which may contribute to the observed cardiorenal protective effects of SGLT2 inhibition.
Collapse
Affiliation(s)
- Lakshini Y Herat
- Dobney Hypertension Centre, School of Biomedical Science, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Aaron L Magno
- Research Centre, Royal Perth Hospital, Perth, Australia
| | | | - Jana Hricova
- Dobney Hypertension Centre, School of Biomedical Science, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Natalie C Ward
- School of Medicine, Royal Perth Hospital, University of Western Australia, Perth, Australia.,School of Public Health, Curtin University, Perth, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Angelique Arcambal
- School of Medicine, Royal Perth Hospital, University of Western Australia, Perth, Australia.,Université de La Réunion, Saint-Denis, Réunion, France
| | - Marcio G Kiuchi
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Geoff A Head
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia.,Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Biomedical Science, Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| |
Collapse
|
20
|
Herat LY, Magno AL, Kiuchi MG, Jackson KL, Carnagarin R, Head GA, Schlaich MP, Matthews VB. The Schlager mouse as a model of altered retinal phenotype. Neural Regen Res 2020; 15:512-518. [PMID: 31571663 PMCID: PMC6921339 DOI: 10.4103/1673-5374.266069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hypertension is a risk factor for a large number of vision-threatening eye disorders. In this study, we investigated for the first time the retinal neural structure of the hypertensive BPH/2J mouse (Schlager mouse) and compared it to its control counterpart, the normotensive BPN/3J strain. The BPH/2J mouse is a selectively inbred mouse strain that develops chronic hypertension due to elevated sympathetic nervous system activity. When compared to the BPN/3J strain, the hypertensive BPH/2J mice showed a complete loss of outer layers of the neural retina at 21 weeks of age, which was indicative of a severe vision-threatening disease potentially caused by hypertension. To elucidate whether the retinal neural phenotype in the BPH/2J strain was attributed to increased BP, we investigated the neural retina of both BPN/3J and BPH/2J mice at 4 weeks of age. Our preliminary results showed for the first time that the BPH/2J strain develops severe retinal neural damage at a young age. Our findings suggest that the retinal phenotype in the BPH/2J mouse is possibly due to elevated blood pressure and may be contributed by an early onset spontaneous mutation which is yet to be identified or a congenital defect occurring in this strain. Further characterization of the BPH/2J mouse strain is likely to i) elucidate gene defects underlying retinal disease; ii) understand mechanisms leading to neural retinal disease and iii) permit testing of molecules for translational research to interfere with the progression of retinal disease. The animal experiments were performed with the approval of the Royal Perth Hospital Animal Ethics Committee (R535/17-18) on June 1, 2017.
Collapse
Affiliation(s)
- Lakshini Y Herat
- Dobney Hypertension Centre, School of Biomedical Science - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Aaron L Magno
- Research Centre, Royal Perth Hospital, Perth, Australia
| | - Márcio G Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit, University of Western Australia; Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Biomedical Science - Royal Perth Hospital Unit, University of Western Australia, Perth, Australia
| |
Collapse
|
21
|
Head GA, Jackson KL, Gueguen C. Potential Therapeutic Use of Neurosteroids for Hypertension. Front Physiol 2019; 10:1477. [PMID: 31920690 PMCID: PMC6920208 DOI: 10.3389/fphys.2019.01477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system (SNS) contribution to long-term setting of blood pressure (BP) and hence hypertension has been a continuing controversy over many decades. However, the contribution of increased sympathetic vasomotor tone to the heart, kidney, and blood vessels has been suggested as a major influence on the development of high BP which affects 30-40% of the population. This is relevant to hypertension associated with chronic stress, being overweight or obese as well to chronic kidney disease. Treatments that have attempted to block the peripheral aspects of the SNS contribution have included surgery to cut the sympathetic nerves as well as agents to block α- and β-adrenoceptors. Other treatments, such as centrally acting drugs like clonidine, rilmenidine, or moxonidine, activate receptors within the ventrolateral medulla to reduce the vasomotor tone overall but have side effects that limit their use. None of these treatments target the cause of the enhanced sympathetic tone. Recently we have identified an antihypertensive action of the neurosteroid allopregnanolone in a mouse model of neurogenic hypertension. Allopregnanolone is known to facilitate high-affinity extra-synaptic γ-aminobutyric acid A receptors (GABAAR) through allosteric modulation and transcriptional upregulation. The antihypertensive effect was specific for increased expression of δ subunits in the amygdala and hypothalamus. This focused review examines the possibility that neurosteroids may be a novel therapeutic approach to address the neurogenic contribution to hypertension. We discuss the causes and prevalence of neurogenic hypertension, current therapeutic approaches, and the applicability of using neurosteroids as antihypertensive therapy.
