1
|
Liao L, Tao P, Xu Q, Chen J, Liu W, Hu J, Lu J. Bushen Huoxue formula protects against renal fibrosis and pyroptosis in chronic kidney disease by inhibiting ROS/NLRP3-mediated inflammasome activation. Ren Fail 2024; 46:2354444. [PMID: 38785272 PMCID: PMC11132749 DOI: 10.1080/0886022x.2024.2354444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Renal fibrosis contributes to chronic renal failure and a decline in the quality of life. Bushen Huoxue (BSHX) formula is a Traditional Chinese Medicine used to treat chronic renal failure. However, its mechanisms of action remain unclear. METHODS AND RESULTS In this study, a rat model of renal fibrosis was constructed by 5/6 nephrectomy in vivo, and histopathological changes were analyzed using hematoxylin-eosin and Masson's trichrome staining. Angiotensin II (Ang II) was used to establish an in vitro renal fibrosis cell model in vitro. Pyroptosis was measured using flow cytometry. Related markers of fibrosis and NOD-like receptor protein 3 (NLRP3) inflammasome activation were measured using western blotting and enzyme-linked immunosorbent assay. Treatment with BSHX (0.25, 0.5, and 1 g/kg) significantly inhibited renal fibrosis and damage in 5/6 nephrectomized rats and simultaneously reduced oxidative stress and NLRP3 inflammasome activation. Similarly, BSHX treatment reduced the levels of hydroxyproline, transforming growth factor-β, matrix metalloproteinase 2, and matrix metalloproteinase 9 and inactivated the Smad2/3 signaling pathway in Ang II-treated HK-2 cells. Our data also showed that treatment with BSHX reduced NLRP3 inflammasome activation and pyroptosis in Ang II-treated HK-2 cells. Moreover, fibrosis and pyroptosis in HK-2 cells induced by NLRP3 overexpression were reduced by treatment with BSHX. CONCLUSIONS BSHX significantly reduced renal fibrosis and pyroptosis, and its mechanism was mainly associated with the inhibition of reactive oxygen species (ROS)/NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Lin Liao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiming Xu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrao Lu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Zheng J, Hao H. Targeting renal damage: The ACE2/Ang-(1-7)/mas axis in chronic kidney disease. Cell Signal 2024; 124:111413. [PMID: 39293746 DOI: 10.1016/j.cellsig.2024.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The renin-angiotensin system (RAS) is a crucial factor in chronic kidney disease (CKD) progression, affecting renal function and contributing significantly to renal tissue inflammation and fibrosis. Activation of the classical ACE/Ang II/AT1 axis exacerbates renal damage, while the ACE2/Ang-(1-7)/Mas axis has shown promise in reducing CKD progression in numerous animal models. Recently, the ACE2/Ang-(1-7)/Mas axis has emerged as a promising target for CKD interventions. This review provides a comprehensive review of the pivotal role of this axis in CKD pathogenesis and systematically examines various molecules and pharmaceutical agents targeting this pathway. This review aims to elucidate potential strategies for delaying or halting CKD progression, offering patients more effective treatment options.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, PR China.
| |
Collapse
|
3
|
Hashemi ZS, Khalili S, Barough MS, Sarrami Forooshani R, Sanati H, Sarafrazi Esfandabadi F, Rasaee MJ, Nasirmoghadas P. Characterization of an engineered ACE2 protein for its improved biological features and its transduction into MSCs: A novel approach to combat COVID-19 infection. Int J Biol Macromol 2024; 277:134066. [PMID: 39059530 DOI: 10.1016/j.ijbiomac.2024.134066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Transduced MSCs that express engineered ACE2 could be highly beneficial to combat COVID-19. Engineered ACE2 can act as decoy targets for the virus, preventing its entry into healthy lung cells. To this end, genetic engineering techniques were used to integrate the ACE2 gene into the MSCs genome. The MSCs were evaluated for proper expression and functionality. The mutated form of ACE2 was characterized using various techniques such as protein expression analysis, binding affinity against spike protein, thermal stability assessment, and enzymatic activity assays. The functionality of the mACE2 was assessed on SARS-CoV-2 using the virus-neutralizing test. The obtained results indicated that by introducing specific mutations in the ACE2 gene, the resulting mutant ACE2 had enhanced interaction with viral spike protein, its thermal stability was increased, and its enzymatic function was inhibited as a decoy receptor. Moreover, the mACE2 protein showed higher efficacy in the neutralization of the SARS-CoV-2. In conclusion, this study proposes a novel approach with potential benefits such as targeted drug delivery and reduced side effects on healthy tissues. These transduced MSCs can also be used in combination with other anti-COVID-19 treatments. Design of similar engineered biomolecules with desired properties could also be used to target other diseases.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | | | - Hassan Sanati
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Ni WJ, Li ZL, Wen XL, Ji JL, Liu H, Yin Q, Jiang LYZ, Zhang YL, Wen Y, Tang TT, Jiang W, Lv LL, Gan WH, Liu BC, Wang B. HIF-1α and adaptor protein LIM and senescent cell antigen-like domains protein 1 axis promotes tubulointerstitial fibrosis by interacting with vimentin in angiotensin II-induced hypertension. Br J Pharmacol 2024; 181:3098-3117. [PMID: 38698737 DOI: 10.1111/bph.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.
Collapse
Affiliation(s)
- Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xian-Li Wen
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Liang-Yun-Zi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
6
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Rathi V, Sagi SSK, Yadav AK, Kumar M, Varshney R. Quercetin prophylaxis protects the kidneys by modulating the renin-angiotensin-aldosterone axis under acute hypobaric hypoxic stress. Sci Rep 2024; 14:7617. [PMID: 38556603 PMCID: PMC10982295 DOI: 10.1038/s41598-024-58134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
The study presented here aims at assessing the effects of hypobaric hypoxia on RAAS pathway and its components along with mitigation of anomalies with quercetin prophylaxis. One hour prior to hypobaric hypoxia exposure, male SD rats were orally supplemented with quercetin (50 mg/kg BW) and acetazolamide (50 mg/kg BW) and exposed them to 25,000 ft. (7,620 m) in a simulated environmental chamber for 12 h at 25 ± 2 °C. Different biochemical parameters like renin activity, aldosterone, angiotensin I, ACE 2 were determined in plasma. As a conventional response to low oxygen conditions, oxidative stress parameters (ROS and MDA) were elevated along with suppressed antioxidant system (GPx and catalase) in plasma of rats. Quercetin prophylaxis significantly down regulated the hypoxia induced oxidative stress by reducing plasma ROS & MDA levels with efficient enhancement of antioxidants (GPx and Catalase). Further, hypoxia mediated regulation of renin and ACE 2 proves the outstanding efficacy of quercetin in repudiating altercations in RAAS cascade due to hypobaric hypoxia. Furthermore, differential protein expression of HIF-1α, NFκB, IL-18 and endothelin-1 analyzed by western blotting approves the biochemical outcomes and showed that quercetin significantly aids in the reduction of inflammation under hypoxia. Studies conducted with Surface Plasmon Resonance demonstrated a binding among quercetin and ACE 2 that indicates that this flavonoid might regulate RAAS pathway via ACE 2. Henceforth, the study promotes the prophylaxis of quercetin for the better adaptability under hypobaric hypoxic conditions via modulating the RAAS pathway.
Collapse
Affiliation(s)
- Vaishnavi Rathi
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Sarada S K Sagi
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Amit Kumar Yadav
- Department of Biophysics, All India Institute of Medical Science, Delhi, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Science, Delhi, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|
8
|
Zhu W, Wang F, Hu C, Zhao Q, Zhang D, Wang X, Hu B, Li J. GTS-21 attenuates ACE/ACE2 ratio and glycocalyx shedding in lipopolysaccharide-induced acute lung injury by targeting macrophage polarization derived ADAM-17. Int Immunopharmacol 2024; 129:111603. [PMID: 38310766 DOI: 10.1016/j.intimp.2024.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Acute lung injury (ALI) has received considerable attention in intensive care owing to its high mortality rate. It has been demonstrated that the selective alpha7 nicotinic acetylcholine receptor agonist Gainesville Tokushima scientists (GTS)-21 is promising for treating ALI caused by lipopolysaccharides (LPS). However, the precise underlying mechanism remains unknown. This study aimed to investigate the potential efficacy of GTS-21 in the treatment of ALI. We developed mouse models of ALI and alveolar epithelial type II cells (AT2s) injury following treatment with LPS and different polarized macrophage supernatants, respectively. Pathological changes, pulmonary edema, and lung compliance were assessed. Inflammatory cells count, protein content, and pro-inflammatory cytokine levels were analysed in the bronchoalveolar lavage fluid. The expression of angiotensin-converting enzyme (ACE), ACE2, syndecan-1 (SDC-1), heparan sulphate (HS), heparanase (HPA), exostosin (EXT)-1, and NF-κB were tested in lung tissues and cells. GTS-21-induced changes in macrophage polarization were verified in vivo and in vitro. Polarized macrophage supernatants with or without recombination a disintegrin and metalloproteinase-17 (ADAM-17) and small interfering (si)RNA ADAM-17 were used to verify the role of ADAM-17 in AT2 injury. By reducing pathological alterations, lung permeability, inflammatory response, ACE/ACE2 ratio, and glycocalyx shedding, as well as by downregulating the HPA and NF-κB pathways and upregulating EXT1 expression in vivo, GTS-21 significantly diminished LPS-induced ALI compared to that of the LPS group. GTS-21 significantly attenuated macrophage M1 polarization and augmented M2 polarization in vitro and in vivo. The destructive effects of M1 polarization supernatant can be inhibited by GTS-21 and siRNA ADAM-17. GTS-21 exerted a protective effect against LPS-induced ALI, which was reversed by recombinant ADAM-17. Collectively, GTS-21 alleviates LPS-induced ALI by attenuating AT2s ACE/ACE2 ratio and glycocalyx shedding through the inhibition of macrophage M1 polarization derived ADAM-17.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China; Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, Shandong, China
| | - Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Qiuyue Zhao
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Dandan Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Xiaozhi Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, Shandong, China.
