1
|
Wang J, Shan L, Zhao Y, Cao H, Lan S, Yan Y. Role of agonistic autoantibodies to the angiotensin II type 1 receptor (AT1-AA) in pathogenesis of preeclampsia. Glob Med Genet 2025; 12:100041. [PMID: 40027241 PMCID: PMC11871441 DOI: 10.1016/j.gmg.2025.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Preeclampsia(PE) is the most prevalent complication during pregnancy and constitutes a significant cause of morbidity and mortality among pregnant women and their fetuses. Recent studies have demonstrated elevated levels of angiotensin II type 1 receptor autoantibodies (AT1-AA) in patients diagnosed with PE. These autoantibodies can mimic the physiological effects of angiotensin II by engaging with the AT1 receptor, thereby instigating inflammatory responses and vasoconstriction, which contribute to the clinical manifestations of PE. Although the precise pathogenesis of PE remains unclear, it is influenced by a multitude of factors. This paper aims to provide a comprehensive overview of the relationship between PE and AT1-AA, along with an analysis of the pathophysiological effects and signaling pathways related to these autoantibodies.
Collapse
Affiliation(s)
| | | | - Yanhui Zhao
- Department of Obstetrics and Gynecology, Tianjin Medical University Baodi Hospital, Tianjin 301800, China
| | - Hongwen Cao
- Department of Obstetrics and Gynecology, Tianjin Medical University Baodi Hospital, Tianjin 301800, China
| | - Shuhai Lan
- Department of Obstetrics and Gynecology, Tianjin Medical University Baodi Hospital, Tianjin 301800, China
| | - Yizi Yan
- Department of Obstetrics and Gynecology, Tianjin Medical University Baodi Hospital, Tianjin 301800, China
| |
Collapse
|
2
|
Li X, Yang G, Ren J, Li X, Chen Y, Zhang Y, Shi Y, Yang X. Angiotensin II type-1 receptor autoantibody positively correlates with the rate of metaphase I oocytes in infertility with ovulatory disorder. J Reprod Immunol 2024; 166:104327. [PMID: 39255543 DOI: 10.1016/j.jri.2024.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
The renin-angiotensin system (RAS) plays an important role in reproductive function. Our previous study identified that angiotensin II type-1 receptor autoantibody (AT1-AA), an autoantibody that activates RAS, was closely associated with infertility. However, its distribution in different types of infertility remained unclear. This study was designed to explore the distribution of AT1-AA in infertile patients and the connections between AT1-AA and oocyte development and pregnancy outcome. A total of 184 infertile women participated, with samples collected from peripheral venous blood. ELISA was used to detect AT1-AA levels in their sera. It was observed that the proportion of ovulation-disorder factors in AT1-AA-positive group was significantly higher than that in negative group (P=0.001). In 59 infertile women with ovulatory disorders, compared with negative group, AT1-AA-positive group had lower rate of retrieval (P=0.032) and metaphase II (MII) oocytes (P=0.011) but higher proportion of metaphase I (MI) oocytes (P=0.019). A negative correlation was found between the levels of AT1-AA and rate of retrieval and MII oocytes (P=0.027; P=0.043), whereas a positive correlation was observed with the proportion of MI oocytes (P=0.002). Moreover, a specific predictive value for proportion of reaching MII and MI oocytes was exhibited by AT1-AA (P < 0.01; P < 0.05). But no significant difference in embryonic parameters or pregnancy outcomes between two groups was observed (P > 0.05). This study revealed that serum AT1-AA levels were significantly increased in infertile women with ovulatory disorders and positively correlated with proportion of MI oocytes, but not associated with outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Xuemin Li
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Guifang Yang
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Jie Ren
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Xiaonuo Li
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China
| | - Yao Chen
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Yinan Zhang
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China
| | - Yuhui Shi
- Department of Laboratory Medicine, Fenyang College of Shanxi Medical University, Lvliang, China
| | - Xiaoli Yang
- Reproductive Center, Taiyuan Central Hospital, Taiyuan, China; Reproductive Immunity and Heredity Departments and Cities Jointly Build Key Laboratory Training Bases of Shanxi Province, Taiyuan, China.
| |
Collapse
|
3
|
Issotina Zibrila A, Zhou J, Wang X, Zeng M, Ali MA, Liu X, Alkuhali AA, Zeng Z, Meng Y, Wang Z, Li X, Liu J. Placental ischemia-upregulated angiotensin II type 1 receptor in hypothalamic paraventricular nucleus contributes to hypertension in rat. Pflugers Arch 2024; 476:1677-1691. [PMID: 39215834 DOI: 10.1007/s00424-024-03010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Preeclampsia (PE) is associated with increased angiotensin II sensitivity and poor neurological outcomes marked by temporal loss of neural control of blood pressure. Yet the role of centrally expressed angiotensin II type 1 receptor (AT1R) within the paraventricular nucleus of the hypothalamus (PVN) in the PE model is not understood. In a PE rat model with reduced placental perfusion pressure (RUPP) induced on gestational day 14 (GD14), the PVN expression and cellular localization of AT1R were assessed using immunofluorescence and western blotting. The sensitivity of RUPP to acute angiotensin II infusion was assessed. AT1R was antagonized by losartan (100 µg/kg/day) for 5 days intracerebroventricularly (ICV). Hemodynamic data and samples were collected on GD19 for further analysis. RUPP upregulated (p < 0.05) mRNA and protein of AT1R within the PVN and lowered (p < 0.05) circulating angiotensin II in rats. RUPP increased neural and microglial activation. Cellular localization assessment revealed that AT1R was primarily expressed in neurons and slightly in microglia and astrocytes. Infusion of 100 ng/kg as bolus increased the mean arterial pressure (MAP in mmHg) in both RUPP and Sham. ICV losartan infusion attenuated RUPP-increased MAP (113.6 ± 6.22 in RUPP vs. 92.16 ± 5.30 in RUPP + Los, p = 0.021) and the expression of nuclear transcription factor NF-κB, tyrosine hydroxylase (TH), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) in the PVN. Our data suggest that centrally expressed AT1R, within the PVN, contributes to placental ischemia-induced hypertension in RUPP rats highlighting its therapeutic potential in PE.
Collapse
Affiliation(s)
- Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Jun Zhou
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Md Ahasan Ali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Asma A Alkuhali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Yuan Meng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xuelan Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China.
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China.
| |
Collapse
|
4
|
Schwartz KS, Stanhewicz AE. Maternal Microvascular Dysfunction During and After Preeclamptic Pregnancy. Compr Physiol 2024; 14:5703-5727. [PMID: 39382165 DOI: 10.1002/cphy.c240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Preeclampsia, a pregnancy disorder characterized by de novo hypertension and maternal multisystem organ dysfunction, is the leading cause of maternal mortality worldwide and is associated with a fourfold greater risk of cardiovascular disease throughout the lifespan. Current understanding of the etiology of preeclampsia remains unclear, due in part to the varying phenotypical presentations of the disease, which has hindered the development of effective and mechanism-specific treatment or prevention strategies both during and after the affected pregnancy. These maternal sequelae of preeclampsia are symptoms of systemic vascular dysfunction in the maternal nonreproductive microvascular beds that drives the development and progression of adverse cardiovascular outcomes during preeclampsia. Despite normalization of vascular disturbances after delivery, subclinical dysfunction persists in the nonreproductive microvascular beds, contributing to an increased lifetime risk of cardiovascular and metabolic diseases and all-cause mortality. Given that women with a history of preeclampsia demonstrate vascular dysfunction despite an absence of traditional CVD risk factors, an understanding of the underlying mechanisms of microvascular dysfunction during and after preeclampsia is essential to identify potential therapeutic avenues to mitigate or reverse the development of overt disease. This article aims to provide a summary of the existing literature on the pathophysiology of maternal microvascular dysfunction during preeclampsia, the mechanisms underlying the residual dysfunction that remains after delivery, and current and potential treatments both during and after the affected pregnancy that may reduce microvascular dysfunction in these high-risk women. © 2024 American Physiological Society. Compr Physiol 14:5703-5727, 2024.
Collapse
Affiliation(s)
- Kelsey S Schwartz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Rakisheva A, Sliwa K, Bauersachs J, Van Linthout S, Chopra VK, Bayes-Genis A, Fruzzetti F, Cannatà A, Deniau B, Mebazaa A, Savarese G, Ray R, Vitale C, Metra M, Rosano GMC. Multidisciplinary care of peripartum heart failure: A scientific statement of the Heart Failure Association of the ESC. Eur J Heart Fail 2024; 26:742-753. [PMID: 38679896 DOI: 10.1002/ejhf.3246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Heart failure is the most common cardiovascular complication during pregnancy and the postpartum period. It is associated with increased risk of maternal morbidity and mortality as well as potentially life-threatening foetal pathology. Management of heart failure in pregnancy requires expert knowledge of cardiovascular disease as well as obstetrics which underscores the importance of multidisciplinary cardio-obstetrics teams in order to optimize diagnosis, treatment and outcome. This includes counselling of women at risk before and during the course of pregnancy in order to strengthen the relationship between medical specialists and patients, as well as to allow patient-centred delivery of care and improve quality of life.