Collapse
Affiliation(s)
- Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Jackson KL, Head GA, Gueguen C, Stevenson ER, Lim K, Marques FZ. Mechanisms Responsible for Genetic Hypertension in Schlager BPH/2 Mice. Front Physiol 2019; 10:1311. [PMID: 31681017 PMCID: PMC6813185 DOI: 10.3389/fphys.2019.01311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
It has been 45 years since Gunther Schlager used a cross breeding program in mice to develop inbred strains with high, normal, and low blood pressure (BPH/2, BPN/3, and BPL/1 respectively). Thus, it is timely to gather together the studies that have characterized and explored the mechanisms associated with the hypertension to take stock of exactly what is known and what remains to be determined. Growing evidence supports the notion that the mechanism of hypertension in BPH/2 mice is predominantly neurogenic with some of the early studies showing aberrant brain noradrenaline levels in BPH/2 compared with BPN/3. Analysis of the adrenal gland using microarray suggested an association with the activity of the sympathetic nervous system. Indeed, in support of this, there is a larger depressor response to ganglion blockade, which reduced blood pressure in BPH/2 mice to the same level as BPN/3 mice. Greater renal tyrosine hydroxylase staining and greater renal noradrenaline levels in BPH/2 mice suggest sympathetic hyperinnervation of the kidney. Renal denervation markedly reduced the blood pressure in BPH/2 but not BPN/3 mice, confirming the importance of renal sympathetic nervous activity contributing to the hypertension. Further, there is an important contribution to the hypertension from miR-181a and renal renin in this strain. BPH/2 mice also display greater neuronal activity of amygdalo-hypothalamic cardiovascular regulatory regions. Lesions of the medial nucleus of the amygdala reduced the hypertension in BPH/2 mice and abolished the strain difference in the effect of ganglion blockade, suggesting a sympathetic mechanism. Further studies suggest that aberrant GABAergic inhibition may play a role since BPH/2 mice have low GABAA receptor δ, α4 and β2 subunit mRNA expression in the hypothalamus, which are predominantly involved in promoting tonic neuronal inhibition. Allopregnanolone, an allosteric modulator of GABAA receptors, which increase the expression of these subunits in the amygdala and hypothalamus, is shown to reduce the hypertension and sympathetic nervous system contribution in BPH/2 mice. Thus far, evidence suggests that BPH/2 mice have aberrant GABAergic inhibition, which drives neuronal overactivity within amygdalo-hypothalamic brain regions. This overactivity is responsible for the greater sympathetic contribution to the hypertension in BPH/2 mice, thus making this an ideal model of neurogenic hypertension.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Emily R Stevenson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Watson AMD, Gould EAM, Penfold SA, Lambert GW, Pratama PR, Dai A, Gray SP, Head GA, Jandeleit-Dahm KA. Diabetes and Hypertension Differentially Affect Renal Catecholamines and Renal Reactive Oxygen Species. Front Physiol 2019; 10:309. [PMID: 31040788 PMCID: PMC6477025 DOI: 10.3389/fphys.2019.00309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/07/2019] [Indexed: 01/11/2023] Open
Abstract
Patients with diabetic hypertensive nephropathy have accelerated disease progression. Diabetes and hypertension have both been associated with changes in renal catecholamines and reactive oxygen species. With a specific focus on renal catecholamines and oxidative stress we examined a combined model of hypertension and diabetes using normotensive BPN/3J and hypertensive BPH/2J Schlager mice. Induction of diabetes (5 × 55 mg/kg streptozotocin i.p.) did not change the hypertensive status of BPH/2J mice (telemetric 24 h avg. MAP, non-diabetic 131 ± 2 vs. diabetic 129 ± 1 mmHg, n.s at 9 weeks of study). Diabetes-associated albuminuria was higher in BPH/2J vs. diabetic BPN/3J (1205 + 196/-169 versus 496 + 67/-59 μg/24 h, p = 0.008). HPLC measurement of renal cortical norepinephrine and dopamine showed significantly greater levels in hypertensive mice whilst diabetes was associated with significantly lower catecholamine levels. Diabetic BPH/2J also had greater renal catecholamine levels than diabetic BPN/3J (diabetic: norepinephrine BPN/3J 40 ± 4, BPH/2J 91 ± 5, p = 0.010; dopamine: BPN/3J 2 ± 1; BPH/2J 3 ± 1 ng/mg total protein, p < 0.001 after 10 weeks of study). Diabetic BPH/2J showed greater cortical tubular immunostaining for monoamine oxidase A and cortical mitochondrial hydrogen peroxide formation was greater in both diabetic and non-diabetic BPH/2J. While cytosolic catalase activity was greater in non-diabetic BPH/2J it was significantly lower in diabetic BPH/2J (cytosolic: BPH/2J 127 ± 12 vs. 63 ± 6 nmol/min/ml, p < 0.001). We conclude that greater levels of renal norepinephrine and dopamine associated with hypertension, together with diabetes-associated compromised anti-oxidant systems, contribute to increased renal oxidative stress in diabetes and hypertension. Elevations in renal cortical catecholamines and reactive oxygen species have important therapeutic implications for hypertensive diabetic patients.
Collapse
Affiliation(s)
- Anna M D Watson
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Sally A Penfold
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin W Lambert
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | | | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Stephen P Gray
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karin A Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Gueguen C, Jackson KL, Marques FZ, Eikelis N, Phillips S, Stevenson ER, Charchar FJ, Lambert GW, Davern PJ, Head GA. Renal nerves contribute to hypertension in Schlager BPH/2J mice. Hypertens Res 2018; 42:306-318. [PMID: 30531841 DOI: 10.1038/s41440-018-0147-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/30/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023]
Abstract
Schlager mice (BPH/2J) are hypertensive due to a greater contribution of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS). The kidneys of BPH/2J are hyper-innervated suggesting renal nerves may contribute to the hypertension. We therefore determined the effect of bilateral renal denervation (RD) on hypertension in BPH/2J. Mean arterial pressure (MAP) was measured by radiotelemetry before and for 3 weeks after RD in BPH/2J and BPN/3J. The effects of pentolinium and enalaprilat were examined to determine the contribution of the SNS and RAS, respectively. After 3 weeks, MAP was -10.9 ± 2.1 mmHg lower in RD BPH/2J compared to baseline and -2.1 ± 2.2 mmHg in sham BPH/2J (P < 0.001, n = 8-10). RD had no effect in BPN/3J (P > 0.1). The depressor response to pentolinium was greater in BPH/2J than BPN/3J, but in both cases the response in RD mice was similar to sham. Enalaprilat decreased MAP more in RD BPH/2J compared to sham (-12 vs -3 mmHg, P < 0.001) but had no effect in BPN/3J. RD reduced renal noradrenaline in both strains but more so in BPH/2J. RD reduced renin mRNA and protein, but not plasma renin in BPH/2J to levels comparable with BPN/3J mice. We conclude that renal nerves contribute to hypertension in BPH mice as RD induced a sustained fall in MAP, which was associated with a reduction of intrarenal renin expression. The lack of inhibition of the depressor effects of pentolinium and enalaprilat by RD suggests that vasoconstrictor effects of the SNS or RAS are not involved.
