1
|
Zhao X, Wang H, Xu D, Fu J, Wang H. Trichostatin A reverses rocuronium resistance in burn-injured rats. Burns 2025; 51:107351. [PMID: 39729668 DOI: 10.1016/j.burns.2024.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
AIMS This study aimed to investigate whether the histone deacetylase HDAC4 inhibitor, trichostatin A (TSA), could reverse resistance to non-depolarizing muscle relaxants (NDMRs) caused by burn injuries. MATERIALS AND METHODS A rat burn injury model was established, in which TSA was administered to inhibit HDAC4 expression. The potency of rocuronium was assessed through tension tests, and the levels of HDAC4 and myogenin proteins were determined using Western blot. Additionally, siRNA was utilized to explore the effects of HDAC4 knockdown on rocuronium potency and protein expression. RESULTS The burn injuries increased the IC50 of rocuronium, which was reversed by TSA treatment. Furthermore, HDAC4 and myogenin protein expression levels were increased significantly in burned legs, a phenomenon that TSA effectively counteracted. HDAC4 knockdown decreased rocuronium IC50 and lowered HDAC4 and myogenin protein expression in the subsequent burn injuries. CONCLUSION The HDAC4 inhibitor TSA has the ability to mitigate NDMR resistance in skeletal muscle via the HDAC4-myogenin pathway after burn injuries.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Huijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Dian Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Junzuo Fu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chen Y, Liu J, Zhang Q, Chai L, Chen H, Li D, Wang Y, Qiu Y, Shen N, Zhang J, Wang Q, Wang J, Xie X, Li S, Li M. Activation of CaMKII/HDAC4 by SDF1 contributes to pulmonary arterial hypertension via stabilization Runx2. Eur J Pharmacol 2024; 970:176483. [PMID: 38479721 DOI: 10.1016/j.ejphar.2024.176483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jia Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Zhang L, Xia C, Yang Y, Sun F, Zhang Y, Wang H, Liu R, Yuan M. DNA methylation and histone post-translational modifications in atherosclerosis and a novel perspective for epigenetic therapy. Cell Commun Signal 2023; 21:344. [PMID: 38031118 PMCID: PMC10688481 DOI: 10.1186/s12964-023-01298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/27/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis, which is a vascular pathology characterized by inflammation and plaque build-up within arterial vessel walls, acts as the important cause of most cardiovascular diseases. Except for a lipid-depository and chronic inflammatory, increasing evidences propose that epigenetic modifications are increasingly associated with atherosclerosis and are of interest from both therapeutic and biomarker perspectives. The chronic progressive nature of atherosclerosis has highlighted atherosclerosis heterogeneity and the fact that specific cell types in the complex milieu of the plaque are, by far, not the only initiators and drivers of atherosclerosis. Instead, the ubiquitous effects of cell type are tightly controlled and directed by the epigenetic signature, which, in turn, is affected by many proatherogenic stimuli, including low-density lipoprotein, proinflammatory, and physical forces of blood circulation. In this review, we summarize the role of DNA methylation and histone post-translational modifications in atherosclerosis. The future research directions and potential therapy for the management of atherosclerosis are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Chenhai Xia
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Yongjun Yang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Fangfang Sun
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Yu Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Huan Wang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Military Medical University, No. 1 Xinsi Road, Xi'an 710000, China.
| | - Ming Yuan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
5
|
FUJIOKA Y, OTANI K, KODAMA T, OKADA M, YAMAWAKI H. Autocrine role of senescent cardiac fibroblasts-derived extracellular vesicles. J Vet Med Sci 2023; 85:1157-1164. [PMID: 37779091 PMCID: PMC10686776 DOI: 10.1292/jvms.23-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Cellular senescence is a highly stable state associated with cell cycle arrest, that is elicited in response to various stresses. The accumulation of senescent cells in tissues drives age-related diseases. Recent studies have shown that the cellular senescence enhances an extracellular vesicles (EV) secretion. EV are lipid-bilayer-capsuled particles released by various cells mediating cell-to-cell communication. It was recently reported that EV secreted by the senescent cells had several functions such as cancer cell proliferation and immune cell activation. In the present study, we investigated whether senescent cardiac fibroblasts-derived EV play an autocrine/paracrine role in the heart cells. Neonatal rat cardiac fibroblasts (NRCFs) were treated with doxorubicin (DOX) to induce cellular senescence. EV were isolated from NRCFs culture media. The vehicle-treated NRCFs-derived EV (D0-EV, 72 hr) increased a living cell number in NRCFs, which was attenuated by DOX (1,000 nM)-treated NRCFs-derived EV (D103-EV, 72 hr). While D0-EV did not affect protein concentration in NRCFs, D103-EV decreased it. Furthermore, D103-EV significantly increased a ratio of microtubule-associated protein 1 light chain 3 (LC3)-II to LC3-I in NRCFs, indicating an induction of autophagy. In addition, D103-EV increased phosphorylation of adenosine monophosphate-activated kinase (AMPK) α in NRCFs. In neonatal rat cardiomyocytes, however, NRCFs-derived EV (72 hr) had no effect on the living cell number, protein concentration, and ratio of LC3-II to LC3-I. In conclusion, we for the first time revealed that DOX-induced senescent NRCFs-derived EV induce autophagy in NRCFs perhaps partly through the activation of AMPKα.
Collapse
Affiliation(s)
- Yusei FUJIOKA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kosuke OTANI
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tomoko KODAMA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Muneyoshi OKADA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Hideyuki YAMAWAKI
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
6
|
Monisha K, Mahema S, Chokkalingam M, Ahmad SF, Emran TB, Prabu P, Ahmed SSSJ. Elucidating the Histone Deacetylase Gene Expression Signatures in Peripheral Blood Mononuclear Cells That Correlate Essential Cardiac Function and Aid in Classifying Coronary Artery Disease through a Logistic Regression Model. Biomedicines 2023; 11:2952. [PMID: 38001953 PMCID: PMC10669643 DOI: 10.3390/biomedicines11112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
A proinflammatory role of HDACs has been implicated in the pathogenesis of atherosclerosis as an emerging novel epigenetic diagnostic biomarker. However, its association with the clinical and cardiovascular function in coronary artery disease is largely unknown. The study aimed to profile the gene expression of HDAC1-11 in human peripheral blood mononuclear cells and to evaluate their influence on hematological, biochemical, and two-dimensional echocardiographic indices in CAD. The HDAC gene expression profiles were assessed in 62 angioproven CAD patients and compared with 62 healthy controls. Among the HDACs, upregulated HDACs 1,2, 4, 6, 8, 9, and 11 were upregulated, and HDAC3 was downregulated, which was significantly (p ≤ 0.05) linked with the hematological (basophils, lymphocytes, monocytes, and neutrophils), biochemical (LDL, HDL, and TGL), and echocardiographic parameters (cardiac function: biplane LVEF, GLS, MV E/A, IVRT, and PV S/D) in CAD. Furthermore, our constructed diagnostic model with the crucial HDACs establishes the most crucial HDACs in the classification of CAD from control with an excellent accuracy of 88.6%. Conclusively, our study has provided a novel perspective on the HDAC gene expression underlying cardiac function that is useful in developing molecular methods for CAD diagnosis.
Collapse
Affiliation(s)
- K. Monisha
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| | - S. Mahema
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| | - M. Chokkalingam
- Department of Cardiology, Chettinad Hospital and Research Institute, Chettinad Health City, Kelambakkam 603103, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paramasivam Prabu
- Madras Diabetes Research Foundation, Chennai 600086, India
- Department of Neurology, University of New Mexico Albuquerque, Albuquerque, NM 87131, USA
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| |
Collapse
|
7
|
Ma B, Cao Y, Qin J, Chen Z, Hu G, Li Q. Pulmonary artery smooth muscle cell phenotypic switching: A key event in the early stage of pulmonary artery hypertension. Drug Discov Today 2023; 28:103559. [PMID: 36958640 DOI: 10.1016/j.drudis.2023.103559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a currently incurable pulmonary vascular disease. Since current research on PAH is mainly aimed at the middle and late stages of disease progression, no satisfactory results have been achieved. This has led researchers to focus on the early stages of PAH. This review highlights for the first time a key event in the early stages of PAH progression, namely, the occurrence of pulmonary arterial smooth muscle cell (PASMC) phenotypic switching. Summarizing the related reports of performance conversion provides new perspectives and directions for the early pathological progression and treatment strategies for PAH.