Collapse
Affiliation(s)
- Amina Rakisheva
- Department of Cardiology, City Cardiology Center, Almaty, Kazakhstan
- Qonaev City Hospital, Almaty, Kazakhstan
| | - Karen Sliwa
- Cape Heart Institute, Department of Cardiology and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | | | - Antoni Bayes-Genis
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Antonio Cannatà
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Benjamin Deniau
- Department of Anesthesiology, Critical Care and Burn Unit, University Hospital Saint-Louis - Lariboisière, AP-HP, Paris, France
- INSERM UMR-S 942, Cardiovascular Markers in Stress Condition (MASCOT), Université de Paris Cité, Paris, France
- Université de Paris Cité, Paris, France
- FHU PROMICE, DMU Parabol, Paris, France
| | - Alexandre Mebazaa
- Department of Anesthesiology, Critical Care and Burn Unit, University Hospital Saint-Louis - Lariboisière, AP-HP, Paris, France
- INSERM UMR-S 942, Cardiovascular Markers in Stress Condition (MASCOT), Université de Paris Cité, Paris, France
- Université de Paris Cité, Paris, France
- FHU PROMICE, DMU Parabol, Paris, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Robin Ray
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's, University of London, St George's Hospital, London, UK
| | - Cristiana Vitale
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's, University of London, St George's Hospital, London, UK
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | |
Collapse
|
6
|
Campbell N, Deer E, Solise D, Cornelius DC, Turner T, Amaral LM, Herrock O, Jordan A, Shukla S, Ibrahim T, LaMarca B. AT1-AA Is Produced in Offspring in Response to Placental Ischemia and Is Lowered by B-Cell Depletion Without Compromising Overall Offspring Health. J Am Heart Assoc 2024; 13:e031417. [PMID: 38353227 PMCID: PMC11010106 DOI: 10.1161/jaha.123.031417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Preeclampsia, new-onset hypertension during pregnancy alongside other organ dysfunction, is the leading cause of mortality for the mother and low birth weight for the baby. Low birth weight contributes to high risk of cardiovascular disorders later in life. Women with preeclampsia have activated B cells producing agonistic autoantibodies to AT1-AA (angiotensin II type I receptor). We hypothesize that rituximab, a B cell-depleting chemotherapeutic, will deplete maternal B cells in reduced uterine perfusion pressure (RUPP) rats without worsening the effect of placental ischemia on pup growth and survival. METHODS AND RESULTS To test this hypothesis, the RUPP procedure was performed, and rituximab was continuously infused via miniosmotic pump. Maternal blood and tissues were collected. A separate group of dams were allowed to deliver, pup weights were recorded, and at 4 months of age, tissues were collected from offspring. Immune cells were measured via flow cytometry, and AT1-AA was quantified using a contraction bioassay. Blood pressure increased in RUPP rats and was normalized with rituximab treatment. RUPP offspring also had increased circulating B cells, cytolytic natural killer cells, and increased circulating AT1-AA, which were normalized with maternal rituximab treatment. This is the first study to analyze the AT1-AA in RUPP offspring, which was normalized with rituximab. CONCLUSIONS Our findings indicate that perinatal rituximab lowers maternal mean arterial pressure in RUPP rats and improves birth weight, circulating AT1-AA, and circulating natural killer cells, indicating that rituximab improves adverse fetal outcomes in response to placental ischemia.
Collapse
Affiliation(s)
- Nathan Campbell
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Evangeline Deer
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Dylan Solise
- Department of Obstetrics and GynecologyUniversity of Mississippi Medical CenterJacksonMS
| | - Denise C. Cornelius
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
- Department of Emergency MedicineUniversity of Mississippi Medical CenterJacksonMS
| | - Ty Turner
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Lorena M. Amaral
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Owen Herrock
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Ariel Jordan
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Shivani Shukla
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Tarek Ibrahim
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Babbette LaMarca
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMS
- Department of Obstetrics and GynecologyUniversity of Mississippi Medical CenterJacksonMS
| |
Collapse
|
7
|
Tona F, Civieri G, Vadori M, Masiero G, Iop L, Marra MP, Perin V, Cuciz E, Cecere A, Bernava G, Tansella D, Naumova N, Grewal S, Cozzi E, Iliceto S. Association of Angiotensin II Receptor Type 1 and Endothelin-1 Receptor Type A Agonistic Autoantibodies With Adverse Remodeling and Cardiovascular Events After Acute Myocardial Infarction. J Am Heart Assoc 2024; 13:e032672. [PMID: 38348777 PMCID: PMC11010093 DOI: 10.1161/jaha.123.032672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND The left ventricular remodeling (LVR) process has limited the effectiveness of therapies after myocardial infarction. The relationship between autoantibodies activating AT1R-AAs (angiotensin II receptor type 1-AAs) and ETAR-AAs (autoantibodies activating endothelin-1 receptor type A) with myocardial infarction has been described. Among patients with ST-segment-elevation myocardial infarction, we investigated the relationship between these autoantibodies with LVR and subsequent major adverse cardiac events. METHODS AND RESULTS In this prospective observational study, we included 131 patients with ST-segment-elevation myocardial infarction (61±11 years of age, 112 men) treated with primary percutaneous coronary intervention. Within 48 hours of admission, 2-dimensional transthoracic echocardiography was performed, and blood samples were obtained. The seropositive threshold for AT1R-AAs and ETAR-AAs was >10 U/mL. Patients were followed up at 6 months, when repeat transthoracic echocardiography was performed. The primary end points were LVR, defined as a 20% increase in left ventricular end-diastolic volume index, and major adverse cardiac event occurrence at follow-up, defined as cardiac death, nonfatal re-myocardial infarction, and hospitalization for heart failure. Forty-one (31%) patients experienced LVR. The prevalence of AT1R-AAs and ETAR-AAs seropositivity was higher in patients with versus without LVR (39% versus 11%, P<0.001 and 37% versus 12%, P=0.001, respectively). In multivariable analysis, AT1R-AAs seropositivity was significantly associated with LVR (odds ratio [OR], 4.66; P=0.002) and represented a risk factor for subsequent major adverse cardiac events (OR, 19.6; P=0.002). CONCLUSIONS AT1R-AAs and ETAR-AAs are associated with LVR in patients with ST-segment-elevation myocardial infarction. AT1R-AAs are also significantly associated with recurrent major adverse cardiac events. These initial observations may set the stage for a better pathophysiological understanding of the mechanisms contributing to LVR and ST-segment-elevation myocardial infarction prognosis.
Collapse
Affiliation(s)
- Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Giovanni Civieri
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Marta Vadori
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Giulia Masiero
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Laura Iop
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Valentina Perin
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Elisa Cuciz
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Annagrazia Cecere
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Giacomo Bernava
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Donatella Tansella
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Nataliia Naumova
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | | | - Emanuele Cozzi
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences, and Public HealthUniversity of PaduaPaduaItaly
| |
Collapse
|
8
|
Lin B, Robinson L, Soliman B, Gulizia J, Usala S. Autoimmune Implications in a Patient with Graves' Hyperthyroidism, Pre-eclampsia with Severe Features, and Primary Aldosteronism. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:170. [PMID: 38256430 PMCID: PMC10820415 DOI: 10.3390/medicina60010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Graves' disease (GD) and primary aldosteronism (PA) are two pathologies that can cause significant morbidity and mortality. GD is mediated by autoantibodies, and recent studies have shown autoantibody involvement in the pathophysiology behind both PA and pre-eclampsia. The coexistence of GD and PA, however, is reportedly rare. This report describes a unique case of Graves' hyperthyroidism and concomitant PA in a patient with a history of pre-eclampsia with severe features. Case Presentation: The patient presented at 17 weeks pregnancy with mild hyperthyroidism, negative TSH receptor antibodies, and a low level of thyroid-stimulating immunoglobulins (TSI). Her TSH became detectable with normal thyroid hormone levels, and therefore, no anti-thyroid medication was administered. At 34 weeks she developed pre-eclampsia with severe features, and a healthy child was delivered; her TSH returned to normal. Seven months after delivery, she presented emergently with severe hyperthyroidism, hypertensive crisis, and a serum potassium of 2.5 mmol/L. Her hypertension was uncontrolled on multiple anti-hypertensives. Both TSI and TSH receptor antibodies were negative. The aldosterone(ng/dL)/renin(ng/mL/h ratio was (13/0.06) = 216.7, and abdominal CT imaging demonstrated normal adrenal glands; thus, a diagnosis of PA was made. Her blood pressure was subsequently controlled with only spironolactone at 50 mg 2xday. Methimazole was started but discontinued because of an allergic reaction. Consequently, a thyroidectomy was performed, and pathology revealed Graves' disease. The patient remained well on levothyroxine at 125 mcg/day and spironolactone at 50 mg 2xday three months after the thyroidectomy. Conclusions: This patient manifested severe GD with antibodies undetectable by conventional TSI and TSH receptor assays and accelerated hypertension from PA simultaneously. These conditions were successfully treated separately by spironolactone and thyroidectomy. Autoimmune PA was considered likely given the clinical picture. The diagnosis of PA should be considered in hypertension with GD.
Collapse
Affiliation(s)
- Benjamin Lin
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.L.); (L.R.)
| | - Lauren Robinson
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.L.); (L.R.)
| | - Basem Soliman
- Department of Surgery, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Jill Gulizia
- Women’s Healthcare Associates, Obstetrics and Gynecology, Amarillo, TX 79106, USA;
| | - Stephen Usala
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
9
|
Boldeanu L, Văduva CC, Caragea DC, Novac MB, Manasia M, Siloși I, Manolea MM, Boldeanu MV, Dijmărescu AL. Association between Serum 8-Iso-Prostaglandin F2α as an Oxidative Stress Marker and Immunological Markers in a Cohort of Preeclampsia Patients. Life (Basel) 2023; 13:2242. [PMID: 38137843 PMCID: PMC10745027 DOI: 10.3390/life13122242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND We aimed to analyze the presence and clinical use of serum 8-iso-prostaglandin F2-alpha (8-iso-PGF2α) as an oxidative stress marker and some inflammatory status biomarkers (tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), IL-10, high-sensitivity C-reactive protein (hs-CRP), and pentraxin-3 (PTX3)) for patients with preeclampsia (PE). METHODS Sixty pregnant women, including thirty diagnosed with PE and thirty who were healthy (NP), were included in this study. For the assessment of serum levels of biomarkers, we used the Enzyme-Linked Immunosorbent Assay (ELISA) technique. RESULTS Our preliminary study showed that the expression level of serum 8-iso-PGF2α in the PE group was higher than in the PE after delivery (PE-AD) group (742.00 vs. 324.00 pg/mL, p < 0.0001). Groups of preeclamptic patients (PE + PE-AD) expressed significantly elevated levels for all of the assessed inflammatory mediators as compared to NP. Significant strong positive correlations with 8-iso-PGF2α levels were found for systolic blood pressure (SBP), and TNF-α (Spearman's rho = 0.622, p-value = 0.020 and rho = 0.645, p-value = 0.002, respectively). Our study demonstrates that 8-iso-PGF2α and PTX3 have the greatest diagnostic value for pregnant women with PE. CONCLUSIONS 8-iso-PGF2α and PTX3 can be used as independent predictor factors, along with already-known cytokines, that could represent a prophylactic way to help clinicians identify or predict which pregnant women will develop PE.
