1
|
Wang Y, Wang H, Lu H, Ma J, Wu W, Wang Y, Ma B, Zhu H, Hu R. Renal glomerular and tubular injury in the offspring of the preeclampsia-like syndrome. Sci Rep 2025; 15:915. [PMID: 39762506 PMCID: PMC11704207 DOI: 10.1038/s41598-025-85258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a prevalent and severe pregnancy complication that significantly impacts maternal and perinatal health. Epidemiological studies and animal experiments have demonstrated that PE adversely affects the cardiovascular and nervous systems of offspring, increasing their risk of hypertension and renal pathology. However, the mechanisms underlying this increased risk remain unclear. This study utilized an L-NAME-induced preeclampsia mouse model (PELS model) to investigate the effects of PE on offspring blood pressure and renal pathology, focusing on the expression of Angiotensin II Type 1 Receptors (AT1R) and related molecules in renal tissues. Our findings show that L-NAME-induced pre-eclampsia led to reduced birth weights and significantly elevated systolic blood pressure in 6-week-old offspring. Histopathological analysis revealed pronounced glomerular and tubular damage in the kidneys of both 1-week and 6-week-old offspring from the pre-eclampsia group. At 1 week of age, the pre-eclampsia group exhibited elevated mRNA and protein expression levels of AT1R, GRK4, AQP2, ENaC, and NCC in renal tissues compared to controls. However, these differences were no longer significant at 6 weeks of age. No significant gender differences were observed in either blood pressure or renal pathological changes. Preeclampsia induced by L-NAME results in increased blood pressure and renal damage in offspring, potentially mediated by early alterations in the renal RAS system. The observed changes in AT1R and related molecules appear to be transient, suggesting that the early impact of pre-eclampsia on renal structure may trigger, but not sustain, hypertension in offspring. Further studies are needed to elucidate the long-term mechanisms driving hypertension in this population.
Collapse
Affiliation(s)
- Yong Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Huiqing Lu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ji Ma
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei Wu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yinan Wang
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bo Ma
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hao Zhu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Rong Hu
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Duan XP, Zheng JY, Xiao Y, Zhang CB, Lin DH, Wang WH. Angiotensin II-Type-1a Receptor and Renal K + Wasting during Overnight Low-Na + Intake. J Am Soc Nephrol 2024; 35:1478-1492. [PMID: 38913434 PMCID: PMC11543017 DOI: 10.1681/asn.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Key Points Angiotensin II–type-1a-receptor in the distal convoluted tubule (DCT) plays a role in regulating sodium transport in the DCT. Angiotensin II–type-1a-receptor in the DCT plays a role in maintaining potassium homeostasis during sodium restriction. Background Chronic angiotensin II perfusion stimulates Kir4.1/Kir5.1 of the distal convoluted tubule (DCT) via angiotensin II–type-1a-receptor (AT1aR), and low‐sodium intake also stimulates Kir4.1/Kir5.1. However, the role of AT1aR in mediating the effect of low salt on Kir4.1/Kir5.1 is not explored. Methods We used the patch-clamp technique to examine Kir4.1/Kir5.1 activity of the DCT, employed immunoblotting to examine Na-Cl cotransporter (NCC) expression/activity, and used the in vivo perfusion technique to measure renal Na+ and renal K+ excretion in control, kidney tubule–specific–AT1aR-knockout mice (Ks-AT1aR-KO) and DCT-specific–AT1aR-knockout mice (DCT-AT1aR-KO). Results Angiotensin II acutely stimulated the 40-pS-K+ channel (Kir4.1/Kir5.1-heterotetramer) and increased whole-cell Kir4.1/Kir5.1-mediated K+ currents and the negativity of DCT membrane potential only in late DCT2 but not in early DCT. Acute angiotensin II increased thiazide-induced renal Na+ excretion (ENa). The effect of angiotensin II on Kir4.1/Kir5.1 and hydrochlorothiazide-induced ENa was absent in Ks-AT1aR-KO mice. Overnight low-salt intake stimulated the expression of Agtr1a mRNA in DCT, increased whole-cell Kir4.1/Kir5.1-mediated K+ currents in late DCT, hyperpolarized late DCT membrane, augmented the expression of phosphor-Na-Cl-cotransporter, and enhanced thiazide-induced renal-ENa in the control mice. However, the effect of overnight low-salt intake on Kir4.1/Kir5.1 activity, DCT membrane potential, and NCC activity/expression was abolished in DCT-AT1aR-KO or Ks-AT1aR-KO mice. Overnight low-salt intake had no effect on baseline renal K+ excretion (EK) and plasma K+ concentrations in the control mice, but it increased baseline renal-EK and decreased plasma K+ concentrations in DCT-AT1aR-KO or in Ks-AT1aR-KO mice. Conclusions Acute angiotensin II or overnight low-salt intake stimulated Kir4.1/Kir5.1 in late DCT, and AT1aR was responsible for acute angiotensin II or overnight low-salt intake–induced stimulation of Kir4.1/Kir5.1 and NCC. AT1aR of the DCT plays a role in maintaining adequate baseline renal-EK and plasma K+ concentrations during overnight low-salt intake.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Jun-Ya Zheng
