1
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Rodríguez JE, Andrade-Jorge E, Barquet-Nieto A, Estrada-Soto SE, Gallardo-Ortíz IA, Villalobos-Molina R. BMY 7378, a selective α 1D-adrenoceptor antagonist, is a new angiotensin converting enzyme inhibitor: In silico, in vitro and in vivo approach. Biochim Biophys Acta Gen Subj 2025; 1869:130732. [PMID: 39631474 DOI: 10.1016/j.bbagen.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BMY 7378 is a multitarget drug primarily known for its selective antagonism of α1D-adrenoceptors (α1D-AR), exhibiting both hypotensive effects and the ability to prevent or reverse angiotensin II-induced vascular hypertrophy. Notably, BMY 7378 contains a phenylpiperazine moiety, a structural feature associated with angiotensin-converting enzyme (ACE) inhibition. This study aimed to investigate ACE inhibition as a potential pharmacological mechanism of BMY 7378. Using an in silico approach we predicted BMY 7378 interactions with the ACE active site, followed by in vitro activity assays. Additionally, ACE protein expression in the heart was analyzed following four weeks of BMY 7378 treatment in 7-8-month-old spontaneously hypertensive rats (SHR). All assays were benchmarked against captopril, a standard ACE inhibitor. In silico results showed that BMY 7378 binds to the ACE active site, though with reduced interaction with Zn701 (73.7 % compared to captopril), likely due to the pKa of its amino group. The inhibitory concentration 50 (IC50) for BMY 7378 was 136 μM, lower than other reported phenylpiperazine derivatives. Furthermore, BMY 7378 significantly increased ACE expression in the hearts of SHR, with an increase of 8.5-fold compared to captopril. In conclusion, BMY 7378 exhibits dual activity as an α1D-AR antagonist and an ACE inhibitor, making it a promising pharmacological tool for investigating and potentially treating hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
- Jessica E Rodríguez
- Bioquímica Clínica, Carrera de Químico Farmacéutico Biólogo, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Av. Guelatao con Av. Exploradores, Ejército de Oriente, Iztapalapa, 09230, Ciudad de Mexico, México; Unidad de Investigación en Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México
| | - Erik Andrade-Jorge
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, 11340 Ciudad de México, México
| | - Alina Barquet-Nieto
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, 11340 Ciudad de México, México
| | - Samuel E Estrada-Soto
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, México
| | - Itzell A Gallardo-Ortíz
- Unidad de Investigación en Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México.
| | - Rafael Villalobos-Molina
- Unidad de Investigación en Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México.
| |
Collapse
|
3
|
Tain YL, Hsu CN. Kidney Programming and Hypertension: Linking Prenatal Development to Adulthood. Int J Mol Sci 2024; 25:13610. [PMID: 39769369 PMCID: PMC11677590 DOI: 10.3390/ijms252413610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The complex relationship between kidney disease and hypertension represents a critical area of research, yet less attention has been devoted to exploring how this connection develops early in life. Various environmental factors during pregnancy and lactation can significantly impact kidney development, potentially leading to kidney programming that results in alterations in both structure and function. This early programming can contribute to adverse long-term kidney outcomes, such as hypertension. In the context of kidney programming, the molecular pathways involved in hypertension are intricate and include epigenetic modifications, oxidative stress, impaired nitric oxide pathway, inappropriate renin-angiotensin system (RAS) activation, disrupted nutrient sensing, gut microbiota dysbiosis, and altered sodium transport. This review examines each of these mechanisms and highlights reprogramming interventions proposed in preclinical studies to prevent hypertension related to kidney programming. Given that reprogramming strategies differ considerably from conventional treatments for hypertension in kidney disease, it is essential to shift focus toward understanding the processes of kidney programming and its role in the development of programmed hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S. Epigenetics of Hypertensive Nephropathy. Biomedicines 2024; 12:2622. [PMID: 39595187 PMCID: PMC11591919 DOI: 10.3390/biomedicines12112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hamidreza Arzaghi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Takeda Y, Demura M, Yoneda T, Takeda Y. Epigenetic Regulation of the Renin-Angiotensin-Aldosterone System in Hypertension. Int J Mol Sci 2024; 25:8099. [PMID: 39125667 PMCID: PMC11312206 DOI: 10.3390/ijms25158099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Activation of the renin-angiotensin-aldosterone system (RAAS) plays an important pathophysiological role in hypertension. Increased mRNA levels of the angiotensinogen angiotensin-converting enzyme, angiotensin type 1 receptor gene, Agtr1a, and the aldosterone synthase gene, CYP11B2, have been reported in the heart, blood vessels, and kidneys in salt-sensitive hypertension. However, the mechanism of gene regulation in each component of the RAAS in cardiovascular and renal tissues is unclear. Epigenetic mechanisms, which are important for regulating gene expression, include DNA methylation, histone post-translational modifications, and microRNA (miRNA) regulation. A close association exists between low DNA methylation at CEBP-binding sites and increased AGT expression in visceral adipose tissue and the heart of salt-sensitive hypertensive rats. Several miRNAs influence AGT expression and are associated with cardiovascular diseases. Expression of both ACE and ACE2 genes is regulated by DNA methylation, histone modifications, and miRNAs. Expression of both angiotensinogen and CYP11B2 is reversibly regulated by epigenetic modifications and is related to salt-sensitive hypertension. The mineralocorticoid receptor (MR) exists in cardiovascular and renal tissues, in which many miRNAs influence expression and contribute to the pathogenesis of hypertension. Expression of the 11beta-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene is also regulated by methylation and miRNAs. Epigenetic regulation of renal and vascular HSD11B2 is an important pathogenetic mechanism for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan;
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 921-8641, Japan;
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
| | - Yoshiyu Takeda
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
- Hypertension Center, Asanogawa General Hospital, Kanazawa 910-8621, Japan
| |
Collapse
|
6
|
Tain YL, Hsu CN. Interplay between maternal nutrition and epigenetic programming on offspring hypertension. J Nutr Biochem 2024; 127:109604. [PMID: 38373508 DOI: 10.1016/j.jnutbio.2024.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Recent human and animal studies have delineated hypertension can develop in the earliest stage of life. A lack or excess of particular nutrients in the maternal diet may impact the expression of genes associated with BP, leading to an increased risk of hypertension in adulthood. Modulations in gene expression could be caused by epigenetic mechanisms through aberrant DNA methylation, histone modification, and microRNAs (miRNAs). Several molecular mechanisms for the developmental programming of hypertension, including oxidative stress, dysregulated nutrient-sensing signal, aberrant renin-angiotensin system, and dysbiotic gut microbiota have been associated with epigenetic programming. Conversely, maternal nutritional interventions such as amino acids, melatonin, polyphenols, resveratrol or short chain fatty acids may work as epigenetic modifiers to trigger protective epigenetic modifications and prevent offspring hypertension. We present a current perspective of maternal malnutrition that can cause fetal programming and the potential of epigenetic mechanisms lead to offspring hypertension. We also discuss the opportunities of dietary nutrients or nutraceuticals as epigenetic modifiers to counteract those adverse programming actions for hypertension prevention. The extent to which aberrant epigenetic changes can be reprogrammed or reversed by maternal dietary interventions in order to prevent human hypertension remains to be established. Continued research is necessary to evaluate the interaction between maternal malnutrition and epigenetic programming, as well as a greater focus on nutritional interventions for hypertension prevention towards their use in clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Pinto TS, Feltran GDS, Fernandes CJDC, de Camargo Andrade AF, Coque ADC, Silva SL, Abuderman AA, Zambuzzi WF, Foganholi da Silva RA. Epigenetic changes in shear-stressed endothelial cells. Cell Biol Int 2024; 48:665-681. [PMID: 38420868 DOI: 10.1002/cbin.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.