Collapse
Affiliation(s)
- Binghao Ma
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Yuanyuan Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Jia Qin
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
8
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
9
|
Kulthinee S, Yano N, Zhuang S, Wang L, Zhao TC. Critical Functions of Histone Deacetylases (HDACs) in Modulating Inflammation Associated with Cardiovascular Diseases. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2022; 29:471-485. [PMID: 35997393 PMCID: PMC9397025 DOI: 10.3390/pathophysiology29030038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDACs) are a superfamily of enzymes that catalyze the removal of acetyl functional groups from lysine residues of histone and non-histone proteins. There are 18 mammalian HDACs, which are classified into four classes based on the primary homology with yeast HDACs. Among these groups, Class I and II HDACs play a major role in lysine deacetylation of the N-terminal histone tails. In mammals, HDACs play a pivotal role in the regulation of gene transcription, cell growth, survival, and proliferation. HDACs regulate the expression of inflammatory genes, as evidenced by the potent anti-inflammatory activity of pan-HDAC inhibitors, which were implicated in several pathophysiologic states in the inflammation process. However, it is unclear how each of the 18 HDAC proteins specifically contributes to the inflammatory gene expression. It is firmly established that inflammation and its inability to converge are central mechanisms in the pathogenesis of several cardiovascular diseases (CVDs). Emerging evidence supports the hypothesis that several different pro-inflammatory cytokines regulated by HDACs are associated with various CVDs. Based on this hypothesis, the potential for the treatment of CVDs with HDAC inhibitors has recently begun to attract attention. In this review, we will briefly discuss (1) pathophysiology of inflammation in cardiovascular disease, (2) the function of HDACs in the regulation of atherosclerosis and cardiovascular diseases, and (3) the possible therapeutic implications of HDAC inhibitors in cardiovascular diseases. Recent studies reveal that histone deacetylase contributes critically to mediating the pathophysiology of inflammation in cardiovascular disease. HDACs are also recognized as one of the major mechanisms in the regulation of inflammation and cardiovascular function. HDACs show promise in developing potential therapeutic implications of HDAC inhibitors in cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Naohiro Yano
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Lijiang Wang
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ting C. Zhao
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Surgery, Boston University Medical School, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-401-456-8266; Fax: +1-401-456-2507
| |
Collapse
|
10
|
Wang T, Tang X, Zhang Y, Wang X, Shi H, Yin R, Pan C. Delivery of miR-654-5p via SonoVue Microbubble Ultrasound Inhibits Proliferation, Migration, and Invasion of Vascular Smooth Muscle Cells and Arterial Thrombosis and Stenosis through Targeting TCF21. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4757081. [PMID: 35910838 PMCID: PMC9325610 DOI: 10.1155/2022/4757081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
Background Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important cause of vascular stenosis. The study explored the mechanism of inhibition of vascular stenosis through the molecular mechanism of smooth muscle cell phenotype transformation. Methods Coronary heart disease-related genes were screened by bioinformatics, and the target genes of miR-654-5p were predicted by dual-luciferase method and immunofluorescence method. miR-654-5p mimic stimulation and transfection of TCF21 and MTAP into cells. SonoVue microbubble sonication was used to deliver miR-654-5p into cells. Cell proliferation, migration, and invasion were detected by CCK-8, wound scratch, and Transwell. HE and IHC staining were performed to study the effect of miR-654-5p delivery via SonoVue microbubble ultrasound on vessel stenosis in a model of arterial injury. Gene expression was determined by qRT-PCR and WB. Results TCF21 and MTAP were predicted as the target genes of miR-654-5p. Cytokines induced smooth muscle cell proliferation, migration, and invasion and promoted miR-654-5p downregulation; noticeably, downregulated miR-654-5p was positively associated with the cell proliferation and migration. Overexpression of TCF21 promoted proliferation, invasion, and migration, and mimic reversed such effects. miR-654-5p overexpression delivered by SonoVue microbubble ultrasound inhibited proliferation, migration, and invasion of cells. Moreover, in arterial injury model, we found that SonoVue microbubble ultrasound transmitted miR-654-5p into the arterial wall to inhibit arterial thrombosis and stenosis, while TCF21 was inhibited. Conclusion Ultrasound delivery of miR-654-5p via SonoVue microbubbles was able to inhibit arterial thrombosis and stenosis by targeting TCF21.
Collapse
Affiliation(s)
- Tao Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqiang Tang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Yong Zhang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Xiaoqin Wang
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Haifeng Shi
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Ruohan Yin
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| | - Changjie Pan
- The Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, China
| |
Collapse
|
11
|
Chakraborty R, Ostriker AC, Xie Y, Dave JM, Gamez-Mendez A, Chatterjee P, Abu Y, Valentine J, Lezon-Geyda K, Greif DM, Schulz VP, Gallagher PG, Sessa WC, Hwa J, Martin KA. Histone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity. Circulation 2022; 145:1720-1737. [PMID: 35502657 PMCID: PMC12047542 DOI: 10.1161/circulationaha.121.057599] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/07/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotypic switching contributes to cardiovascular diseases. Epigenetic regulation is emerging as a key regulatory mechanism, with the methylcytosine dioxygenase TET2 acting as a master regulator of smooth muscle cell phenotype. The histone acetyl-transferases p300 and CREB-binding protein (CBP) are highly homologous and often considered to be interchangeable, and their roles in smooth muscle cell phenotypic regulation are not known. METHODS We assessed the roles of p300 and CBP in human VSMC with knockdown, in inducible smooth muscle-specific knockout mice (inducible knockout [iKO]; p300iKO or CBPiKO), and in samples of human intimal hyperplasia. RESULTS P300, CBP, and histone acetylation were differently regulated in VSMCs undergoing phenotypic switching and in vessel remodeling after vascular injury. Medial p300 expression and activity were repressed by injury, but CBP and histone acetylation were induced in neointima. Knockdown experiments revealed opposing effects of p300 and CBP in the VSMC phenotype: p300 promoted contractile protein expression and inhibited migration, but CBP inhibited contractile genes and enhanced migration. p300iKO mice exhibited severe intimal hyperplasia after arterial injury compared with controls, whereas CBPiKO mice were entirely protected. In normal aorta, p300iKO reduced, but CBPiKO enhanced, contractile protein expression and contractility compared with controls. Mechanistically, we found that these histone acetyl-transferases oppositely regulate histone acetylation, DNA hydroxymethylation, and PolII (RNA polymerase II) binding to promoters of differentiation-specific contractile genes. Our data indicate that p300 and TET2 function together, because p300 was required for TET2-dependent hydroxymethylation of contractile promoters, and TET2 was required for p300-dependent acetylation of these loci. TET2 coimmunoprecipitated with p300, and this interaction was enhanced by rapamycin but repressed by platelet-derived growth factor (PDGF) treatment, with p300 promoting TET2 protein stability. CBP did not associate with TET2, but instead facilitated recruitment of histone deacetylases (HDAC2, HDAC5) to contractile protein promoters. Furthermore, CBP inhibited TET2 mRNA levels. Immunostaining of cardiac allograft vasculopathy samples revealed that p300 expression is repressed but CBP is induced in human intimal hyperplasia. CONCLUSIONS This work reveals that p300 and CBP serve nonredundant and opposing functions in VSMC phenotypic switching and coordinately regulate chromatin modifications through distinct functional interactions with TET2 or HDACs. Targeting specific histone acetyl-transferases may hold therapeutic promise for cardiovascular diseases.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | - Allison C. Ostriker
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | - Yi Xie
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | - Jui M Dave
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Ana Gamez-Mendez
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | - Payel Chatterjee
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | - Yaw Abu
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | - Jake Valentine
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | | | - Daniel M. Greif
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Vincent P. Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Patrick G. Gallagher
- Department of Genetics, Yale University School of Medicine, New Haven, CT
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - William C. Sessa
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| | - John Hwa
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
| | - Kathleen A. Martin
- Department of Medicine (Cardiovascular Medicine) Yale University School of Medicine, New Haven, CT
- Department of Pharmacology Yale University School of Medicine, New Haven, CT
| |
Collapse
|
12
|
Bora V, Patel D, Johar K, Goyal RK, Patel BM. Systemic study of selected histone deacetylase inhibitors in cardiac complications associated with cancer cachexia. Can J Physiol Pharmacol 2022; 100:240-251. [PMID: 34614370 DOI: 10.1139/cjpp-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer cachexia is mainly characterized by wasting of skeletal muscles and fat and body weight loss, along with severe complications of major organs like liver, heart, brain and bone. There can be diminishing performance of these major organs as cancer cachexia progresses, one such drastic effect on the cardiac system. In the present study, differential effect of histone deacetylase inhibitors (HDACi) on cardiac complications associated with cancer cachexia is studied. Two models were used to induce cancer cachexia: B16F1 induced metastatic cancer cachexia and Lewis lung carcinoma cell - induced cancer cachexia. Potential of Class I HDACi entinostat, Class II HDACi MC1568, and nonspecific HDACi sodium butyrate on cardiac complications were evaluated using the cardiac hypertrophy markers, hemodynamic markers, and cardiac markers along with histopathological evaluation of heart sections by Periodic acid-Schiff staining, Masson's trichrome staining, Picro-sirius red staining, and haematoxylin and eosin staining. Immunohistochemistry evaluation by vimentin and caspase 3 protein expression was evaluated. Entinostat showed promising results by attenuating the cardiac complications, and MC1568 treatment further exacerbated the cardiac complications, while non-conclusive effect were recorded after treatment with sodium butyrate. This study will be helpful in evaluating other HDACi for potential in cardiac complications associated with cancer cachexia.