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Yu Xiao
- Department of Pharmacology, New York Medical College, Valhalla, New York
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China
| | - Cheng-Biao Zhang
- Department of Physiology, School of Basic Medical Science, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
3
|
Demko J, Weber R, Pearce D, Saha B. Aldosterone-independent regulation of K + secretion in the distal nephron. Curr Opin Nephrol Hypertens 2024; 33:526-534. [PMID: 38888034 PMCID: PMC11290980 DOI: 10.1097/mnh.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW Maintenance of plasma K + concentration within a narrow range is critical to all cellular functions. The kidneys are the central organ for K + excretion, and robust renal excretory responses to dietary K + loads are essential for survival. Recent advances in the field have challenged the view that aldosterone is at the center of K + regulation. This review will examine recent findings and propose a new mechanism for regulating K + secretion. RECENT FINDINGS Local aldosterone-independent response systems in the distal nephron are increasingly recognized as key components of the rapid response to an acute K + load, as well as playing an essential role in sustained responses to increased dietary K + . The master kinase mTOR, best known for its role in mediating the effects of growth factors and insulin on growth and cellular metabolism, is central to these aldosterone-independent responses. Recent studies have shown that mTOR, particularly in the context of the "type 2" complex (mTORC2), is regulated by K + in a cell-autonomous fashion. SUMMARY New concepts related to cell-autonomous K + signaling and how it interfaces with aldosterone-dependent regulation are emerging. The underlying signaling pathways and effectors of regulated K + secretion, as well as implications for the aldosterone paradox and disease pathogenesis are discussed.
Collapse
Affiliation(s)
- John Demko
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
| | - Robert Weber
- Division of Endocrinology, University of California at San Francisco, San Francisco, CA, USA
| | - David Pearce
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bidisha Saha
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Duan XP, Xiao Y, Su XT, Zheng JY, Gurley S, Emathinger J, Yang CL, McCormick J, Ellison DH, Lin DH, Wang WH. Role of Angiotensin II Type 1a Receptor (AT1aR) of Renal Tubules in Regulating Inwardly Rectifying Potassium Channels 4.2 (Kir4.2), Kir4.1, and Epithelial Na + Channel (ENaC). Hypertension 2024; 81:126-137. [PMID: 37909221 PMCID: PMC10842168 DOI: 10.1161/hypertensionaha.123.21389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal tubule (PT) and in the distal-convoluted-tubule (DCT), respectively. METHODS We generated kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) mice to examine whether renal AT1aR regulates Kir4.2 and Kir4.1. RESULTS Ks-AT1aR-KO mice had a lower systolic blood pressure than Agtr1aflox/flox (control) mice. Ks-AT1aR-KO mice had a lower expression of NHE3 (Na+/H+-exchanger 3) and Kir4.2, a major Kir-channel in PT, than Agtr1aflox/flox mice. Whole-cell recording also demonstrated that the membrane potential in PT of Ks-AT1aR-KO mice was lesser negative than Agtr1aflox/flox mice. The expression of Kir4.1 and Kir5.1, Kir4.1/Kir5.1-mediated K+ currents of DCT and DCT membrane potential in Ks-AT1aR-KO mice, were similar to Agtr1aflox/flox mice. However, angiotensin II perfusion for 7 days hyperpolarized the membrane potential in PT and DCT of the control mice but not in Ks-AT1aR-KO mice, while angiotensin II perfusion did not change the expression of Kir4.1, Kir4.2, and Kir5.1. Deletion of AT1aR did not significantly affect the expression of αENaC (epithelial Na+ channel) and βENaC but increased cleaved γENaC expression. Patch-clamp experiments demonstrated that deletion of AT1aR increased amiloride-sensitive Na+-currents in the cortical-collecting duct but not in late-DCT. However, tertiapin-Q sensitive renal outer medullary potassium channel currents were similar in both genotypes. CONCLUSIONS AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 expression/activity but AT1aR is not required for determining the baseline membrane potential of the DCT and Kir4.1/Kir5.1 activity/expression. However, AT1aR is required for angiotensin II-induced hyperpolarization of basolateral membrane of PT and DCT. Deletion of AT1aR had no effect on baseline renal outer medullary potassium channel activity but increased ENaC activity in the CCD.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Xiao-Tong Su