Collapse
Affiliation(s)
- Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Francine Z Marques
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Pharmacology Monash University, Melbourne, Australia
| | - Nina Eikelis
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Australia
| | - Sarah Phillips
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Australia
| | - Emily R Stevenson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Fadi J Charchar
- Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia
| | - Gavin W Lambert
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Australia
| | - Pamela J Davern
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia. .,Department of Pharmacology Monash University, Melbourne, Australia.
| |
Collapse
|
25
|
Al-Sharea A, Lee MKS, Whillas A, Michell DL, Shihata WA, Nicholls AJ, Cooney OD, Kraakman MJ, Veiga CB, Jefferis AM, Jackson K, Nagareddy PR, Lambert G, Wong CHY, Andrews KL, Head GA, Chin-Dusting J, Murphy AJ. Chronic sympathetic driven hypertension promotes atherosclerosis by enhancing hematopoiesis. Haematologica 2018; 104:456-467. [PMID: 30361420 PMCID: PMC6395347 DOI: 10.3324/haematol.2018.192898] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
Hypertension is a major, independent risk factor for atherosclerotic cardiovascular disease. However, this pathology can arise through multiple pathways, which could influence vascular disease through distinct mechanisms. An overactive sympathetic nervous system is a dominant pathway that can precipitate in elevated blood pressure. We aimed to determine how the sympathetic nervous system directly promotes atherosclerosis in the setting of hypertension. We used a mouse model of sympathetic nervous system-driven hypertension on the atherosclerotic-prone apolipoprotein E-deficient background. When mice were placed on a western type diet for 16 weeks, we showed the evolution of unstable atherosclerotic lesions. Fortuitously, the changes in lesion composition were independent of endothelial dysfunction, allowing for the discovery of alternative mechanisms. With the use of flow cytometry and bone marrow imaging, we found that sympathetic activation caused deterioration of the hematopoietic stem and progenitor cell niche in the bone marrow, promoting the liberation of these cells into the circulation and extramedullary hematopoiesis in the spleen. Specifically, sympathetic activation reduced the abundance of key hematopoietic stem and progenitor cell niche cells, sinusoidal endothelial cells and osteoblasts. Additionally, sympathetic bone marrow activity prompted neutrophils to secrete proteases to cleave the hematopoietic stem and progenitor cell surface receptor CXCR4. All these effects could be reversed using the β-blocker propranolol during the feeding period. These findings suggest that elevated blood pressure driven by the sympathetic nervous system can influence mechanisms that modulate the hematopoietic system to promote atherosclerosis and contribute to cardiovascular events.
Collapse
Affiliation(s)
- Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man K S Lee
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Alexandra Whillas
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Danielle L Michell
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Waled A Shihata
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | | | - Olivia D Cooney
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michael J Kraakman
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York, NY, USA
| | - Camilla Bertuzzo Veiga
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Kristy Jackson
- Neuropharmacology Laboratory, Division of Hypertension and Cardiac Disease, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Gavin Lambert
- Human Neurotransmitters Laboratory, Division of Hypertension and Cardiac Disease, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC, Australia
| | | | - Karen L Andrews
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Geoff A Head
- Neuropharmacology Laboratory, Division of Hypertension and Cardiac Disease, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jaye Chin-Dusting
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Laboratory, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia .,Department of Immunology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Jackson KL, Marques FZ, Lim K, Davern PJ, Head GA. Circadian Differences in the Contribution of the Brain Renin-Angiotensin System in Genetically Hypertensive Mice. Front Physiol 2018; 9:231. [PMID: 29615926 PMCID: PMC5868475 DOI: 10.3389/fphys.2018.00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 11/21/2022] Open
Abstract
Objective: Genetically hypertensive BPH/2J mice are recognized as a neurogenic model of hypertension, primarily based on sympathetic overactivity and greater neuronal activity in cardiovascular regulatory brain regions. Greater activity of the central renin angiotensin system (RAS) and reactive oxygen species (ROS) reportedly contribute to other models of hypertension. Importantly the peripheral RAS contributes to the hypertension in BPH/2J mice, predominantly during the dark period of the 24 h light cycle. The aim of the present study was to determine whether central AT1 receptor stimulation and the associated ROS signaling contribute to hypertension in BPH/2J mice in a circadian dependent manner. Methods: Blood pressure (BP) was measured in BPH/2J and normotensive BPN/3J mice (n = 7–8) via pre-implanted telemetry devices. Acute intracerebroventricular (ICV) microinjections of AT1 receptor antagonist, candesartan, and the superoxide dismutase (SOD) mimetic, tempol, were administered during the dark and light period of the 24 h light cycle via a pre-implanted ICV guide cannula. In separate mice, the BP effect of ICV infusion of the AT1 receptor antagonist losartan for 7 days was compared with subcutaneous infusion to determine the contribution of the central RAS to hypertension in BPH/2J mice. Results: Candesartan administered ICV during the dark period induced depressor responses which were 40% smaller in BPH/2J than BPN/3J mice (Pstrain < 0.05), suggesting AT1 receptor stimulation may contribute less to BP maintenance in BPH/2J mice. During the light period candesartan had minimal effect on BP in either strain. ICV tempol had comparable effects on BP between strains during the light and dark period (Pstrain > 0.08), suggesting ROS signaling is also not contributing to the hypertension in BPH/2J mice. Chronic ICV administration of losartan (22 nmol/h) had minimal effect on BPN/3J mice. By contrast in BPH/2J mice, both ICV and subcutaneously administered losartan induced similar hypotensive responses (−12.1 ± 1.8 vs. −14.7 ± 1.8 mmHg, Proute = 0.31). Conclusion: While central effects of peripheral losartan cannot be excluded, we suggest the hypotensive effect of chronic ICV losartan was likely peripherally mediated. Thus, based on both acute and chronic AT1 receptor inhibition and acute ROS inhibition, our findings suggest that greater activation of central AT1 receptors or ROS are unlikely to be mediating the hypertension in BPH/2J mice.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Francine Z Marques