Collapse
Affiliation(s)
- Thaís Silva Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Célio Júnior da C Fernandes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda Fantini de Camargo Andrade
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Alex de Camargo Coque
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Simone L Silva
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Abdulwahab A Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Rodrigo A Foganholi da Silva
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| |
Collapse
|
8
|
Ray A, Stelloh C, Liu Y, Meyer A, Geurts AM, Cowley A, Greene AS, Liang M, Rao S. Histone Modifications and Their Contributions to Hypertension. Hypertension 2024; 81:229-239. [PMID: 38031837 PMCID: PMC11229175 DOI: 10.1161/hypertensionaha.123.21755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Essential hypertension, a multifaceted disorder, is a worldwide health problem. A complex network of genetic, epigenetic, physiological, and environmental components regulates blood pressure (BP), and any dysregulation of this network may result in hypertension. Growing evidence suggests a role for epigenetic factors in BP regulation. Any alterations in the expression or functions of these epigenetic regulators may dysregulate various determinants of BP, thereby promoting the development of hypertension. Histone posttranslational modifications are critical epigenetic regulators that have been implicated in hypertension. Several studies have demonstrated a clear association between the increased expression of some histone-modifying enzymes, especially HDACs (histone deacetylases), and hypertension. In addition, treatment with HDAC inhibitors lowers BP in hypertensive animal models, providing an excellent opportunity to design new drugs to treat hypertension. In this review, we discuss the potential contribution of different histone modifications to the regulation of BP.
Collapse
Affiliation(s)
- Atrayee Ray
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cary Stelloh
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Yong Liu
- Department of Physiology, University of Arizona, Tucson, AZ 85721
| | - Alison Meyer
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Allen Cowley
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Mingyu Liang
- Department of Physiology, University of Arizona, Tucson, AZ 85721
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Section of Hematology/Oncology/Transplantation, Medical College of Wisconsin, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, WI, 53226, USA
| |
Collapse
|
9
|
Silva-Ochoa AD, Velasteguí E, Falconí IB, García-Solorzano VI, Rendón-Riofrio A, Sanguña-Soliz GA, Vanden Berghe W, Orellana-Manzano A. Metabolic syndrome: Nutri-epigenetic cause or consequence? Heliyon 2023; 9:e21106. [PMID: 37954272 PMCID: PMC10637881 DOI: 10.1016/j.heliyon.2023.e21106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions that results from the interplay of genetic and environmental factors, which increase the comorbidity risk of obesity, hyperglycemia, dyslipidemia, arterial hypertension, stroke, and cardiovascular disease. In this article, we review various high-impact studies which link epigenetics with metabolic syndrome by comparing each study population, methylation effects, and strengths and weaknesses of each research. We also discuss world statistical data on metabolic syndrome incidence in developing countries where the metabolic syndrome is common condition that has significant public health implications.
Collapse
Affiliation(s)
- Alfonso D. Silva-Ochoa
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Licenciatura en Nutrición y Dietética, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Erick Velasteguí
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito, Ecuador
| | - Isaac B. Falconí
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Valeria I. García-Solorzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Angie Rendón-Riofrio
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Gabriela A. Sanguña-Soliz
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Agua y Desarrollo Sustentable, CADS, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Wim Vanden Berghe
- Epigenetic signaling PPES lab, Department Biomedical Sciences, University Antwerp, Antwerp, Belgium
| | - Andrea Orellana-Manzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
10
|
Mengozzi A, Costantino S, Mongelli A, Mohammed SA, Gorica E, Delfine V, Masi S, Virdis A, Ruschitzka F, Paneni F. Epigenetic Signatures in Arterial Hypertension: Focus on the Microvasculature. Int J Mol Sci 2023; 24:ijms24054854. [PMID: 36902291 PMCID: PMC10003673 DOI: 10.3390/ijms24054854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Systemic arterial hypertension (AH) is a multifaceted disease characterized by accelerated vascular aging and high cardiometabolic morbidity and mortality. Despite extensive work in the field, the pathogenesis of AH is still incompletely understood, and its treatment remains challenging. Recent evidence has shown a deep involvement of epigenetic signals in the regulation of transcriptional programs underpinning maladaptive vascular remodeling, sympathetic activation and cardiometabolic alterations, all factors predisposing to AH. After occurring, these epigenetic changes have a long-lasting effect on gene dysregulation and do not seem to be reversible upon intensive treatment or the control of cardiovascular risk factors. Among the factors involved in arterial hypertension, microvascular dysfunction plays a central role. This review will focus on the emerging role of epigenetic changes in hypertensive-related microvascular disease, including the different cell types and tissues (endothelial cells, vascular smooth muscle cells and perivascular adipose tissue) as well as the involvement of mechanical/hemodynamic factors, namely, shear stress.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Shafeeq A. Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
- Correspondence: or francesco.paneni@uzh; Tel.: +41-44-6355096
| |
Collapse
|
11
|
Hung FY, Feng YR, Hsin KT, Shih YH, Chang CH, Zhong W, Lai YC, Xu Y, Yang S, Sugimoto K, Cheng YS, Wu K. Arabidopsis histone H3 lysine 9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to repress KNAT1 and KNAT2. Commun Biol 2023; 6:219. [PMID: 36828846 PMCID: PMC9958104 DOI: 10.1038/s42003-023-04607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
The Arabidopsis H3K9 methyltransferases KRYPTONITE/SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG 4 (KYP/SUVH4), SUVH5 and SUVH6 are redundantly involved in silencing of transposable elements (TEs). Our recent study indicated that KYP/SUVH5/6 can directly interact with the histone deacetylase HDA6 to synergistically regulate TE expression. However, the function of KYP/SUVH5/6 in plant development is still unclear. The transcriptional factors ASYMMETRIC LEAVES1 (AS1) and AS2 form a transcription complex, which is involved in leaf development by repressing the homeobox genes KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1 (KNAT1) and KNAT2. In this study, we found that KYP and SUVH5/6 directly interact with AS1-AS2 to repress KNAT1 and KNAT2 by altering histone H3 acetylation and H3K9 dimethylation levels. In addition, KYP can directly target the promoters of KNAT1 and KNAT2, and the binding of KYP depends on AS1. Furthermore, the genome-wide occupancy profile of KYP indicated that KYP is enriched in the promoter regions of coding genes, and the binding of KYP is positively correlated with that of AS1 and HDA6. Together, these results indicate that Arabidopsis H3K9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to alter histone H3 acetylation and H3K9 dimethylation from KNAT1 and KNAT2 loci.
Collapse
Affiliation(s)
- Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
- RIKEN, Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yun-Ru Feng
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuan-Ting Hsin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yuan-Hsin Shih
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chung-Han Chang
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wenjian Zhong
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - You-Cheng Lai
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yingchao Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Keiko Sugimoto
- RIKEN, Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Chew NWS, Loong SSE, Foo R. Progress in molecular biology and translational science: Epigenetics in cardiovascular health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:105-134. [PMID: 37019589 DOI: 10.1016/bs.pmbts.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conrad Waddington's epigenetics landscape has provided a metaphorical framework for how cells progress from undifferentiated states to one of several discrete, distinct, differentiated cell fates. The understanding of epigenetics has evolved over time, with DNA methylation being the most studied epigenetic modification, followed by histone modifications and non-coding RNA. Cardiovascular diseases (CVD) are leading contributors to death worldwide, with the prevalence of CVDs increasing across the last couple of decades. Significant amount of resources being poured into researching key mechanisms and underpinnings of the various CVDs. These molecular studies looked at the genetics, epigenetics as well as the transcriptomics of various cardiovascular conditions, aiming to provide mechanistic insights. It has paved the way for therapeutics to be developed and in recent years, epi-drugs for the treatment of CVDs. This chapter aims to cover the various roles of epigenetics in the context of cardiovascular health and disease. The following will be examined in detail: the developments in basic experimental techniques used to study epigenetics, the role of epigenetics in various CVDs (hypertension, atrial fibrillation, atherosclerosis, and heart failure), and current advances in epi-therapeutics, providing a holistic view of the current concerted efforts in advancing the field of epigenetics in CVDs.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore.
| | - Shaun S E Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Increasing angiotensin-converting enzyme 1 regulated by histone 3 lysine 27 hyperacetylation in high-fat diet-induced hypertensive rat kidney. J Hypertens 2022; 40:1969-1978. [PMID: 35969203 DOI: 10.1097/hjh.0000000000003210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Obesity is a key risk factor of hypertension. Angiotensin-converting enzyme 1 (ACE1) is a key enzyme involved in the renin-angiotensin-aldosterone system (RAAS), which contributes to obesity-related hypertension (OrHTN). Emerging evidence has shown that histone acetylation is also involved in OrHTN. As kidney is an effector organ that activates the RAAS by secreting renin after hypertension occurs, this study aimed to explore the regulatory role of histone acetylation on renal RAAS expression. METHODS Nineteen male Wistar rats were randomly divided into a control group ( n = 9, fed normal chow) and a high-fat diet (HFD) group ( n = 10, fed HFD for 16 weeks). The renal transcriptome and histone acetylation spectrum was analyzed by RNA sequencing and tandem mass spectrometry and was further confirmed by RT-qPCR, western blot, and immunohistochemistry. Then, chromatin immunoprecipitation (ChIP)-qPCR analysis was performed for the detection of DNA-protein interaction. RESULTS After 16-week HFD, the rats became obese with increased plasma triglyceride and high blood pressure. Increased ACE1 and histone 3 lysine 27 acetylation (H3K27ac) expression levels were found in OrHTN rat kidneys. The following ChIP-qPCR analysis illustrated that the upregulation of ACE1 transcription was mediated by increased H3K27ac. CONCLUSION H3K27ac could be an important histone acetylation site that activates renal ACE1 in HFD-induced hypertensive rats.