Collapse
Affiliation(s)
- Vivek Bora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Dhwani Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences Research University, Delhi, 110017, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| |
Collapse
|
13
|
Zhang F, Guo X, Xia Y, Mao L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci 2021; 79:6. [PMID: 34936041 PMCID: PMC11072026 DOI: 10.1007/s00018-021-04079-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are involved in phenotypic switching in atherosclerosis. This switching is characterized by VSMC dedifferentiation, migration, and transdifferentiation into other cell types. VSMC phenotypic transitions have historically been considered bidirectional processes. Cells can adopt a physiological contraction phenotype or an alternative "synthetic" phenotype in response to injury. However, recent studies, including lineage tracing and single-cell sequencing studies, have shown that VSMCs downregulate contraction markers during atherosclerosis while adopting other phenotypes, including macrophage-like, foam cell, mesenchymal stem-like, myofibroblast-like, and osteochondral-like phenotypes. However, the molecular mechanism and processes regulating the switching of VSMCs at the onset of atherosclerosis are still unclear. This systematic review aims to review the critical outstanding challenges and issues that need further investigation and summarize the current knowledge in this field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
van Andel MM, Groenink M, van den Berg MP, Timmermans J, Scholte AJHA, Mulder BJM, Zwinderman AH, de Waard V. Genome-wide methylation patterns in Marfan syndrome. Clin Epigenetics 2021; 13:217. [PMID: 34895303 PMCID: PMC8665617 DOI: 10.1186/s13148-021-01204-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP’s that associated with clinical events. No significant associations at p < 10–8 or p < 10–6 were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18–22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01204-4.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Hospital, Nijmegen, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021; 2:79-94. [PMID: 34617061 PMCID: PMC8489222 DOI: 10.1016/j.jvssci.2021.04.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. Methods We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. Results Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and β3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. Conclusions Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Payel Chatterjee
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Jui M Dave
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Allison C Ostriker
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Daniel M Greif
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Eva M Rzucidlo
- Department Surgery, Section of Vascular Surgery, McLeod Regional Medical Center, Florence, SC
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
16
|
Cai Y, Wang XL, Lu J, Lin X, Dong J, Guzman RJ. Salt-Inducible Kinase 3 Promotes Vascular Smooth Muscle Cell Proliferation and Arterial Restenosis by Regulating AKT and PKA-CREB Signaling. Arterioscler Thromb Vasc Biol 2021; 41:2431-2451. [PMID: 34196217 PMCID: PMC8411910 DOI: 10.1161/atvbaha.121.316219] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/17/2021] [Indexed: 01/11/2023]
Abstract
Objective Arterial restenosis is the pathological narrowing of arteries after endovascular procedures, and it is an adverse event that causes patients to experience recurrent occlusive symptoms. Following angioplasty, vascular smooth muscle cells (SMCs) change their phenotype, migrate, and proliferate, resulting in neointima formation, a hallmark of arterial restenosis. SIKs (salt-inducible kinases) are a subfamily of the AMP-activated protein kinase family that play a critical role in metabolic diseases including hepatic lipogenesis and glucose metabolism. Their role in vascular pathological remodeling, however, has not been explored. In this study, we aimed to understand the role and regulation of SIK3 in vascular SMC migration, proliferation, and neointima formation. Approach and Results We observed that SIK3 expression was low in contractile aortic SMCs but high in proliferating SMCs. It was also highly induced by growth medium in vitro and in neointimal lesions in vivo. Inactivation of SIKs significantly attenuated vascular SMC proliferation and up-regulated p21CIP1 and p27KIP1. SIK inhibition also suppressed SMC migration and modulated actin polymerization. Importantly, we found that inhibition of SIKs reduced neointima formation and vascular inflammation in a femoral artery wire injury model. In mechanistic studies, we demonstrated that inactivation of SIKs mainly suppressed SMC proliferation by down-regulating AKT (protein kinase B) and PKA (protein kinase A)-CREB (cAMP response element-binding protein) signaling. CRTC3 (CREB-regulated transcriptional coactivator 3) signaling likely contributed to SIK inactivation-mediated antiproliferative effects. Conclusions These findings suggest that SIK3 may play a critical role in regulating SMC proliferation, migration, and arterial restenosis. This study provides insights into SIK inhibition as a potential therapeutic strategy for treating restenosis in patients with peripheral arterial disease.
Collapse
MESH Headings
- Animals
- CREB-Binding Protein/metabolism
- Cell Movement
- Cell Proliferation/drug effects
- Cells, Cultured
- Constriction, Pathologic
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Disease Models, Animal
- Female
- Femoral Artery/enzymology
- Femoral Artery/injuries
- Femoral Artery/pathology
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenylurea Compounds/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrimidines/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular System Injuries/drug therapy
- Vascular System Injuries/enzymology
- Vascular System Injuries/genetics
- Vascular System Injuries/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Yujun Cai
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, CT 06510
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Xue-Lin Wang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jinny Lu
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Xin Lin
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jonathan Dong
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Raul J Guzman
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, CT 06510
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
17
|
Lecce L, Xu Y, V’Gangula B, Chandel N, Pothula V, Caudrillier A, Santini MP, d’Escamard V, Ceholski DK, Gorski PA, Ma L, Koplev S, Bjørklund MM, Björkegren JL, Boehm M, Bentzon JF, Fuster V, Kim HW, Weintraub NL, Baker AH, Bernstein E, Kovacic JC. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. J Clin Invest 2021; 131:131178. [PMID: 34338228 PMCID: PMC8321575 DOI: 10.1172/jci131178] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is associated with various cardiovascular diseases and in particular with atherosclerosis and plaque instability. However, the molecular pathways that govern EndMT are poorly defined. Specifically, the role of epigenetic factors and histone deacetylases (HDACs) in controlling EndMT and the atherosclerotic plaque phenotype remains unclear. Here, we identified histone deacetylation, specifically that mediated by HDAC9 (a class IIa HDAC), as playing an important role in both EndMT and atherosclerosis. Using in vitro models, we found class IIa HDAC inhibition sustained the expression of endothelial proteins and mitigated the increase in mesenchymal proteins, effectively blocking EndMT. Similarly, ex vivo genetic knockout of Hdac9 in endothelial cells prevented EndMT and preserved a more endothelial-like phenotype. In vivo, atherosclerosis-prone mice with endothelial-specific Hdac9 knockout showed reduced EndMT and significantly reduced plaque area. Furthermore, these mice displayed a more favorable plaque phenotype, with reduced plaque lipid content and increased fibrous cap thickness. Together, these findings indicate that HDAC9 contributes to vascular pathology by promoting EndMT. Our study provides evidence for a pathological link among EndMT, HDAC9, and atherosclerosis and suggests that targeting of HDAC9 may be beneficial for plaque stabilization or slowing the progression of atherosclerotic disease.