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China.
| | - Jianguo Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China.
| |
Collapse
|
9
|
Fan H, Shang N, Davidge ST, Wu J. Chicken Muscle-Derived ACE2-Upregulating Peptide VVHPKESF Reduces Blood Pressure Associated with the ACE2/Ang (1-7)/MasR Axis in Spontaneously Hypertensive Rats. Mol Nutr Food Res 2024; 68:e2300524. [PMID: 38356052 DOI: 10.1002/mnfr.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/29/2023] [Indexed: 02/16/2024]
Abstract
SCOPE This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Nan Shang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| |
Collapse
|
10
|
Rajabi S, Saberi S, Najafipour H, Askaripour M, Rajizadeh MA, Shahraki S, Kazeminia S. Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/smad signaling pathway. Mol Biol Rep 2024; 51:137. [PMID: 38236310 DOI: 10.1007/s11033-023-09127-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-β1 (TGF-β1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-β/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-β signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17β-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sarieh Shahraki
- Department of Physiology and Pharmacology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Ting R, Dutton H, Sorisky A. In vitro studies of the renin-angiotensin system in human adipose tissue/adipocytes and possible relationship to SARS-CoV-2: a scoping review. Adipocyte 2023; 12:2194034. [PMID: 36973648 PMCID: PMC10054178 DOI: 10.1080/21623945.2023.2194034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/02/2023] [Indexed: 03/29/2023] Open
Abstract
The renin-angiotensin system (RAS) operates within adipose tissue. Obesity-related changes can affect adipose RAS, predisposing to hypertension, type 2 diabetes, and possibly severe COVID-19. We evaluated the in vitro research on human adipose RAS and identified gaps in the literature. Medline (Ovid), Embase (Ovid), Web of Science, Scopus, and 1findr were searched to identify relevant studies. Fifty primary studies met our inclusion criteria for analysis. Expression of RAS components (n = 14), role in differentiation (n = 14), association with inflammation (n = 15) or blood pressure (n = 7) were investigated. We found (1) obesity-related changes in RAS were frequently studied (30%); (2) an upswing of articles investigating adipose ACE-2 expression since the COVID-19 pandemic; (3) a paucity of papers on AT2R and Ang (1-7)/MasR which counterbalance Ang II/ART1; (4) weight loss lowered adipose ACE-2 mRNA expression; and (5) angiotensin receptor blockers (ARBs) reduced deleterious effects of angiotensin II. Overall, these studies link Ang II/ATR1 signalling to impaired adipogenesis and a pro-inflammatory dysfunctional adipose tissue, with ATR1 blockade limiting these responses. ACE-2 may mitigate Ang II effects by converting it to Ang(1-7) which binds MasR. More work is needed to understand adipose RAS in various pathologic states such as obesity and COVID-19 infection.T.
Collapse
Affiliation(s)
- Ryan Ting
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Heidi Dutton
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
- The Ottawa Hospital/Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alexander Sorisky
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
- The Ottawa Hospital/Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
13
|
Hong L, Junjie C, Pengyu Z, Ping L, Wei C. The mechanism of oxidative stress in keloid fibroblasts and the experimental study of early application of angiotensin-converting enzyme inhibitor. Indian J Dermatol Venereol Leprol 2023; 89:842-849. [PMID: 37067128 DOI: 10.25259/ijdvl_323_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/12/2022] [Indexed: 03/31/2023]
Abstract
Objective To investigate the protective effects of an angiotensin-converting enzyme inhibitor after inducing oxidative stress on keloid fibroblasts. Methods Primary keloid fibroblasts were isolated and cultured by enzyme digestion combined with the tissue adhesion method in vitro, and the third to fifth generations of cells were selected for the experiment. For 24 hours, keloid fibroblasts were treated with different concentrations of hydrogen peroxide. Different concentrations of angiotensin-converting enzyme inhibitor were added to the keloid fibroblast culture medium, and then the cells were treated with hydrogen peroxide for 24 hours. Results With the increase of hydrogen peroxide concentration, the growth of keloid fibroblasts was inhibited and the levels of malondialdehyde, superoxide dismutase, and reactive oxygen species increased gradually, accompanied by an increase in the expression of nicotinamide adenine dinucleotide phosphate oxidase and collagen I mRNA. The expression of nicotinamide adenine dinucleotide phosphate oxidase-mRNA in keloid fibroblasts and the formation of reactive oxygen species in keloid fibroblasts were induced by different concentrations of angiotensin II, and the most significant effect was at 10-5 mmol/mL. The effects of diphenyleneiodonium chloride (NOX inhibitor), N-acetylcysteine (reactive oxygen species inhibitor) and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) RNA treatment on angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase and collagen I increased significantly. Hydrogen peroxide and angiotensin II alone or combined can induce NADPH oxidase and reactive oxygen species expression in keloid fibroblasts. When the angiotensin-converting enzyme inhibitor was added, the expression of NADPH oxidase and reactive oxygen species in keloid induced by hydrogen peroxide and angiotensin II could be inhibited. Conclusion Oxidative stress can lead to increased expression of reactive oxygen species, NADPH oxidase and collagen I in keloid fibroblasts, suggesting oxidative stress mediates the migration of human keloid fibroblasts and extracellular matrix synthesis.
Collapse
Affiliation(s)
- Li Hong
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| | - Chen Junjie
- Department of Aesthetic and Plastic Burn Surgery, West China Hospital of Sichuan University, Huaxi, China
| | - Zhao Pengyu
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| | - Liu Ping
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| | - Chen Wei
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
14
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
15
|
Golab F, Vahabzadeh G, SadeghRoudbari L, Shirazi A, Shabani R, Tanbakooei S, Kooshesh L. The Protective Potential Role of ACE2 against COVID-19. Adv Virol 2023; 2023:8451931. [PMID: 37275947 PMCID: PMC10238138 DOI: 10.1155/2023/8451931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Due to the coronavirus disease 2019 (COVID-19), researchers all over the world have tried to find an appropriate therapeutic approach for the disease. The angiotensin-converting enzyme 2 (ACE2) has been shown as a necessary receptor to cell fusion, which is involved in infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is commonly crucial for all organs and systems. When ACE2 is downregulated via the SARS-CoV-2 spike protein, it results in the angiotensin II (Ang II)/angiotensin type 1 receptor axis overactivation. Ang II has harmful effects, which can be evidenced by dysfunctions in many organs experienced by COVID-19 patients. ACE2 is the SARS-CoV-2 receptor and has an extensive distribution; thus, some COVID-19 cases experience several symptoms and complications. We suggest strategy for the potential protective effect of ACE2 to the viral infection. The current review will provide data to develop new approaches for preventing and controlling the COVID-19 outbreak.
Collapse
Affiliation(s)
- Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila SadeghRoudbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Shirazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Robabeh Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Tanbakooei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Kooshesh
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
16
|
Murali R, Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Kannampuzha S, Namachivayam A, Madhyastha H, Renu K, Ganesan R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines (Basel) 2023; 11:vaccines11020489. [PMID: 36851366 PMCID: PMC9959335 DOI: 10.3390/vaccines11020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (A.V.G.); (R.G.)