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jun-Ya Zheng
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Susan Gurley
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | | | - Chao-Ling Yang
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - James McCormick
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David H. Ellison
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
5
|
Eguchi S, Sparks MA, Sawada H, Lu HS, Daugherty A, Zhuo JL. Recent Advances in Understanding the Molecular Pathophysiology of Angiotensin II Receptors: Lessons From Cell-Selective Receptor Deletion in Mice. Can J Cardiol 2023; 39:1795-1807. [PMID: 37394059 DOI: 10.1016/j.cjca.2023.06.421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
The renin-angiotensin system (RAS) is an essential hormonal system involved in water and sodium reabsorption, renal blood flow regulation, and arterial constriction. Systemic stimulation of the RAS with infusion of the main peptide angiotensin II (Ang II) in animals as well as pathological elevation of renin (ie, renovascular hypertension) to increase circulatory Ang II in humans ultimately lead to hypertension and end organ damage. In addition to hypertension, accumulating evidence supports that the Ang II type 1 receptor exerts a critical role in cardiovascular and kidney diseases independent of blood pressure elevation. In the past 2 decades, the identification of an increased number of peptides and receptors has facilitated the concept that the RAS has detrimental and beneficial effects on the cardiovascular system depending on which RAS components are activated. For example, angiotensin 1-7 and Ang II type 2 receptors act as a counter-regulatory system against the classical RAS by mediating vasodilation. Although the RAS as an endocrine system for regulation of blood pressure is well established, there remain many unanswered questions and controversial findings regarding blood pressure regulation and pathophysiological regulation of cardiovascular diseases at the tissue level. This review article includes the latest knowledge gleaned from cell type-selective gene deleted mice regarding cell type-specific roles of Ang II receptors and their significance in health and diseases are discussed. In particular, we focus on the roles of these receptors expressed in vascular, cardiac, and kidney epithelial cells.
Collapse
Affiliation(s)
- Satoru Eguchi
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Renal Section, Durham VA Medical Center, Durham, North Carolina, USA
| | - Hisashi Sawada
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jia L Zhuo
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Van Beusecum JP, Rianto F, Teakell J, Kon V, Sparks MA, Hoorn EJ, Kirabo A, Ramkumar N. Novel Concepts in Nephron Sodium Transport: A Physiological and Clinical Perspective. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:124-136. [PMID: 36868728 DOI: 10.1053/j.akdh.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 04/13/2023]
Abstract
The kidneys play a critical role in maintaining total body sodium (Na+) balance across a wide range of dietary intake, accomplished by a concerted effort involving multiple Na+ transporters along the nephron. Furthermore, nephron Na+ reabsorption and urinary Na+ excretion are closely linked to renal blood flow and glomerular filtration such that perturbations in either of them can modify Na+ transport along the nephron, ultimately resulting in hypertension and other Na+-retentive states. In this article, we provide a brief physiological overview of nephron Na+ transport and illustrate clinical syndromes and therapeutic agents that affect Na+ transporter function. We highlight recent advances in kidney Na+ transport, particularly the role of immune cells, lymphatics, and interstitial Na+ in regulating Na+ reabsorption, the emergence of potassium (K+) as a regulator of Na+ transport, and the evolution of the nephron to modulate Na+ transport.