Collapse
Affiliation(s)
- Laura Lecce
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhargavi V’Gangula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nirupama Chandel
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Venu Pothula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Axelle Caudrillier
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Paola Santini
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Valentina d’Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Delaine K. Ceholski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Przemek A. Gorski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lijiang Ma
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martin Mæng Bjørklund
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Johan L.M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Jacob Fog Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valentin Fuster
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ha Won Kim
- Department of Medicine, Cardiology Division and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Neal L. Weintraub
- Department of Medicine, Cardiology Division and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Andrew H. Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Bernstein
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
19
|
Truong V, Jain A, Anand-Srivastava MB, Srivastava AK. Angiotensin II-induced histone deacetylase 5 phosphorylation, nuclear export, and Egr-1 expression are mediated by Akt pathway in A10 vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2021; 320:H1543-H1554. [PMID: 33606583 DOI: 10.1152/ajpheart.00683.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiotensin II (ANG II) regulates an array of physiological and pathological responses in vascular smooth muscle cells (VSMCs) by activating ERK1/2 and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. We have demonstrated that ANG II and insulin-like growth factor-1 (IGF-1) induce the expression of early growth response protein-1 (Egr-1), a zinc finger transcription factor, which regulates the transcription of cell cycle regulatory genes network in VSMCs. We have reported that IGF-1 induces the phosphorylation of histone deacetylase 5 (HDAC5), which has been implicated in the expression of genes linked to VSMC growth and hypertrophy, via a PI3K/Akt-dependent pathway in VSMCs. However, the involvement of PI3K/Akt pathways in ANG II-induced HDAC5 phosphorylation and the contribution of HDAC5 in Egr-1 expression and hypertrophy in VSMCs remain unexplored. Here, we show that pharmacological blockade of the PI3K/Akt pathway either by wortmannin/SC66 or siRNA-induced silencing of Akt attenuated ANG II-induced HDAC5 phosphorylation and its nuclear export. Moreover, SC66 or Akt knockdown also suppressed ANG II-induced Egr-1 expression. Furthermore, pharmacological inhibition of HDAC5 by MC1568 or TMP-195 or knockdown of HDAC5 and the blockade of the nuclear export of HDAC5 by leptomycin B or KPT-330 significantly reduced ANG II-induced Egr-1 expression. In addition, depletion of either HDAC5 or Egr-1 by siRNA attenuated VSMC hypertrophy in response to ANG II. In summary, our results demonstrate that ANG II-induced HDAC5 phosphorylation and its nuclear exclusion are mediated by PI3K/Akt pathway and HDAC5 is an upstream regulator of Egr-1 expression and hypertrophy in VSMCs.NEW & NOTEWORTHY ANG II-induced histone deacetylase 5 (HDAC5) phosphorylation and nuclear export occurs via the phosphoinositide 3-kinase/Akt pathway. Akt, through HDAC5, regulates ANG II-induced expression of early growth response protein-1 (Egr-1), which is a transcription factor linked with vascular dysfunction. Inhibition of HDAC5 exclusion by nuclear export inhibitors suppresses ANG II-induced Egr-1 expression. HDAC5 is an upstream mediator of Egr-1 expression and cell hypertrophy in response to ANG II in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Vanessa Truong
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Ashish Jain
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
22
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
23
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
24
|
Therapeutic targets and drugs for hyper-proliferation of vascular smooth muscle cells. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00469-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Zhang B, Dong Y, Liu M, Yang L, Zhao Z. miR-149-5p Inhibits Vascular Smooth Muscle Cells Proliferation, Invasion, and Migration by Targeting Histone Deacetylase 4 (HDAC4). Med Sci Monit 2019; 25:7581-7590. [PMID: 31595884 PMCID: PMC6796703 DOI: 10.12659/msm.916522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Studies have demonstrated that microRNAs (miRNAs) have essential roles in biological functions of vascular smooth muscle cells (VSMCs). However, the function and related molecular mechanism of miR-149-5p in VSMCs remains unclear. MATERIAL AND METHODS We used MTT assay, Transwell assay, and wound-healing assay to measure the proliferation, invasion, and migration of VSMCs transfected with miR-149-5p mimics or inhibitors, respectively. Bioinformatics tools and luciferase assay were used to validate the relationship between miR-149-5p and histone deacetylase 4 (HDAC4). Rescue experiments were used to confirm the interaction of miR-149-5p and HDAC4 in regulating biological functions in VSMCs. RESULTS miR-149-5p was downregulated in PDGF-bb-induced VSMCs. It was also found that miR-149-5p overexpression suppressed proliferation, invasion, and migration of VSMCs, while miR-149-5p knockdown showed the opposite effects. Furthermore, HDAC4 was found to be a potential target of miR-149-5p, which rescued miR-149-5p-mediated proliferation, invasion, and migration in VSMCs. CONCLUSIONS We demonstrated that miR-149-5p can suppress biological functions of VSMCs by regulating HDAC4, which might provide a potent therapeutic target for VSMC growth-related diseases.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Yang Dong
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Ming Liu
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| | - Lei Yang
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| | - Zhuo Zhao
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| |
Collapse
|
26
|
Hou F, Wei W, Qin X, Liang J, Han S, Han A, Kong Q. The posttranslational modification of HDAC4 in cell biology: Mechanisms and potential targets. J Cell Biochem 2019; 121:930-937. [PMID: 31588631 DOI: 10.1002/jcb.29365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Histone deacetylase 4 (HDAC4) is a member of the HDACs family, its expression is closely related to the cell development. The cell is an independent living entity that undergoes proliferation, differentiation, senescence, apoptosis, and pathology, and each process has a strict and complex regulatory system. With deepening of its research, the expression of HDAC4 is critical in the life process. This review focuses on the posttranslational modification of HDAC4 in cell biology, providing an important target for future disease treatment.
Collapse
Affiliation(s)
- Fei Hou
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Wei Wei
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Xiao Qin
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Jing Liang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China.,College of Life Sciences, Qufu Normal University, Qufu, China
| | - Sha Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Aizhong Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| |
Collapse
|
27
|
Yang D, Xiao C, Long F, Su Z, Jia W, Qin M, Huang M, Wu W, Suguro R, Liu X, Zhu Y. HDAC4 regulates vascular inflammation via activation of autophagy. Cardiovasc Res 2019. [PMID: 29529137 DOI: 10.1093/cvr/cvy051] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aims Angiotensin II (Ang II) causes vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of cardiovascular diseases. Therefore, interventions in inflammation may contribute to the reduction of cardiovascular diseases. Here, we aim to demonstrate that HDAC4, one of class IIa family histone de-acetylases (HDACs) members, promotes autophagy-dependent vascular inflammation. Methods and results By loss-of-function approaches, our study provides the first evidence that HDAC4 mediates Ang II-induced vascular inflammation in vitro and in vivo. In response to the Ang II, HDAC4 expression is up-regulated rapidly, with increased autophagic flux and inflammatory mediators in vascular endothelial cells (VECs). In turn, HDAC4 deficiency suppresses activation of autophagy, leading to reduced inflammation in Ang II-induced VECs. Consistently, using autophagy inhibitor or silencing LC3-II also alleviates vascular inflammation. Furthermore, HDAC4 regulates autophagy via facilitating transcription factor forkhead box O3a (FoxO3a) de-acetylation, thereby to increase its transcriptional activity. Loss of HDAC4 in VECs results in inhibition of FoxO3a de-acetylation to block its transcriptional activity, leading to downregulation of the downstream FoxO3a target, and hence reduces autophagy and vascular inflammation. FoxO3a silencing using siRNA approach significantly inhibits activation of autophagy. Finally, knockdown of HDAC4 in Ang II-infused mouse models ameliorates vascular inflammation, suggesting that inhibitor of HDAC4 may be potential therapeutics for vascular diseases associated with inflammation. Conclusion These results suggest that HDAC4-mediated FoxO3a acetylation regulates Ang II-induced autophagy activation, which in turn plays an essential role in causing vascular inflammation.
Collapse
Affiliation(s)
- Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - ChenXi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - Fen Long
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - ZhengHua Su
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - WanWan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - MengWei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - WeiJun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - Rinkiko Suguro
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - XinHua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China
| | - YiZhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, 826, Zhangheng Road, Pudong New District, Shanghai 201203, PR China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
28
|
Lee DY, Chiu JJ. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium. J Biomed Sci 2019; 26:56. [PMID: 31387590 PMCID: PMC6685237 DOI: 10.1186/s12929-019-0551-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Endothelial cell (EC) dysfunctions, including turnover enrichment, gap junction disruption, inflammation, and oxidation, play vital roles in the initiation of vascular disorders and atherosclerosis. Hemodynamic forces, i.e., atherprotective pulsatile (PS) and pro-atherogenic oscillatory shear stress (OS), can activate mechanotransduction to modulate EC function and dysfunction. This review summarizes current studies aiming to elucidate the roles of epigenetic factors, i.e., histone deacetylases (HDACs), non-coding RNAs, and DNA methyltransferases (DNMTs), in mechanotransduction to modulate hemodynamics-regulated EC function and dysfunction. Main body of the abstract OS enhances the expression and nuclear accumulation of class I and class II HDACs to induce EC dysfunction, i.e., proliferation, oxidation, and inflammation, whereas PS induces phosphorylation-dependent nuclear export of class II HDACs to inhibit EC dysfunction. PS induces overexpression of the class III HDAC Sirt1 to enhance nitric oxide (NO) production and prevent EC dysfunction. In addition, hemodynamic forces modulate the expression and acetylation of transcription factors, i.e., retinoic acid receptor α and krüppel-like factor-2, to transcriptionally regulate the expression of microRNAs (miRs). OS-modulated miRs, which stimulate proliferative, pro-inflammatory, and oxidative signaling, promote EC dysfunction, whereas PS-regulated miRs, which induce anti-proliferative, anti-inflammatory, and anti-oxidative signaling, inhibit EC dysfunction. PS also modulates the expression of long non-coding RNAs to influence EC function. i.e., turnover, aligmant, and migration. On the other hand, OS enhances the expression of DNMT-1 and -3a to induce EC dysfunction, i.e., proliferation, inflammation, and NO repression. Conclusion Overall, epigenetic factors play vital roles in modulating hemodynamic-directed EC dysfunction and vascular disorders, i.e., atherosclerosis. Understanding the detailed mechanisms through which epigenetic factors regulate hemodynamics-directed EC dysfunction and vascular disorders can help us to elucidate the pathogenic mechanisms of atherosclerosis and develop potential therapeutic strategies for atherosclerosis treatment.