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kaviyarasi Renu
- Center of Molecular Medicine and Diagnostics (COMMAND), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
17
|
Abd El-Hakam FEZ, Abo Laban G, Badr El-Din S, Abd El-Hamid H, Farouk MH. Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in dexamethasone model hypertensive rats. Sci Rep 2022; 12:20765. [PMID: 36456799 PMCID: PMC9714403 DOI: 10.1038/s41598-022-24727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Hypertension-induced ventricular and vascular remodeling causes myocardial infarction, heart failure, and sudden death. Most available pharmaceutical products used to treat hypertension lead to adverse effects on human health. Limited data is available on apitherapy (bee products) combinations for treatment of hypertension. This study aims to evaluate the antihypertensive effects of combinations of natural apitherapy compounds used in the medical sector to treat a variety of diseases. Rats were assigned into six groups consisting of one control group and five hypertensive groups where hypertension (blood pressure > 140/90) was induced with dexamethasone. One of these groups was used as a hypertension model, while the remaining four hypertensive groups were treated with a propolis, royal jelly, and bee venom combination (PRV) at daily oral doses of 0.5, 1.0, and 2.0 mg/kg, and with losartan 10 mg/kg. The PRV combination at all doses decreased arterial blood pressure below the suboptimal value (p < 0.001), and PRV combination treatment improved dexamethasone-induced-ECG changes. The same treatment decreased angiotensin-II, endothelin-1, and tumor growth factor β serum levels in hypertensive rats. Additionally, PRV combination improved histopathological structure, and decreased serum levels of NF-kB and oxidative stress biomarkers. We concluded that PRV combination therapy may be used as a potential treatment for a variety of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Gomaa Abo Laban
- Plant Protection Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Sahar Badr El-Din
- Pharmacology Department, Faculty of Medicine for Girls, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hala Abd El-Hamid
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
18
|
Silva-Aguiar RP, Teixeira DE, Peres RAS, Peruchetti DB, Gomes CP, Schmaier AH, Rocco PRM, Pinheiro AAS, Caruso-Neves C. Subclinical Acute Kidney Injury in COVID-19: Possible Mechanisms and Future Perspectives. Int J Mol Sci 2022; 23:ijms232214193. [PMID: 36430671 PMCID: PMC9693299 DOI: 10.3390/ijms232214193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Since the outbreak of COVID-19 disease, a bidirectional interaction between kidney disease and the progression of COVID-19 has been demonstrated. Kidney disease is an independent risk factor for mortality of patients with COVID-19 as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to the development of acute kidney injury (AKI) and chronic kidney disease (CKD) in patients with COVID-19. However, the detection of kidney damage in patients with COVID-19 may not occur until an advanced stage based on the current clinical blood and urinary examinations. Some studies have pointed out the development of subclinical acute kidney injury (subAKI) syndrome with COVID-19. This syndrome is characterized by significant tubule interstitial injury without changes in the estimated glomerular filtration rate. Despite the complexity of the mechanism(s) underlying the development of subAKI, the involvement of changes in the protein endocytosis machinery in proximal tubule (PT) epithelial cells (PTECs) has been proposed. This paper focuses on the data relating to subAKI and COVID-19 and the role of PTECs and their protein endocytosis machinery in its pathogenesis.
Collapse
Affiliation(s)
- Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Douglas E. Teixeira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Rodrigo A. S. Peres
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Diogo B. Peruchetti
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Carlos P. Gomes
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- School of Medicine and Surgery, Federal University of the State of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Alvin H. Schmaier
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. M. Rocco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21045-900, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21045-900, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21045-900, Brazil
- Correspondence:
| |
Collapse
|
19
|
Vergara A, Wang K, Colombo D, Gheblawi M, Rasmuson J, Mandal R, Del Nonno F, Chiu B, Scholey JW, Soler MJ, Wishart DS, Oudit GY. Urinary angiotensin-converting enzyme 2 and metabolomics in COVID-19-mediated kidney injury. Clin Kidney J 2022; 16:272-284. [PMID: 36751625 PMCID: PMC9494506 DOI: 10.1093/ckj/sfac215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.
Collapse
Affiliation(s)
- Ander Vergara
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Mahmoud Gheblawi
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jaslyn Rasmuson
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Brian Chiu
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - James W Scholey
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - María José Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Barcelona, Spain,Nephrology and Transplantation Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - David S Wishart
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
20
|
Li M, Chen J, Liu Y, Zhao J, Li Y, Hu Y, Chen YQ, Sun L, Shu Y, Feng F, Sun C. Rational design of AAVrh10-vectored ACE2 functional domain to broadly block the cell entry of SARS-CoV-2 variants. Antiviral Res 2022; 205:105383. [PMID: 35917969 PMCID: PMC9338828 DOI: 10.1016/j.antiviral.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022]
Abstract
The frequently emerging SARS-CoV-2 variants have weakened the effectiveness of existing COVID-19 vaccines and neutralizing antibody therapy. Nevertheless, the infections of SARS-CoV-2 variants still depend on angiotensin-converting enzyme 2 (ACE2) receptor-mediated cell entry, and thus the soluble human ACE2 (shACE2) is a potential decoy for broadly blocking SARS-CoV-2 variants. In this study, we firstly generated the recombinant AAVrh10-vectored shACE2 constructs, a kind of adeno-associated virus (AAV) serotype with pulmonary tissue tropism, and then validated its inhibition capacity against SARS-CoV-2 infection. To further optimize the minimized ACE2 functional domain candidates, a comprehensive analysis was performed to clarify the interactions between the ACE2 orthologs from various species and the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Based on the key interface amino acids, we designed a series of truncated ACE2 orthologs, and then assessed their potential affinity to bind to SARS-CoV-2 variants RBD in silico. Of note, we found that the 24-83aa fragment of dog ACE2 (dACE224-83) had a higher affinity to the RBD of SARS-CoV-2 variants than that of human ACE2. Importantly, AAVrh10-vectored shACE2 or dACE224-83 constructs exhibited a broadly blockage breadth against SARS-CoV-2 prototype and variants in vitro and ex vivo. Collectively, these data highlighted a promising therapeutic strategy against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, PR China.
| | - Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Zhu P, Zhang W, Feng F, Qin L, Ji W, Li D, Liang R, Zhang Y, Wang Y, Li M, Wu W, Jin Y, Duan G. Role of angiotensin-converting enzyme 2 in fine particulate matter-induced acute lung injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153964. [PMID: 35182631 DOI: 10.1016/j.scitotenv.2022.153964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) pollution poses significant health concerns worldwide and can cause respiratory diseases. However, how it causes health problems is still poorly understood. Angiotensin-converting enzyme (ACE)2 is a terminal carboxypeptidase implicated in the functions of renin-angiotensin system (RAS) and plays a crucial role in the control of lung inflammation. To investigate whether ACE2 functions in PM2.5-induced lung inflammation, wild-type (WT) C57BL/6J mice and ACE2 knock-out (KO) mice were intratracheally instilled with PBS or PM2.5 suspension for 3 consecutive days, respectively. The concentrations of cytokines in bronchoalveolar lavage fluid (BALF) were determined by ELISA. The expression of ACE2 and ACE and activation of inflammatory signaling pathways in lung tissues were evaluated by immunofluorescence staining and Western blotting. We found that PM2.5 exposure increased ACE2 expression. Loss of ACE2 significantly elevated the levels of total proteins, total cells, and the concentrations of MCP-1, IL-1β in BALF after PM2.5 challenge. Additionally, loss of ACE2 enhanced lung pathologies, airway resistance, and inflammatory signaling activation. Collectively, loss of ACE2 exacerbates PM2.5-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Peiyu Zhu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfen Zhang
- Center of Advanced Analysis and Computational Science, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Luwei Qin
- Henan Province Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Wangquan Ji
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ruonan Liang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuexia Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyuan Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Chen XY, Lin C, Liu GY, Pei C, Xu GQ, Gao L, Wang SZ, Pan YX. ACE2 gene combined with exercise training attenuates central AngII/AT1 axis function and oxidative stress in a prehypertensive rat model. J Appl Physiol (1985) 2022; 132:1460-1467. [PMID: 35546127 PMCID: PMC11918447 DOI: 10.1152/japplphysiol.00459.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) or exercise training (ExT) is beneficial to hypertension, but their combined effects remain unknown. In this study, lentivirus containing enhanced green fluorescent protein (eGFP) and ACE2 were microinjected into the paraventricular nucleus (PVN) of young male spontaneous hypertensive rats (SHRs), and SHRs were assigned into five groups: sedentary (SHR), SHR-ExT, SHR-eGFP, ACE2 gene (SHR-ACE2), and ACE2 gene combined with ExT (SHR-ACE2-ExT). Wistar-Kyoto (WKY) rats were used as a control. ACE2 gene or ExT significantly delayed the elevation of blood pressure, and the combined effect prevented the development and progression of prehypertension. Either ACE2 overexpression or ExT improved arterial baroreflex sensitivity (BRS), whereas the combined effect normalized BRS in SHR. Compared with SHR, SHR-ACE2 and SHR-ExT displayed a significantly higher level of ACE2 protein but had lower plasma norepinephrine (NE) and angiotensin II (AngII) as well as angiotensin II type 1 receptor (AT1) protein expression in the PVN. SHR-ACE2-ExT showed the largest decrease in AngII and AT1 protein expression. Reactive oxygen species (ROS) level and NADPH oxidase (NOX2 and NOX4) protein expression in PVN were also decreased in SHR-ACE2-ExT group than in SHR-ACE2 and SHR-ExT groups. It was concluded that the combined effect has effectively prevented prehypertension progression and baroreflex dysfunction in SHR, which is associated with the reduction in AngII/AT1 axis function and oxidative stress in the PVN.NEW & NOTEWORTHY Angiotensin-converting enzyme 2 (ACE2) gene in combination with exercise training (ExT) delayed the progression of hypertension via normalizing the blunted baroreflex sensitivity (BRS) and inhibiting sympathetic nerve activity (SNA). Its underlying mechanism may be related to the inhibition of AngII/AT1 axis function and central oxidative stress in the paraventricular nucleus (PVN) of prehypertensive rats.