- Department of Pharmacology, Monash University, Victoria, VIC, Australia.,Heart Failure Research Group, Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, Latrobe University, Bundoora, VIC, Australia
| | - Pamela J Davern
- Neuropharmacology Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Victoria, VIC, Australia
| |
Collapse
|
27
|
Huber MJ, Chen QH, Shan Z. The Orexin System and Hypertension. Cell Mol Neurobiol 2018; 38:385-391. [PMID: 28349223 PMCID: PMC5617754 DOI: 10.1007/s10571-017-0487-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/18/2017] [Indexed: 12/18/2022]
Abstract
In this review, we focus on the role of orexin signaling in blood pressure control and its potential link to hypertension by summarizing evidence from several experimental animal models of hypertension. Studies using the spontaneously hypertensive rat (SHR) animal model of human essential hypertension show that pharmacological blockade of orexin receptors reduces blood pressure in SHRs but not in Wistar-Kyoto rats. In addition, increased activity of the orexin system contributes to elevated blood pressure and sympathetic nerve activity (SNA) in dark-active period Schlager hypertensive (BPH/2J) mice, another genetic model of neurogenic hypertension. Similar to these two models, Sprague-Dawley rats with stress-induced hypertension display an overactive central orexin system. Furthermore, upregulation of the orexin receptor 1 increases firing of hypothalamic paraventricular nucleus neurons, augments SNA, and contributes to hypertension in the obese Zucker rat, an animal model of obesity-related hypertension. Finally, we propose a hypothesis for the implication of the orexin system in salt-sensitive hypertension. All of this evidence, coupled with the important role of elevated SNA in increasing blood pressure, strongly suggests that hyperactivity of the orexin system contributes to hypertension.
Collapse
Affiliation(s)
- Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC 231, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC 231, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC 231, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
28
|
Didion SP. A novel genetic model to explore the Brenner hypothesis: Linking nephron endowment and number with hypertension. Med Hypotheses 2017; 106:6-9. [DOI: 10.1016/j.mehy.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
|
29
|
Positive allosteric modulation of GABAA receptors attenuates high blood pressure in Schlager hypertensive mice. J Hypertens 2017; 35:546-557. [PMID: 28009705 DOI: 10.1097/hjh.0000000000001210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Blood pressure high Schlager (BPH/2J) mice have neurogenic hypertension associated with differences in hypothalamic GABAA receptors compared with their normotensive counterparts (BPN/3J). Allopregnanolone is an endogenous neurosteroid reduced in chronic stress, and when administered, decreases anxiety by positive allosteric modulation of GABAA receptors. METHODS To determine if allopregnanolone could be a viable therapeutic for neurogenic hypertension, male BPH/2J (n = 6-7) and BPN/3J (n = 8-9) mice were equipped with radiotelemetry probes to compare cardiovascular variables before and after implantation of subcutaneous minipumps delivering allopregnanolone (5 mg/kg per day), or its vehicle, for a period of 2 weeks. In addition to baseline recordings, the response to stress and ganglionic blockade with pentolinium was recorded, before and 7-14 days after minipump implantation. Following treatment, brains were processed for c-Fos immunohistochemistry and quantitative real-time polymerase chain reaction. RESULTS Administration of allopregnanolone selectively reduced mean arterial pressure (-8.0 ± 2.7 mmHg; P = 0.02) and the depressor response to pentolinium (-15.3 ± 3.2 mmHg; P = 0.001) in BPH/2J mice, with minimal effects observed in BPN/3J mice. Following allopregnanolone treatment, the diminished expression of GABAA δ, α4 and β2 subunits in the hypothalamus (-1.6 to 4.8-fold; Pstrain < 0.05) was abolished. Furthermore, in BPH/2J mice, allopregnanolone treatment reduced the pressor response to dirty cage switch stress (-26.7 ± 4.5%; P < 0.001) and abolished the elevated c-Fos expression in pre-sympathetic nuclei. CONCLUSION The selective antihypertensive and stress inhibitory effects of allopregnanolone in BPH/2J mice suggest that allosteric modulation of GABAA receptors, in amygdalo-hypothalamic pathways, may contribute to the development of hypertension in this model and may offer a potential new therapeutic avenue.
Collapse
|
30
|
Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. Curr Top Behav Neurosci 2017; 33:157-196. [PMID: 27909989 DOI: 10.1007/7854_2016_46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orexin makes an important contribution to the regulation of cardiorespiratory function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate, sympathetic nerve activity, and the amplitude and frequency of respiration. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals at all levels of the central autonomic and respiratory network. These cardiorespiratory responses are components of arousal and are necessary to allow the expression of motivated behaviors. Thus, orexin contributes to the cardiorespiratory response to acute stressors, especially those of a psychogenic nature. Consequently, upregulation of orexin signaling, whether it is spontaneous or environmentally induced, can increase blood pressure and lead to hypertension, as is the case for the spontaneously hypertensive rat and the hypertensive BPH/2J Schlager mouse. Blockade of orexin receptors will reduce blood pressure in these animals, which could be a new pharmacological approach for the treatment of some forms of hypertension. Orexin can also magnify the respiratory reflex to hypercapnia in order to maintain respiratory homeostasis, and this may be in part why it is upregulated during obstructive sleep apnea. In this pathological condition, blockade of orexin receptors would make the apnea worse. To summarize, orexin is an important modulator of cardiorespiratory function. Acting on orexin signaling may help in the treatment of some cardiovascular and respiratory disorders.