Collapse
|
14
|
A Review of Vascular Traits and Assessment Techniques, and Their Heritability. Artery Res 2022. [DOI: 10.1007/s44200-022-00016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractVarious tools are available to assess atherosclerosis, arterial stiffening, and endothelial function. They offer utility in the assessment of hypertensive phenotypes, in cardiovascular risk prediction, and as surrogate endpoints in clinical trials. We explore the relative influence of participant genetics, with reference to large-scale genomic studies, population-based cohorts, and candidate gene studies. We find heritability estimates highest for carotid intima-media thickness (CIMT 35–65%), followed by pulse wave velocity as a measure of arterial stiffness (26–43%), and flow mediated dilatation as a surrogate for endothelial function (14–39%); data were lacking for peripheral artery tonometry. We furthermore examine genes and polymorphisms relevant to each technique. We conclude that CIMT and pulse wave velocity dominate the existing evidence base, with fewer published genomic linkages for measures of endothelial function. We finally make recommendations regarding planning and reporting of data relating to vascular assessment techniques, particularly when genomic data are also available, to facilitate integration of these tools into cardiovascular disease research.
Collapse
|
15
|
Copur S, Rossing P, Afsar B, Sag AA, Siriopol D, Kuwabara M, Ortiz A, Kanbay M. A primer on metabolic memory: why existing diabesity treatments fail. Clin Kidney J 2021; 14:756-767. [PMID: 34512957 PMCID: PMC8422888 DOI: 10.1093/ckj/sfaa143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/28/2022] Open
Abstract
Despite massive government and private sector investments into prevention of cardiovascular disease, diabetes mellitus and obesity, efforts have largely failed, and the burden of cost remains in the treatment of downstream morbidity and mortality, with overall stagnating outcomes. A new paradigm shift in the approach to these patients may explain why existing treatment strategies fail, and offer new treatment targets. This review aims to provide a clinician-centred primer on metabolic memory, defined as the sum of irreversible genetic, epigenetic, cellular and tissue-level alterations that occur with long-time exposure to metabolic derangements.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Baris Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC, USA
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | | | - Alberto Ortiz
- School of Medicine, Dialysis Unit, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
16
|
Epigenetic modifications of the renin-angiotensin system in cardiometabolic diseases. Clin Sci (Lond) 2021; 135:127-142. [PMID: 33416084 DOI: 10.1042/cs20201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases (CMDs) are among the most prevalent and the highest mortality diseases. Single disease etiology such as gene mutation, polymorphisms, or environmental exposure has failed to explain the origin of CMD. This can be evident in the discrepancies in disease susceptibility among individuals exposed to the same environmental insult or who acquire the same genetic variation. Epigenetics is the intertwining of genetic and environmental factors that results in diversity in the disease course, severity, and prognosis among individuals. Environmental exposures modify the epigenome and thus provide a link for translating environmental impact on changes in gene expression and precipitation to pathological conditions. Renin-angiotensin system (RAS) is comprising genes responsible for the regulation of cardiovascular, metabolic, and glycemic functions. Epigenetic modifications of RAS genes can lead to overactivity of the system, increased sympathetic activity and autonomic dysfunction ultimately contributing to the development of CMD. In this review, we describe the three common epigenetic modulations targeting RAS components and their impact on the susceptibility to cardiometabolic dysfunction. Additionally, we highlight the therapeutic efforts of targeting these epigenetic imprints to the RAS and its effects.
Collapse
|
17
|
Uhlorn JA, Husband NA, Romero‐Aleshire MJ, Moffett C, Lindsey ML, Langlais PR, Brooks HL. CD4 + T Cell-Specific Proteomic Pathways Identified in Progression of Hypertension Across Postmenopausal Transition. J Am Heart Assoc 2021; 10:e018038. [PMID: 33410333 PMCID: PMC7955317 DOI: 10.1161/jaha.120.018038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Background Menopause is associated with an increase in the prevalence and severity of hypertension in women. Although premenopausal females are protected against T cell-dependent immune activation and development of angiotensin II (Ang II) hypertension, this protection is lost in postmenopausal females. Therefore, the current study hypothesized that specific CD4+ T cell pathways are regulated by sex hormones and Ang II to mediate progression from premenopausal protection to postmenopausal hypertension. Methods and Results Menopause was induced in C57BL/6 mice via repeated 4-vinylcyclohexene diepoxide injections, while premenopausal females received sesame oil vehicle. A subset of premenopausal mice and all menopausal mice were infused with Ang II for 14 days (Control, Ang II, Meno/Ang II). Proteomic and phosphoproteomic profiles of CD4+ T cells isolated from spleens were examined. Ang II markedly increased CD4+ T cell protein abundance and phosphorylation associated with DNA and histone methylation in both premenopausal and postmenopausal females. Compared with premenopausal T cells, Ang II infusion in menopausal mice increased T cell phosphorylation of MP2K2, an upstream regulator of ERK, and was associated with upregulated phosphorylation at ERK targeted sites. Additionally, Ang II infusion in menopausal mice decreased T cell phosphorylation of TLN1, a key regulator of IL-2Rα and FOXP3 expression. Conclusions These findings identify novel, distinct T cell pathways that influence T cell-mediated inflammation during postmenopausal hypertension.
Collapse
Affiliation(s)
- Joshua A. Uhlorn
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | | | | | - Caitlin Moffett
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Merry L. Lindsey
- Department of Cellular and Integrative PhysiologyCenter for Heart and Vascular ResearchNebraska‐Western Iowa Health Care SystemUniversity of Nebraska Medical Center and Research ServiceOmahaNE
| | - Paul R. Langlais
- Department of MedicineCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Heddwen L. Brooks
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| |
Collapse
|
18
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
19
|
Hsu CY, Lin RH, Lin YC, Chen JY, Li WC, Lee LA, Liu KH, Chuang HH. Are Body Composition Parameters Better than Conventional Anthropometric Measures in Predicting Pediatric Hypertension? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5771. [PMID: 32785000 PMCID: PMC7460262 DOI: 10.3390/ijerph17165771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/03/2022]
Abstract
Body composition (BC) parameters are associated with cardiometabolic diseases in children; however, the importance of BC parameters for predicting pediatric hypertension is inconclusive. This cross-sectional study aimed to compare the difference in predictive values of BC parameters and conventional anthropometric measures for pediatric hypertension in school-aged children. A total of 340 children (177 girls and 163 boys) with a mean age of 8.8 ± 1.7 years and mean body mass index (BMI) z-score of 0.50 ± 1.24 were enrolled (102 hypertensive children and 238 normotensive children). Significantly higher values of anthropometric measures (BMI, BMI z-score, BMI percentile, waist-to-height ratio) and BC parameters (body-fat percentage, muscle weight, fat mass, fat-free mass) were observed among the hypertensive subgroup compared to their normotensive counterparts. A prediction model combining fat mass ≥ 3.65 kg and fat-free mass ≥ 34.65 kg (area under the receiver operating characteristic curve = 0.688; sensitivity = 66.7%; specificity = 89.9%) performed better than BMI alone (area under the receiver operating characteristic curve = 0.649; sensitivity = 55.9%; specificity = 73.9%) in predicting hypertension. In conclusion, BC parameters are better than anthropometric measures in predicting pediatric hypertension. BC measuring is a reasonable approach for risk stratification in pediatric hypertension.