Collapse
Affiliation(s)
- Xiu-Yun Chen
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Cheng Lin
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Guo-Ying Liu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Chun Pei
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Gui-Qing Xu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Lie Gao
- Department of Cellular and Integrative, Physiology of University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi-Zhong Wang
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Yan-Xia Pan
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Cook JR, Ausiello J. Functional ACE2 deficiency leading to angiotensin imbalance in the pathophysiology of COVID-19. Rev Endocr Metab Disord 2022; 23:151-170. [PMID: 34195965 PMCID: PMC8245275 DOI: 10.1007/s11154-021-09663-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, uses angiotensin converting enzyme 2 (ACE2) as its primary cell-surface receptor. ACE2 is a key enzyme in the counter-regulatory pathway of the broader renin-angiotensin system (RAS) that has been implicated in a broad array of human pathology. The RAS is composed of two competing pathways that work in opposition to each other: the "conventional" arm involving angiotensin converting enzyme (ACE) generating angiotensin-2 and the more recently identified ACE2 pathway that generates angiotensin (1-7). Following the original SARS pandemic, additional studies suggested that coronaviral binding to ACE2 resulted in downregulation of the membrane-bound enzyme. Given the similarities between the two viruses, many have posited a similar process with SARS-CoV-2. Proponents of this ACE2 deficiency model argue that downregulation of ACE2 limits its enzymatic function, thereby skewing the delicate balance between the two competing arms of the RAS. In this review we critically examine this model. The available data remain incomplete but are consistent with the possibility that the broad multisystem dysfunction of COVID-19 is due in large part to functional ACE2 deficiency leading to angiotensin imbalance with consequent immune dysregulation and endothelial cell dysfunction.
Collapse
Affiliation(s)
- Joshua R Cook
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA
| | - John Ausiello
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Hasan HF, Galal SM, Ellethy RA. Mitigative impact of bradykinin potentiating factor isolated from Androctonus amorexi scorpion venom and low doses of γ-irradiation on doxorubicin induced hepatotoxicity through Ang II/AMPK crosstalk. Toxicol Mech Methods 2022; 32:518-529. [PMID: 35253586 DOI: 10.1080/15376516.2022.2049941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Shereen Mohamed Galal
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Rania A Ellethy
- Chemistry department, faculty of science, Helwan university, Cairo, Egypt
| |
Collapse
|
25
|
Song Y, Jia H, Hua Y, Wu C, Li S, Li K, Liang Z, Wang Y. The Molecular Mechanism of Aerobic Exercise Improving Vascular Remodeling in Hypertension. Front Physiol 2022; 13:792292. [PMID: 35295586 PMCID: PMC8919036 DOI: 10.3389/fphys.2022.792292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment and prevention of hypertension has been a worldwide medical challenge. The key pathological hallmark of hypertension is altered arterial vascular structure and function, i.e., increased peripheral vascular resistance due to vascular remodeling. The aim of this review is to elucidate the molecular mechanisms of vascular remodeling in hypertension and the protective mechanisms of aerobic exercise against vascular remodeling during the pathological process of hypertension. The main focus is on the mechanisms of oxidative stress and inflammation in the pathological condition of hypertension and vascular phenotypic transformation induced by the trilaminar structure of vascular endothelial cells, smooth muscle cells and extracellular matrix, and the peripheral adipose layer of the vasculature. To further explore the possible mechanisms by which aerobic exercise ameliorates vascular remodeling in the pathological process of hypertension through anti-proliferative, anti-inflammatory, antioxidant and thus inhibiting vascular phenotypic transformation. It provides a new perspective to reveal the intervention targets of vascular remodeling for the prevention and treatment of hypertension and its complications.
Collapse
Affiliation(s)
- Yinping Song
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Hao Jia
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Yijie Hua
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Chen Wu
- School of Health and Sports, Xi’an Fanyi University, Xi’an, China
| | - Sujuan Li
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Kunzhe Li
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Zhicheng Liang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
- *Correspondence: Youhua Wang,
| |
Collapse
|
26
|
Labandeira-Garcia JL, Labandeira CM, Valenzuela R, Pedrosa MA, Quijano A, Rodriguez-Perez AI. Drugs Modulating Renin-Angiotensin System in COVID-19 Treatment. Biomedicines 2022; 10:502. [PMID: 35203711 PMCID: PMC8962306 DOI: 10.3390/biomedicines10020502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
A massive worldwide vaccination campaign constitutes the main tool against the COVID-19 pandemic. However, drug treatments are also necessary. Antivirals are the most frequently considered treatments. However, strategies targeting mechanisms involved in disease aggravation may also be effective. A major role of the tissue renin-angiotensin system (RAS) in the pathophysiology and severity of COVID-19 has been suggested. The main link between RAS and COVID-19 is angiotensin-converting enzyme 2 (ACE2), a central RAS component and the primary binding site for SARS-CoV-2 that facilitates the virus entry into host cells. An initial suggestion that the susceptibility to infection and disease severity may be enhanced by angiotensin type-1 receptor blockers (ARBs) and ACE inhibitors (ACEIs) because they increase ACE2 levels, led to the consideration of discontinuing treatments in thousands of patients. More recent experimental and clinical data indicate that ACEIs and, particularly, ARBs can be beneficial for COVID-19 outcome, both by reducing inflammatory responses and by triggering mechanisms (such as ADAM17 inhibition) counteracting viral entry. Strategies directly activating RAS anti-inflammatory components such as soluble ACE2, Angiotensin 1-7 analogues, and Mas or AT2 receptor agonists may also be beneficial. However, while ACEIs and ARBs are cheap and widely used, the second type of strategies are currently under study.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Carmen M. Labandeira
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Neurology Service, Hospital Alvaro Cunqueiro, University Hospital Complex, 36213 Vigo, Spain
| | - Rita Valenzuela
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Maria A. Pedrosa
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Aloia Quijano
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
| | - Ana I. Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.M.L.); (R.V.); (M.A.P.); (A.Q.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
27
|
Abstract
Almost 200 years ago, the first evidence described by Robert Bright (1836) showed the strong interaction between the kidneys and heart and, since then, the scientific community has dedicated itself to better understanding the mechanisms involved in the kidney-heart relationship, known in recent decades as cardiorenal syndrome (CRS). This syndrome includes a wide clinical variety that affects the kidneys and heart, in an acute or chronic manner. Moreover, it is well established in the literature that the immune system, the sympathetic nervous system, the renin-angiotensin-aldosterone, and the oxidative stress actively play a strong role in the cellular and molecular processes present in CRS. More recently, uremic molecules and epigenetic factors have been also shown to be key mediators in the development of syndrome. The present review intends to present the state of the art regarding CRS and to show the paths known, until now, in the long road between the kidneys and heart.