Collapse
Affiliation(s)
- Pascal Carrive
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
31
|
The Effects of Rilmenidine and Perindopril on Arousal Blood Pressure during 24 Hour Recordings in SHR. PLoS One 2016; 11:e0168425. [PMID: 28002478 PMCID: PMC5176293 DOI: 10.1371/journal.pone.0168425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/30/2016] [Indexed: 11/22/2022] Open
Abstract
The surge in arterial pressure during arousal in the waking period is thought to be largely due to activation of the sympathetic nervous system. In this study we compared in SHR the effects of chronic administration of the centrally acting sympatholytic agent rilmenidine with an angiotensin converting enzyme inhibitor perindopril on the rate of rise and power of the surge in mean arterial pressure (MAP) that occurs with arousal associated with the onset of night. Recordings were made using radiotelemetry in 17 adult SHR before and after treatment with rilmenidine (2mg/kg/day), perindopril (1mg/kg/day) or vehicle in the drinking water for 2 weeks. Rilmenidine reduced MAP by 7.2 ± 1.7mmHg while perindopril reduced MAP by 19 ± 3mmHg. Double logistic curve fit analysis showed that the rate and power of increase in systolic pressure during the transition from light to dark was reduced by 50% and 65%, respectively, but had no effect on diastolic pressure. Rilmenidine also reduced blood pressure variability in the autonomic frequency in the active period as assessed by spectral analysis which is consistent with reduction in sympathetic nervous system activity. Perindopril had no effect on the rate or power of the arousal surge in either systolic or diastolic pressure. These results suggest that the arousal induced surge in blood pressure can largely be reduced by an antihypertensive agent that inhibits the sympathetic nervous system and that angiotensin converting enzyme inhibition, while effective in reducing blood pressure, does not alter the rate or power of the surge associated with arousal.
Collapse
|
32
|
Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 2016; 126:4674-4689. [PMID: 27841763 DOI: 10.1172/jci86950] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023] Open
Abstract
Hypertension is a leading risk factor for dementia, but the mechanisms underlying its damaging effects on the brain are poorly understood. Due to a lack of energy reserves, the brain relies on continuous delivery of blood flow to its active regions in accordance with their dynamic metabolic needs. Hypertension disrupts these vital regulatory mechanisms, leading to the neuronal dysfunction and damage underlying cognitive impairment. Elucidating the cellular bases of these impairments is essential for developing new therapies. Perivascular macrophages (PVMs) represent a distinct population of resident brain macrophages that serves key homeostatic roles but also has the potential to generate large amounts of reactive oxygen species (ROS). Here, we report that PVMs are critical in driving the alterations in neurovascular regulation and attendant cognitive impairment in mouse models of hypertension. This effect was mediated by an increase in blood-brain barrier permeability that allowed angiotensin II to enter the perivascular space and activate angiotensin type 1 receptors in PVMs, leading to production of ROS through the superoxide-producing enzyme NOX2. These findings unveil a pathogenic role of PVMs in the neurovascular and cognitive dysfunction associated with hypertension and identify these cells as a putative therapeutic target for diseases associated with cerebrovascular oxidative stress.
Collapse
|
33
|
Does Telomere Shortening Precede the Onset of Hypertension in Spontaneously Hypertensive Mice? Twin Res Hum Genet 2016; 19:422-9. [DOI: 10.1017/thg.2016.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Telomere length is widely considered as a marker of biological aging. Clinical studies have reported associations between reduced telomere length and hypertension. The aim of this study was to compare telomere length in hypertensive and normotensive mice at pre-disease and established disease time points to determine whether telomere length differs between the strains before and after the onset of disease. Genomic DNA was extracted from kidney and heart tissues of 4-, 12-, and 20-week-old male hypertensive (BPH/2J) and normotensive (BPN/3J) mice. Relative telomere length (T/S) was measured using quantitative PCR. Age was inversely correlated with telomere length in both strains. In 4-week-old pre-hypertensive animals, no difference in T/S was observed between BPH/2J and BPN/3J animals in kidney or heart tissue (kidney p = 0.14, heart p = 0.06). Once the animals had established disease, at 12 and 20 weeks, BPH/2J mice had significantly shorter telomeres when compared to their age-matched controls in both kidney (12 weeks p < 0.001 and 20 weeks p = 0.004) and heart tissues (12 weeks p < 0.001 and 20 weeks p < 0.001). This is the first study to show that differences in telomere lengths between BPH/2J and BPN/3J mice occur after the development of hypertension and do not cause hypertension in the BPH/2J mice.
Collapse
|
34
|
Orexin, Stress and Central Cardiovascular Control. A Link with Hypertension? Neurosci Biobehav Rev 2016; 74:376-392. [PMID: 27477446 DOI: 10.1016/j.neubiorev.2016.06.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/28/2016] [Accepted: 06/13/2016] [Indexed: 01/28/2023]
Abstract
Orexin, the arousal peptide, originates from neurons located in an area of the dorsal hypothalamus well known for integrating defense responses and their cardiovascular component. Orexin neurons, which are driven in large part by the limbic forebrain, send projections to many regions in the brain, including regions involved in cardiovascular control, as far down as sympathetic preganglionic neurons in the spinal cord. Central injections of orexin evoke sympathetically mediated cardiovascular responses. Conversely, blockade of orexin receptors reduce the cardiovascular responses to acute stressors, preferentially of a psychological nature. More importantly, lasting upregulation of orexin signaling can lead to a hypertensive state. This can be observed in rats exposed to chronic stress as well as in strains known to display spontaneous hypertension such as the spontaneously hypertensive rat (SHR) or the hypertensive BPH/2J Schlager mouse. Thus, there is a link between orexin, stress and hypertension, and orexin upregulation could be a factor in the development of essential hypertension. Orexin receptor antagonists have anti-hypertensive effects that could be of clinical use.