Collapse
Affiliation(s)
- Ding-Yu Lee
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 115, Taiwan
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 350, Taiwan. .,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan. .,Collage of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan. .,Institute of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
29
|
Guo X, Fang ZM, Wei X, Huo B, Yi X, Cheng C, Chen J, Zhu XH, Bokha AOKA, Jiang DS. HDAC6 is associated with the formation of aortic dissection in human. Mol Med 2019; 25:10. [PMID: 30925865 PMCID: PMC6441237 DOI: 10.1186/s10020-019-0080-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathological features of aortic dissection (AD) include vascular smooth muscle cell (VSMC) loss, elastic fiber fraction, and inflammatory responses in the aorta. However, little is known about the post-translational modification mechanisms responsible for these biological processes. METHODS A total of 72 aorta samples, used for protein detection, were collected from 36 coronary artery disease (CAD, served as the control) patients and 36 type A AD (TAAD) patients. Chromatin immunoprecipitation (ChIP)-PCR was used to identify the genes regulated by H3K23ac, and tubastatin A, an inhibitor of HDAC6, was utilized to clarify the downstream mechanisms regulated by HDAC6. RESULTS We found that the protein level of histone deacetylase HDAC6 was reduced in the aortas of patients suffering from TAAD and that the protein levels of H4K12ac, and H3K23ac significantly increased, while H3K18ac, H4K8ac, and H4K5ac dramatically decreased when compared with CAD patients. Although H3K23ac, H3K18ac, and H4K8ac increased in the human VSMCs after treatment with the HDAC6 inhibitor tubastatin A, only H3K23ac showed the same results in human tissues. Notably, the results of ChIP-PCR demonstrated that H3K23ac was enriched in extracellular matrix (ECM)-related genes, including Col1A2, Col3A1, CTGF, POSTN, MMP2, TIMP2, and ACTA2, in the aortic samples of TAAD patients. In addition, our results showed that HDAC6 regulates H4K20me2 and p-MEK1/2 in the pathological process of TAAD. CONCLUSIONS These results indicate that HDAC6 is involved in human TAAD formation by regulating H3K23ac, H4K20me2 and p-MEK1/2, thus, providing a strategy for the treatment of TAAD by targeting protein post-translational modifications (PTMs), chiefly histone PTMs.
Collapse
Affiliation(s)
- Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | | | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
30
|
Pietruczuk P, Jain A, Simo-Cheyou ER, Anand-Srivastava MB, Srivastava AK. Protein kinase B/AKT mediates insulin-like growth factor 1-induced phosphorylation and nuclear export of histone deacetylase 5 via NADPH oxidase 4 activation in vascular smooth muscle cells. J Cell Physiol 2019; 234:17337-17350. [PMID: 30793765 DOI: 10.1002/jcp.28353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) mediates the generation of reactive oxygen species (ROS) and the activation of growth promoting signaling pathways. Histone deacetylases (HDACs) regulate gene transcription by deacetylating lysine residues in histone and nonhistone proteins and a heightened HDAC activation, notably of HDAC5, is associated with vascular disorders, such as atherosclerosis. Although the contribution of IGF-1 in these pathologies is well documented, its role in HDAC phosphorylation and activation remains unexplored. Here, we examined the effect of IGF-1 on HDAC5 phosphorylation in vascular smooth muscle cells (VSMCs) and identified the signaling pathways involved in controlling HDAC5 phosphorylation and nuclear export. Treatment of A10 VSMCs with IGF-1 enhanced HDAC5 phosphorylation. Blockade of the IGF-1 receptor tyrosine kinase (TK) activity with the specific pharmacological inhibitor, AG1024, significantly inhibited IGF-1-induced HDAC5 phosphorylation, whereas the epidermal growth factor receptor (EGFR) TK antagonist, AG1478, had no effect. Inhibition of the mitogen-activated protein kinase pathway with U0126, SP600125, or SB203580, did not affect HDAC5 phosphorylation, whereas two inhibitors of the phosphoinositide 3-kinase (PI3K)/AKT pathways, wortmannin and SC66, almost completely attenuated IGF-1-induced responses as confirmed by immunoblotting of phospho-HDAC5 and by small interfering RNA (siRNA)-induced AKT silencing. Moreover, the NAD(P)H oxidase (Nox) inhibitor, diphenyleneiodonium (DPI), and Nox4 siRNA, attenuated IGF-1-induced phosphorylation of HDAC5 and AKT. The HDAC5 phosphorylation resulted in its nuclear export, which was reversed by SC66 and DPI. Our results indicate that IGF-1-induced phosphorylation and nuclear export of HDAC5 involve Nox4-dependent ROS generation and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Paulina Pietruczuk
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Ashish Jain
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Estelle R Simo-Cheyou
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
31
|
Zhang M, Urabe G, Little C, Wang B, Kent AM, Huang Y, Kent KC, Guo LW. HDAC6 Regulates the MRTF-A/SRF Axis and Vascular Smooth Muscle Cell Plasticity. JACC Basic Transl Sci 2018; 3:782-795. [PMID: 30623138 PMCID: PMC6314972 DOI: 10.1016/j.jacbts.2018.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Distinct from other histone deacetylases, HDAC6 primarily resides in the cytosol. Unexpectedly, HDAC6-selective inhibition (or silencing) enhances the nuclear activity of SRF. HDAC6 inhibition elevates acetylation and protein levels of myocardin-related transcription factor A, a cytoplasmic-nuclear shuttling co-activator of SRF. Myocardin-related transcription factor A/SRF are known to critically regulate vascular smooth muscle cell phenotypic stability. HDAC6 inhibition prevents smooth muscle cell dedifferentiation in vitro and reduces neointima and restenosis in vivo.
Cellular plasticity is fundamental in biology and disease. Vascular smooth muscle cell (SMC) dedifferentiation (loss of contractile proteins) initiates and perpetrates vascular pathologies such as restenosis. Contractile gene expression is governed by the master transcription factor, serum response factor (SRF). Unlike other histone deacetylases, histone deacetylase 6 (HDAC6) primarily resides in the cytosol. Whether HDAC6 regulates SRF nuclear activity was previously unknown in any cell type. This study found that selective inhibition of HDAC6 with tubastatin A preserved the contractile protein (alpha-smooth muscle actin) that was otherwise diminished by platelet-derived growth factor-BB. Tubastatin A also enhanced SRF transcriptional (luciferase) activity, and this effect was confirmed by HDAC6 knockdown. Interestingly, HDAC6 inhibition increased acetylation and total protein of myocardin-related transcription factor A (MRTF-A), a transcription co-activator known to translocate from the cytosol to the nucleus, thereby activating SRF. Consistently, HDAC6 co-immunoprecipitated with MRTF-A. In vivo studies showed that tubastatin A treatment of injured rat carotid arteries mitigated neointimal lesion, which is known to be formed largely by dedifferentiated SMCs. This report is the first to show HDAC6 regulation of the MRTF-A/SRF axis and SMC plasticity, thus opening a new perspective for interventions of vascular pathologies.
Collapse
Key Words
- DMEM, Dulbecco’s modified Eagle’s medium
- DNA, deoxyribonucleic acid
- EEL, external elastic lamina
- FBS, fetal bovine serum
- HDAC, histone deacetylase
- HDAC6
- IEL, internal elastic lamina
- IH, intimal hyperplasia
- IgG, immunoglobulin G
- MMP, matrix metalloproteinase
- MRTF-A
- MRTF-A, myocardin-related transcription factor A
- PDGF-BB, platelet-derived growth factor-BB
- SMA, smooth muscle actin
- SMC, vascular smooth muscle cell
- SMHC, smooth muscle myosin heavy chain
- SRF
- SRF, serum response factor
- TNF, tumor necrosis factor
- TSA, trichostatin A
- dedifferentiation
- siRNA, small interfering ribonucleic acid
- vascular smooth muscle cell
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Go Urabe
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Christopher Little
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Bowen Wang
- Department of Surgery, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alycia M Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Yitao Huang
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - K Craig Kent
- Department of Surgery, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Lian-Wang Guo
- Department of Surgery and Department of Physiology and Cell Biology, College of Medicine, and the Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
32
|
Zheng X, Wu Z, Xu K, Qiu Y, Su X, Zhang Z, Zhou M. Interfering histone deacetylase 4 inhibits the proliferation of vascular smooth muscle cells via regulating MEG3/miR-125a-5p/IRF1. Cell Adh Migr 2018; 13:41-49. [PMID: 30156956 PMCID: PMC6527374 DOI: 10.1080/19336918.2018.1506653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role ofhistone deacetylase 4 (HDAC4) and MEG3/miR-125a-5p/interferonregulatoryfactor 1 (IRF1) on vascular smooth muscle cell (VSMCs)proliferation. Platelet derived growth factor (PDGF)-BB was used toinduce the proliferation and migration of VSMCs. The expressionsof MEG3, miR-125a-5p, HDAC4 and IRF1in VSMCs were detectedby qRT-PCR and western blot, respectively. ChIP assay was usedto determine the relationship between MEG3 and HDAC4. Doubleluciferase reporter assay was used to test the regulation betweenmiR-125-5p and IRF1. Results showed that PDGF-BB decreasedthe expression of MEG3 and IRF1, while increased the expressionof miR-125a-5p and HDAC4. In addition, HDAC4 knockdowninhibited the proliferation and migration of VSMCs via upregulatingMEG3 and downregulating miR-125a-5p. MiR-125a-5p inhibitorcould repress the proliferation and migration of VSMCs andalleviate intimal hyperplasia (IH) by directly upregulating IRF1expression. These results suggested that HDAC4 interferenceinhibited PDGF-BB-induced VSMCs proliferation via regulatingMEG3/miR-125a-5p/IRF1 axis, and then alleviated IH.