Collapse
Affiliation(s)
- Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Constantin-Cristian Văduva
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.M.M.); (A.L.D.)
| | - Daniel Cosmin Caragea
- Department of Nephrology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Marius Bogdan Novac
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mariana Manasia
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Isabela Siloși
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Maria Magdalena Manolea
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.M.M.); (A.L.D.)
| | | | - Anda Lorena Dijmărescu
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.M.M.); (A.L.D.)
| |
Collapse
|
10
|
Zhang X, Zhang S, Wang M, Chen H, Liu H. Advances in the allostery of angiotensin II type 1 receptor. Cell Biosci 2023; 13:110. [PMID: 37330563 DOI: 10.1186/s13578-023-01063-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
Angiotensin II type 1 receptor (AT1R) is a promising therapeutic target for cardiovascular diseases. Compared with orthosteric ligands, allosteric modulators attract considerable attention for drug development due to their unique advantages of high selectivity and safety. However, no allosteric modulators of AT1R have been applied in clinical trials up to now. Except for the classical allosteric modulators of AT1R such as antibody, peptides and amino acids, cholesterol and biased allosteric modulators, there are non-classical allosteric modes including the ligand-independent allosteric mode, and allosteric mode of biased agonists and dimers. In addition, finding the allosteric pockets based on AT1R conformational change and interaction interface of dimers are the future of drug design. In this review, we summarize the different allosteric mode of AT1R, with a view to contribute to the development and utilization of drugs targeting AT1R allostery.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Meili Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hao Chen
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China.
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, China.
| |
Collapse
|
11
|
Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol 2023; 19:257-270. [PMID: 36635411 PMCID: PMC10038936 DOI: 10.1038/s41581-022-00670-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Preeclampsia is a hypertensive disorder of major concern in pregnancy than can lead to intrauterine growth restriction, placental abruption and stillbirth. The pathophysiology of preeclampsia is multifactorial, including not only kidney dysfunction but also endothelial dysfunction, as the maternal endothelium becomes exposed to placental factors that are released into the circulation and increase systemic levels of vasoconstrictors, oxidative stress, anti-angiogenic factors and inflammatory mediators. Importantly, inflammation can lead to insufficient placental perfusion and low birthweight in offspring. Various innate and adaptive immune cells and mediators have been implicated in the development of preeclampsia, in which oxidative stress is associated with activation of the maternal inflammatory response. Immune cells such as regulatory T cells, macrophages, natural killer cells, and neutrophils are known to have major causative roles in the pathology of preeclampsia, but the contributions of additional immune cells such as B cells, inflammatory cytokines and anti-angiotensin II type 1 receptor autoantibodies are also now recognized. Immunological interventions, therefore, have therapeutic potential in this disease. Here, we provide an overview of the immune responses that are involved in the pathogenesis of preeclampsia, including the role of innate and adaptive immune cells and mediators.
Collapse
Affiliation(s)
- Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Denise Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
12
|
Ke F, Kuang W, Hu X, Li C, Ma W, Shi D, Li X, Wu Z, Zhou Y, Liao Y, Qiu Z, Zhou Z. A novel vaccine targeting β1-adrenergic receptor. Hypertens Res 2023:10.1038/s41440-023-01265-3. [PMID: 36997634 DOI: 10.1038/s41440-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Beta-blockers are widely used in the treatment of hypertension, heart failure and ischemic heart disease. However, unstandardized medication results in diverse clinical outcomes in patients. The main causes are unattained optimal doses, insufficient follow-up and patients' poor adherence. To improve the medication inadequacy, our team developed a novel therapeutic vaccine targeting β1-adrenergic receptor (β1-AR). The β1-AR vaccine named ABRQβ-006 was prepared by chemical conjugation of a screened β1-AR peptide with Qβ virus like particle (VLP). The antihypertensive, anti-remodeling and cardio-protective effects of β1-AR vaccine were evaluated in different animal models. The ABRQβ-006 vaccine was immunogenic that induced high titers of antibodies against β1-AR epitope peptide. In the NG-nitro-L-arginine methyl ester (L-NAME) + Sprague Dawley (SD) hypertension model, ABRQβ-006 lowered systolic blood pressure about 10 mmHg and attenuated vascular remodeling, myocardial hypertrophy and perivascular fibrosis. In the pressure-overload transverse aortic constriction (TAC) model, ABRQβ-006 significantly improved cardiac function, decreased myocardial hypertrophy, perivascular fibrosis and vascular remodeling. In the myocardial infarction (MI) model, ABRQβ-006 effectively improved cardiac remodeling, reduced cardiac fibrosis and inflammatory infiltration, which was superior to metoprolol. Moreover, no significant immune-mediated damage was observed in immunized animals. The ABRQβ-006 vaccine targeting β1-AR showed the effects on hypertension and heart rate control, myocardial remodeling inhibition and cardiac function protection. These effects could be differentiated in different types of diseases with diverse pathogenesis. ABRQβ-006 could be a novel and promising method for the treatment of hypertension and heart failure with different etiologies.
Collapse
|
13
|
Dines V, Suvakov S, Kattah A, Vermunt J, Narang K, Jayachandran M, Abou Hassan C, Norby AM, Garovic VD. Preeclampsia and the Kidney: Pathophysiology and Clinical Implications. Compr Physiol 2023; 13:4231-4267. [PMID: 36715282 DOI: 10.1002/cphy.c210051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Preeclampsia and other hypertensive disorders of pregnancy are major contributors to maternal morbidity and mortality worldwide. This group of disorders includes chronic hypertension, gestational hypertension, preeclampsia, preeclampsia superimposed on chronic hypertension, and eclampsia. The body undergoes important physiological changes during pregnancy to allow for normal placental and fetal development. Several mechanisms have been proposed that may lead to preeclampsia, including abnormal placentation and placental hypoxia, impaired angiogenesis, excessive pro-inflammatory response, immune system imbalance, abnormalities of cellular senescence, alterations in regulation and activity of angiotensin II, and oxidative stress, ultimately resulting in upregulation of multiple mediators of endothelial cell dysfunction leading to maternal disease. The clinical implications of preeclampsia are significant as there are important short-term and long-term health consequences for those affected. Preeclampsia leads to increased risk of preterm delivery and increased morbidity and mortality of both the developing fetus and mother. Preeclampsia also commonly leads to acute kidney injury, and women who experience preeclampsia or another hypertensive disorder of pregnancy are at increased lifetime risk of chronic kidney disease and cardiovascular disease. An understanding of normal pregnancy physiology and the pathophysiology of preeclampsia is essential to develop novel treatment approaches and manage patients with preeclampsia and hypertensive disorders of pregnancy. © 2023 American Physiological Society. Compr Physiol 13:4231-4267, 2023.
Collapse
Affiliation(s)
- Virginia Dines
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jane Vermunt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kavita Narang
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander M Norby
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Luna SD, Martinovic TC. Hipertensión y embarazo: revisión de la literatura. REVISTA MÉDICA CLÍNICA LAS CONDES 2023. [DOI: 10.1016/j.rmclc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
15
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
16
|
Physiological Function of the Dynamic Oxygen Signaling Pathway at the Maternal-fetal Interface. J Reprod Immunol 2022; 151:103626. [DOI: 10.1016/j.jri.2022.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
17
|
van der Heijden CDCC, Bode M, Riksen NP, Wenzel UO. The role of the mineralocorticoid receptor in immune cells in in cardiovascular disease. Br J Pharmacol 2021; 179:3135-3151. [PMID: 34935128 DOI: 10.1111/bph.15782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic low-grade inflammation and immune cell activation are important mechanisms in the pathophysiology of cardiovascular disease (CVD). Therefore, targeted immunosuppression is a promising novel therapy to lower cardiovascular risk. In this review, we identify the mineralocorticoid receptor (MR) on immune cells as a potential target to modulate inflammation. The MR is present in almost all cells of the cardiovascular system, including immune cells. Activation of the MR in innate and adaptive immune cells induces inflammation which can contribute to CVD, by inducing endothelial dysfunction and hypertension. Moreover, it accelerates atherosclerotic plaque formation and destabilization and impairs tissue regeneration after ischemic events. Identifying the molecular targets for these non-renal actions of the MR provide promising novel cardiovascular drug targets for mineralocorticoid receptor antagonists (MRAs), which are currently mainly applied in hypertension and heart failure.
Collapse
Affiliation(s)
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, GA, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Liu S, Zhao W, Li X, Zhang L, Gao Y, Peng Q, Du C, Jiang N. AGTRAP Is a Prognostic Biomarker Correlated With Immune Infiltration in Hepatocellular Carcinoma. Front Oncol 2021; 11:713017. [PMID: 34595113 PMCID: PMC8477650 DOI: 10.3389/fonc.2021.713017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Recently, it has been reported that angiotensin II receptor-associated protein (AGTRAP) plays a substantial role in tumor progression. Nevertheless, the possible role of AGTRAP in hepatocellular carcinoma (HCC) remains unrecognized. Methods The metabolic gene rapid visualizer, Cancer Cell Line Encyclopedia, Human Protein Atlas, and Hepatocellular Carcinoma Database were used to analyze the expression of AGTRAP in HCC tissues and normal liver tissues or adjacent tissues. Kaplan-Meier plotter and UALCAN analysis were used to assess the prognostic and diagnostic value of AGTRAP. LinkedOmics and cBioPortal were used to explore the genes co-expressed with AGTRAP in HCC. To further understand the potential mechanism of AGTRAP in HCC, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment pathway analyses were performed using R software, the protein-protein interaction (PPI) network was established using the STRING database, and the immune infiltration and T-cell exhaustion related to AGTRAP were explored via Timer and GEPIA. In addition, immunohistochemistry was used to detect the expression of AGTRAP protein in HCC tissues and paired adjacent tissues from clinical specimens. Results This study found that the mRNA and protein levels of AGTRAP in HCC tissues were higher than those in normal liver tissues and adjacent tissues, and higher mRNA levels of AGTRAP were associated with higher histological grade and a poor overall survival in HCC patients. The area under the receiver operating characteristic curve (AUC) of AGTRAP was 0.856, suggesting that it could be a diagnostic marker for HCC. Moreover, the alteration rate of AGTRAP in HCC was 8%, and AGTRAP was involved in HCC probably through the NF-κB and MAPK signaling pathways. Furthermore, AGTRAP was positively correlated with the infiltration of CD8+ T cells, CD4+ T cells, B cells, macrophages, dendritic cells, and neutrophils, and the levels of AGTRAP were significantly correlated with T-cell exhaustion biomarkers. The immunohistochemistry results confirmed that the protein levels of AGTRAP were consistently higher in HCC tissues than in paired adjacent tissues. Conclusion The clinical value of AGTRAP and its correlation with immune infiltration in HCC was effectively identified in clinical data from multiple recognized databases. These findings indicate that AGTRAP could serve as a potential biomarker in the treatment of HCC, thereby informing its prognosis, diagnosis, and even immunotherapy.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Novel allosteric ligands of the angiotensin receptor AT1R as autoantibody blockers. Proc Natl Acad Sci U S A 2021; 118:2019126118. [PMID: 34380734 DOI: 10.1073/pnas.2019126118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
While orthosteric ligands of the angiotensin II (AngII) type 1 receptor (AT1R) are available for clinical and research applications, allosteric ligands are not known for this important G protein-coupled receptor (GPCR). Allosteric ligands are useful tools to modulate receptor pharmacology and subtype selectivity. Here, we report AT1R allosteric ligands for a potential application to block autoimmune antibodies. The epitope of autoantibodies for AT1R is outside the orthosteric pocket in the extracellular loop 2. A molecular dynamics simulation study of AT1R structure reveals the presence of a druggable allosteric pocket encompassing the autoantibody epitope. Small molecule binders were then identified for this pocket using structure-based high-throughput virtual screening. The top 18 hits obtained inhibited the binding of antibody to AT1R and modulated agonist-induced calcium response of AT1R. Two compounds out of 18 studied in detail exerted a negative allosteric modulator effect on the functions of the natural agonist AngII. They blocked antibody-enhanced calcium response and reactive oxygen species production in vascular smooth muscle cells as well as AngII-induced constriction of blood vessels, demonstrating their efficacy in vivo. Our study thus demonstrates the feasibility of discovering inhibitors of the disease-causing autoantibodies for GPCRs. Specifically, for AT1R, we anticipate development of more potent allosteric drug candidates for intervention in autoimmune maladies such as preeclampsia, bilateral adrenal hyperplasia, and the rejection of organ transplants.