Collapse
|
28
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
29
|
Xu C, Chen Y, Yu J. Foe and friend in the COVID-19-associated acute kidney injury: an insight on intrarenal renin-angiotensin system. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-11. [PMID: 35130610 PMCID: PMC9828085 DOI: 10.3724/abbs.2021002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
Since the first reported case in December of 2019, the coronavirus disease 2019 (COVID-19) has became an international public health emergency. So far, there are more than 228,206,384 confirmed cases including 4,687,066 deaths. Kidney with high expression of angiotensin-converting enzyme 2 (ACE2) is one of the extrapulmonary target organs affected in patients with COVID-19. Acute kidney injury (AKI) is one of the independent risk factors for the death of COVID-19 patients. The imbalance between ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R axis in the kidney may contribute to COVID-19-associated AKI. Although series of research have shown the inconsistent effects of multiple common RAS inhibitors on ACE2 expression and enzyme activity, most of the retrospective cohort studies indicated the safety and protective effects of ACEI/ARB in COVID-19 patients. This review article highlights the current knowledge on the possible involvement of intrarenal RAS in COVID-19-associated AKI with a primary focus on the opposing effects of ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R signaling in the kidney. Human recombinant soluble ACE2 or ACE2 variants with preserved ACE2-enzymatic activity may be the best options to improve COVID-19-associated AKI.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine CentreJiangxi University of Chinese MedicineNanchang330002China
| | - Yanting Chen
- Institute of HypertensionSun Yat-sen University School of MedicineGuangzhou510080China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of PhysiologyLewis Katz School of MedicineTemple UniversityPhiladelphiaPA19140USA
| |
Collapse
|
30
|
MicroRNA-122-5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3. Exp Cell Res 2022; 411:113017. [PMID: 34998813 DOI: 10.1016/j.yexcr.2022.113017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022]
Abstract
Hypertensive renal injury is accompanied by tubular interstitial fibrosis leading to increased risk for renal failure. This study aimed to explore the influences of miR-122-5p in hypertension-mediated renal fibrosis and damage. 14-week-old male SHR and WKY rats were randomly assigned to treat with rAAV-miR-122-5p or rAAV-GFP for 8 weeks. There were marked increases in miR-122-5p and Kim-1 levels and decreases in FOXO3 and SIRT6 levels in hypertensive rats. Transfection with rAAV-miR-122-5p triggered exacerbation of renal fibrosis, apoptosis and inflammatory injury in SHR, associated with downregulated levels of FOXO3, SIRT6, ATG5 and BNIP3 as well as upregulated expression of Kim-1, NOX4, CTGF, and TGF-β1. In cultured primary mouse renal tubular interstitial fibroblasts, exposure to angiotensin II resulted in obvious downregulation of FOXO3, SIRT6, ATG5, BNIP3 and nitric oxide levels as well as augmented cellular migration, oxidative stress, and inflammation, which were exacerbated by miR-122-5p mimic while rescued by miR-122-5p inhibitor and rhFOXO3, respectively. Notably, knockdown of FOXO3 strikingly blunted cellular protective effects of miR-122-5p inhibitor. In summary, miR-122-5p augments renal fibrosis, inflammatory and oxidant injury in hypertensive rats by suppressing the expression of FOXO3. Pharmacological inhibition of miR-122-5p has potential therapeutic significance for hypertensive renal injury and fibrosis-related kidney diseases.
Collapse
|
31
|
Dutta AK, Goswami K. Association of Alpha 1 Antitrypsin Deficiency with COVID-19 Mortality: Basis for Clinical Trials. FRONTIERS OF COVID-19 2022:325-336. [DOI: 10.1007/978-3-031-08045-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
32
|
Pagliaro P, Thairi C, Alloatti G, Penna C. Angiotensin-converting enzyme 2: a key enzyme in key organs. J Cardiovasc Med (Hagerstown) 2022; 23:1-11. [PMID: 34091532 DOI: 10.2459/jcm.0000000000001218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
2020 marked the 20th anniversary of the discovery of the angiotensin-converting enzyme 2 (ACE2). This major event that changed the way we see the renin-angiotensin system today could have passed quietly. Instead, the discovery that ACE2 is a major player in the severe acute respiratory syndrome coronavirus 2 pandemic has blown up the literature regarding this enzyme. ACE2 connects the classical arm renin-angiotensin system, consisting mainly of angiotensin II peptide and its AT1 receptor, with a protective arm, consisting mainly of the angiotensin 1-7 peptide and its Mas receptor. In this brief article, we have reviewed the literature to describe how ACE2 is a key protective arm enzyme in the function of many organs, particularly in the context of brain and cardiovascular function, as well as in renal, pulmonary and digestive homeostasis. We also very briefly review and refer to recent literature to present an insight into the role of ACE2 in determining the course of coronavirus diseases 2019.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Turin
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin
| |
Collapse
|
33
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
34
|
Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Front Cell Infect Microbiol 2021; 11:753721. [PMID: 34746028 PMCID: PMC8569405 DOI: 10.3389/fcimb.2021.753721] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has currently spread worldwide, leading to high morbidity and mortality. As the putative receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) is widely distributed in various tissues and organs of the human body. Simultaneously, ACE2 acts as the physiological counterbalance of ACE providing homeostatic regulation of circulating angiotensin II levels. Given that some ACE2 variants are known to cause an increase in the ligand-receptor affinity, their roles in acquisition, progression and severity of COVID-19 disease have aroused widespread concerns. Therefore, we summarized the latest literature and explored how ACE2 variants and epigenetic factors influence an individual’s susceptibility to SARS-CoV-2 infection and disease outcome in aspects of ethnicity, gender and age. Meanwhile, the possible mechanisms for these phenomena were discussed. Notably, recombinant human ACE2 and ACE2-derived peptides may have special benefits for combating SARS-CoV-2 variants and further studies are warranted to confirm their effects in later stages of the disease process. As the uncertainty regarding the severity and transmissibility of disease rises, a more in-depth understanding of the host genetics and functional characteristics of ACE2 variants will not only help explain individual clinical differences of the disease, but also contribute to providing effective measures to develop solutions and manage future outbreaks of SARS-CoV-2.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, Jining, China
| | - Yankun Zhang
- Department of Physiology, Jining Medical University, Jining, China
| | - Xiaoyun Li
- Department of Physiology, Jining Medical University, Jining, China
| | - Wen Li
- Department of Physiology, Jining Medical University, Jining, China
| | - Xuan Liu
- Department of Physiology, Jining Medical University, Jining, China
| | - Xinyu Xue
- Department of Physiology, Jining Medical University, Jining, China
| |
Collapse
|
35
|
Feng F, Chen J, Zhao J, Li Y, Li M, Sun C. Killing Two Birds with One Stone by Administration of Soluble ACE2: A Promising Strategy to Treat Both Cardiovascular Diseases and SARS-CoV-2 Infection. Viruses 2021; 13:2243. [PMID: 34835049 PMCID: PMC8622942 DOI: 10.3390/v13112243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells mainly by the angiotensin converting enzyme 2 (ACE2) receptor, which can recognize the spike (S) protein by its extracellular domain. Previously, recombinant soluble ACE2 (sACE2) has been clinically used as a therapeutic treatment for cardiovascular diseases. Recent data demonstrated that sACE2 can also be exploited as a decoy to effectively inhibit the cell entry of SARS-CoV-2, through blocking SARS-CoV-2 binding to membrane-anchored ACE2. In this study, we summarized the current findings on the optimized sACE2-based strategies as a therapeutic agent, including Fc fusion to prolong the half-life of sACE2, deep mutagenesis to create high-affinity decoys for SARS-CoV-2, or designing the truncated functional fragments to enhance its safety, among others. Considering that COVID-19 patients are often accompanied by manifestations of cardiovascular complications, we think that administration of sACE2 in COVID-19 patients may be a promising therapeutic strategy to simultaneously treat both cardiovascular diseases and SARS-CoV-2 infection. This review would provide insights for the development of novel therapeutic agents against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
36
|
Ventura D, Carr AL, Davis RD, Silvestry S, Bogar L, Raval N, Gries C, Hayes JE, Oliveira E, Sniffen J, Allison SL, Herrera V, Jennings DL, Page RL, McDyer JF, Ensor CR. Renin Angiotensin Aldosterone System Antagonism in 2019 Novel Coronavirus Acute Lung Injury. Open Forum Infect Dis 2021; 8:ofab170. [PMID: 34642634 PMCID: PMC8083494 DOI: 10.1093/ofid/ofab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
It has been established that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses angiotensin-converting enzyme 2 (ACE2), a membrane-bound regulatory peptide, for host cell entry. Renin-angiotensin-aldosterone system (RAAS) inhibitors have been reported to increase ACE2 in type 2 pneumocyte pulmonary tissue. Controversy exists for the continuation of ACE inhibitors, angiotensin II receptor blockers, and mineralocorticoid receptor antagonists in the current pandemic. ACE2 serves as a regulatory enzyme in maintaining homeostasis between proinflammatory angiotensin II and anti-inflammatory angiotensin 1,7 peptides. Derangements in these peptides are associated with cardiovascular disease and are implicated in the progression of acute respiratory distress syndrome. Augmentation of the ACE2/Ang 1,7 axis represents a critical target in the supportive management of coronavirus disease 2019–associated lung disease. Observational data describing the use of RAAS inhibitors in the setting of SARS-CoV-2 have not borne signals of harm to date. However, equipoise persists, requiring an analysis of novel agents including recombinant human-ACE2 and existing RAAS inhibitors while balancing ongoing controversies associated with increased coronavirus infectivity and virulence.