Collapse
Affiliation(s)
- Justin P Van Beusecum
- Ralph H. Johnson VA Medical Center, Charleston, SC; Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Jade Teakell
- Division of Renal Diseases and Hypertension, Department of Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Valentina Kon
- Division of Nephrology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah Health, Salt Lake City, UT.
| |
Collapse
|
7
|
Li LX, Zhang X, Zhang H, Agborbesong E, Zhou JX, Calvet JP, Li X. Single-Cell and CellChat Resolution Identifies Collecting Duct Cell Subsets and Their Communications with Adjacent Cells in PKD Kidneys. Cells 2022; 12:45. [PMID: 36611841 PMCID: PMC9818381 DOI: 10.3390/cells12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
ADPKD is a genetic disorder with a molecular complexity that remains poorly understood. In this study, we sampled renal cells to construct a comprehensive and spatiotemporally resolved gene expression atlas in whole Pkd1 mutant polycystic mouse kidneys at single-cell resolution. We characterized cell diversity and identified novel collecting duct (CD) cell subtypes in cystic kidneys. We further found that CD cells appear to take different cell fate trajectories, and the first and the most important step might take place around day 14 in Pkd1 homozygous kidneys. After that day, increased numbers of CD cells showed highly proliferative and fibrotic characteristics, as detected in later-stage Pkd1 homozygous kidneys, both of which should contribute to cyst growth and renal fibrosis. With a newly developed modeling algorithm, called CellChat Explorer, we identify cell-to-cell communication networks mediated by the ligand receptor, such as MIF-CD44/CD74, in cystic kidneys, and confirm them via the expression patterns of ligands and receptors in four major cell types, which addresses the key question as to whether and how Pkd1 mutant renal epithelial cells affect their neighboring cells. The allele-specific gene expression profiles show that the secretion of cytokines by Pkd1 mutant epithelial cells may affect the gene expression profiles in recipient cells via epigenetic mechanisms, and vice versa. This study can be used to drive precision therapeutic targeting of ADPKD.
Collapse
Affiliation(s)
- Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|
9
|
Yang T, Song C, Ralph DL, Andrews P, Sparks MA, Koller BH, McDonough AA, Coffman TM. Cell-Specific Actions of the Prostaglandin E-Prostanoid Receptor 4 Attenuating Hypertension: A Dominant Role for Kidney Epithelial Cells Compared With Macrophages. J Am Heart Assoc 2022; 11:e026581. [PMID: 36172956 PMCID: PMC9673718 DOI: 10.1161/jaha.122.026581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background A beneficial role for prostanoids in hypertension is suggested by clinical studies showing nonsteroidal anti-inflammatory drugs, which block the production of all prostanoids, cause sodium retention and exacerbate hypertension. Among prostanoids, prostaglandin E2 and its E-prostanoid receptor 4 receptor (EP4R) have been implicated in blood pressure control. Our previous study found that conditional deletion of EP4R from all tissues in adult mice exacerbates angiotensin II-dependent hypertension, suggesting a powerful effect of EP4R to resist blood pressure elevation. We also found that elimination of EP4R from vascular smooth muscle cells did not affect the severity of hypertension, suggesting nonvascular targets of prostaglandin E mediate this antihypertensive effect. Methods and Results Here we generated mice with cell-specific deletion of EP4R from macrophage-specific EP4 receptor knockouts or kidney epithelial cells (KEKO) to assess the contributions of EP4R in these cells to hypertension pathogenesis. Macrophage-specific EP4 receptor knockouts showed similar blood pressure responses to alterations in dietary sodium or chronic angiotensin II infusion as Controls. By contrast, angiotensin II-dependent hypertension was significantly augmented in KEKOs (mean arterial pressure: 146±3 mm Hg) compared with Controls (137±4 mm Hg; P=0.02), which was accompanied by impaired natriuresis in KEKOs. Because EP4R expression in the kidney is enriched in the collecting duct, we compared responses to amiloride in angiotensin II-infused KEKOs and Controls. Blockade of the epithelial sodium channel with amiloride caused exaggerated natriuresis in KEKOs compared with Controls (0.21±0.01 versus 0.15±0.02 mmol/24 hour per 20 g; P=0.015). Conclusions Our data suggest EP4R in kidney epithelia attenuates hypertension. This antihypertension effect of EP4R may be mediated by reducing the activity of the epithelial sodium channel, thereby promoting natriuresis.