Collapse
|
20
|
Liu Chung Ming C, Sesperez K, Ben-Sefer E, Arpon D, McGrath K, McClements L, Gentile C. Considerations to Model Heart Disease in Women with Preeclampsia and Cardiovascular Disease. Cells 2021; 10:899. [PMID: 33919808 PMCID: PMC8070848 DOI: 10.3390/cells10040899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Eitan Ben-Sefer
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - David Arpon
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Carmine Gentile
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2000, Australia
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Haase N, Foster DJ, Cunningham MW, Bercher J, Nguyen T, Shulga-Morskaya S, Milstein S, Shaikh S, Rollins J, Golic M, Herse F, Kräker K, Bendix I, Serdar M, Napieczynska H, Heuser A, Gellhaus A, Thiele K, Wallukat G, Müller DN, LaMarca B, Dechend R. RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models. J Clin Invest 2021; 130:2928-2942. [PMID: 32338644 DOI: 10.1172/jci99417] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Nadine Haase
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Julia Bercher
- Experimental and Clinical Research Center, Berlin, Germany
| | - Tuyen Nguyen
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | | - Jeff Rollins
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Michaela Golic
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Herse
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Kristin Kräker
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ivo Bendix
- Department of Pediatrics I Neonatology and Experimental Perinatal Neurosciences and
| | - Meray Serdar
- Department of Pediatrics I Neonatology and Experimental Perinatal Neurosciences and
| | - Hanna Napieczynska
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Arnd Heuser
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kristin Thiele
- Department of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerd Wallukat
- Experimental and Clinical Research Center, Berlin, Germany
| | - Dominik N Müller
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ralf Dechend
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,HELIOS-Klinikum, Berlin, Germany.Preeclampsia, with the hallmark features of new-onset hypertension and proteinuria after 20 weeks of gestation, is a major cause of fetal and maternal morbidity and mortality. Studies have demonstrated a role for the renin-angiotensin system (RAS) in its pathogenesis; however, small-molecule RAS blockers are contraindicated because of fetal toxicity. We evaluated whether siRNA targeting maternal hepatic angiotensinogen (Agt, ) could ameliorate symptoms of preeclampsia without adverse placental or fetal effects in 2 rodent models. The first model used a cross of females expressing human Agt, with males expressing human renin, resulting in upregulation of the circulating and uteroplacental RAS. The second model induced ischemia/reperfusion injury and subsequent local and systemic inflammation by surgically reducing placental blood flow mid-gestation (reduced uterine perfusion pressure [RUPP]). These models featured hypertension, proteinuria, and fetal growth restriction, with altered biomarkers. siRNA treatment ameliorated the preeclamptic phenotype in both models, reduced blood pressure, and improved intrauterine growth restriction, with no observed deleterious effects on the fetus. Treatment also improved the angiogenic balance and proteinuria in the transgenic model, and it reduced angiotensin receptor activating antibodies in both. Thus, an RNAi therapeutic targeting Agt, ameliorated the clinical sequelae and improved fetal outcomes in 2 rodent models of preeclampsia
| |
Collapse
|
22
|
Skiba MA, Kruse AC. Autoantibodies as Endogenous Modulators of GPCR Signaling. Trends Pharmacol Sci 2020; 42:135-150. [PMID: 33358695 DOI: 10.1016/j.tips.2020.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Endogenous self-reactive autoantibodies (AAs) recognize a range of G-protein-coupled receptors (GPCRs). They are frequently associated with cardiovascular, neurological, and autoimmune disorders, and in some cases directly impact disease progression. Many GPCR AAs modulate receptor signaling, but molecular details of their modulatory activity are not well understood. Technological advances have provided insight into GPCR biology, which now facilitates deeper understanding of GPCR AA function at the molecular level. Most GPCR AAs are allosteric modulators and exhibit a broad range of pharmacological properties, altering both receptor signaling and trafficking. Understanding GPCR AAs is not only important for defining how these unusual GPCR modulators function in disease, but also provides insight into the potential use and limitations of using therapeutic antibodies to modulate GPCR signaling.
Collapse
Affiliation(s)
- Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Wang Z, Feng W, Liu J. Current understanding of autoantibody against angiotensin II type 1 receptor in preeclampsia. J Matern Fetal Neonatal Med 2020; 35:4089-4094. [PMID: 33249950 DOI: 10.1080/14767058.2020.1846709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Preeclampsia (PE) remains a leading cause of fetal and maternal mortality. Angiotensin II type 1 receptor autoantibody (AT1-AA) is implicated in the dysregulation of the renin-angiotensin-aldosterone system. A strong relationship between AT1-AA and the occurrence and severity of PE has been confirmed in previous literature. Recent evidences suggested that AT1-AA was responsible for blood pressure elevation, reactive oxygen species synthesis, and inflammatory factors release and engaged in multiple signaling cascades. The inhibition of AT1-AA might be a potential therapeutic target in future days. Here we reviewed the current understanding of AT1-AA, aiming to provide clarity surrounding the role of AT1-AA in PE.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Bian J, Lei J, Yin X, Wang P, Wu Y, Yang X, Wang L, Zhang S, Liu H, Fu MLX. Limited AT1 Receptor Internalization Is a Novel Mechanism Underlying Sustained Vasoconstriction Induced by AT1 Receptor Autoantibody From Preeclampsia. J Am Heart Assoc 2020; 8:e011179. [PMID: 30845870 PMCID: PMC6475063 DOI: 10.1161/jaha.118.011179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Angiotensin II type 1 receptor (AT1R) autoantibody (AT1‐AA) was first identified as a causative factor in preeclampsia. Unlike physiological ligand angiotensin II (Ang II), AT1‐AA can induce vasoconstriction in a sustained manner, causing a series of adverse effects, such as vascular injury and poor placental perfusion. However, its underlying mechanisms remain unclear. Here, from the perspective of AT1R internalization, the present study investigated the molecular mechanism of sustained vasoconstriction induced by AT1R autoantibody. Methods and Results In the current study, we used the vascular‐ring technique to determine that AT1‐AA‐positive IgG, which was obtained from the sera of preeclamptic patients, induced long‐term vasoconstriction in endothelium‐intact or endothelium‐denuded rat thoracic arteries. The effect was caused by prolonged activation of AT1R downstream signals in vascular smooth muscle cells, including Ca2+, protein kinase C, and extracellular signal‐regulated kinase 1 and 2. Then, using subcellular protein fractionation, cell surface protein biotinylation, and total internal reflection fluorescence, we found that AT1‐AA‐positive IgG resulted in significantly less AT1R internalization than in the Ang II treatment group. Moreover, through use of fluorescent tracing and bioluminescence resonance energy transfer, we found that AT1‐AA‐positive IgG cannot induce the recruitment of β‐arrestin1/2, which mediated receptor internalization. Then, the effect of sustained AT1R activation induced by AT1‐AA‐positive IgG was rescued by overexpression of β‐arrestin2. Conclusions These data suggested that limited AT1R internalization resulting from the inhibition of β‐arrestin1/2 recruitment played an important role in sustained vasoconstriction induced by AT1‐AA‐positive IgG, which may set the stage for avoiding AT1R overactivation in the management of preeclampsia.
Collapse
Affiliation(s)
- Jingwei Bian
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Jinghui Lei
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China.,3 National Clinical Research Center for Geriatric Disorders Xuanwu Hospital of Capital Medical University Beijing China
| | - Xiaochen Yin
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Pengli Wang
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Ye Wu
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Xiaoli Yang
- 4 Department of Reproductive Center Taiyuan Central Hospital Taiyuan Shanxi Province China
| | - Li Wang
- 5 Department of Pathology Shanxi Medical University Taiyuan Shanxi Province China
| | - Suli Zhang
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China.,2 Beijing Key Laboratory of Cardiovascular Diseases and Related Metabolic Dysfunction Capital Medical University Beijing China
| | - Huirong Liu
- 1 Department of Physiology & Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China.,2 Beijing Key Laboratory of Cardiovascular Diseases and Related Metabolic Dysfunction Capital Medical University Beijing China
| | - Michael L X Fu
- 6 Section of Cardiology Department of Medicine Sahlgrenska University Hospital/Östra Hospital Göteborg Sweden
| |
Collapse
|
25
|
Increased AT 2R expression is induced by AT 1R autoantibody via two axes, Klf-5/IRF-1 and circErbB4/miR-29a-5p, to promote VSMC migration. Cell Death Dis 2020; 11:432. [PMID: 32514012 PMCID: PMC7280191 DOI: 10.1038/s41419-020-2643-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Vascular remodeling can be caused by angiotensin II type 1 receptor (AT1R) autoantibody (AT1-AA), although the related mechanism remains unknown. Angiotensin II type 2 receptor (AT2R) plays multiple roles in vascular remodeling through cross-talk with AT1R in the cytoplasm. Here, we aimed to explore the role and mechanism of AT2R in AT1-AA-induced vascular smooth muscle cell (VSMC) migration, which is a key event in vascular remodeling. In vitro and in vivo, we found that AT2R can promote VSMC migration in AT1-AA-induced vascular remodeling. Moreover, AT2R expression was upregulated via Klf-5/IRF-1-mediated transcriptional and circErbB4/miR-29a-5p-mediated posttranscriptional mechanisms in response to AT1-AA. Our data provide a molecular basis for AT1-AA-induced AT2R expression by transcription factors, namely, a circular RNA and a microRNA, and showed that AT2R participated in AT1-AA-induced VSMC migration during the development of vascular remodeling. AT2R may be a potential target for the treatment of AT1-AA-induced vascular diseases.