Collapse
Affiliation(s)
- Chih-Yu Hsu
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou and Taipei Branches, Taoyuan 33305, Taiwan; (C.-Y.H.); (J.-Y.C.); (W.-C.L.)
| | - Rong-Ho Lin
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Yu-Ching Lin
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (L.-A.L.)
- Department of Imaging and Intervention, Chang Gang Memorial Hospital, Keelung Branch, Keelung 20401, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou and Taipei Branches, Taoyuan 33305, Taiwan; (C.-Y.H.); (J.-Y.C.); (W.-C.L.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (L.-A.L.)
| | - Wen-Cheng Li
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou and Taipei Branches, Taoyuan 33305, Taiwan; (C.-Y.H.); (J.-Y.C.); (W.-C.L.)
| | - Li-Ang Lee
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (L.-A.L.)
- Department of Otorhinolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
- Sleep Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
| | - Keng-Hao Liu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan;
| | - Hai-Hua Chuang
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou and Taipei Branches, Taoyuan 33305, Taiwan; (C.-Y.H.); (J.-Y.C.); (W.-C.L.)
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (L.-A.L.)
- Obesity Institute & Genomic Medicine Institute, Geisinger, Danville, PA 17837, USA
| |
Collapse
|
20
|
Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol 2020; 94:3201-3215. [PMID: 32494933 DOI: 10.1007/s00204-020-02796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Partial temporal lobe epilepsy (TLE) has an intrauterine developmental origin. This study was aimed at elucidating the heritable effects and programming mechanism of TLE in offspring rats induced by prenatal dexamethasone exposure (PDE). Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg day) from gestational day 9 to 20. The F1 and F2 generations of male offspring were administered lithium pilocarpine (LiPC) for electroencephalography and video monitoring in epilepsy or behavioral tests. Results showed that the PDE + LiPC group exhibited TLE susceptibility, which continued throughout F2 generation. Expression of hippocampal glucocorticoid receptor (GR), CCAAT enhancer-binding protein α (C/EBPα), intrauterine renin-angiotensin system (RAS) classical pathway related genes, the H3K27ac level in angiotensin-converting enzyme (ACE) promoter, as well as high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) were increased, but glutamate dehydrogenase (GLUD) 1/2 expression were decreased, accompanied by increased glutamate levels in PDE fetal and adult rats, as well as in F1 and F2 offspring of the PDE + LiPC group. These consistent changes were also observed by treating the H19-7 fetal hippocampal cell line with dexamethasone and were reversed by GR inhibitor (RU486) and ACE inhibitor (enalaprilat). Our results confirmed that PDE-induced H3K27ac enrichment in the ACE promoter and enhanced the RAS classic pathway via activating GR-C/EBPα-p300 in utero, which caused changes of the HMGB1 pathway and glutamate excitatory damage. Intrauterine programming mediated by abnormal histone modification of hippocampal ACE could continue to adulthood and even F2 generation, which induced the heritability of TLE in male offspring rats.
Collapse
|
21
|
Wei X, Yi X, Zhu XH, Jiang DS. Histone methylation and vascular biology. Clin Epigenetics 2020; 12:30. [PMID: 32070413 PMCID: PMC7027016 DOI: 10.1186/s13148-020-00826-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
The vasculature not only transports oxygenated blood, metabolites, and waste products but also serves as a conduit for hormonal communication between distant tissues. Therefore, it is important to maintain homeostasis within the vasculature. Recent studies have greatly expanded our understanding of the regulation of vasculature development and vascular-related diseases at the epigenetic level, including by protein posttranslational modifications, DNA methylation, and noncoding RNAs. Integrating epigenetic mechanisms into the pathophysiologic conceptualization of complex and multifactorial vascular-related diseases may provide promising therapeutic approaches. Several reviews have presented detailed discussions of epigenetic mechanisms not including histone methylation in vascular biology. In this review, we primarily discuss histone methylation in vascular development and maturity, and in vascular diseases.
Collapse
Affiliation(s)
- Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, China.
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Abstract
Mortality and morbidity from cardiovascular diseases (CVDs) represents a huge burden to society. It is recognized that environmental factors and individual lifestyles play important roles in disease susceptibility, but the link between these external risk factors and our genetics has been unclear. However, the discovery of sequence-independent heritable DNA changes (epigenetics) have helped us to explain the link between genes and the environment. Multiple diverse epigenetic processes, including DNA methylation, histone modification, and the expression of non-coding RNA molecules affect the expression of genes that produce important changes in cellular differentiation and function, influencing the health and adaptability of the organism. CVDs such as congenital heart disease, cardiomyopathy, heart failure, cardiac fibrosis, hypertension, and atherosclerosis are now being viewed as much more complex and dynamic disorders. The role of epigenetics in these and other CVDs is currently under intense scrutiny, and we can expect important insights to emerge, including novel biomarkers and new approaches to enable precision medicine. This review summarizes the recent advances in our understanding of the role of epigenetics in CVD.
Collapse
Affiliation(s)
- Dimple Prasher
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Steven C Greenway
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raja B Singh
- Alberta Epigenetics Network, 3512-33 Street, NW, Suite 200, Calgary, AB, Canada
- University of Alberta, Faculty of Medicine and Dentistry, Edmonton, AB T2L 2A6, Canada
| |
Collapse
|
23
|
Stimulation of the ACE2/Ang-(1-7)/Mas axis in hypertensive pregnant rats attenuates cardiovascular dysfunction in adult male offspring. Hypertens Res 2019; 42:1883-1893. [PMID: 31506648 DOI: 10.1038/s41440-019-0321-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate whether treatment with diminazene aceturate (DIZE), a putative ACE2 activator, or with angiotensin-(1-7) during pregnancy could attenuate the development of cardiovascular dysfunction in the adult offspring of spontaneously hypertensive rats (SHRs). For this, pregnant SHRs received DIZE or Ang-(1-7) throughout gestation. The systolic blood pressure (SBP) was measured in the male offspring from the 6th to16th weeks of age by tail-cuff plethysmography. Thereafter, the left ventricular contractile function and coronary reactivity were evaluated by the Langendorff technique. Samples of the left ventricles (LVs) and kidneys were collected for histology and western blot assay in another batch of adult rat offspring. Maternal treatment with DIZE or Ang-(1-7) during pregnancy attenuated the increase in SBP in adult offspring. In addition, both DIZE and Ang-(1-7) treatments reduced the cardiomyocyte diameter and fibrosis deposition in the LV, and treatment with Ang-(1-7) also reduced the fibrosis deposition in the kidneys. Maternal treatment with DIZE, as well as Ang-(1-7), improved the coronary vasodilation induced by bradykinin in isolated hearts from adult offspring. However, no difference was observed in the contractile function of the LVs of these animals. The expression levels of AT1 and Mas receptors, ACE, ACE2, SOD, and catalase in the LV were not modified by maternal treatment with Ang-(1-7), but this treatment elicited a reduction in AT2 expression. These data show that treatment with DIZE or Ang-(1-7) during gestation promoted beneficial effects of attenuating hypertension and cardiac remodeling in adult offspring.
Collapse
|
24
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 485] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Segers VFM, Gevaert AB, Boen JRA, Van Craenenbroeck EM, De Keulenaer GW. Epigenetic regulation of intercellular communication in the heart. Am J Physiol Heart Circ Physiol 2019; 316:H1417-H1425. [DOI: 10.1152/ajpheart.00038.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The myocardium is a highly structured tissue consisting of different cell types including cardiomyocytes, endothelial cells, fibroblasts, smooth muscle cells, inflammatory cells, and stem cells. Microvascular endothelial cells are the most abundant cell type in the myocardium and play crucial roles during cardiac development, in normal adult myocardium, and during myocardial diseases such as heart failure. In the last decade, epigenetic changes have been described regulating cellular function in almost every cell type in the organism. Here, we review recent evidence on different epigenetic changes that regulate intercellular communication in normal myocardium and during myocardial diseases, including cardiac remodeling. Epigenetic changes influence many intercellular communication signaling systems, including the nitric oxide, angiotensin, and endothelin signaling systems. In this review, we go beyond discussing classic endothelial function (for instance nitric oxide secretion) and will discuss epigenetic regulation of intercellular communication.