Collapse
|
35
|
Jackson KL, Dampney BW, Moretti JL, Stevenson ER, Davern PJ, Carrive P, Head GA. Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice. Hypertension 2016; 67:959-69. [PMID: 26975709 DOI: 10.1161/hypertensionaha.115.07053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/14/2016] [Indexed: 11/16/2022]
Abstract
BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1 ± 1.6 and -11.0 ± 1.1 mm Hg, respectively;P<0.001 compared with vehicle). However, when almorexant (100 mg/kg, IP) was administered during the light-inactive period (5 hours before lights off) no reduction from baseline was observed (P=0.64). The same dose of almorexant in BPN/3J mice had no effect on blood pressure during the dark (P=0.79) or light periods (P=0.24). Almorexant attenuated the depressor response to ganglion blockade (P=0.018) and reduced the mid frequency mean arterial pressure power in BPH/2J mice (P<0.001), but not BPN/3J mice (P=0.70). Immunohistochemical labeling revealed that BPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice.
Collapse
Affiliation(s)
- Kristy L Jackson
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., J.-L.M., E.R.S., P.J.D., G.A.H.); Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (B.W.D., P.C.); and Department of Pharmacology, Monash University, Melbourne, Victoria, Australia (G.A.H.)
| | - Bruno W Dampney
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., J.-L.M., E.R.S., P.J.D., G.A.H.); Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (B.W.D., P.C.); and Department of Pharmacology, Monash University, Melbourne, Victoria, Australia (G.A.H.)
| | - John-Luis Moretti
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., J.-L.M., E.R.S., P.J.D., G.A.H.); Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (B.W.D., P.C.); and Department of Pharmacology, Monash University, Melbourne, Victoria, Australia (G.A.H.)
| | - Emily R Stevenson
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., J.-L.M., E.R.S., P.J.D., G.A.H.); Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (B.W.D., P.C.); and Department of Pharmacology, Monash University, Melbourne, Victoria, Australia (G.A.H.)
| | - Pamela J Davern
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., J.-L.M., E.R.S., P.J.D., G.A.H.); Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (B.W.D., P.C.); and Department of Pharmacology, Monash University, Melbourne, Victoria, Australia (G.A.H.)
| | - Pascal Carrive
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., J.-L.M., E.R.S., P.J.D., G.A.H.); Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (B.W.D., P.C.); and Department of Pharmacology, Monash University, Melbourne, Victoria, Australia (G.A.H.)
| | - Geoffrey A Head
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., J.-L.M., E.R.S., P.J.D., G.A.H.); Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (B.W.D., P.C.); and Department of Pharmacology, Monash University, Melbourne, Victoria, Australia (G.A.H.).
| |
Collapse
|
36
|
Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ, Ludin JA, Oh SP, Katovich MJ, Frazier CJ, Raizada MK, Krause EG. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 2016; 105:114-123. [PMID: 26767952 DOI: 10.1016/j.neuropharm.2015.12.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/04/2015] [Accepted: 12/31/2015] [Indexed: 12/25/2022]
Abstract
Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Dipanwita Pati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - David J Pioquinto
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Jacob A Ludin
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Charles J Frazier
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA.
| |
Collapse
|
37
|
Carter JR, Goldstein DS. Sympathoneural and adrenomedullary responses to mental stress. Compr Physiol 2015; 5:119-46. [PMID: 25589266 DOI: 10.1002/cphy.c140030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This concept-based review provides historical perspectives and updates about sympathetic noradrenergic and sympathetic adrenergic responses to mental stress. The topic of this review has incited perennial debate, because of disagreements over definitions, controversial inferences, and limited availability of relevant measurement tools. The discussion begins appropriately with Cannon's "homeostasis" and his pioneering work in the area. This is followed by mental stress as a scientific idea and the relatively new notions of allostasis and allostatic load. Experimental models of mental stress in rodents and humans are discussed, with particular attention to ethical constraints in humans. Sections follow on sympathoneural responses to mental stress, reactivity of catecholamine systems, clinical pathophysiologic states, and the cardiovascular reactivity hypothesis. Future advancement of the field will require integrative approaches and coordinated efforts between physiologists and psychologists on this interdisciplinary topic.
Collapse
Affiliation(s)
- Jason R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
38
|
Chi Y, Jasmin JF, Seki Y, Lisanti MP, Charron MJ, Lefer DJ, Schuster VL. Inhibition of the Prostaglandin Transporter PGT Lowers Blood Pressure in Hypertensive Rats and Mice. PLoS One 2015; 10:e0131735. [PMID: 26121580 PMCID: PMC4488299 DOI: 10.1371/journal.pone.0131735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023] Open
Abstract
Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e., raising the level of endogenous prostaglandins, might have anti-hypertensive effects. To accomplish this, we focused on inhibiting the prostaglandin transporter PGT (SLCO2A1), which is the obligatory first step in the inactivation of several common PGs. We first examined the role of PGT in controlling arterial blood pressure blood pressure using anesthetized rats. The high-affinity PGT inhibitor T26A sensitized the ability of exogenous PGE2 to lower blood pressure, confirming both inhibition of PGT by T26A and the vasodepressor action of PGE2 T26A administered alone to anesthetized rats dose-dependently lowered blood pressure, and did so to a greater degree in spontaneously hypertensive rats than in Wistar-Kyoto control rats. In mice, T26A added chronically to the drinking water increased the urinary excretion and plasma concentration of PGE2 over several days, confirming that T26A is orally active in antagonizing PGT. T26A given orally to hypertensive mice normalized blood pressure. T26A increased urinary sodium excretion in mice and, when added to the medium bathing isolated mouse aortas, T26A increased the net release of PGE2 induced by arachidonic acid, inhibited serotonin-induced vasoconstriction, and potentiated vasodilation induced by exogenous PGE2. We conclude that pharmacologically inhibiting PGT-mediated prostaglandin metabolism lowers blood pressure, probably by prostaglandin-induced natriuresis and vasodilation. PGT is a novel therapeutic target for treating hypertension.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States of America
| | - Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Michael P. Lisanti
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Maureen J. Charron
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - David J. Lefer
- Department of Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Victor L. Schuster
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States of America
- * E-mail:
| |
Collapse
|
39
|
Marques FZ, Charchar FJ. microRNAs in Essential Hypertension and Blood Pressure Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:215-35. [PMID: 26663185 DOI: 10.1007/978-3-319-22671-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unravelling the complete genetic predisposition to high blood pressure (BP) has proven to be challenging. This puzzle and the fact that coding regions of the genome account for less than 2 % of the entire human DNA support the hypothesis that mechanisms besides coding genes are likely to contribute to BP regulation. Non-coding RNAs, especially microRNAs, are emerging as key players of transcription regulation in both health and disease states. They control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct involvement with BP regulation is highly probable. Here we review the literature about microRNAs associated with regulation of BP and hypertension, highlighting investigations, methodology and difficulties arising in the field. These molecules are being studied for exploitation in diagnostics, prognostics and therapeutics in many diseases. There have been some studies that examined biological fluid microRNAs as biomarkers for hypertension, but most remain inconclusive due to the small sample sizes and differences in methodological standardisation. Fewer studies have analysed tissue microRNA levels in vascular smooth muscle cells and the kidney. Others focused on the interaction between single nucleotide polymorphisms and microRNA binding sites. Studies in animals have shown that angiotensin II, high-salt diet and exercise change microRNA levels in hypertension. Treatment of spontaneously hypertensive rats with a miR-22 inhibitor and treatment of hypertensive Schlager BPH/2J mice with a miR-181a mimic decreased their BP. This supports the use of microRNAs as therapeutic targets in hypertension, and future studies should test the use of other microRNAs found in human association studies. In conclusion, there is a clear need of increased pace of human, animal and functional studies to help us understand the multifaceted roles of microRNAs as critical regulators of the development and physiology of BP.