Collapse
|
26
|
Abstract
Primary aldosteronism (PA) is the most common form of endocrine hypertension. Agonistic autoantibodies against the angiotensin II type 1 receptor (AT1R-Abs) have been described in transplantation medicine and women with pre-eclampsia and more recently in patients with PA. Any functional role of AT1R-Abs in either of the two main subtypes of PA (aldosterone-producing adenoma or bilateral adrenal hyperplasia) requires clarification. In this review, we discuss the studies performed to date on AT1R-Abs in PA.
Collapse
Affiliation(s)
- Lucie S. Meyer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
| | - Siyuan Gong
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical
Sciences, University of Turin, Turin, Italy
- Correspondence Tracy Ann Williams PhD Medizinische Klinik und Poliklinik IV, Klinikum der
UniversitätMünchen, LMU MünchenZiemssenstr. 180336 MünchenGermany+49 89 4400 52941+49 89 4400 54428
| |
Collapse
|
27
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
28
|
Mejia-Vilet JM, López-Hernández YJ, Santander-Vélez JI, Trujeque-Matos M, Cruz C, Carranza de la Torre CA, Espinosa-Cruz V, Espinosa-González R, Uribe-Uribe NO, Morales-Buenrostro LE. Angiotensin II receptor agonist antibodies are associated with microvascular damage in lupus nephritis. Lupus 2020; 29:371-378. [PMID: 32041505 DOI: 10.1177/0961203320904787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Angiotensin II type 1 receptor agonist antibodies (AT1R-AAs) have been associated with hypertension, atherosclerosis and vascular inflammation in human diseases. The aim of the study was to evaluate the prevalence of AT1R-AAs in active lupus nephritis (LN) patients and their association with vascular damage. One hundred and seven active LN patients underwent a complete clinical examination, measurement of AT1R-AAs, ambulatory blood pressure monitoring, carotid intima-media thickness measurement and morphometric analysis of subintimal fibrosis and medial hyperplasia of the vessels in the kidney tissue. Plasma AT1R-AAs were positive in 58 (54.2%) patients. The Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) score, complement C3 and C4 levels and titers of anti-dsDNA antibodies were higher in the group with positive AT1R-AAs compared with those with negative AT1R-AAs. The AT1R-AA titers correlated with anti-dsDNA antibody titers and with complement C3 and C4 serum levels. In the kidney biopsy, the percentage of subintimal fibrosis and the area of medial hyperplasia were greater in the AT1R-AA-positive patients. No differences in arterial pressure, carotid intima-media thickness and response to therapy were detected. In conclusion, AT1R-AAs are prevalent in active LN patients and are associated with histologic features of microvascular damage.
Collapse
Affiliation(s)
- J M Mejia-Vilet
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Y J López-Hernández
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J I Santander-Vélez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Trujeque-Matos
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C Cruz
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C A Carranza de la Torre
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - V Espinosa-Cruz
- Department of Radiology and Imaging "Adan Pitol", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - R Espinosa-González
- Department of Pathology and Pathologic Anatomy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - N O Uribe-Uribe
- Department of Pathology and Pathologic Anatomy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
29
|
Stanhewicz AE, Alexander LM. Local angiotensin-(1-7) administration improves microvascular endothelial function in women who have had preeclampsia. Am J Physiol Regul Integr Comp Physiol 2020; 318:R148-R155. [PMID: 31577152 PMCID: PMC6985799 DOI: 10.1152/ajpregu.00221.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Despite remission of clinical symptoms postpartum, women who have had preeclampsia demonstrate microvascular endothelial dysfunction, mediated in part by increased sensitivity to angiotensin II (ANG II). Angiotensin-(1-7) [Ang-(1-7)] is an endogenous inhibitor of the actions of ANG II and plausible druggable target in women who had preeclampsia. We therefore examined the therapeutic potential of Ang-(1-7) in the microvasculature of women with a history of preeclampsia (PrEC; n = 13) and parity-matched healthy control women (HC; n = 13) hypothesizing that administration of Ang-(1-7) would increase endothelium-dependent dilation and nitric oxide (NO)-dependent dilation and decrease ANG II-mediated constriction in PrEC. Using the cutaneous microcirculation, we assessed endothelium-dependent vasodilator function in response to graded infusion of acetylcholine (ACh; 10-7 to 102 mmol/L) in control sites and sites treated with 15 mmol/L NG-nitro-l-arginine methyl ester (l-NAME; NO-synthase inhibitor), 100 µmol/L Ang-(1-7), or 15 mmol/L l-NAME + 100 µmol/L Ang-(1-7). Vasoconstrictor function was measured in response to ANG II (10-20-10-4 mol/L) in control sites and sites treated with 100 µmol/L Ang-(1-7). PrEC had reduced endothelium-dependent dilation (P < 0.001) and NO-dependent dilation (P = 0.04 vs. HC). Ang-(1-7) coinfusion augmented endothelium-dependent dilation (P < 0.01) and NO-dependent dilation (P = 0.03) in PrEC but had no effect in HC. PrEC demonstrated augmented vasoconstrictor responses to ANG II (P < 0.01 vs. HC), which was attenuated by coinfusion of Ang-(1-7) (P < 0.001). Ang-(1-7) increased endothelium-dependent vasodilation via NO synthase-mediated pathways and attenuated ANG II-mediated constriction in women who have had preeclampsia, suggesting that Ang-(1-7) may be a viable therapeutic target for improved microvascular function in women who have had a preeclamptic pregnancy.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
30
|
Warrington JP, Fan F, Duncan J, Cunningham MW, LaMarca BB, Dechend R, Wallukat G, Roman RJ, Drummond HA, Granger JP, Ryan MJ. The angiotensin II type I receptor contributes to impaired cerebral blood flow autoregulation caused by placental ischemia in pregnant rats. Biol Sex Differ 2019; 10:58. [PMID: 31829239 PMCID: PMC6907203 DOI: 10.1186/s13293-019-0275-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Placental ischemia and hypertension, characteristic features of preeclampsia, are associated with impaired cerebral blood flow (CBF) autoregulation and cerebral edema. However, the factors that contribute to these cerebral abnormalities are not clear. Several lines of evidence suggest that angiotensin II can impact cerebrovascular function; however, the role of the renin angiotensin system in cerebrovascular function during placental ischemia has not been examined. We tested whether the angiotensin type 1 (AT1) receptor contributes to impaired CBF autoregulation in pregnant rats with placental ischemia caused by surgically reducing uterine perfusion pressure. METHODS Placental ischemic or sham operated rats were treated with vehicle or losartan from gestational day (GD) 14 to 19 in the drinking water. On GD 19, we assessed CBF autoregulation in anesthetized rats using laser Doppler flowmetry. RESULTS Placental ischemic rats had impaired CBF autoregulation that was attenuated by treatment with losartan. In addition, we examined whether an agonistic autoantibody to the AT1 receptor (AT1-AA), reported to be present in preeclamptic women, contributes to impaired CBF autoregulation. Purified rat AT1-AA or vehicle was infused into pregnant rats from GD 12 to 19 via mini-osmotic pumps after which CBF autoregulation was assessed. AT1-AA infusion impaired CBF autoregulation but did not affect brain water content. CONCLUSIONS These results suggest that the impaired CBF autoregulation associated with placental ischemia is due, at least in part, to activation of the AT1 receptor and that the RAS may interact with other placental factors to promote cerebrovascular changes common to preeclampsia.
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jeremy Duncan
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Mark W Cunningham
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Babette B LaMarca
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Ralf Dechend
- Experimental and Clinical Research Center and Max-Delbrück Center for Molecular Medicine, and HELIOS Clinic Berlin, Berlin, Germany
| | - Gerd Wallukat
- Experimental and Clinical Research Center and Max-Delbrück Center for Molecular Medicine, and HELIOS Clinic Berlin, Berlin, Germany
| | - Richard J Roman
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Heather A Drummond
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Joey P Granger
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Michael J Ryan
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
31
|
Zeng H, Li H, Zhao Y, Chen L, Ma X. Transcripto‐based network analysis reveals a model of gene activation in tongue squamous cell carcinomas. Head Neck 2019; 41:4098-4110. [PMID: 31589000 DOI: 10.1002/hed.25952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hao Zeng
- Depatment of Biotherapy, Cancer CenterWest China Hospital, Sichuan University Chengdu China
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
- Department of OncologyWest China Hospital, Sichuan University Chengdu China
| | - Hui Li
- Depatment of Biotherapy, Cancer CenterWest China Hospital, Sichuan University Chengdu China
- West China School of MedicineWest China Hospital, Sichuan University Chengdu China
| | - Yunuo Zhao
- Depatment of Biotherapy, Cancer CenterWest China Hospital, Sichuan University Chengdu China
- West China School of MedicineWest China Hospital, Sichuan University Chengdu China
| | - Linyan Chen
- Depatment of Biotherapy, Cancer CenterWest China Hospital, Sichuan University Chengdu China
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| | - Xuelei Ma
- Depatment of Biotherapy, Cancer CenterWest China Hospital, Sichuan University Chengdu China
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| |
Collapse
|
32
|
Wang M, Yin X, Zhang S, Mao C, Cao N, Yang X, Bian J, Hao W, Fan Q, Liu H. Autoantibodies against AT1 Receptor Contribute to Vascular Aging and Endothelial Cell Senescence. Aging Dis 2019; 10:1012-1025. [PMID: 31595199 PMCID: PMC6764731 DOI: 10.14336/ad.2018.0919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
Vascular aging predisposes the elderly to the progression of many aging-related vascular disorders and leads to deterioration of cardiovascular diseases (CVD). However, the underlying mechanisms have not been clearly elucidated. Agonistic autoantibodies against angiotensin II type 1 (AT1) receptor (AT1-AAs) have been demonstrated to be pro-inflammatory and contribute to the progression of atherosclerosis. However, the association between AT1-AAs and vascular aging has not been defined. Peripheral arterial disease (PAD) is an acknowledged vascular aging-related disease. In this study, AT1-AAs were detected in the sera of patients with PAD and the positive rate was 44.44% (n=63) vs. 17.46% in non-PAD volunteers (n=63). In addition, case-control analysis showed that AT1-AAs level was positively correlated with PAD. To reveal the causal relationship between AT1-AAs and vascular aging, an AT1-AAs-positive rat model was established by active immunization. The carotid pulse wave velocity was higher, and the aortic endothelium-dependent vasodilatation was attenuated significantly in the immunized rats. Morphological staining showed thickening of the aortic wall. Histological examination showed that levels of the senescent markers were increased in the aortic tissue, mostly located at the endothelium. In addition, purified AT1-AAs-IgGs from both the immunized rats and PAD patients induced premature senescence in cultured human umbilical vein endothelial cells. These effects were significantly blocked by the AT1 receptor blocker. Taken together, our study demonstrates that AT1-AAs contribute to the progression of vascular aging and induce EC senescence through AT1 receptor. AT1-AA is a novel biomarker of vascular aging and aging-related CVD that acts to accelerate EC senescence.