Collapse
Affiliation(s)
- Vincent F. M. Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Andreas B. Gevaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Jente R. A. Boen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Gilles W. De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Ziekenhuisnetwerk Antwerpen, Hospital, Antwerp, Belgium
| |
Collapse
|
26
|
Affiliation(s)
- Mingyu Liang
- From the Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
27
|
Machado CDS, Ferro Aissa A, Ribeiro DL, Antunes LMG. Vitamin D supplementation alters the expression of genes associated with hypertension and did not induce DNA damage in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:299-313. [PMID: 30909850 DOI: 10.1080/15287394.2019.1592044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vitamin D3 deficiency has been correlated with altered expression of genes associated with increased blood pressure (BP); however, the role of vitamin D3 supplementation in the genetic mechanisms underlying hypertension remains unclear. Thus, the aim of this study was investigate the consequences of vitamin D3 supplemented (10,000 IU/kg) or deficient (0 IU/kg) diets on regulation of expression of genes related to hypertension pathways in heart cells of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. An additional aim was to assess the impact of vitamin D3 on DNA damage and oxidative stress markers. The gene expression profiles were determined by PCR array, DNA damage was assessed by an alkaline comet assay, and oxidative stress markers by measurement of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels. In SHR rats data showed that the groups of genes most differentially affected by supplemented and deficient diets were involved in BP regulation and renin-angiotensin system. In normotensive WKY controls, the profile of gene expression was similar between the two diets. SHR rats were more sensitive to changes in gene expression induced by dietary vitamin D3 than normotensive WKY animals. In addition to gene expression profile, vitamin D3 supplemented diet did not markedly affect DNA or levels of TBARS and GSH levels in both experimental groups. Vitamin D3 deficient diet produced lipid peroxidation in SHR rats. The results of this study contribute to a better understanding of the role of vitamin D3 in the genetic mechanisms underlying hypertension. Abbreviations: AIN, American Institute of Nutrition; EDTA, disodium ethylenediaminetetraacetic acid; GSH, glutathione; PBS, phosphate buffer solution; SHR, spontaneously hypertensive rats; TBARS, thiobarbituric acid reactive substances; WKY, Wistar Kyoto.
Collapse
Affiliation(s)
- Carla Da Silva Machado
- a School of Medicine of Ribeirão Preto , USP , Ribeirão Preto , SP , Brazil
- b Pitagoras College of Governador Valadares , Governador Valadares , MG , Brazil
| | - Alexandre Ferro Aissa
- c School of Pharmaceutical Sciences of Ribeirão Preto , USP , Ribeirão Preto , SP , Brazil
| | - Diego Luis Ribeiro
- a School of Medicine of Ribeirão Preto , USP , Ribeirão Preto , SP , Brazil
| | | |
Collapse
|
28
|
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019; 42:1099-1113. [PMID: 30867575 DOI: 10.1038/s41440-019-0248-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Essential hypertension (EH) is a multifactorial disease of the cardiovascular system that is influenced by the interplay of genetic, epigenetic, and environmental factors. The molecular dynamics underlying EH etiopathogenesis is unknown; however, earlier studies have revealed EH-associated genetic variants. Nevertheless, this finding alone is not sufficient to explain the variability in blood pressure, suggesting that other risk factors are involved, such as epigenetic modifications. Therefore, this review highlights the potential contribution of well-defined epigenetic mechanisms in EH, specifically, DNA methylation, post-translational histone modifications, and microRNAs. We further emphasize global and gene-specific DNA methylation as one of the most well-studied hallmarks among all epigenetic modifications in EH. In addition, post-translational histone modifications, such as methylation, acetylation, and phosphorylation, are described as important epigenetic markers associated with EH. Finally, we discuss microRNAs that affect blood pressure by regulating master genes such as those implicated in the renin-angiotensin-aldosterone system. These epigenetic modifications, which appear to contribute to various cardiovascular diseases, including EH, may be a promising research area for the development of novel future strategies for EH prevention and therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Richard C Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Elaine M Urbina
- Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
29
|
Wang Z, Wang S, Zhao J, Yu C, Hu Y, Tu Y, Yang Z, Zheng J, Wang Y, Gao Y. Naringenin Ameliorates Renovascular Hypertensive Renal Damage by Normalizing the Balance of Renin-Angiotensin System Components in Rats. Int J Med Sci 2019; 16:644-653. [PMID: 31217731 PMCID: PMC6566737 DOI: 10.7150/ijms.31075] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/07/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Naringenin, a member of the dihydroflavone family, has been shown to have a protective function in multiple diseases. We previously demonstrated that naringenin played a protective role in hypertensive myocardial hypertrophy by decreasing angiotensin-converting enzyme (ACE) expression. The kidney is a primary target organ of hypertension. The present study tested the effect of naringenin on renovascular hypertensive kidney damage and explored the underlying mechanism. Methods and Results: An animal model of renovascular hypertension was established by performing 2-kidney, 1-clip (2K1C) surgery in Sprague Dawley rats. Naringenin (200 mg/kg/day) or vehicle was administered for 10 weeks. Blood pressure and urinary protein were continuously monitored. Plasma parameters, renal pathology and gene expression of nonclipped kidneys were evaluated by enzyme-linked immunosorbent assay, histology, immunohistochemistry, real-time polymerase chain reaction, and Western blot at the end of the study. Rats that underwent 2K1C surgery exhibited marked elevations of blood pressure and plasma Ang II levels and renal damage, including mesangial expansion, interstitial fibrosis, and arteriolar thickening in the nonclipped kidneys. Naringenin significantly ameliorated hypertensive nephropathy and retarded the rise of Ang II levels in peripheral blood but had no effect on blood pressure. 2K1C rats exhibited increases in the ACE/ACE2 protein ratio and AT1R/AT2R protein ratio in the nonclipped kidney compared with sham rats, and these increases were significantly suppressed by naringenin treatment. Conclusions: Naringenin attenuated renal damage in a rat model of renovascular hypertension by normalizing the imbalance of renin-angiotensin system activation. Our results suggest a potential treatment strategy for hypertensive nephropathy.
Collapse
Affiliation(s)
- Zhizhi Wang
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Shanshan Wang
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Jianqiao Zhao
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Changan Yu
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi Hu
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Yimin Tu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Zufang Yang
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China.,Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China.,Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yong Wang
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China.,Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
30
|
Stoll S, Wang C, Qiu H. DNA Methylation and Histone Modification in Hypertension. Int J Mol Sci 2018; 19:ijms19041174. [PMID: 29649151 PMCID: PMC5979462 DOI: 10.3390/ijms19041174] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Systemic hypertension, which eventually results in heart failure, renal failure or stroke, is a common chronic human disorder that particularly affects elders. Although many signaling pathways involved in the development of hypertension have been reported over the past decades, which has led to the implementation of a wide variety of anti-hypertensive therapies, one half of all hypertensive patients still do not have their blood pressure controlled. The frontier in understanding the molecular mechanisms underlying hypertension has now advanced to the level of epigenomics. Particularly, increasing evidence is emerging that DNA methylation and histone modifications play an important role in gene regulation and are involved in alteration of the phenotype and function of vascular cells in response to environmental stresses. This review seeks to highlight the recent advances in our knowledge of the epigenetic regulations and mechanisms of hypertension, focusing on the role of DNA methylation and histone modification in the vascular wall. A better understanding of the epigenomic regulation in the hypertensive vessel may lead to the identification of novel target molecules that, in turn, may lead to novel drug discoveries for the treatment of hypertension.