Collapse
Affiliation(s)
- Davide Ventura
- University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Amy L Carr
- University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - R Duane Davis
- AdventHealth Transplant Institute, Orlando, Florida, USA
| | | | - Linda Bogar
- AdventHealth Transplant Institute, Orlando, Florida, USA
| | - Nirav Raval
- AdventHealth Transplant Institute, Orlando, Florida, USA
| | - Cynthia Gries
- AdventHealth Transplant Institute, Orlando, Florida, USA
| | - Jillian E Hayes
- Department of Pharmacy, AdventHealth Orlando, Orlando, Florida, USA.,University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Eduardo Oliveira
- Department of Critical Care Medicine, AdventHealth Medical Group, Orlando, Florida, USA
| | - Jason Sniffen
- Infectious Diseases Consultants, Orlando, Florida, USA
| | - Steven L Allison
- Department of Pharmacy, AdventHealth Orlando, Orlando, Florida, USA.,University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Victor Herrera
- Division of Infectious Diseases, Department of Internal Medicine, AdventHealth, Orlando, Florida, USA
| | - Douglas L Jennings
- Long Island University College of Pharmacy, Brooklyn, New York, USA.,Department of Pharmacy, Columbia University Medical Center, New York, New York, USA
| | - Robert L Page
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, Colorado, USA
| | - John F McDyer
- Department of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher R Ensor
- Department of Pharmacy, AdventHealth Orlando, Orlando, Florida, USA.,University of Florida College of Pharmacy, Gainesville, Florida, USA
| |
Collapse
|
37
|
Song JJ, Yang M, Liu Y, Song JW, Liu XY, Miao R, Zhang ZZ, Liu Y, Fan YF, Zhang Q, Dong Y, Yang XC, Zhong JC. Elabela prevents angiotensin II-induced apoptosis and inflammation in rat aortic adventitial fibroblasts via the activation of FGF21-ACE2 signaling. J Mol Histol 2021; 52:905-918. [PMID: 34453661 PMCID: PMC8401356 DOI: 10.1007/s10735-021-10011-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Apoptosis, inflammation, and fibrosis contribute to vascular remodeling and injury. Elabela (ELA) serves as a crucial regulator to maintain vascular function and has been implicated in the pathogenesis of hypertensive vascular remodeling. This study aims to explore regulatory roles and underlying mechanisms of ELA in rat aortic adventitial fibroblasts (AFs) in response to angiotensin II (ATII). In cultured AFs, exposure to ATII resulted in marked decreases in mRNA and protein levels of ELA, fibroblast growth factor 21 (FGF21), and angiotensin-converting enzyme 2 (ACE2) as well as increases in apoptosis, inflammation, oxidative stress, and cellular migration, which were partially blocked by the exogenous replenishment of ELA and recombinant FGF21, respectively. Moreover, treatment with ELA strikingly reversed ATII-mediated the loss of FGF21 and ACE2 levels in rat aortic AFs. FGF21 knockdown with small interfering RNA (siRNA) significantly counterbalanced protective effects of ELA on ATII-mediated the promotion of cell migration, apoptosis, inflammatory, and oxidative injury in rat aortic AFs. More importantly, pretreatment with recombinant FGF21 strikingly inhibited ATII-mediated the loss of ACE2 and the augmentation of cell apoptosis, oxidative stress, and inflammatory injury in rat aortic AFs, which were partially prevented by the knockdown of ACE2 with siRNA. In summary, ELA exerts its anti-apoptotic, anti-inflammatory, and anti-oxidant effects in rat aortic AFs via activation of the FGF21-ACE2 signaling. ELA may represent a potential candidate to predict vascular damage and targeting the FGF21-ACE2 signaling may be a promising therapeutic intervention for vascular adventitial remodeling and related disorders.
Collapse
Affiliation(s)
- Juan-Juan Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mei Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen-Zhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yu Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Fan Fan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qian Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
38
|
Antoku Y, Takemoto M, Mito T, Shiiyama R, Otsuka-Morisaki H, Tanaka A, Maeda Y, Tsuchihashi T. Impact of Annual Cardiovascular Screening Tests in Patients with Type 2 Diabetes Mellitus without Previous Histories of Cardiovascular Disease: Four-year Clinical Outcomes. Intern Med 2021; 60:2725-2732. [PMID: 33716290 PMCID: PMC8479217 DOI: 10.2169/internalmedicine.6893-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Objective We previously reported that, among asymptomatic patients with type 2 diabetes mellitus (T2DM) without a history of cardiovascular disease (CVD), up to 19% of the patients with myocardial ischemia were detected by annual cardiovascular screening tests (ACVSTs). Thus, the present study assessed the long-term clinical outcomes of ACVSTs in those patients. Methods Six hundred and fifty-seven outpatients with T2DM who received ACVSTs at least once or not at all from April 2014 to March 2018 were defined as the S and NS groups, respectively. The data were compared between these two groups. Results This study revealed that, among outpatients with T2DM in our hospital over those four years, with the increasing frequency of receiving ACVSTs, 1) the frequency of the internal use of statins, anti-platelets, and renin-angiotensin system inhibitors, which are well-known as medications for preventing CVD, significantly increased; 2) low-density lipoprotein-cholesterol and triglyceride levels significantly improved; 3) levels of highly sensitive C-protein, a strong predictors of CVD, were significantly suppressed; 4) the progression of renal dysfunction was significantly suppressed; 5) the cumulative of four-point major adverse cardiovascular events and admissions due to heart failure significantly decreased; and 6) the cumulative of all-cause mortality was significantly suppressed. Conclusions Given the above, it may be important to continue ACVSTs in outpatients with T2DM without a history of CVD for several years.
Collapse
Affiliation(s)
- Yoshibumi Antoku
- Cardiovascular Center, Steel Memorial Yawata Hospital, Japan
- Department of Cardiology, Munakata Suikokai General Hospital, Japan
| | - Masao Takemoto
- Cardiovascular Center, Steel Memorial Yawata Hospital, Japan
- Department of Cardiology, Munakata Suikokai General Hospital, Japan
| | - Takahiro Mito
- Department of Cardiology, Munakata Suikokai General Hospital, Japan
| | - Ryuta Shiiyama
- Department of Cardiology, Munakata Suikokai General Hospital, Japan
| | | | - Atsushi Tanaka
- Department of Cardiology, Munakata Suikokai General Hospital, Japan
| | - Yasutaka Maeda
- Diabetes and Endocrine Center, Munakata Suikokai General Hospital, Japan
- Masae Minami Clinic, Japan
| | | |
Collapse
|
39
|
Sex and kidney ACE2 expression in primary focal segmental glomerulosclerosis: A NEPTUNE study. PLoS One 2021; 16:e0252758. [PMID: 34097714 PMCID: PMC8184004 DOI: 10.1371/journal.pone.0252758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) has been implicated in the pathogenesis of experimental kidney disease. ACE2 is on the X chromosome, and in mice, deletion of ACE2 leads to the development of focal segmental glomerulosclerosis (FSGS). The relationship between sex and renal ACE2 expression in humans with kidney disease is a gap in current knowledge. Methods We studied renal tubulointerstitial microarray data and clinical variables from subjects with FSGS enrolled in the Nephrotic Syndrome Study Network (NEPTUNE) study. We compared relationships between ACE2 expression and age, estimated glomerular filtration rate (eGFR), urinary albumin to creatinine ratio (UACR), interstitial fibrosis, tubular atrophy, and genes implicated in inflammation and fibrosis in male and female subjects. Results ACE2 mRNA expression was lower in the tubulointerstitium of males compared to females (P = 0.0026). Multiple linear regression analysis showed that ACE2 expression was related to sex and eGFR but not to age or treatment with renin angiotensin system blockade. ACE2 expression is also related to interstitial fibrosis, and tubular atrophy, in males but not in females. Genes involved in inflammation (CCL2 and TNF) correlated with ACE2 expression in males (TNF: r = -0.65, P < 0.0001; CCL2: r = -0.60, P < 0.0001) but not in females. TGFB1, a gene implicated in fibrosis correlated with ACE2 in both sexes. Conclusions Sex is an important determinant of ACE2 expression in the tubulointerstitium of the kidney in FSGS. Sex also influences the relationships between ACE2, kidney fibrosis, and expression of genes involved in kidney inflammation.
Collapse
|
40
|
Triposkiadis F, Starling RC, Xanthopoulos A, Butler J, Boudoulas H. The Counter Regulatory Axis of the Lung Renin-Angiotensin System in Severe COVID-19: Pathophysiology and Clinical Implications. Heart Lung Circ 2021; 30:786-794. [PMID: 33454213 PMCID: PMC7831862 DOI: 10.1016/j.hlc.2020.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/17/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which is responsible for coronavirus disease 2019 (COVID-19), uses angiotensin (ANG)-converting enzyme 2 (ACE2) as the entrance receptor. Although most COVID-19 cases are mild, some are severe or critical, predominantly due to acute lung injury. It has been widely accepted that a counter regulatory renin-angiotensin system (RAS) axis including the ACE2/ANG [1-7]/Mas protects the lungs from acute lung injury. However, recent evidence suggests that the generation of protective ANG [1-7] in the lungs is predominantly mediated by proinflammatory prolyl oligopeptidase (POP), which has been repeatedly demonstrated to be involved in lung pathology. This review contends that acute lung injury in severe COVID-19 is characterised by a) ACE2 downregulation and malfunction (inflammatory signalling) due to viral occupation, and b) dysregulation of the protective RAS axis, predominantly due to increased activity of proinflammatory POP. It follows that a reasonable treatment strategy in COVID-19-related acute lung injury would be delivering functional recombinant (r) ACE2 forms to trap the virus. Additionally, or alternatively to rACE2 delivery, the potential benefits resulting from lowering POP activity should also be explored. These treatment strategies deserve further investigation.