Collapse
Affiliation(s)
- Meili Wang
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiaochen Yin
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Suli Zhang
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Chenfeng Mao
- 3Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,4Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ning Cao
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiaochun Yang
- 5Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingwei Bian
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Weiwei Hao
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Qian Fan
- 5Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huirong Liu
- 1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Williams TA, Jaquin D, Burrello J, Philippe A, Yang Y, Rank P, Nirschl N, Sturm L, Hübener C, Dragun D, Bidlingmaier M, Beuschlein F, Reincke M. Diverse Responses of Autoantibodies to the Angiotensin II Type 1 Receptor in Primary Aldosteronism. Hypertension 2019; 74:784-792. [PMID: 31476909 DOI: 10.1161/hypertensionaha.119.13156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary aldosteronism is a common form of endocrine hypertension mainly caused by a unilateral aldosterone-producing adenoma (APA) or bilateral adrenal hyperplasia (BAH). AT1R-Abs (autoantibodies to the angiotensin II type 1 receptor) have been reported in patients with disorders associated with hypertension. Our objective was to assess AT1R-Ab levels in patients with primary aldosteronism (APA, n=40 and BAH, n=40) relative to patients with primary hypertension (n=40), preeclampsia (n=23), and normotensive individuals (n=25). AT1R-Abs in whole sera were measured using 2 different ELISAs which gave contrasting results. A functional cell-based assay was used to quantify activation of the AT1R (angiotensin II type 1 receptor) using whole sera or affinity-purified antibodies in the absence or presence of losartan (a specific AT1R antagonist). Serum samples from all groups displayed different levels of AT1R activation with different responses to losartan. Patients with BAH displayed higher losartan-independent affinity-isolated agonistic AT1R-Ab levels compared with patients with APA (P<0.01) and with normotensive individuals (P<0.0001). In patients with APA, BAH, and primary hypertension combined, higher aldosterone-to-renin ratios and lower plasma renin concentrations were associated with higher compared with lower agonistic AT1R-Ab levels. In patients with primary aldosteronism, higher AT1R-Ab activity was associated with an increased likelihood of a diagnosis of BAH compared with APA and with the presence of adrenal hyperplasia detected by computed tomography. Taken together, these data suggest that agonistic AT1R-Abs may have a functional role in a subgroup of patients with primary aldosteronism.
Collapse
Affiliation(s)
- Tracy Ann Williams
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.).,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (T.A.W., J.B.)
| | - Diana Jaquin
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.)
| | - Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (T.A.W., J.B.)
| | - Aurélie Philippe
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany (A.P., D.D.)
| | - Yuhong Yang
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.)
| | - Petra Rank
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.)
| | - Nina Nirschl
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.)
| | - Lisa Sturm
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.)
| | - Christoph Hübener
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Universität München, Germany (C.H.)
| | - Duska Dragun
- Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum and Center for Cardiovascular Research, Medical Faculty of the Charité Berlin, Berlin, Germany (A.P., D.D.).,Berlin Institute of Health, Anna-Luisa-Karsch Str 2 10178 Berlin, Germany (D.D.)
| | - Martin Bidlingmaier
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.)
| | - Felix Beuschlein
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.).,Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Switzerland (F.B.)
| | - Martin Reincke
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (T.A.W., D.J., Y.Y., P.R., N.N., L.S., M.B., F.B., M.R.)
| |
Collapse
|
34
|
Campbell N, LaMarca B, Cunningham MW. The Role of Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor (AT1-AA) in Pathophysiology of Preeclampsia. Curr Pharm Biotechnol 2019; 19:781-785. [PMID: 30255752 DOI: 10.2174/1389201019666180925121254] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Preeclampsia is the leading cause of death and morbidity worldwide for the mother and fetus during pregnancy. Preeclampsia does not only affect the mother and the baby during pregnancy, but can also have long-term effects, such as the increased risk of hypertension and cardiovascular disease on the offspring and the postpartum mother later in life. The exact cause of preeclampsia is unknown, but women with preeclampsia have elevated concentrations of agonistic autoantibodies against the angiotensin II type 1 receptor (AT1-AA). These AT1-AA's through multiple studies have shown to play a significant role in the pathology and possible genesis of preeclampsia. This review will discuss the discovery of AT1-AAs and the role of AT1-AAs in the pathophysiology of preeclampsia. This review will also discuss future therapeutic approaches towards the AT1-AA to prevent adverse pregnancy outcomes. Furthermore, we will examine the relationship between AT1-AA induced hypertension associated with increased oxidative stress, antiangiogenic factors (such as soluble fms-related tyrosine kinase-1 (sFlt-1), endothelin-1 (ET-1), inflammation, endothelial dysfunction, and reduced renal function. Understanding the pathological role of AT1-AAs in hypertensive pregnancies is important as we search for novel therapies to manage preeclampsia.
Collapse
Affiliation(s)
- Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Mark W Cunningham
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
35
|
Nonn O, Güttler J, Forstner D, Maninger S, Zadora J, Balogh A, Frolova A, Glasner A, Herse F, Gauster M. Placental CX3CL1 is Deregulated by Angiotensin II and Contributes to a Pro-Inflammatory Trophoblast-Monocyte Interaction. Int J Mol Sci 2019; 20:ijms20030641. [PMID: 30717334 PMCID: PMC6387455 DOI: 10.3390/ijms20030641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
CX3CL1, which is a chemokine involved in many aspects of human pregnancy, is a membrane-bound chemokine shed into circulation as a soluble isoform. Placental CX3CL1 is induced by inflammatory cytokines and is upregulated in severe early-onset preeclampsia. In this study, the hypothesis was addressed whether angiotensin II can deregulate placental CX3CL1 expression, and whether CX3CL1 can promote a pro-inflammatory status of monocytes. qPCR analysis of human placenta samples (n = 45) showed stable expression of CX3CL1 and the angiotensin II receptor AGTR1 throughout the first trimester, but did not show a correlation between both or any influence of maternal age, BMI, and gestational age. Angiotensin II incubation of placental explants transiently deregulated CX3CL1 expression, while the angiotensin II receptor antagonist candesartan reversed this effect. Overexpression of recombinant human CX3CL1 in SGHPL-4 trophoblasts increased adhesion of THP-1 monocytes and significantly increased IL8, CCL19, and CCL13 in co-cultures with human primary monocytes. Incubation of primary monocytes with CX3CL1 and subsequent global transcriptome analysis of CD16+ subsets revealed 81 upregulated genes, including clusterin, lipocalin-2, and the leptin receptor. Aldosterone synthase, osteopontin, and cortisone reductase were some of the 66 downregulated genes present. These data suggest that maternal angiotensin II levels influence placental CX3CL1 expression, which, in turn, can affect monocyte to trophoblast adhesion. Release of placental CX3CL1 could promote the pro-inflammatory status of the CD16+ subset of maternal monocytes.
Collapse
Affiliation(s)
- Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Jacqueline Güttler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Sabine Maninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Julianna Zadora
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| | - András Balogh
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Berlin Institute of Health (BIH), 13125 Berlin, Germany.
| | - Alina Frolova
- Institute of Molecular Biology and Genetic of National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | | | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
- Berlin Institute of Health (BIH), 13125 Berlin, Germany.
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
36
|
Cunningham MW, Vaka VR, McMaster K, Ibrahim T, Cornelius DC, Amaral L, Campbell N, Wallukat G, McDuffy S, Usry N, Dechend R, LaMarca B. Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertens 2018; 15:72-77. [PMID: 30825931 DOI: 10.1016/j.preghy.2018.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Abstract
Women with preeclampsia (PE) have increased mean arterial pressure (MAP), natural killer (NK) cells, reactive oxygen species (ROS), and agonistic autoantibodies to the angiotensin II type 1 receptor (AT1-AA). AT1-AA's administered to pregnant rodents produces a well-accepted model of PE. However, the role of NK cells and mitochondrial reactive oxygen species (mtROS) in AT1-AA mediated hypertension during pregnancy is unknown. We hypothesize that AT1-AA induced model of PE will exhibit elevated MAP, NK cells, and mtROS; while inhibition of the AT1-AA binding to the AT1R would be preventative. Pregnant rats were divided into 4 groups: normal pregnant (NP) (n = 5), NP + AT1-AA inhibitory peptide (NP +'n7AAc') (n = 3), NP + AT1-AA infused (NP + AT1-AA) (n = 10), and NP + AT1-AA +'n7AAc' (n = 8). Day 13, rats were surgically implanted with mini-pumps infusing either AT1-AA or AT1-AA +'n7AAc'. Day 19, tissue and blood was collected. MAP was elevated in AT1-AA vs. NP (119 ± 1 vs. 102 ± 2 mmHg, p < 0.05) and this was prevented by 'n7AAc' (108 ± 3). There was a 6 fold increase in renal activated NK cells in AT1-AA vs NP (1.2 ± 0.4 vs. 0.2 ± 0.1% Gated, p = 0.05) which returned to NP levels in AT1-AA +'n7AAc' (0.1 ± 0.1% Gated). Renal mtROS (317 ± 49 vs. 101 ± 13% Fold, p < 0.05) was elevated with AT1-AA vs NP and was decreased in AT1-AA +'n7AAc' (128 ± 16, p < 0.05). In conclusion, AT1-AA's increased MAP, NK cells, and mtROS which were attenuated by AT1-AA inhibition, thus highlighting new mechanisms of AT1-AA and the importance of drug therapy targeted to AT1-AAs in hypertensive pregnancies.