Collapse
Affiliation(s)
- Xiangtao Zheng
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ziheng Wu
- b Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ke Xu
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Yihui Qiu
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiang Su
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhen Zhang
- c Department of Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Mengtao Zhou
- c Department of Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
33
|
Chen J, Cui X, Li L, Qu J, Raj JU, Gou D. MiR-339 inhibits proliferation of pulmonary artery smooth muscle cell by targeting FGF signaling. Physiol Rep 2018; 5:5/18/e13441. [PMID: 28947594 PMCID: PMC5617928 DOI: 10.14814/phy2.13441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/02/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a fatal disorder. Recent studies suggest that microRNA (miRNA) plays an important role in regulating proliferation of pulmonary artery smooth muscle cells (PASMC), which underlies the pathology of PAH. However, the exact mechanism of action of miRNAs remains elusive. In this study, we found that miR‐339 was highly expressed in the cardiovascular system and was downregulated by a group of cytokines and growth factors, especially PDGF‐BB and FGF2. Functional analyses revealed that miR‐339 can inhibit proliferation of PASMC. Also, miR‐339 inhibited FGF2‐induced proliferation, but had no effect on proliferation induced by PDGF‐BB. The fibroblast growth factor receptor substrate 2 (FRS2) was identified as a potential direct target of miR‐339. Consistent with the actions of miR‐339, knockdown of FRS2 only inhibited FGF2‐ but not PDGF‐BB‐induced proliferation of PASMC. In addition, our results showed that inhibition of ERK and PI3K abrogated the downregulation of miR‐339 induced by PDGF‐BB. Finally, miR‐339 expression was found to be decreased in the pulmonary arteries of rats with MCT‐induced PAH. Our study is the first report on the biological role of miR‐339 in regulating proliferation of PASMC by targeting FGF signaling, providing new mechanistic insights into PASMC proliferation and pathogenesis of PAH.
Collapse
Affiliation(s)
- Jidong Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices, Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaolei Cui
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Li Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices, Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Deming Gou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
34
|
Imoto K, Okada M, Yamawaki H. Characterization of fibroblasts from hypertrophied right ventricle of pulmonary hypertensive rats. Pflugers Arch 2018; 470:1405-1417. [PMID: 29860638 DOI: 10.1007/s00424-018-2158-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary arterial hypertension (PAH), which is characterized by an elevation of pulmonary arterial resistance, leads to a lethal right heart failure. It is an urgent issue to clarify the pathogenesis of PAH-induced right heart failure. The present study aimed to elucidate the characteristics of cardiac fibroblasts (CFs) isolated from hypertrophied right ventricles of monocrotaline (MCT)-induced PAH model rats. CFs were isolated from the right ventricles of MCT-injected rats (MCT-CFs) and saline-injected control rats (CONT-CFs). Expression of α-smooth muscle actin and collagen type I in MCT-CFs was lower than that in CONT-CFs. On the other hand, proliferation, migration, and matrix metalloproteinase (MMP)-9 production were significantly enhanced in MCT-CFs. In MCT-CFs, phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and Ca2+/calmodulin-dependent protein kinase (CaMK) II was significantly enhanced. In addition to mRNA expression of Orai1, a Ca2+ release-activated Ca2+ channel, and stromal interaction molecules (STIM) 1, an endoplasmic reticulum Ca2+ sensor, the associated store-operated Ca2+ entry (SOCE) was significantly higher in MCT-CFs than CONT-CFs. Pharmacological inhibition of ERK1/2 pathway prevented the enhanced proliferation of MCT-CFs. The enhanced migration of MCT-CFs was prevented by a pharmacological inhibition of ERK1/2, JNK, CaMKII, or SOCE pathway. The enhanced MMP-9 production in MCT-CFs was prevented by a pharmacological inhibition of ERK1/2, CaMKII, or SOCE pathway but not JNK. The present results suggested that MCT-CFs exhibit proliferative and migratory phenotypes perhaps through multiple signaling pathways. This study for the first time determined the characteristics of CFs isolated from hypertrophied right ventricles of MCT-induced PAH model rats.
Collapse
Affiliation(s)
- Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori, 034-8628, Japan.
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori, 034-8628, Japan
| |
Collapse
|
35
|
Lin X, Cheng C, Zhong J, Liu B, Luo C, Ou W, Mo P, Huang Q, Liu S. Resveratrol inhibits angiotensin II‑induced proliferation of A7r5 cells and decreases neointimal hyperplasia by inhibiting the CaMKII‑HDAC4 signaling pathway. Mol Med Rep 2018; 18:1007-1014. [PMID: 29845301 DOI: 10.3892/mmr.2018.9056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/26/2018] [Indexed: 11/06/2022] Open
Abstract
Resveratrol has been reported to inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia following arterial injury; however, the underlying mechanisms remain unclear. The present study was designed to investigate the effects of resveratrol on angiotensin II (AngII)‑induced proliferation of A7r5 cells and explore the molecular mechanisms responsible for the observed effects. Resveratrol inhibited cell proliferation and migration, and decreased the AngII‑induced protein expression of α‑smooth muscle actin (α‑SMA), proliferating cell nuclear antigen (PCNA) and cyclin‑dependent kinase 4 (CDK4). Resveratrol inhibited AngII‑induced activation of intracellular Ca2+/calmodulin‑dependent protein kinase II (CaMKII) and histone deacetylases 4 (HDAC4), as well as blocking AngII‑induced cell cycle progression from the G0/G1 to S‑phase. In vivo, 4‑weeks of resveratrol treatment decreased the neointima area and the neointima/media area ratio in rats following carotid balloon injury. Resveratrol also inhibited the protein expression of total and phosphorylated CaMKII and HDAC4 in the injured arteries. In conclusion, the present study demonstrated that resveratrol attenuated AngII‑induced cell proliferation and neointimal hyperplasia by inhibiting the CaMKII‑HDAC4 signaling pathway. These findings suggest that resveratrol may potentially prevent arterial restenosis.
Collapse
Affiliation(s)
- Xiaozhen Lin
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Chuanfang Cheng
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Junyang Zhong
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Benrong Liu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Chengfeng Luo
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wenchao Ou
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Pei Mo
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Qiang Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Shiming Liu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
36
|
Usui T, Sakurai M, Kawasaki H, Ohama T, Yamawaki H, Sato K. Establishment of a novel three-dimensional primary culture model for hippocampal neurogenesis. Physiol Rep 2018. [PMID: 28642339 PMCID: PMC5492207 DOI: 10.14814/phy2.13318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
New neurons are generated in the adult hippocampus throughout life and contribute to the functions of learning and memory. Nevertheless, the mechanisms by which disrupted neurogenesis regulates central nervous system (CNS) disorders are not fully understood. Here, we established a novel 3D culture system of hippocampal neurogenesis using air liquid interface (ALI) culture and Matrigel culture from mouse hippocampus tissues. After isolated mouse hippocampus tissue fragments were seeded into ALI wells and cultured in stemness‐stimulated media containing Wnt, EGF, Noggin and R‐spondin for 7 days, small spheres gradually appeared in the tissues. To identify the cell components, immunohistochemical and immunofluorescence staining were performed. Expression of a mature neuronal cell marker, NeuN was observed in the tissues just after seeding. Expression of a neural stem cell marker, Nestin was observed in the tissues at day 7. To differentiate the Nestin‐positive cells, they were passaged into Matrigel. Expression of Nestin but not an immature neuronal cell marker, doublecortin (DCX) was observed in the isolated cells. After 7 days of Matrigel culture, they showed the neurite outgrowth. Expression of Nestin was decreased compared with the one just after passaging, while DCX expression was increased. Western blotting analysis also showed Nestin expression was decreased, while expression of DCX, a neuronal cell marker, Tuj1 and a granule cell marker, Prox‐1 was increased. Here, we establish the 3D culture of hippocampus tissues that might become a novel in vitro tool for monitoring the process of hippocampal neurogenesis. Our model might shed light into the mechanisms of pathogenesis of CNS disorders.
Collapse
Affiliation(s)
- Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hideyoshi Kawasaki
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
37
|
Li Y, Li L, Qian Z, Lin B, Chen J, Luo Y, Qu J, Raj JU, Gou D. Phosphatidylinositol 3-Kinase-DNA Methyltransferase 1-miR-1281-Histone Deacetylase 4 Regulatory Axis Mediates Platelet-Derived Growth Factor-Induced Proliferation and Migration of Pulmonary Artery Smooth Muscle Cells. J Am Heart Assoc 2018; 7:e007572. [PMID: 29514810 PMCID: PMC5907547 DOI: 10.1161/jaha.117.007572] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelet-derived growth factor BB, a potent mitogen of pulmonary artery smooth muscle cells (PASMCs), has been implicated in pulmonary arterial remodeling, which is a key pathogenic feature of pulmonary arterial hypertension. Previous microRNA profiling in platelet-derived growth factor BB-treated PASMCs found a significantly downregulated microRNA, miR-1281, but it has not been associated with any cellular function, and we investigated the possibility. METHODS AND RESULTS Real-time quantitative reverse transcription-polymerase chain reaction assay proved that downregulation of miR-1281 was a conserved phenomenon in human and rat PASMCs. Overexpression and inhibition of miR-1281 in PASMCs promoted and suppressed, respectively, the cell proliferation and migration. Bioinformatic prediction and 3'-untranslated region reporter assay identified histone deacetylase 4 to be a direct target of miR-1281. Supporting this, proliferation and migration assay demonstrated the cellular function of histone deacetylase 4 is inversely correlated with that of miR-1281. Mechanistically, it is found that platelet-derived growth factor BB activates the phosphatidylinositol 3-kinase pathway, which then induces the expression of DNA methyltransferase 1, leading to enhanced methylation of a flanking CpG island and repressed miR-1281 expression. Finally, a reduced miR-1281 level was consistently identified in hypoxic PASMCs in vitro, in pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension, and in serum of patients with coronary heart disease-pulmonary arterial hypertension. These data suggest that there may be a diagnostic and therapeutic use for miR-1281. CONCLUSIONS Herein, we report a novel regulatory axis, phosphatidylinositol 3-kinase-DNA methyltransferase 1-miR-1281-histone deacetylase 4, integrating multiple epigenetic regulators that participate in platelet-derived growth factor BB-stimulated PASMC proliferation and migration and pulmonary vascular remodeling.