Collapse
Affiliation(s)
- Shaunrick Stoll
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Charles Wang
- Center for Genomics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Hongyu Qiu
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
31
|
Musial DC, Bomfim GH, Arranz-Tagarro JA, Méndez-López I, Miranda-Ferreira R, Jurkiewicz A, Jurkiewicz NH, García AG, Padín JF. Altered mitochondrial function, calcium signaling, and catecholamine release in chromaffin cells of diabetic and SHR rats. Eur J Pharmacol 2017; 815:416-426. [DOI: 10.1016/j.ejphar.2017.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022]
|
32
|
Burrello J, Monticone S, Buffolo F, Tetti M, Veglio F, Williams TA, Mulatero P. Is There a Role for Genomics in the Management of Hypertension? Int J Mol Sci 2017; 18:ijms18061131. [PMID: 28587112 PMCID: PMC5485955 DOI: 10.3390/ijms18061131] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) affects about 1 billion people worldwide and the lack of a single identifiable cause complicates its treatment. Blood pressure (BP) levels are influenced by environmental factors, but there is a strong genetic component. Linkage analysis has identified several genes involved in Mendelian forms of HTN and the associated pathophysiological mechanisms have been unravelled, leading to targeted therapies. The majority of these syndromes are due to gain-of-function or loss-of-functions mutations, resulting in an alteration of mineralocorticoid, glucocorticoid, or sympathetic pathways. The diagnosis of monogenic forms of HTN has limited practical implications on the population and a systematic genetic screening is not justifiable. Genome-wide linkage and association studies (GWAS) have identified single nucleotide polymorphisms (SNPs), which influence BP. Forty-three variants have been described with each SNP affecting systolic and diastolic BP by 1.0 and 0.5 mmHg, respectively. Taken together Mendelian inheritance and all GWAS-identified HTN-associated variants explain 2–3% of BP variance. Epigenetic modifications, such as DNA methylation, histone modification and non-coding RNAs, have become increasingly recognized as important players in BP regulation and may justify a further part of missing heritability. In this review, we will discuss how genetics and genomics may assist clinicians in managing patients with HTN.
Collapse
Affiliation(s)
- Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Fabrizio Buffolo
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Tracy A Williams
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
33
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
34
|
Williamson CR, Khurana S, Nguyen P, Byrne CJ, Tai TC. Comparative Analysis of Renin-Angiotensin System (RAS)-Related Gene Expression Between Hypertensive and Normotensive Rats. Med Sci Monit Basic Res 2017; 23:20-24. [PMID: 28138124 PMCID: PMC5297324 DOI: 10.12659/msmbr.901964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The renal renin-angiotensin system (RAS) is physiologically important for blood pressure regulation. Altered regulation of RAS-related genes has been observed in an animal model of hypertension (spontaneously hypertensive rats - SHRs). The current understanding of certain RAS-related gene expression differences between Wistar-Kyoto rats (WKYs) and SHRs is either limited or has not been compared. The purpose of this study was to compare the regulation of key RAS-related genes in the kidneys of adult WKYs and SHRs. MATERIAL AND METHODS Coronal sections were dissected through the hilus of kidneys from 16-week-old male WKYs and SHRs. RT-PCR analysis was performed for Ace, Ace2, Agt, Agtr1a, Agtr1b, Agtr2, Atp6ap2 (PRR), Mas1, Ren, Rnls, and Slc12a3 (NCC). RESULTS Increased mRNA expression was observed for Ace, Ace2, Agt, Agtr1a, Agtr1b, and Atp6ap2 in SHRs compared to WKYs. Mas1, Ren, Slc12a3, and Rnls showed no difference in expression between animal types. CONCLUSIONS This study shows that the upregulation of several key RAS-related genes in the kidney may account for the increased blood pressure of adult SHRs.
Collapse
Affiliation(s)
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Phong Nguyen
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Collin J Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - T C Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada.,Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
35
|
Abstract
The heritability of hypertension (HTN) is widely recognized and as a result, extensive studies ranging from genetic linkage analyses to genome-wide association studies are actively ongoing to elucidate the etiology of both monogenic and polygenic forms of HTN. Due to the complex nature of essential HTN, however, single genes affecting blood pressure (BP) variability remain difficult to isolate and identify and have rendered the development of single-gene targeted therapies challenging. The roles of other causative factors in modulating BP, such as gene-environment interactions and epigenetic factors, are increasingly being brought to the forefront. In this review, we discuss the various monogenic HTN syndromes and corresponding pathophysiologic mechanisms, the different methodologies employed in genetic studies of essential HTN, the mechanisms for epigenetic modulation of essential HTN, pharmacogenomics and HTN, and finally, recent advances in genetic studies of essential HTN in the pediatric population.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| | - Charu Gupta
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
36
|
Ascorbic Acid Protects against Hypertension through Downregulation of ACE1 Gene Expression Mediated by Histone Deacetylation in Prenatal Inflammation-Induced Offspring. Sci Rep 2016; 6:39469. [PMID: 27995995 PMCID: PMC5171640 DOI: 10.1038/srep39469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
Hypertension is a major risk factor for cardiovascular and cerebrovascular disease. Prenatal exposure to lipopolysaccharide (LPS) leads to hypertension in a rat offspring. However, the mechanism is still unclear. This study unraveled epigenetic mechanism for this and explored the protective effects of ascorbic acid against hypertension on prenatal inflammation-induced offspring. Prenatal LPS exposure resulted in an increase of intrarenal oxidative stress and enhanced angiotensin-converting enzyme 1 (ACE1) gene expression at the mRNA and protein levels in 6- and 12-week-old offspring, correlating with the augmentation of histone H3 acetylation (H3AC) on the ACE1 promoter. However, the prenatal ascorbic acid treatment decreased the LPS-induced expression of ACE1, protected against intrarenal oxidative stress, and reversed the altered histone modification on the ACE1 promoter, showing the protective effect in offspring of prenatal LPS stimulation. Our study demonstrates that ascorbic acid is able to prevent hypertension in offspring from prenatal inflammation exposure. Thus, ascorbic acid can be a new approach towards the prevention of fetal programming hypertension.
Collapse
|
37
|
Kodavanti UP, Russell JC, Costa DL. Rat models of cardiometabolic diseases: baseline clinical chemistries, and rationale for their use in examining air pollution health effects. Inhal Toxicol 2016; 27 Suppl 1:2-13. [PMID: 26667327 DOI: 10.3109/08958378.2014.954166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Individuals with cardiovascular and metabolic diseases (CVD) are shown to be more susceptible to adverse health effects of pollutants. Rodent models of CVD are used for examining susceptibility variations. CVD models developed by selective inbreeding are shown to represent the etiology of human disease and metabolic dysfunction. The goal of this article was to review the origin and the pathobiological features of rat models of varying CVD with or without metabolic syndrome and healthy laboratory rat strains to allow better interpretation of the data regarding their susceptibility to air pollutant exposures. Age-matched healthy Sprague-Dawley (SD), Wistar (WIS) and Wistar Kyoto (WKY), and CVD-prone spontaneously hypertensive (SH), Fawn-Hooded hypertensive (FHH), SH stroke-prone (SHSP), SHHF/Mcc heart failure obese (SHHF) and insulin-resistant JCR:LA-cp obese (JCR) rat models were considered for this study. The genetics and the underlying pathologies differ between these models. Normalized heart weights correlated with underlying cardiac disease while wide differences exist in the number of white blood cells and platelets within healthy strains and those with CVD. High plasma fibrinogen and low angiotensin converting enzyme activity in FHH might relate to kidney disease and associated hypertension. However, other obese strains with known kidney lesions do not exhibit decreases in ACE activity. The increased activated partial thromboplastin time only in SHSP correlates with their hemorrhagic stroke susceptibility. Increases plasma lipid peroxidation in JCR might reflect their susceptibility to acquire atherosclerosis. These underlying pathologies involving CVD and metabolic dysfunction are critical in interpretation of findings related to susceptibility variations of air pollution health effects.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- a Environmnetal Public Health Division, NHEERL, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - James C Russell
- b Alberta Institute for Human Nutrition, University of Alberta , Edmonton , Alberta , Canada , and
| | - Daniel L Costa
- c National Program for Air Climate & Energy Research, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
38
|
Epigenetic Modifications in Essential Hypertension. Int J Mol Sci 2016; 17:451. [PMID: 27023534 PMCID: PMC4848907 DOI: 10.3390/ijms17040451] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world’s leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual’s risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development.
Collapse
|
39
|
Ward WO, Kodavanti UP. Left ventricular gene expression profile of healthy and cardiovascular compromised rat models used in air pollution studies. Inhal Toxicol 2015; 27 Suppl 1:63-79. [DOI: 10.3109/08958378.2014.954171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- William O. Ward
- Biostatistics Core, Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Urmila P. Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
40
|
Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 2015; 88:250-61. [PMID: 25993323 PMCID: PMC4522401 DOI: 10.1038/ki.2015.148] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/22/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022]
Abstract
The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post translational modifications of histones in chromatin are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNA me and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.