Collapse
Affiliation(s)
- Francine Z Marques
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia.,Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Fadi J Charchar
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, VIC, Australia.
| |
Collapse
|
40
|
Quagliotto E, Casali KR, Dal Lago P, Rasia-Filho AA. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats. ACTA ACUST UNITED AC 2014; 48:128-39. [PMID: 25424367 PMCID: PMC4321218 DOI: 10.1590/1414-431x20144095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/22/2014] [Indexed: 11/21/2022]
Abstract
The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV.
Collapse
Affiliation(s)
- E Quagliotto
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - K R Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brasil
| | - P Dal Lago
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - A A Rasia-Filho
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
41
|
The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens 2014; 29:459-67. [PMID: 25391760 DOI: 10.1038/jhh.2014.99] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/19/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022]
Abstract
Unravelling the complete genetic predisposition to high blood pressure (BP) has proven to be challenging. This puzzle and the fact that coding regions of the genome account for less than 2% of the entire human DNA support the hypothesis that genetic mechanism besides coding genes are likely to contribute to BP regulation. Non-coding RNAs (ncRNAs) are emerging as key players of transcription regulation in both health and disease states. They control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct involvement with BP regulation is highly probable. Here, we review the literature about ncRNAs associated with human BP and essential hypertension, highlighting investigations, methodology and difficulties arising in the field. The most investigated ncRNAs so far are microRNAs (miRNAs), small ncRNAs that modulate gene expression by posttranscriptional mechanisms. We discuss studies that have examined miRNAs associated with BP in biological fluids, such as blood and urine, and tissues, such as vascular smooth muscle cells and the kidney. Furthermore, we review the interaction between miRNA binding sites and single nucleotide polymorphisms in genes associated with BP. In conclusion, there is a clear need for more human and functional studies to help elucidate the multifaceted roles of ncRNAs, in particular mid- and long ncRNAs in BP regulation.
Collapse
|
42
|
Identification of genes with altered expression in male and female Schlager hypertensive mice. BMC MEDICAL GENETICS 2014; 15:101. [PMID: 25259444 PMCID: PMC4355368 DOI: 10.1186/s12881-014-0101-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Background Numerous studies have shown sex differences in the onset and severity of hypertension. Despite these sex-differences the majority of animal studies are carried out in males. This study investigated expression changes in both male and female hypertensive mouse kidneys to identify common mechanisms that may be involved in the development of hypertension. Methods The Schlager hypertensive mouse model (BPH/2J) and its normotensive control (BPN/3J) were used in this study. Radiotelemetry was performed on 12 to 13 week old BPH/2J and BPN/3J male and female animals. Affymetrix GeneChip Mouse Gene 1.0 ST Arrays were performed in kidney tissue from 12 week old BPH/2J and BPN/3J male and female mice (n = 6/group). Genes that were differentially expressed in both male and female datasets were validated using qPCR. Results Systolic arterial pressure and heart rate was significantly higher in BPH/2J mice compared with BPN/3J mice in both males and females. Microarray analysis identified 153 differentially expressed genes that were common between males and females (70 upregulated and 83 downregulated). We validated 15 genes by qPCR. Genes involved in sympathetic activity (Hdc, Cndp2), vascular ageing (Edn3), and telomere maintenance (Mcm6) were identified as being differentially expressed between BPH/2J and BPN/3J comparisons. Many of these genes also exhibited expression differences between males and females within a strain. Conclusions This study utilised data from both male and female animals to identify a number of genes that may be involved in the development of hypertension. We show that female data can be used to refine candidate genes and pathways, as well as highlight potential mechanisms to explain the differences in prevalence and severity of disease between men and women. Electronic supplementary material The online version of this article (doi:10.1186/s12881-014-0101-x) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Lambert EA, Chatzivlastou K, Schlaich M, Lambert G, Head GA. Morning surge in blood pressure is associated with reactivity of the sympathetic nervous system. Am J Hypertens 2014; 27:783-92. [PMID: 24436322 DOI: 10.1093/ajh/hpt273] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND An exaggerated morning surge in blood pressure (BP) closely relates to target organ damage and cardiovascular risk, but whether the causative mechanism involves greater reactivity of the sympathetic nervous system (SNS) is unknown. We determined whether the response of the SNS to a cold pressor test predicted the BP morning surge. METHODS Ambulatory BP recordings were obtained from 14 men and 19 women (age = 41±4 years), and the amplitude (day-night difference), rate of rise (RoR), rate by amplitude product (BPPower), and morning BP surge (MBPS; post-awake minus pre-awake) of morning mean arterial pressure (MAP) were determined. The reactivity of the SNS to CPT was assessed by recording of muscle sympathetic nerve activity (MSNA). RESULTS CPT induced a marked increase in MAP and all parameters of MSNA, including burst amplitude. Log-normalized BPPower positively correlated with the overall average CPT-induced increases in total MSNA (r = 0.38; P = 0.04) and burst amplitude (r = 0.43; P = 0.02) but was not related to the increase in MSNA frequency. Furthermore, a strong positive linear trend in the CPT-induced changes in burst amplitude across tertiles of BPPower and RoR was observed. BPPower and RoR were not related to CPT-induced hemodynamic changes. The MBPS did not correlate with any of the CPT-induced changes in vascular or MSNA variables. CONCLUSIONS These results suggest that the central nervous system mechanisms influencing the increase in MSNA burst amplitude during arousal may also be fundamental in determining the rate and power of BP rise during the morning period.