Collapse
Affiliation(s)
- Ting Yang
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Chengcheng Song
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
| | - Donna L. Ralph
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Portia Andrews
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Matthew A. Sparks
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | | | - Alicia A. McDonough
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Thomas M. Coffman
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Cardiovascular and Metabolic Disorders Research ProgramDuke‐National University of Singapore Graduate Medical SchoolSingapore
| |
Collapse
|
10
|
Cardiorenal protective effects of sodium-glucose cotransporter 2 inhibition in combination with angiotensin II type 1 receptor blockade in salt-sensitive Dahl rats. J Hypertens 2022; 40:956-968. [DOI: 10.1097/hjh.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Effect of Mineral-Balanced Deep-Sea Water on Kidney Function and Renal Oxidative Stress Markers in Rats Fed a High-Salt Diet. Int J Mol Sci 2021; 22:ijms222413415. [PMID: 34948210 PMCID: PMC8705929 DOI: 10.3390/ijms222413415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigated the effect of mineral-balanced deep-sea water (DSW) on kidney health using an animal model of kidney injury due to a high-sodium diet. High magnesium/low sodium (HMLS) and high magnesium/high calcium (HMHC) DSW samples with different mineral contents were prepared. Sprague–Dawley rats were fed an 8% sodium chloride (NaCl) diet for four weeks to induce kidney injury, and each group was supplied with purified water or mineral water. Kidney injury was observed in the NaCl group according to increased kidney injury markers and malondialdehydes, providing evidence of oxidative stress. However, the kidney injury was repaired by the intake of mineral-balanced DSW. It was confirmed that the HMLS and HMHC groups showed improved Na+ excretion through the urine. Kidney injury markers in urine decreased and upregulation of low-density lipoprotein receptor-related protein2 mRNA expression was observed in the HMLS and HMHC groups. In addition, superoxide dismutase activity was increased in the HMHC groups. The gene expression patterns of the RNA sequencing were similar between the CON and HMLS groups. These results suggest that DSW has beneficial effects on kidney health due to the balanced magnesium and calcium levels in models of kidney injury caused by excessive sodium intake.
Collapse
|
12
|
Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 2021; 321:F50-F68. [PMID: 34029142 PMCID: PMC8321805 DOI: 10.1152/ajprenal.00077.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA sequencing and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/) using multiple online data sources. We used this list to mine segment-specific and cell type-specific expression data from RNA-sequencing studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micropuncture studies confirmed patterns of expression for well-known receptors and identified poorly studied GPCRs that are likely to play roles in the regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors to provide guidance for future studies.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Emathinger JM, Nelson JW, Gurley SB. Advances in use of mouse models to study the renin-angiotensin system. Mol Cell Endocrinol 2021; 529:111255. [PMID: 33789143 PMCID: PMC9119406 DOI: 10.1016/j.mce.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/19/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
The renin-angiotensin system (RAS) is a highly complex hormonal cascade that spans multiple organs and cell types to regulate solute and fluid balance along with cardiovascular function. Much of our current understanding of the functions of the RAS has emerged from a series of key studies in genetically-modified animals. Here, we review key findings from ground-breaking transgenic models, spanning decades of research into the RAS, with a focus on their use in studying blood pressure. We review the physiological importance of this regulatory system as evident through the examination of mouse models for several major RAS components: angiotensinogen, renin, ACE, ACE2, and the type 1 A angiotensin receptor. Both whole-animal and cell-specific knockout models have permitted critical RAS functions to be defined and demonstrate how redundancy and multiplicity within the RAS allow for compensatory adjustments to maintain homeostasis. Moreover, these models present exciting opportunities for continued discovery surrounding the role of the RAS in disease pathogenesis and treatment for cardiovascular disease and beyond.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/deficiency
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensinogen/deficiency
- Angiotensinogen/genetics
- Animals
- Blood Pressure/genetics