Collapse
|
41
|
Carey RM. The intrarenal renin-angiotensin system in hypertension. Adv Chronic Kidney Dis 2015; 22:204-10. [PMID: 25908469 DOI: 10.1053/j.ackd.2014.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
The renin-angiotensin system (RAS) is a well-studied hormonal cascade controlling fluid and electrolyte balance and blood pressure through systemic actions. The classical RAS includes renin, an enzyme catalyzing the conversion of angiotensinogen to angiotensin (Ang) I, followed by angiotensin-converting enzyme (ACE) cleavage of Ang I to II, and activation of AT1 receptors, which are responsible for all RAS biologic actions. Recent discoveries have transformed the RAS into a far more complex system with several new pathways: the (des-aspartyl(1))-Ang II (Ang III)/AT2 receptor pathway, the ACE-2/Ang (1-7)/Mas receptor pathway, and the prorenin-renin/prorenin receptor/mitogen-activated protein kinase pathway, among others. Although the classical RAS pathway induces Na(+) reabsorption and increases blood pressure, several new pathways constitute a natriuretic/vasodilator arm of the system, opposing detrimental actions of Ang II through Ang II type 1 receptors. Instead of a simple circulating RAS, several independently functioning tissue RASs exist, the most important of which is the intrarenal RAS. Several physiological characteristics of the intrarenal RAS differ from those of the circulating RAS, autoamplifying the activity of the intrarenal RAS and leading to hypertension. This review will update current knowledge on the RAS with particular attention to the intrarenal RAS and its role in the pathophysiology of hypertension.
Collapse
|
42
|
Kang SH, Seok YM, Song MJ, Lee HA, Kurz T, Kim I. Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats. Mol Pharmacol 2015; 87:782-91. [PMID: 25667225 DOI: 10.1124/mol.114.096974] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inhibition of histone deacetylases (HDACs) by valproic acid (VPA) attenuates inflammatory, hypertrophic, and fibrotic responses in the hearts of spontaneously hypertensive rats (SHRs); however, the molecular mechanism is still unclear. We hypothesized that HDAC inhibition (HDACi) attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor (MR) in SHRs. Seven-week-old SHRs and Wistar-Kyoto rats were treated with an HDAC class I inhibitor (0.71% w/v in drinking water; VPA) for 11 weeks. Sections of heart were visualized after trichrome stain as well as H&E stain. Histone modifications, such as acetylation (H3Ac [acetylated histone 3]) and fourth lysine trimethylation (H3K4me3) of histone 3, and recruitment of MR and RNA polymerase II (Pol II) into promoters of target genes were measured by quantitative real-time polymerase chain reaction after chromatin immunoprecipitation assay. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Treatment with VPA attenuated cardiac hypertrophy and fibrosis. Although treatment with VPA increased H3Ac and H3K4me3 on promoter regions of MR target genes, expression of MR target genes as well as recruitment of MR and Pol II on promoters of target genes were decreased. Although HDACi did not affect MR expression, it increased MR acetylation. These results indicate that HDACi attenuates cardiac hypertrophy and fibrosis through acetylation of MR in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Seol-Hee Kang
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Young Mi Seok
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Min-ji Song
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Hae-Ahm Lee
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Thomas Kurz
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - InKyeom Kim
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| |
Collapse
|
43
|
Huan T, Meng Q, Saleh MA, Norlander AE, Joehanes R, Zhu J, Chen BH, Zhang B, Johnson AD, Ying S, Courchesne P, Raghavachari N, Wang R, Liu P, O'Donnell CJ, Vasan R, Munson PJ, Madhur MS, Harrison DG, Yang X, Levy D. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol Syst Biol 2015; 11:799. [PMID: 25882670 PMCID: PMC4422556 DOI: 10.15252/msb.20145399] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Genome‐wide association studies (GWAS) have identified numerous loci associated with blood pressure (BP). The molecular mechanisms underlying BP regulation, however, remain unclear. We investigated BP‐associated molecular mechanisms by integrating BP GWAS with whole blood mRNA expression profiles in 3,679 individuals, using network approaches. BP transcriptomic signatures at the single‐gene and the coexpression network module levels were identified. Four coexpression modules were identified as potentially causal based on genetic inference because expression‐related SNPs for their corresponding genes demonstrated enrichment for BP GWAS signals. Genes from the four modules were further projected onto predefined molecular interaction networks, revealing key drivers. Gene subnetworks entailing molecular interactions between key drivers and BP‐related genes were uncovered. As proof‐of‐concept, we validated SH2B3, one of the top key drivers, using Sh2b3−/− mice. We found that a significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3−/− mice, which demonstrate an exaggerated pressor response to angiotensin II infusion. Our findings may help to identify novel targets for the prevention or treatment of hypertension.
Collapse
Affiliation(s)
- Tianxiao Huan
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA The Population Sciences Branch and the Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Mohamed A Saleh
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Allison E Norlander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Roby Joehanes
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA The Population Sciences Branch and the Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA Mathematical and Statistical Computing Laboratory, Center for Information Technology National Institutes of Health, Bethesda, MD, USA Harvard Medical School, Boston, MA, USA Hebrew SeniorLife, Boston, MA, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, New York, NY, USA Graduate School of Biological Sciences Mount Sinai School of Medicine, New York, NY, USA
| | - Brian H Chen
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA The Population Sciences Branch and the Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, New York, NY, USA Graduate School of Biological Sciences Mount Sinai School of Medicine, New York, NY, USA
| | - Andrew D Johnson
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA Cardiovascular Epidemiology and Human Genomics Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Saixia Ying
- Mathematical and Statistical Computing Laboratory, Center for Information Technology National Institutes of Health, Bethesda, MD, USA
| | - Paul Courchesne
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA The Population Sciences Branch and the Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Nalini Raghavachari
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, Bethesda, MD, USA
| | - Richard Wang
- Genomics Core facility Genetics & Developmental Biology Center, The National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Poching Liu
- Genomics Core facility Genetics & Developmental Biology Center, The National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | - Christopher J O'Donnell
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA Cardiovascular Epidemiology and Human Genomics Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Ramachandran Vasan
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology National Institutes of Health, Bethesda, MD, USA
| | - Meena S Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - David G Harrison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Daniel Levy
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA The Population Sciences Branch and the Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
44
|
Mecawi AS, Macchione AF, Nuñez P, Perillan C, Reis LC, Vivas L, Arguelles J. Developmental programing of thirst and sodium appetite. Neurosci Biobehav Rev 2015; 51:1-14. [DOI: 10.1016/j.neubiorev.2014.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/17/2023]
|
45
|
Pei F, Wang X, Yue R, Chen C, Huang J, Huang J, Li X, Zeng C. Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development. Mol Cell Biochem 2015; 402:1-8. [PMID: 25596947 DOI: 10.1007/s11010-014-2295-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Angiotensin type 1a receptor (AT1aR) is thought to play an important role in the development of hypertension. However, it is unknown how the AT1aR expression in vascular tissue is changed during the development of hypertension or if the degree of methylation in the AT1aR promoter correlates with the expression of AT1aR. To address these questions, we measured AT1aR mRNA, protein expression, and methylation status of the AT1aR promoter in the aorta and mesenteric artery of male spontaneously hypertensive rats (SHRs) and age-matched Wistar-Kyoto (WKY) rats acting as controls at pre-hypertensive (4 weeks), evolving (10 weeks), and established (20 weeks) stages of hypertension. The expression of the AT1aR mRNA and protein was not different between the SHRs and WKY rats at 4 weeks. However, they were significantly greater in SHRs than in WKY rats at 20 weeks. Bisulfite sequencing revealed that the AT1aR promoter from the aorta and mesenteric artery of the SHRs was progressively hypo-methylated with age as compared with their WKY rat counterparts. These results suggest that the heightened AT1aR expression in SHRs is related to the AT1aR promoter hypo-methylation, which might be a consequence of the increased blood pressure and may be important in the maintenance of high blood pressure.