Collapse
MESH Headings
- Animals
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Disease Models, Animal
- HEK293 Cells
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Monocrotaline
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Yanjiao Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Boya Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yixuan Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, IL
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Lee KP, Baek S, Jung SH, Cui L, Lee D, Lee DY, Choi WS, Chung HW, Lee BH, Kim B, Won KJ. DJ-1 is involved in epigenetic control of sphingosine-1-phosphate receptor expression in vascular neointima formation. Pflugers Arch 2018; 470:1103-1113. [DOI: 10.1007/s00424-018-2132-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 01/30/2023]
|
39
|
Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci Rep 2018; 8:3624. [PMID: 29483552 PMCID: PMC5827654 DOI: 10.1038/s41598-018-21812-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/09/2018] [Indexed: 02/08/2023] Open
Abstract
The aims of the present study were to examine signaling mechanisms underlying transforming growth factor β1 (TGF-β1)-induced airway smooth muscle cells (ASMCs) proliferation and to determine the effect of adenosine monophosphate-activated protein kinase (AMPK) activation on TGF-β1-induced ASMCs proliferation and its potential mechanisms. TGF-β1 reduced microRNA-206 (miR-206) level by activating Smad2/3, and this in turn up-regulated histone deacetylase 4 (HDAC4) and consequently increased cyclin D1 protein leading to ASMCs proliferation. Prior incubation of ASMCs with metformin induced AMPK activation and blocked TGF-β1-induced cell proliferation. Activation of AMPK slightly attenuated TGF-β1-induced miR-206 suppression, but dramatically suppressed TGF-β1-caused HDAC4 up-expression and significantly increased HDAC4 phosphorylation finally leading to reduction of up-regulated cyclin D1 protein expression. Our study suggests that activation of AMPK modulates miR-206/HDAC4/cyclin D1 signaling pathway, particularly targeting on HDAC4, to suppress ASMCs proliferation and therefore has a potential value in the prevention and treatment of asthma by alleviating airway remodeling.
Collapse
|
40
|
Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:55-75. [PMID: 30232752 DOI: 10.1007/978-981-13-1117-8_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular aging refers to the structural and functional defects that occur in the aorta during the aging process and is characterized by increased vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Vascular aging is a major risk factor for vascular diseases. However, the current understanding of the biological process of vascular aging and age-related diseases is insufficient. Epigenetic regulation can influence gene expression independently of the gene sequence and mainly includes DNA methylation, histone modifications, and RNA-based gene regulation. Epigenetic regulation plays important roles in many physiological and pathophysiological processes and may explain some gaps in our knowledge regarding the interaction between genes and diseases. In this review, we summarize recent advances in the understanding of the epigenetic regulation of vascular aging and age-related diseases in terms of vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Moreover, the possibility of targeting epigenetic regulation to delay vascular aging and treat age-related vascular diseases is also discussed.
Collapse
|
41
|
Yang F, Chen Q, He S, Yang M, Maguire EM, An W, Afzal TA, Luong LA, Zhang L, Xiao Q. miR-22 Is a Novel Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation and Neointima Formation. Circulation 2017; 137:1824-1841. [PMID: 29246895 PMCID: PMC5916488 DOI: 10.1161/circulationaha.117.027799] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Background: MicroRNA-22 (miR-22) has recently been reported to play a regulatory role during vascular smooth muscle cell (VSMC) differentiation from stem cells, but little is known about its target genes and related pathways in mature VSMC phenotypic modulation or its clinical implication in neointima formation following vascular injury. Methods: We applied a wire-injury mouse model, and local delivery of AgomiR-22 or miR-22 inhibitor, as well, to explore the therapeutic potential of miR-22 in vascular diseases. Furthermore, normal and diseased human femoral arteries were harvested, and various in vivo, ex vivo, and in vitro models of VSMC phenotype switching were conducted to examine miR-22 expression during VSMC phenotype switching. Results: Expression of miR-22 was closely regulated during VSMC phenotypic modulation. miR-22 overexpression significantly increased expression of VSMC marker genes and inhibited VSMC proliferation and migration, whereas the opposite effect was observed when endogenous miR-22 was knocked down. As expected, 2 previously reported miR-22 target genes, MECP2 (methyl-CpG binding protein 2) and histone deacetylase 4, exhibited a regulatory role in VSMC phenotypic modulation. A transcriptional regulator and oncoprotein, EVI1 (ecotropic virus integration site 1 protein homolog), has been identified as a novel miR-22 target gene in VSMC phenotypic modulation. It is noteworthy that overexpression of miR-22 in the injured vessels significantly reduced the expression of its target genes, decreased VSMC proliferation, and inhibited neointima formation in wire-injured femoral arteries, whereas the opposite effect was observed with local application of a miR-22 inhibitor to injured arteries. We next examined the clinical relevance of miR-22 expression and its target genes in human femoral arteries. We found that miR-22 expression was significantly reduced, whereas MECP2 and EVI1 expression levels were dramatically increased, in diseased in comparison with healthy femoral human arteries. This inverse relationship between miR-22 and MECP2 and EVI1 was evident in both healthy and diseased human femoral arteries. Conclusions: Our data demonstrate that miR-22 and EVI1 are novel regulators of VSMC function, specifically during neointima hyperplasia, offering a novel therapeutic opportunity for treating vascular diseases.
Collapse
Affiliation(s)
- Feng Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.).,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.)
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.)
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Tayyab Adeel Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Le Anh Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.)
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (F.Y., Q.C., M.Y., L.Z.).
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (F.Y., S.H., E.M.M., W.A., T.A.A., L.A.L., Q.X.).,Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, China (Q.X.).,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, China (Q.X.)
| |
Collapse
|
42
|
Hou F, Li D, Yu H, Kong Q. The mechanism and potential targets of class II HDACs in angiogenesis. J Cell Biochem 2017; 119:2999-3006. [PMID: 29091298 DOI: 10.1002/jcb.26476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Angiogenesis refers to the new blood vessels deriving from the existing blood vessels, and it is a complex regulatory process. Angiogenesis is associated with the normal development of the body and tumor growth and migration. The imbalance of histone deacetylase, as an epigenetic modification, could induce the production of diseases, such as cancer, metabolic diseases, etc., and it also plays an important role in angiogenesis. Many researches indicate that class II HDACs nuclear shuttle and its phosphorylation are necessary for the diseases and the protection of the collective itself. This paper will make a review for the relationship between II HDACs and angiogenesis under physiological and pathologic categories, looking forward to the disease treatment in the future.