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Kidney/cytology
- Kidney/metabolism
- Mice
- Mice, Knockout
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Renin/deficiency
- Renin/genetics
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Jacqueline M Emathinger
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
14
|
Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529:111259. [PMID: 33781840 DOI: 10.1016/j.mce.2021.111259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease, blood pressure determination, hypertension pathogenesis, and the renin-angiotensin system (RAS) are inextricably linked. Hence, understanding the RAS is pivotal to unraveling the pathophysiology of hypertension and the determinants to maintaining normal blood pressure. The RAS has been the subject of intense investigation for over a century. Moreover, medications that block the RAS are mainstay therapies in clinical medicine and have been shown to reduce morbidity and mortality in patients with diabetes, cardiovascular, and kidney diseases. The main effector peptide of the RAS is the interaction of the octapeptide- Ang II with its receptor. The type 1 angiotensin receptor (AT1R) is the effector receptor for Ang II. These G protein-coupled receptors (GPCRs) are ubiquitously expressed in a variety of cell lineages and tissues relevant to cardiovascular disease throughout the body. The advent of cell specific deletion of genes using Cre LoxP technology in mice has allowed for the identification of discreet actions of AT1Rs in blood pressure control and kidney disease. The kidney is one of the major targets of the RAS, which is responsible in maintaining fluid, electrolyte balance, and blood pressure. In this review we will discuss the role of AT1Rs in the kidney, vasculature, and immune cells and address their effects on hypertension and kidney disease.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Blood Pressure/genetics
- Gene Expression Regulation
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Thien Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ritika Revoori
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States; Renal Section, Durham VA Health Care System, Durham, NC, United States.
| |
Collapse
|
15
|
Sparks MA, Dilmen E, Ralph DL, Rianto F, Hoang TA, Hollis A, Diaz EJ, Adhikari R, Chew G, Petretto EG, Gurley SB, McDonough AA, Coffman TM. Vascular control of kidney epithelial transporters. Am J Physiol Renal Physiol 2021; 320:F1080-F1092. [PMID: 33969697 PMCID: PMC8285646 DOI: 10.1152/ajprenal.00084.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
A major pathway in hypertension pathogenesis involves direct activation of ANG II type 1 (AT1) receptors in the kidney, stimulating Na+ reabsorption. AT1 receptors in tubular epithelia control expression and stimulation of Na+ transporters and channels. Recently, we found reduced blood pressure and enhanced natriuresis in mice with cell-specific deletion of AT1 receptors in smooth muscle (SMKO mice). Although impaired vasoconstriction and preserved renal blood flow might contribute to exaggerated urinary Na+ excretion in SMKO mice, we considered whether alterations in Na+ transporter expression might also play a role; therefore, we carried out proteomic analysis of key Na+ transporters and associated proteins. Here, we show that levels of Na+-K+-2Cl- cotransporter isoform 2 (NKCC2) and Na+/H+ exchanger isoform 3 (NHE3) are reduced at baseline in SMKO mice, accompanied by attenuated natriuretic and diuretic responses to furosemide. During ANG II hypertension, we found widespread remodeling of transporter expression in wild-type mice with significant increases in the levels of total NaCl cotransporter, phosphorylated NaCl cotransporter (Ser71), and phosphorylated NKCC2, along with the cleaved, activated forms of the α- and γ-epithelial Na+ channel. However, the increases in α- and γ-epithelial Na+ channel with ANG II were substantially attenuated in SMKO mice. This was accompanied by a reduced natriuretic response to amiloride. Thus, enhanced urinary Na+ excretion observed after cell-specific deletion of AT1 receptors from smooth muscle cells is associated with altered Na+ transporter abundance across epithelia in multiple nephron segments. These findings suggest a system of vascular-epithelial in the kidney, modulating the expression of Na+ transporters and contributing to the regulation of pressure natriuresis.NEW & NOTEWORTHY The use of drugs to block the renin-angiotensin system to reduce blood pressure is common. However, the precise mechanism for how these medications control blood pressure is incompletely understood. Here, we show that mice lacking angiotensin receptors specifically in smooth muscle cells lead to alternation in tubular transporter amount and function. Thus, demonstrating the importance of vascular-tubular cross talk in the control of blood pressure.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Renal Section, Durham Veterans Affairs Health Care System, Durham, North Carolina