Collapse
Affiliation(s)
- Mark W Cunningham
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Venkata Ramana Vaka
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kristen McMaster
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Tarek Ibrahim
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Denise C Cornelius
- Depart. of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lorena Amaral
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Nathan Campbell
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Gerd Wallukat
- Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Shyanne McDuffy
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Nathan Usry
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ralf Dechend
- Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany
| | - Babbette LaMarca
- Depart. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States; Depart. of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States.
| |
Collapse
|
37
|
Malik A, Jee B, Gupta SK. Preeclampsia: Disease biology and burden, its management strategies with reference to India. Pregnancy Hypertens 2018; 15:23-31. [PMID: 30825923 DOI: 10.1016/j.preghy.2018.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022]
Abstract
Preeclampsia is the cause of significant maternal and fetal mortality and morbidity. It is characterized by new-onset hypertension and proteinuria after 20 weeks of gestation. Preeclamptic women and children born from preeclamptic pregnancies are at greater risk to develop severe cardiovascular complications and metabolic syndromes later in life. The incidence of preeclampsia is estimated to be seven times higher in developing countries as compared to the developed countries. This review summarizes the pathophysiology of preeclampsia, emerging new hypothesis of its origin, risk factors that make women susceptible to developing preeclampsia and the potential of various biomarkers being studied to predict preeclampsia. The health care of developing countries is continuously challenged by substantial burden of maternal and fetal mortality. India despite being a fast developing country, is still far behind in achieving the required maternal mortality rates as per Millennium Development Goals set by the World Health Organization. Further, this review discusses the prevalence of preeclampsia in India, health facilities to manage preeclampsia, current guidelines and protocols followed and government policies to combat this complication in Indian condition.
Collapse
Affiliation(s)
- Ankita Malik
- Reproductive Cell Biology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi 110 001, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
38
|
Firoozmand LT, Sanches A, Damaceno-Rodrigues NR, Perez JD, Aragão DS, Rosa RM, Marcondes FK, Casarini DE, Caldini EG, Cunha TS. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats. Stress 2018; 21:484-493. [PMID: 29676198 DOI: 10.1080/10253890.2018.1462328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.
Collapse
Affiliation(s)
| | - Andrea Sanches
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Juliana Dinéia Perez
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Rodolfo Mattar Rosa
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (FOP-UNICAMP), Piracicaba, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Elia Garcia Caldini
- Laboratory of Cell Biology (LIM59), Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Institute of Science and Technology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| |
Collapse
|
39
|
Buttrup Larsen S, Wallukat G, Schimke I, Sandager A, Tvilum Christensen T, Uldbjerg N, Tørring N. Functional autoantibodies against Endothelin-1 receptor type A and Angiotensin II receptor type 1 in patients with preeclampsia. Pregnancy Hypertens 2018; 14:189-194. [DOI: 10.1016/j.preghy.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/05/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022]
|
40
|
Stanhewicz AE. Residual vascular dysfunction in women with a history of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1062-R1071. [PMID: 30133302 DOI: 10.1152/ajpregu.00204.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy characterized by new-onset hypertension, proteinuria, and edema occurring after 20 wk of gestation, with a prevalence of ~7-10% of pregnancies in the United States and ~8 million pregnancies worldwide. Despite the postpartum remission of preeclamptic symptoms, women who have had preeclampsia are two to four times more likely to develop cardiovascular disease (CVD) and are significantly more likely to die of CVD compared with women with a history of normal pregnancy. Although the relation between history of preeclampsia and elevated CVD risk is well documented, the mechanism(s) underlying this association remains unclear. One hypothesis explaining this association is that the initial vascular damage and dysfunction sustained during the preeclamptic pregnancy persist chronically. Indeed, even in the absence of, or in advance of, overt CVD women who have had preeclampsia have compromised vascular endothelial function. Emerging mechanistic studies in these women have provided some insight into the underlying mechanisms of this persistent vascular dysfunction and have begun to identify potential therapeutic targets for the prevention or mitigation of CVD progression in this vulnerable population. This review summarizes the existing literature examining vascular function and dysfunction in women with a history of preeclampsia and highlights future directions for mechanistic investigations and development of novel intervention strategies aimed at halting or slowing the progression of CVD in these women.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
41
|
Giil LM, Aarsland D, Hellton K, Lund A, Heidecke H, Schulze-Forster K, Riemekasten G, Vik-Mo AO, Kristoffersen EK, Vedeler CA, Nordrehaug JE. Antibodies to Multiple Receptors are Associated with Neuropsychiatric Symptoms and Mortality in Alzheimer’s Disease: A Longitudinal Study. J Alzheimers Dis 2018; 64:761-774. [DOI: 10.3233/jad-170882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lasse M. Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, Kings College, UK
- Centre for Age-Related Diseases (SESAM), Stavanger University Hospital, Norway
| | | | - Anders Lund
- Department of Clinical Science, University of Bergen, Norway
| | | | | | - Gabriela Riemekasten
- Department of Rheumatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Audun Osland Vik-Mo
- Department of Clinical Science, University of Bergen, Norway
- Centre for Age-Related Diseases (SESAM), Stavanger University Hospital, Norway
| | - Einar K. Kristoffersen
- Department of Clinical Science, University of Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian A. Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Norway
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
42
|
Shu W, Li H, Gong H, Zhang M, Niu X, Ma Y, Zhang X, Cai W, Yang G, Wei M, Yang N, Li Y. Evaluation of blood vessel injury, oxidative stress and circulating inflammatory factors in an L-NAME-induced preeclampsia-like rat model. Exp Ther Med 2018; 16:585-594. [PMID: 30112025 PMCID: PMC6090470 DOI: 10.3892/etm.2018.6217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Preeclampsia is a pregnancy-specific disease characterized by hypertension as well as proteinuria after the 20th week of pregnancy. Animal models are effective tools for studying the pathogenesis, diagnostic criteria and treatment methods of preeclampsia. The present study sought to establish and evaluate a preeclampsia-like Sprague Dawley (SD) rat model using N-nitro-L-arginine methyl ester (L-NAME). Rats were randomly assigned to 7 groups (n=10 in each): Control rats and rats treated with low-dose L-NAME (40 mg/kg body weight/day) starting from gestational day (GD) 9, medium-L-NAME (75 mg/kg body weight/day) starting from GD 9 (9D ML group), high-dose L-NAME (125 mg/kg body weight/day) starting from GD 9, low-dose L-NAME starting from GD 10, medium-dose L-NAME starting from GD 10 and high-dose L-NAME starting from GD 10. Blood pressure (BP), 24-h proteinuria, fetal intrauterine growth, histopathological changes, the plasma soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PLGF) ratio and cytokine levels were evaluated. Elevated BP, increased urinary albumin excretion, severe endotheliosis, mesangial expansion and increased sFlt-1/PLGF ratios were observed in the experimental groups compared with the control group (P<0.05), particularly in the 9D ML group. The results of the present study may optimize the conditions of the previously established L-NAME-induced preeclampsia SD rat model and aid further study into the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Wen Shu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Hanying Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China.,Graduate School of Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hao Gong
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China.,Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Mei Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Xiulong Niu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Yongqiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Xin Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Guohong Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Maoti Wei
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| |
Collapse
|
43
|
Angiotensin II responsiveness after preeclampsia: translational data from an experimental rat model and early-onset human preeclampsia. J Hypertens 2018; 35:2468-2478. [PMID: 28708773 DOI: 10.1097/hjh.0000000000001474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Formerly preeclamptic women have an increased risk for cardiovascular and renal disease later in life. It is unknown which mechanisms contribute to this increased risk and whether this is induced by preeclampsia or by prepregnancy factors. We hypothesized that the increased risk for cardiovascular disease is partly due to an increased angiotensin II (ang II) responsiveness postpartum and that preeclampsia itself is involved in inducing this increased ang II responsiveness. METHODS In never-pregnant, formerly healthy pregnant rats and rats with former experimental preeclampsia [experimental preeclampsia model induced by low-dose endotoxin infusion on day 14 of pregnancy; endotoxin-infused pregnant rats (EP-rats)], ang II responsiveness was studied by measuring changes in blood pressure (BP) and proteinuria after chronic ang II infusion with osmotic minipumps (200 ng/kg per min). In addition, we measured BP and responses to ang II (0.3, 1.0 and 3.0 ng/kg per min) in 18 formerly early-onset preeclamptic, without comorbidities, and 18 formerly healthy pregnant women (controls). RESULTS In rats, a significantly higher systolic BP at termination was observed in formerly EP-rats vs. never-pregnant rats after ang II infusion (159.5 ± 29.5 vs. 136.7 ± 16.8; P = 0.049). In response to ang II, there was a significant increase in proteinuria in formerly EP-rats vs. healthy pregnant and never-pregnant rats (P < 0.01 for both). In humans, 1.0 ng/kg per min ang II showed a trend towards an increased mean arterial BP response in formerly preeclamptic women vs. controls (P = 0.057). CONCLUSION Our data show an increased ang II responsiveness following (experimental) preeclampsia and support a role for preeclampsia itself in altered ang II responsiveness postpartum.
Collapse
|
44
|
Plenty NL, Faulkner JL, Cotton J, Spencer SK, Wallace K, LaMarca B, Murphy SR. Arachidonic acid metabolites of CYP4A and CYP4F are altered in women with preeclampsia. Prostaglandins Other Lipid Mediat 2018; 136:15-22. [DOI: 10.1016/j.prostaglandins.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 01/25/2023]
|
45
|
Giil LM, Vedeler CA, Kristoffersen EK, Nordrehaug JE, Heidecke H, Dechend R, Schulze-Forster K, Muller DN, von Goetze VS, Cabral-Marques O, Riemekasten G, Vogelsang P, Nygaard S, Lund A, Aarsland D. Antibodies to Signaling Molecules and Receptors in Alzheimer's Disease are Associated with Psychomotor Slowing, Depression, and Poor Visuospatial Function. J Alzheimers Dis 2018; 59:929-939. [PMID: 28697567 DOI: 10.3233/jad-170245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with several antibodies as well as signaling molecules and receptors. These may be detrimental in the presence of a disrupted blood-brain barrier (BBB). OBJECTIVE To investigate whether the levels of antibodies toward 33 signaling molecules involved in neurotransmitter, vascular, and immune functions were associated with AD and, within the AD group; cognitive function and mood. METHODS Antibodies in sera from patients with mild AD [(n = 91) defined as a Mini-Mental State Examination ≥ 20 or a Clinical Dementia Rating Scale≤1] and healthy controls (n = 102) were measured with enzyme-linked immunosorbent assays. Levels in AD and controls were compared by Mann-Whitney test. In the AD group, associations between antibodies and psychometric test scores were analyzed by robust regression. The false discovery threshold was set to 0.05. RESULTS Antibodies to serotonin receptors [5-HT2AR (effect size (r) = 0.21, p = 0.004), 5-HT2CR (r = 0.25, p = 0.0005) and 5-HT7R (r = 0.21, p = 0.003)], vascular endothelial growth factor receptor 1 [VEGFR1 (r = 0.29, p < 0.001)] and immune-receptors (Stabilin-1 (r = 0.23, p = 0.001) and C5aR1 (r = 0.21, p = 0.004) were higher in AD. Psychomotor speed was associated with D1R-abs (β 0.49, p < 0.001), depression with ETAR-abs (β 0.31, p < 0.001), and visuospatial function with 5-HT1AR-abs (β 0.27, p = 0.004) despite similar antibody levels compared to controls. CONCLUSIONS Antibody levels to VEGFR1, serotonergic receptors, and receptors in the immune system were increased in AD. Antibodies at similar levels as in controls were associated cognitive dysfunction and depression in AD.