Collapse
Affiliation(s)
| | - Randall C Starling
- Kaufman Center for Heart Failure and Recovery, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Xanthopoulos
- Department of Cardiology, Larissa University General Hospital, Larissa, Greece
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Harisios Boudoulas
- Department of Medicine/Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Flinn B, Royce N, Gress T, Chowdhury N, Santanam N. Dual role for angiotensin-converting enzyme 2 in Severe Acute Respiratory Syndrome Coronavirus 2 infection and cardiac fat. Obes Rev 2021; 22:e13225. [PMID: 33660398 PMCID: PMC8013367 DOI: 10.1111/obr.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been an increasingly prevalent target for investigation since its discovery 20 years ago. The finding that it serves a counterregulatory function within the traditional renin-angiotensin system, implicating it in cardiometabolic health, has increased its clinical relevance. Focus on ACE2's role in cardiometabolic health has largely centered on its apparent functions in the context of obesity. Interest in ACE2 has become even greater with the discovery that it serves as the cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opening up numerous mechanisms for deleterious effects of infection. The proliferation of ACE2 within the literature coupled with its dual role in SARS-CoV-2 infection and obesity necessitates review of the current understanding of ACE2's physiological, pathophysiological, and potential therapeutic functions. This review highlights the roles of ACE2 in cardiac dysfunction and obesity, with focus on epicardial adipose tissue, to reconcile the data in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Brendin Flinn
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nicholas Royce
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Todd Gress
- Research Service, Hershel "Woody" Williams VA Medical Center, Huntington, West Virginia, USA
| | - Nepal Chowdhury
- Department of Cardiovascular and Thoracic Surgery, St. Mary's Heart Center, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| |
Collapse
|
42
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
43
|
ACE2 as therapeutic agent. Clin Sci (Lond) 2021; 134:2581-2595. [PMID: 33063820 DOI: 10.1042/cs20200570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin-angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein-coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.
Collapse
|
44
|
Armaly Z, Kinaneh S, Skorecki K. Renal Manifestations of Covid-19: Physiology and Pathophysiology. J Clin Med 2021; 10:1216. [PMID: 33804075 PMCID: PMC8000200 DOI: 10.3390/jcm10061216] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Corona virus disease 2019 (COVID-19) imposes a serious public health pandemic affecting the whole world, as it is spreading exponentially. Besides its high infectivity, SARS-CoV-2 causes multiple serious derangements, where the most prominent is severe acute respiratory syndrome as well as multiple organ dysfunction including heart and kidney injury. While the deleterious impact of SARS-CoV-2 on pulmonary and cardiac systems have attracted remarkable attention, the adverse effects of this virus on the renal system is still underestimated. Kidney susceptibility to SARS-CoV-2 infection is determined by the presence of angiotensin-converting enzyme 2 (ACE2) receptor which is used as port of the viral entry into targeted cells, tissue tropism, pathogenicity and subsequent viral replication. The SARS-CoV-2 cellular entry receptor, ACE2, is widely expressed in proximal epithelial cells, vascular endothelial and smooth muscle cells and podocytes, where it supports kidney integrity and function via the enzymatic production of Angiotensin 1-7 (Ang 1-7), which exerts vasodilatory, anti-inflammatory, antifibrotic and diuretic/natriuretic actions via activation of the Mas receptor axis. Loss of this activity constitutes the potential basis for the renal damage that occurs in COVID-19 patients. Indeed, several studies in a small sample of COVID-19 patients revealed relatively high incidence of acute kidney injury (AKI) among them. Although SARS-CoV-1 -induced AKI was attributed to multiorgan failure and cytokine release syndrome, as the virus was not detectable in the renal tissue of infected patients, SARS-CoV-2 antigens were detected in kidney tubules, suggesting that SARS-CoV-2 infects the human kidney directly, and eventually induces AKI characterized with high morbidity and mortality. The mechanisms underlying this phenomenon are largely unknown. However, the fact that ACE2 plays a crucial role against renal injury, the deprivation of the kidney of this advantageous enzyme, along with local viral replication, probably plays a central role. The current review focuses on the critical role of ACE2 in renal physiology, its involvement in the development of kidney injury during SARS-CoV-2 infection, renal manifestations and therapeutic options. The latter includes exogenous administration of Ang (1-7) as an appealing option, given the high incidence of AKI in this ACE2-depleted disorder, and the benefits of ACE2/Ang1-7 including vasodilation, diuresis, natriuresis, attenuation of inflammation, oxidative stress, cell proliferation, apoptosis and coagulation.
Collapse
Affiliation(s)
- Zaher Armaly
- Department of Nephrology, Nazareth Hospital, EMMS, Nazareth 16100, Israel;
- The Bar-Ilan University Azrieli Faculty of Medicine, Safed 1311502, Israel;
| | - Safa Kinaneh
- Department of Nephrology, Nazareth Hospital, EMMS, Nazareth 16100, Israel;
| | - Karl Skorecki
- The Bar-Ilan University Azrieli Faculty of Medicine, Safed 1311502, Israel;
| |
Collapse
|
45
|
Angiotensin-(1-7)-A Potential Remedy for AKI: Insights Derived from the COVID-19 Pandemic. J Clin Med 2021; 10:jcm10061200. [PMID: 33805760 PMCID: PMC8001321 DOI: 10.3390/jcm10061200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Membrane-bound angiotensin converting enzyme (ACE) 2 serves as a receptor for the Sars-CoV-2 spike protein, permitting viral attachment to target host cells. The COVID-19 pandemic brought into light ACE2, its principal product angiotensin (Ang) 1-7, and the G protein-coupled receptor for the heptapeptide (MasR), which together form a still under-recognized arm of the renin–angiotensin system (RAS). This axis counteracts vasoconstriction, inflammation and fibrosis, generated by the more familiar deleterious arm of RAS, including ACE, Ang II and the ang II type 1 receptor (AT1R). The COVID-19 disease is characterized by the depletion of ACE2 and Ang-(1-7), conceivably playing a central role in the devastating cytokine storm that characterizes this disorder. ACE2 repletion and the administration of Ang-(1-7) constitute the therapeutic options currently tested in the management of severe COVID-19 disease cases. Based on their beneficial effects, both ACE2 and Ang-(1-7) have also been suggested to slow the progression of experimental diabetic and hypertensive chronic kidney disease (CKD). Herein, we report a further step undertaken recently, utilizing this type of intervention in the management of evolving acute kidney injury (AKI), with the expectation of renal vasodilation and the attenuation of oxidative stress, inflammation, renal parenchymal damage and subsequent fibrosis. Most outcomes indicate that triggering the ACE2/Ang-(1-7)/MasR axis may be renoprotective in the setup of AKI. Yet, there is contradicting evidence that under certain conditions it may accelerate renal damage in CKD and AKI. The nature of these conflicting outcomes requires further elucidation.