Collapse
Affiliation(s)
- Elisabeth A Lambert
- Human Neurotransmitters Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
44
|
Jackson KL, Palma-Rigo K, Nguyen-Huu TP, Davern PJ, Head GA. Major Contribution of the Medial Amygdala to Hypertension in BPH/2J Genetically Hypertensive Mice. Hypertension 2014; 63:811-8. [DOI: 10.1161/hypertensionaha.113.02020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kristy L. Jackson
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Kesia Palma-Rigo
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Thu-Phuc Nguyen-Huu
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Pamela J. Davern
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Geoffrey A. Head
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| |
Collapse
|
45
|
Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice. J Hypertens 2014; 32:575-86. [DOI: 10.1097/hjh.0000000000000036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
GABAA receptor dysfunction contributes to high blood pressure and exaggerated response to stress in Schlager genetically hypertensive mice. J Hypertens 2014; 32:352-62. [DOI: 10.1097/hjh.0000000000000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Jackson KL, Nguyen-Huu TP, Davern PJ, Head GA. Energy metabolism in BPH/2J genetically hypertensive mice. Hypertens Res 2013; 37:413-21. [DOI: 10.1038/hr.2013.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 11/09/2022]
|
48
|
Miyazaki R, Kotani K, Tsuzaki K, Sakane N, Yonei Y, Ishii K. Effects of a year-long pedometer-based walking program on cardiovascular disease risk factors in active older people. Asia Pac J Public Health 2013; 27:155-63. [PMID: 24174388 DOI: 10.1177/1010539513506603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We assessed the relationship between the number of daily steps and changes in cardiovascular disease (CVD) risk factors in a year-long pedometer-based walking program for physically active older people. A total of 36 physically active older people (68.3 ± 5.8 years) completed this 59-week program. The CVD risk parameters were measured at baseline and at weeks 21 and 59. The mean number of steps increased by week 21 and was maintained at week 59 (approximately 10 000 steps, increase in 1500 steps from the baseline; P < .05). Following a significant reduction in body mass index at week 21, systolic blood pressure levels were significantly reduced, and high-density lipoprotein cholesterol levels were significantly increased at week 59 (P < .05). In summary, even active older people can achieve further protection against CVD risks by minor, but sustained, physical activity using pedometers for a period of more than 1 year.
Collapse
Affiliation(s)
| | - Kazuhiko Kotani
- National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kokoro Tsuzaki
- National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Naoki Sakane
- National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | | |
Collapse
|
49
|
Jackson KL, Marques FZ, Watson AMD, Palma-Rigo K, Nguyen-Huu TP, Morris BJ, Charchar FJ, Davern PJ, Head GA. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension 2013; 62:775-81. [PMID: 23897069 DOI: 10.1161/hypertensionaha.113.01701] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetically hypertensive mice (BPH/2J) are hypertensive because of an exaggerated contribution of the sympathetic nervous system to blood pressure. We hypothesize that an additional contribution to elevated blood pressure is via sympathetically mediated activation of the intrarenal renin-angiotensin system. Our aim was to determine the contribution of the renin-angiotensin system and sympathetic nervous system to hypertension in BPH/2J mice. BPH/2J and normotensive BPN/3J mice were preimplanted with radiotelemetry devices to measure blood pressure. Depressor responses to ganglion blocker pentolinium (5 mg/kg i.p.) in mice pretreated with the angiotensin-converting enzyme inhibitor enalaprilat (1.5 mg/kg i.p.) revealed a 2-fold greater sympathetic contribution to blood pressure in BPH/2J mice during the active and inactive period. However, the depressor response to enalaprilat was 4-fold greater in BPH/2J compared with BPN/3J mice, but only during the active period (P=0.01). This was associated with 1.6-fold higher renal renin messenger RNA (mRNA; P=0.02) and 0.8-fold lower abundance of micro-RNA-181a (P=0.03), identified previously as regulating human renin mRNA. Renin mRNA levels correlated positively with depressor responses to pentolinium (r=0.99; P=0.001), and BPH/2J mice had greater renal sympathetic innervation density as identified by tyrosine hydroxylase staining of cortical tubules. Although there is a major sympathetic contribution to hypertension in BPH/2J mice, the renin-angiotensin system also contributes, doing so to a greater extent during the active period and less during the inactive period. This is the opposite of the normal renin-angiotensin system circadian pattern. We suggest that renal hyperinnervation and enhanced sympathetically induced renin synthesis mediated by lower micro-RNA-181a contributes to hypertension in BPH/2J mice.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, P.O. Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abegaz B, Davern PJ, Jackson KL, Nguyen-Huu TP, Bassi JK, Connelly A, Choong YT, Allen AM, Head GA. Cardiovascular role of angiotensin type1A receptors in the nucleus of the solitary tract of mice. Cardiovasc Res 2013; 100:181-91. [DOI: 10.1093/cvr/cvt183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|