Collapse
Affiliation(s)
- Fang Pei
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Maternal Treatment of Spontaneously Hypertensive Rats With Pentaerythritol Tetranitrate Reduces Blood Pressure in Female Offspring. Hypertension 2015; 65:232-7. [DOI: 10.1161/hypertensionaha.114.04416] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pentaerythritol tetranitrate is devoid of nitrate tolerance and shows no reproductive or developmental toxicity in animal studies. Recently, pentaerythritol tetranitrate has been demonstrated to reduce the risk of intrauterine growth restriction and the risk of preterm birth in women with abnormal placental perfusion. This study was conducted to test the perinatal programming effect of pentaerythritol tetranitrate in spontaneously hypertensive rats, a rat model of genetic hypertension. Parental spontaneously hypertensive rats were treated with pentaerythritol tetranitrate (50 mg/kg per day) during pregnancy and lactation periods; the offspring received standard chow without pentaerythritol tetranitrate after weaning. Maternal treatment with pentaerythritol tetranitrate had no effect on blood pressure in male offspring. In the female offspring, however, a persistent reduction in blood pressure was observed at 6 and 8 months. This long-lasting effect was accompanied by an upregulation of endothelial nitric oxide synthase, mitochondrial superoxide dismutase, glutathione peroxidase 1, and heme oxygenase 1 in the aorta of 8-month-old female offspring, which was likely to result from epigenetic changes (enhanced histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation) and transcriptional activation (enhanced binding of DNA-directed RNA polymerase II to the transcription start site of the genes). In organ chamber experiments, the endothelium-dependent, nitric oxide–mediated vasodilation to acetylcholine was enhanced in aorta from female offspring of the pentaerythritol tetranitrate–treated parental spontaneously hypertensive rats. In conclusion, maternal pentaerythritol tetranitrate treatment leads to epigenetic modifications, gene expression changes, an improvement of endothelial function and a persistent blood pressure reduction in the female offspring.
Collapse
|
47
|
Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M, Malek V, Srinivasan K. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochem Pharmacol 2014; 93:343-51. [PMID: 25482567 DOI: 10.1016/j.bcp.2014.11.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Abstract
Growing body of evidence points out the crucial role of ACE2 in preventing atherosclerosis. However, data on how atherosclerosis affects ACE2 expression in heart and kidney remains unknown. Atherosclerosis was induced by feeding New Zealand White rabbits with high cholesterol diet (HCD - 2%) for 12 weeks and atorvastatin was administered (5mg/kg/day p.o) in last 3 weeks. ACE2 mRNA and protein expression was assessed by Western blotting and real time PCR. HCD fed rabbits developed atherosclerosis as confirmed by increase in plasma total cholesterol, LDL and triglycerides as well as formation atherosclerotic plaques in arch of aorta. The ACE2 protein but not mRNA expression was reduced in heart and kidney of HCD rabbits. Interestingly, atorvastatin increased the ACE2 protein expression in heart and kidney of HCD rabbits. However, atorvastatin increased ACE2 mRNA in heart but not in kidney of HCD rabbits. Atorvastatin increased the occupancy of histone H3 acetylation (H3-Ac) mark on ACE2 promoter region in heart of HCD rabbits indicating direct or indirect epigenetic up-regulation of ACE2 by atorvastatin. Further, atorvastatin suppressed Ang II-induced contractile responses and enhanced AT2 receptor mediated relaxant responses in atherosclerotic aorta. We propose that atherosclerosis is associated with reduced ACE2 expression in heart and kidney. We also show an unexplored potential of atorvastatin to up-regulate ACE2 via epigenetic histone modifications. Our data suggest a novel way of replenishing ACE2 expression for preventing not only atherosclerosis but also other cardiovascular disorders.
Collapse
Affiliation(s)
- Kulbhushan Tikoo
- Laboratory of Epigenetics and Disease, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, (Mohali), Punjab-160062, India.
| | - Gaurang Patel
- Laboratory of Epigenetics and Disease, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, (Mohali), Punjab-160062, India
| | - Sandeep Kumar
- Laboratory of Epigenetics and Disease, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, (Mohali), Punjab-160062, India
| | - Pinakin Arun Karpe
- Laboratory of Epigenetics and Disease, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, (Mohali), Punjab-160062, India
| | - Maitri Sanghavi
- Laboratory of Epigenetics and Disease, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, (Mohali), Punjab-160062, India
| | - Vajir Malek
- Laboratory of Epigenetics and Disease, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, (Mohali), Punjab-160062, India
| | - K Srinivasan
- Laboratory of Epigenetics and Disease, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, (Mohali), Punjab-160062, India
| |
Collapse
|
48
|
Abstract
Multiple genes and pathways are involved in the pathogenesis of hypertension. Epigenomic studies of hypertension are beginning to emerge and hold great promise of providing novel insights into the mechanisms underlying hypertension. Epigenetic marks or mediators including DNA methylation, histone modifications, and noncoding RNA can be studied at a genome or near-genome scale using epigenomic approaches. At the single gene level, several studies have identified changes in epigenetic modifications in genes expressed in the kidney that correlate with the development of hypertension. Systematic analysis and integration of epigenetic marks at the genome-wide scale, demonstration of cellular and physiological roles of specific epigenetic modifications, and investigation of inheritance are among the major challenges and opportunities for future epigenomic and epigenetic studies of hypertension.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI.
| | | | | | | | | |
Collapse
|
49
|
Kumar P, Periyasamy R, Das S, Neerukonda S, Mani I, Pandey KN. All-trans retinoic acid and sodium butyrate enhance natriuretic peptide receptor a gene transcription: role of histone modification. Mol Pharmacol 2014; 85:946-57. [PMID: 24714214 PMCID: PMC4014667 DOI: 10.1124/mol.114.092221] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study was to delineate the mechanisms of GC-A/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) expression in vivo. We used all-trans retinoic acid (ATRA) and histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu) to examine the expression and function of Npr1 using gene-disrupted heterozygous (1-copy; +/-), wild-type (2-copy; +/+), and gene-duplicated heterozygous (3-copy; ++/+) mice. Npr1(+/-) mice exhibited increased renal HDAC and reduced histone acetyltransferase (HAT) activity; on the contrary, Npr1(++/+) mice showed decreased HDAC and enhanced HAT activity compared with Npr1(+)(/+) mice. ATRA and NaBu promoted global acetylation of histones H3-K9/14 and H4-K12, reduced methylation of H3-K9 and H3-K27, and enriched accumulation of active chromatin marks at the Npr1 promoter. A combination of ATRA-NaBu promoted recruitment of activator-complex containing E26 transformation-specific 1, retinoic acid receptor α, and HATs (p300 and p300/cAMP response element-binding protein-binding protein-associated factor) at the Npr1 promoter, and significantly increased renal NPRA expression, GC activity, and cGMP levels. Untreated 1-copy mice showed significantly increased systolic blood pressure and renal expression of α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) compared with 2- and 3-copy mice. Treatment with ATRA and NaBu synergistically attenuated the expression of α-SMA and PCNA and reduced systolic blood pressure in Npr1(+/-) mice. Our findings demonstrate that epigenetic upregulation of Npr1 gene transcription by ATRA and NaBu leads to attenuation of renal fibrotic markers and systolic blood pressure in mice with reduced Npr1 gene copy number, which will have important implications in prevention and treatment of hypertension-related renal pathophysiological conditions.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
50
|
Chandra S, Narang R, Saluja D, Bhatia J, Srivastava K. Expression of angiotensin-converting enzyme gene in whole blood in patients with essential hypertension. Biomarkers 2014; 19:314-8. [PMID: 24811208 DOI: 10.3109/1354750x.2014.910550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The present study aims to investigate the correlation of the angiotensin-converting enzyme (ACE) gene expression and protein expression in patients with essential hypertension in whole blood. METHODS ACE gene expression was analyzed by Real Time PCR and western blot in 52 patients with essential hypertension and 42 healthy controls. RESULTS We observed a significant increase in Delta threshold cycle (ΔCT) values in the circulating ACE gene and ACE protein expression in patients as compared to controls. CONCLUSIONS The up-regulation in relative expression of circulating Angiotensin converting enzyme mRNA and protein in patients with respect to controls might be correlated with high blood pressure in patients with essential hypertension.
Collapse
Affiliation(s)
- Sudhir Chandra
- Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi , Delhi , India
| | | | | | | | | |
Collapse
|