Collapse
|
46
|
Suh SH, Ma SK, Kim SW, Bae EH. Angiotensin-converting enzyme 2 and kidney diseases in the era of coronavirus disease 2019. Korean J Intern Med 2021; 36:247-262. [PMID: 33617712 PMCID: PMC7969072 DOI: 10.3904/kjim.2020.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the decades since the discovery of angiotensin-converting enzyme 2 (ACE2), its protective role in terms of antagonizing activation of the classical renin-angiotensin system (RAS) axis has been recognized in clinical and experimental studies on kidney and cardiovascular diseases. The effects of ACE inhibitor/angiotensin type 1 receptor blockers (ACEi/ARBs) on ACE2-angiotensin-(1-7) (Ang- (1-7))-Mas receptor (MasR) axis activation has encouraged the use of such blockers in patients with kidney and cardiovascular diseases, until the emergence of coronavirus disease 2019 (COVID-19). The previously unchallenged functions of the ACE2-Ang-(1-7)-MasR axis and ACEi/ARBs are being re-evaluated in the era of COVID-19; the hypothesis is that ACEi/ARBs may increase the risk of severe acute respiratory syndrome coronavirus 2 infection by upregulating the human ACE2 receptor expression level. In this review, we examine ACE2 molecular structure, function (as an enzyme of the RAS), and distribution. We explore the roles played by ACE2 in kidney, cardiovascular, and pulmonary diseases, highlighting studies that defined the benefits imparted when ACEi/ARBs activated the local ACE2- Ang-(1-7)-MasR axis. Finally, the question of whether ACEi/ARBs therapies should be stopped in COVID-19-infected patients will be reviewed by reference to the available evidence.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Eun Hui Bae, M.D. Department of Internal Medicine, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6503 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
47
|
Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clin Sci (Lond) 2021; 135:465-481. [PMID: 33479758 PMCID: PMC7851407 DOI: 10.1042/cs20201511] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The key link between renin–angiotensin system (RAS) and COVID-19 is ACE2 (angiotensin-converting enzyme 2), which acts as a double-edged sword, because ACE2 increases the tissue anti-inflammatory response but it is also the entry receptor for the virus. There is an important controversy on several drugs that regulate RAS activity and possibly ACE2, and are widely used, particularly by patients most vulnerable to severe COVID-19. In the lung of healthy rats, we observed that candesartan (an angiotensin type-1, AT1, receptor blocker; ARB) and captopril (an ACE inhibitor; ACEI) up-regulated expression of tissue ACE2 and RAS anti-inflammatory axis receptors (AT2 and Mas receptors). This effect was particularly pronounced in rats with metabolic syndrome (obesity, increased blood pressure and hyperglycemia) and aged rats. Treatment of cultures of human type-II pneumocytes with candesartan or captopril induced up-regulation of ACE2 expression in cells. Treatment with viral spike protein induced a decrease in full-length (i.e. transmembrane) ACE2, an increase in levels of a short intracellular ACE2 polypeptide and an increase in ADAM17 activity in cells, together with an increase in levels of soluble ACE2 and major proinflammatory cytokines in the culture medium. Spike protein-induced changes and levels of spike protein internalization in cells were inhibited by pretreatment with the above-mentioned drugs. The results suggest that these drugs increase ACE2 levels and promote the anti-inflammatory RAS axis in the lung. Furthermore, possible up-regulation of viral entry by the drug-induced increase in expression of transmembrane ACE2 is counteracted by additional mechanisms, particularly by drug-induced inhibition of ADAM17 activity.
Collapse
|
48
|
Miguel-Dos-Santos R, Santos JFD, Macedo FN, Marçal AC, Santana Filho VJ, Wichi RB, Lauton-Santos S. Strength Training Reduces Cardiac and Renal Oxidative Stress in Rats with Renovascular Hypertension. Arq Bras Cardiol 2021; 116:4-11. [PMID: 33566958 PMCID: PMC8159508 DOI: 10.36660/abc.20190391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023] Open
Abstract
Fundamento O treino de força tem efeitos benéficos em doenças renais, além de ajudar a melhorar a defesa antioxidante em animais saudáveis. Objetivo Verificar se o treino de força reduz o dano oxidativo ao coração e rim contralateral para cirurgia de indução de hipertensão renovascular, bem como avaliar as alterações na atividade das enzimas antioxidantes endógenas superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx). Métodos Dezoito ratos machos foram divididos em três grupos (n=6/grupo): placebo, hipertenso e hipertenso treinado. Os animais foram induzidos a hipertensão renovascular através da ligação da artéria renal esquerda. O treino de força foi iniciado quatro semanas após a indução da hipertensão renovascular, teve 12 semanas de duração e foi realizada a 70% de 1RM. Depois do período de treino, os animais foram submetidos a eutanásia e o rim esquerdo e o coração foram retirados para realizar a quantificação de peróxidos de hidrogênio, malondialdeído e grupos sulfidrílicos, que são marcadores de danos oxidativos. Além disso, foram medidas as atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. O nível de significância adotado foi de 5% (p < 0,05). Resultados Depois do treino de força, houve redução de danos oxidativos a lipídios e proteínas, como pode-se observar pela redução de peróxidos de hidrogênio e níveis sulfidrílicos totais, respectivamente. Além disso, houve um aumento nas atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. Conclusão O treino de força tem o potencial de reduzir danos oxidativos, aumentando a atividades de enzimas antioxidantes. (Arq Bras Cardiol. 2021; 116(1):4-11)
Collapse
Affiliation(s)
- Rodrigo Miguel-Dos-Santos
- Norwegian University of Science and Technology - Cardiac Exercise Reserch Group, Department of Circulation and Medical Imaging, Trondheim - Noruega.,Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | | | - Fabricio Nunes Macedo
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Departamento de Educação Física, Centro Universitário Estácio de Sergipe, Aracaju, SE - Brasil
| | - Anderson Carlos Marçal
- Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Departamento de Morfologia da Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Valter J Santana Filho
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Medicina, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Rogerio Brandão Wichi
- Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Sandra Lauton-Santos
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Medicina, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| |
Collapse
|
49
|
Eguchi A, Coleman R, Gresham K, Gao E, Ibetti J, Chuprun JK, Koch WJ. GRK5 is a regulator of fibroblast activation and cardiac fibrosis. Proc Natl Acad Sci U S A 2021; 118:e2012854118. [PMID: 33500351 PMCID: PMC7865138 DOI: 10.1073/pnas.2012854118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological remodeling of the heart is a hallmark of chronic heart failure (HF) and these structural changes further perpetuate the disease. Cardiac fibroblasts are the critical cell type that is responsible for maintaining the structural integrity of the heart. Stress conditions, such as a myocardial infarction (MI), can activate quiescent fibroblasts into synthetic and contractile myofibroblasts. G protein-coupled receptor kinase 5 (GRK5) is an important mediator of cardiovascular homeostasis through dampening of GPCR signaling, and is expressed in the heart and up-regulated in human HF. Of note, GRK5 has been demonstrated to translocate to the nucleus in cardiomyocytes in a calcium-calmodulin (Ca2+-CAM)-dependent manner, promoting hypertrophic gene transcription through activation of nuclear factor of activated T cells (NFAT). Interestingly, NFAT is also involved in fibroblast activation. GRK5 is highly expressed and active in cardiac fibroblasts; however, its pathophysiological role in these crucial cardiac cells is unknown. We demonstrate using adult cardiac fibroblasts that genetic deletion of GRK5 inhibits angiotensin II (AngII)-mediated fibroblast activation. Fibroblast-specific deletion of GRK5 in mice led to decreased fibrosis and cardiac hypertrophy after chronic AngII infusion or after ischemic injury compared to nontransgenic littermate controls (NLCs). Mechanistically, we show that nuclear translocation of GRK5 is involved in fibroblast activation. These data demonstrate that GRK5 is a regulator of fibroblast activation in vitro and cardiac fibrosis in vivo. This adds to previously published data which demonstrate the potential beneficial effects of GRK5 inhibition in the context of cardiac disease.
Collapse
Affiliation(s)
- Akito Eguchi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Ryan Coleman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Kenneth Gresham
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - J Kurt Chuprun
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140;
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| |
Collapse
|
50
|
Liu YS, Yang Q, Li S, Luo L, Liu HY, Li XY, Gao ZN. Luteolin attenuates angiotensin II‑induced renal damage in apolipoprotein E‑deficient mice. Mol Med Rep 2020; 23:157. [PMID: 33355379 PMCID: PMC7789115 DOI: 10.3892/mmr.2020.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Renal damage is a common and severe condition encountered in the clinic. Luteolin (Lut) exhibits anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Thus, the present study aimed to investigate the pharmacological effects of Lut on angiotensin II (AngII)-induced renal damage in apolipoprotein E-deficient (ApoE−/−) mice. Male ApoE−/− mice (age, 8 weeks) were randomly divided into the following three groups: i) Control group (n=6); ii) AngII group (n=6); and iii) AngII + Lut group (n=6). Lut was administered by gavage (100 mg/kg/d). ApoE−/− mice were implanted with Alzet osmotic minipumps, filled with either saline vehicle or AngII solution for a maximum period of 4 weeks. After 4 weeks, metabolic characteristics were measured and the histopathological alterations in the kidney tissue were observed. The metabolic characteristics of blood creatinine (CRE) levels were lower in the AngII + Lut group compared with in the AngII group. The expression levels of collagen I and III were lower in the kidney tissues of the AngII + Lut group compared with the corresponding tissues of the AngII group. The gene expression levels of IL-1β, IL-6, TNF-α and IL-10 were also suppressed in the kidney tissues of the AngII + Lut group compared with those in the corresponding tissues of the AngII group. Furthermore, the AngII + Lut group exhibited markedly increased LC3 protein expression and notably decreased p62 protein expression in the kidney tissues compared with the expression levels in the AngII group. The data demonstrated that Lut attenuated AngII-induced collagen deposition and inflammation, while inducing autophagy. Collectively, the results suggested that Lut treatment exhibited a exerted effect on AngII-induced renal injury in ApoE−/− mice.
Collapse
Affiliation(s)
- Ying-Shu Liu
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Qin Yang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaodong 116011, P.R. China
| | - Shen Li
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Lan Luo
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Hong-Yang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Xin-Yu Li
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Zheng-Nan Gao
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| |
Collapse
|