Collapse
Affiliation(s)
- Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christian A Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Einar K Kristoffersen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | | | - Ralf Dechend
- Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbruck Center for Molecular Medicine, Berlin, Germany.,HELIOS-Klinikum Berlin, Berlin, Germany
| | | | - Dominik N Muller
- Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbruck Center for Molecular Medicine, Berlin, Germany.,Max-Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Gabriela Riemekasten
- Department of Rheumatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Petra Vogelsang
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Staale Nygaard
- Research Group for Biomedical Informatics, University of Oslo, Oslo, Norway
| | - Anders Lund
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, Kings College, UK.,Centre for Age-Related Diseases (SESAM), Stavanger University Hospital, Norway
| |
Collapse
|
46
|
Cunningham MW, Castillo J, Ibrahim T, Cornelius DC, Campbell N, Amaral L, Vaka VR, Usry N, Williams JM, LaMarca B. AT1-AA (Angiotensin II Type 1 Receptor Agonistic Autoantibody) Blockade Prevents Preeclamptic Symptoms in Placental Ischemic Rats. Hypertension 2018; 71:886-893. [PMID: 29555668 DOI: 10.1161/hypertensionaha.117.10681] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 01/02/2023]
Abstract
Women with preeclampsia produce AT1-AA (agonistic autoantibodies to the angiotensin II type 1 receptor), which stimulate reactive oxygen species, inflammatory factors, and hypertensive mechanisms (ET [endothelin] and sFlt-1 [soluble fms-like tyrosine kinase-1]) in rodent models of preeclampsia. The placental ischemic reduced uterine perfusion pressure (RUPP) rat model of preeclampsia exhibits many of these features. In this study, we examined the maternal outcomes of AT1-AA inhibition ('n7AAc') in RUPP rats. Blood pressure was higher in RUPP rats versus normal pregnant (NP) rats (123±2 versus 99±2 mm Hg, P<0.05), which was reduced in RUPP+'n7AAc' (105±3 versus 123±2 mm Hg, P<0.05 versus RUPP). Uterine artery resistant index was increased in RUPP versus NP rats (0.71±0.02 versus 0.49±0.02, P<0.05) and normalized in RUPP+'n7AAc' rats (0.55±0.03). Antiangiogenic factor sFlt-1 was elevated in RUPP versus NP rats (176±37 versus 77±15 pg/mL, P<0.05) but normalized in RUPP+'n7AAc' (86±9, P=0.05 versus RUPP). Plasma nitrate and nitrite were decreased (14±1 versus 20±1 µMNO3, P<0.05) and isoprostanes were elevated (20 117±6304 versus 2809±1375 pg/mL, P<0.05) in RUPP versus NP rats; and normalized in RUPP+'n7AAc' rats; (18±2 µMNO3; 4311±1 pg/mL). PPET-1 (preproendothelin-1) expression increased 4-fold in RUPP versus NP rats which were prevented with 'n7AAc'. Importantly, placental cytolytic natural killer cells were elevated in RUPP versus NP rats (8±2% versus 2±2% gated, P<0.05), which was prevented in RUPP+'n7AAc' total (3±1% gated, P<0.05) In conclusion, AT1-AA inhibition prevents the rise in maternal blood pressure and several pathophysiological factors associated with preeclampsia in RUPP rats and could be a potential therapy for preeclampsia.
Collapse
Affiliation(s)
- Mark W Cunningham
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Javier Castillo
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Tarek Ibrahim
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Denise C Cornelius
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Nathan Campbell
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Lorena Amaral
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Venkata Ramana Vaka
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Nathan Usry
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Jan M Williams
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson
| | - Babbette LaMarca
- From the Departments of Pharmacology and Toxicology (M.W.C., T.I., D.C.C., N.C., L.A., V.R.V., N.U., J.M.W., B.L.), Obstetrics and Gynecology (J.C., B.L.), and Emergency Medicine (D.C.C.), University of Mississippi Medical Center, Jackson.
| |
Collapse
|
47
|
Martinez-Fierro ML, Hernández-Delgadillo GP, Flores-Morales V, Cardenas-Vargas E, Mercado-Reyes M, Rodriguez-Sanchez IP, Delgado-Enciso I, Galván-Tejada CE, Galván-Tejada JI, Celaya-Padilla JM, Garza-Veloz I. Current model systems for the study of preeclampsia. Exp Biol Med (Maywood) 2018; 243:576-585. [PMID: 29415560 DOI: 10.1177/1535370218755690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy complex disease, distinguished by high blood pressure and proteinuria, diagnosed after the 20th gestation week. Depending on the values of blood pressure, urine protein concentrations, symptomatology, and onset of disease there is a wide range of phenotypes, from mild forms developing predominantly at the end of pregnancy to severe forms developing in the early stage of pregnancy. In the worst cases severe forms of PE could lead to systemic endothelial dysfunction, eclampsia, and maternal and/or fetal death. Worldwide the fetal morbidity and mortality related to PE is calculated to be around 8% of the total pregnancies. PE still being an enigma regarding its etiology and pathophysiology, in general a deficient trophoblast invasion during placentation at first stage of pregnancy, in combination with maternal conditions are accepted as a cause of endothelial dysfunction, inflammatory alterations and appearance of symptoms. Depending on the PE multifactorial origin, several in vitro, in vivo, and in silico models have been used to evaluate the PE pathophysiology as well as to identify or test biomarkers predicting, diagnosing or prognosing the syndrome. This review focuses on the most common models used for the study of PE, including those related to placental development, abnormal trophoblast invasion, uteroplacental ischemia, angiogenesis, oxygen deregulation, and immune response to maternal-fetal interactions. The advances in mathematical and computational modeling of metabolic network behavior, gene prioritization, the protein-protein interaction network, the genetics of PE, and the PE prediction/classification are discussed. Finally, the potential of these models to enable understanding of PE pathogenesis and to evaluate new preventative and therapeutic approaches in the management of PE are also highlighted. Impact statement This review is important to the field of preeclampsia (PE), because it provides a description of the principal in vitro, in vivo, and in silico models developed for the study of its principal aspects, and to test emerging therapies or biomarkers predicting the syndrome before their evaluation in clinical trials. Despite the current advance, the field still lacking of new methods and original modeling approaches that leads to new knowledge about pathophysiology. The part of in silico models described in this review has not been considered in the previous reports.
Collapse
Affiliation(s)
- M L Martinez-Fierro
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,2 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - G P Hernández-Delgadillo
- 3 Laboratorio de Investigación en Farmacología, 27779 Universidad Autónoma de Zacatecas , 98160 Zacatecas, México
| | - V Flores-Morales
- 4 Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), 27779 Universidad Autónoma de Zacatecas , 98160 Zacatecas, México
| | - E Cardenas-Vargas
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,5 Hospital General Zacatecas "Luz Gonzalez Cosio", Secretaria de Salud de Zacatecas, 98160 Zacatecas, México
| | - M Mercado-Reyes
- 6 Laboratorio de Biología de la Conservación, Unidad Académica de Ciencias Biológicas, 27779 Universidad Autónoma de Zacatecas , 98060 Zacatecas, México
| | - I P Rodriguez-Sanchez
- 7 Departamento de Génetica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, México
| | - I Delgado-Enciso
- 8 Faculty of Medicine, Universidad de Colima, 28040 Colima, Mexico.,9 State Cancer Institute, Health Secretary of Colima, 28060 Colima, Mexico
| | - C E Galván-Tejada
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - J I Galván-Tejada
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - J M Celaya-Padilla
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México.,11 CONACYT - Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - I Garza-Veloz
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,2 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| |
Collapse
|
48
|
Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol 2017; 313:R693-R705. [PMID: 28978513 DOI: 10.1152/ajpregu.00259.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4+ helper T cell populations, defined by excessive Th17 responses and impaired Treg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8+ T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders.
Collapse
Affiliation(s)
- Salema Jafri
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom; and
| | - Mark L Ormiston
- Queen's University, Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, Canada
| |
Collapse
|
49
|
Depletion of MHC class II invariant chain peptide or γ–δ T-cells ameliorates experimental preeclampsia. Clin Sci (Lond) 2017. [DOI: 10.1042/cs20171008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive innate immune system activation and inflammation during pregnancy can lead to organ injury and dysfunction and preeclampsia (PE); however, the molecular mechanisms involved are unknown. We tested the hypothesis that Toll-like receptor (TLR) activation induces major histocompatibility complex (MHC) class II invariant chain peptide (CLIP) expression on immune cells, makes them pro-inflammatory, and are necessary to cause PE-like features in mice. Treatment with VG1177, a competitive antagonist peptide for CLIP in the groove of MHC class II, was able to both prevent and treat PE-like features in mice. We then determined that γ–δ T cells are critical for the development of PE-like features in mice since γ–δ T-cell knockout mice, like CLIP deficient mice, are resistant to developing PE-like features. Placentas from women with PE exhibit significantly increased levels of γ–δ T cells. These preclinical data demonstrate that CLIP expression and activated γ–δ T cells are responsible for the development of immunologic PE-like features and that temporarily antagonizing CLIP and/or γ–δ T cells may be a therapeutic strategy for PE.
Collapse
|
50
|
Lopez Gelston CA, Mitchell BM. Recent Advances in Immunity and Hypertension. Am J Hypertens 2017; 30:643-652. [PMID: 28200062 DOI: 10.1093/ajh/hpx011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/01/2023] Open
Abstract
Persistent immune system activation plays an important role in the development of various forms of hypertension. Activation of the innate immune system, inflammation, and subsequent adaptive immune system response causing end-organ injury and dysfunction ultimately leads to hypertension and its associated sequelae including coronary artery disease, heart failure, stroke, and chronic kidney disease. In this review, we will provide updates on the innate and adaptive immune cells involved in hypertension, the current understanding of how the immune system gets activated, and examine the recently discovered mechanisms involved in several forms of experimental hypertension.
Collapse
Affiliation(s)
- Catalina A Lopez Gelston
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas, USA
| |
Collapse
|