Collapse
Affiliation(s)
- Fei Hou
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,College of Science, Qufu Normal University, Qufu, Shandong, China
| | - Dandan Li
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,College of Science, Qufu Normal University, Qufu, Shandong, China
| | - Honglian Yu
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| | - Qingsheng Kong
- Department of Basic Medical College, Jining Medical University, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|
43
|
Qian Z, Li Y, Chen J, Li X, Gou D. miR-4632 mediates PDGF-BB-induced proliferation and antiapoptosis of human pulmonary artery smooth muscle cells via targeting cJUN. Am J Physiol Cell Physiol 2017; 313:C380-C391. [PMID: 28701355 DOI: 10.1152/ajpcell.00061.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) can regulate the proliferative status of pulmonary artery smooth muscle cells (PASMCs), which is a core factor modulating pulmonary vascular remodeling diseases, such as atherosclerosis and pulmonary arterial hypertension (PAH). Our previous work has shown that miR-4632, a rarely reported miRNA, is significantly downregulated in platelet-derived growth factor (PDGF)-BB-stimulated human pulmonary artery smooth muscle cells (HPASMCs), yet its cell function and the underlying molecular mechanisms remain to be elucidated. Here, we find that miR-4632 is highly expressed in HPASMCs and its expression significantly decreased in response to different stimuli. Functional studies revealed that miR-4632 inhibited proliferation and promoted apoptosis of HPASMCs but had no effects on cell contraction and migration. Furthermore, the cJUN was identified as a direct target gene of miR-4632, while knockdown of cJUN was necessary for miR-4632-mediated HPASMC proliferation and apoptosis. In addition, the downregulation of miR-4632 by PDGF-BB was found to associate with histone deacetylation through the activation of PDGF receptor/phosphatidylinositol 3'-kinase/histone deacetylase 4 signaling. Finally, the expression of miR-4632 was reduced in the serum of patients with PAH. Overall, our results suggest that miR-4632 plays an important role in regulating HPASMC proliferation and apoptosis by suppression of cJUN, providing a novel therapeutic miRNA candidate for the treatment of pulmonary vascular remodeling diseases. It also implies that serum miR-4632 has the potential to serve as a circulating biomarker for PAH diagnosis.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong China; .,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; and
| | - Yanjiao Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiang Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; and
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong China
| |
Collapse
|
44
|
Kee HJ, Kim GR, Lin MQ, Choi SY, Ryu Y, Jin L, Piao ZH, Jeong MH. Expression of Class I and Class II a/b Histone Deacetylase is Dysregulated in Hypertensive Animal Models. Korean Circ J 2017; 47:392-400. [PMID: 28567090 PMCID: PMC5449534 DOI: 10.4070/kcj.2016.0266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 11/11/2022] Open
Abstract
Background and Objectives Dysregulation of histone deacetylase expression and enzymatic activity is associated with a number of diseases. It has been reported that protein levels of histone deacetylase (HDAC)1 and HDAC5 increase during human pulmonary hypertension, and that the enzymatic activity of HDAC6 is induced in a chronic hypertensive animal model. This study investigated the protein expression profiles of class I and II a/b HDACs in three systemic hypertension models. Subjects and Methods We used three different hypertensive animal models: (i) Wistar-Kyoto rats (n=8) and spontaneously hypertensive rats (SHR; n=8), (ii) mice infused with saline or angiotensin II to induce hypertension, via osmotic mini-pump for 2 weeks, and (iii) mice that were allowed to drink L-NG-nitro-L-arginine methyl ester (L-NAME) to induce hypertension. Results SHR showed high systolic, diastolic, and mean blood pressures. Similar increases in systolic blood pressure were observed in angiotensin II or L-NAME-induced hypertensive mice. In SHR, class IIa HDAC (HDAC4, 5, and 7) and class IIb HDAC (HDAC6 and 10) protein expression were significantly increased. In addition, a HDAC3 protein expression was induced in SHR. However, in L-NAME mice, class IIa HDAC protein levels (HDAC4, 5, 7, and 9) were significantly reduced. HDAC8 protein levels were significantly reduced both in angiotensin II mice and in SHR. Conclusion These results indicate that dysregulation of class I and class II HDAC protein is closely associated with chronic hypertension.
Collapse
Affiliation(s)
- Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Ming Quan Lin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Yanbian University Hospital, Yanbian, Jilin, China
| | - Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Li Jin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Jilin Hospital Affiliated with Jilin University, Jilin, China
| | - Zhe Hao Piao
- The Second Hospital of Jilin University, Changchun, China
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
45
|
Vasculo-protective effect of BMS-309403 is independent of its specific inhibition of fatty acid-binding protein 4. Pflugers Arch 2017; 469:1177-1188. [DOI: 10.1007/s00424-017-1976-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/19/2017] [Accepted: 04/02/2017] [Indexed: 01/02/2023]
|
46
|
Kawasaki H, Saotome T, Usui T, Ohama T, Sato K. Regulation of intestinal myofibroblasts by KRas-mutated colorectal cancer cells through heparin-binding epidermal growth factor-like growth factor. Oncol Rep 2017; 37:3128-3136. [PMID: 28339087 DOI: 10.3892/or.2017.5520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
In colorectal cancer, gain-of-function mutations in KRas play a critical role in malignant transformation. Tumor growth in colorectal cancer is known to be promoted by the intestinal myofibroblasts (IMFs) that localize adjacent to the cancer cells, but the mechanisms of interaction between KRas-mutated cancer cells and the myofibroblasts remain unclear. Here, we investigated the effects of KRas-mutated cells on the behavior of myofibroblasts by using mouse primary IMFs and cells of an IMF cell line (LmcMF) and a mouse colon epithelial cell line (aMoC1). Conditioned medium (CM) was collected from aMoC1 cells overexpressing a control vector or KRasV12 vector (KRasV12-CM), and the effects of KRasV12-CM on IMFs were analyzed by performing proliferation assays, wound-healing assays, Boyden chamber assays, and western blotting. Whereas KRasV12-CM exerted little effect on the differentiation and proliferation of primary IMFs, the CM promoted migration of both primary IMFs and LmcMF cells. In KRasV12-overexpressing aMoC1 cells, mRNA expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) was higher than in mock-transfected aMoC1 cells, and HB-EGF promoted the migration of primary IMFs and LmcMF cells. Moreover, KRasV12-CM-induced IMF migration was suppressed by dacomitinib, an inhibitor of HB-EGF receptors. Notably, in LmcMF cells, both KRasV12-CM and HB-EGF activated extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK), whereas KRasV12-CM-induced migration of IMFs was suppressed following treatment with either an ERK inhibitor (FR180204) or a JNK inhibitor (SP600125). These results suggest that HB-EGF secreted from KRas-mutated colorectal cancer cells promotes IMF migration through ERK and JNK activation, which, in turn, could support cancer progression.
Collapse
Affiliation(s)
- Hideyoshi Kawasaki
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takuya Saotome
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
47
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
48
|
Saddouk FZ, Ginnan R, Singer HA. Ca 2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:171-202. [PMID: 28212797 DOI: 10.1016/bs.apha.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.
Collapse
Affiliation(s)
- F Z Saddouk
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - R Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - H A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
49
|
Wei X, Li H, Zhang B, Li C, Dong D, Lan X, Huang Y, Bai Y, Lin F, Zhao X, Chen H. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol 2016; 13:1300-1309. [PMID: 27661135 DOI: 10.1080/15476286.2016.1239008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscle development, or myogenesis, is a highly regulated, complex process. A subset of microRNAs (miRNAs) have been identified as critical regulators of myogenesis. Recently, miR-378a was found to be involved in myogenesis, but the mechanism of how miR-378a regulates the proliferation and differentiation of myoblasts has not been determined. We found that miR-378a-3p expression in muscle was significantly higher than in other tissues, suggesting an important effect on muscle development. Overexpression of miR-378a-3p increased the expression of MyoD and MHC in C2C12 myoblasts both at the level of mRNA and protein, confirming that miR-378a-3p promoted muscle cell differentiation. The forced expression of miR-378a-3p promoted apoptosis of C2C12 cells as evidenced by CCK-8 assay and Annexin V-FITC/PI staining results. Through TargetScan, histone acetylation enzyme 4 (HDAC4) was identified as a potential target of miR-378a-3p. We confirmed targeting of HDAC4 by miR-378a-3p using a dual luciferase assay and western blotting. Our RNAi analysis results also showed that HDAC4 significantly promoted differentiation of C2C12 cells and inhibited cell survival through Bcl-2. Therefore, we conclude that miR-378a-3p regulates skeletal muscle growth and promotes the differentiation of myoblasts through the post-transcriptional down-regulation of HDAC4.
Collapse
Affiliation(s)
- Xuefeng Wei
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Hui Li
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Bowen Zhang
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Caixia Li
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Dong Dong
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Xianyong Lan
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Yongzhen Huang
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Yueyu Bai
- b Animal Health Supervision in Henan Province , Zhengzhou , Henan , China
| | - Fengpeng Lin
- c Bureau of Animal Husbandry of Biyang County , Biyang , Henan , China
| | - Xue Zhao
- d Bureau of Animal Husbandry of Suibin County , Suibin , Heilongjiang , China
| | - Hong Chen
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
50
|
Wright LH, Menick DR. A class of their own: exploring the nondeacetylase roles of class IIa HDACs in cardiovascular disease. Am J Physiol Heart Circ Physiol 2016; 311:H199-206. [PMID: 27208161 PMCID: PMC5005290 DOI: 10.1152/ajpheart.00271.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDACs) play integral roles in many cardiovascular biological processes ranging from transcriptional and translational regulation to protein stabilization and localization. There are 18 known HDACs categorized into 4 classes that can differ on the basis of substrate targets, subcellular localization, and regulatory binding partners. HDACs are classically known for their ability to remove acetyl groups from histone and nonhistone proteins that have lysine residues. However, despite their nomenclature and classical functions, discoveries from many research groups over the past decade have suggested that nondeacetylase roles exist for class IIa HDACs. This is not surprising given that class IIa HDACs have, for example, relatively poor deacetylase capabilities and are often shuttled in and out of nuclei upon specific pathological and nonpathological cardiac events. This review aims to consolidate and elucidate putative nondeacetylase roles for class IIa HDACs and, where possible, highlight studies that provide evidence for their noncanonical roles, especially in the context of cardiovascular maladies. There has been great interest recently in exploring the pharmacological regulators of HDACs for use in therapeutic interventions for treating cardiovascular diseases and inflammation. Thus it is of interest to earnestly consider nonenzymatic and or nondeacetylase roles of HDACs that might be key in potentiating or abrogating pathologies. These noncanonical HDAC functions may possibly yield new mechanisms and targets for drug discovery.
Collapse
Affiliation(s)
- Lillianne H Wright
- Department of Medicine, Division of Cardiology, Medical University of South Carolina; and
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina; and Ralph Johnson Veteran's Hospital, Charleston, South Carolina
| |
Collapse
|