| | - Emre Dilmen
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Thien A Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Alison Hollis
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Edward J Diaz
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rishav Adhikari
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Gabriel Chew
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Enrico G Petretto
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Thomas M Coffman
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Renal Section, Durham Veterans Affairs Health Care System, Durham, North Carolina
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
16
|
Quantification of On-Farm Pomegranate Fruit Postharvest Losses and Waste, and Implications on Sustainability Indicators: South African Case Study. SUSTAINABILITY 2021. [DOI: 10.3390/su13095168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While there is a growing body of scientific knowledge on improved techniques and procedures for the production and handling of quality pomegranate fruit to meet market demand, little is known about the magnitude of losses that occur at the farm and post-farmgate. This study revealed the amount of pomegranate fruit lost on the farm and the causes of loss and estimated the impacts of losses. The direct measurement method, which involved sorting and counting of individual fruit, was used since physical identification of the causes of fruit losses on individual fruit was necessary for data collection. Furthermore, qualitative data were collected by physical observation during harvesting and interaction with farm workers. At the case study farm in Wellington, Western Cape Province of South Africa, a range of 15.3–20.1% of the harvested crop was considered lost, as the quality fell below marketable standards for retail sales. This amounted to an average of 117.76 tonnes of pomegranate fruit harvested per harvest season in the case study farm, which is removed from the value chain and sold mainly at a low value for juicing and other purposes and translates to an estimated R10.5 million ($618,715.34) economic loss to the farmer. Environmental factors are the main causes of on-farm fruit losses. In the three pomegranate cultivars studied, sunburn and crack were identified as the leading cause of fruit loss, accounting for about 43.9% of all on-farm fruit losses. The lost fiber, carbohydrate, protein, iron and ascorbic acid contents associated with lost fruit were estimated to meet the daily recommended nutrition intake of 2, 9, 4, 2 and 24 people, respectively. Strategies to control and reduce pomegranate fruit losses and waste at the farm level should focus on environmental factors and mechanical damage since they account for the highest sources of fruit losses. This will ensure improved revenue to farmers, sustainable use of natural resources, reduction of the environmental impacts of the fruit industry, and more availability of quality fruit for nutritional security.
Collapse
|
17
|
Hering L, Rahman M, Hoch H, Markó L, Yang G, Reil A, Yakoub M, Gupta V, Potthoff SA, Vonend O, Ralph DL, Gurley SB, McDonough AA, Rump LC, Stegbauer J. α2A-Adrenoceptors Modulate Renal Sympathetic Neurotransmission and Protect against Hypertensive Kidney Disease. J Am Soc Nephrol 2020; 31:783-798. [PMID: 32086277 DOI: 10.1681/asn.2019060599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased nerve activity causes hypertension and kidney disease. Recent studies suggest that renal denervation reduces BP in patients with hypertension. Renal NE release is regulated by prejunctional α2A-adrenoceptors on sympathetic nerves, and α2A-adrenoceptors act as autoreceptors by binding endogenous NE to inhibit its own release. However, the role of α2A-adrenoceptors in the pathogenesis of hypertensive kidney disease is unknown. METHODS We investigated effects of α2A-adrenoceptor-regulated renal NE release on the development of angiotensin II-dependent hypertension and kidney disease. In uninephrectomized wild-type and α2A-adrenoceptor-knockout mice, we induced hypertensive kidney disease by infusing AngII for 28 days. RESULTS Urinary NE excretion and BP did not differ between normotensive α2A-adrenoceptor-knockout mice and wild-type mice at baseline. However, NE excretion increased during AngII treatment, with the knockout mice displaying NE levels that were significantly higher than those of wild-type mice. Accordingly, the α2A-adrenoceptor-knockout mice exhibited a systolic BP increase, which was about 40 mm Hg higher than that found in wild-type mice, and more extensive kidney damage. In isolated kidneys, AngII-enhanced renal nerve stimulation induced NE release and pressor responses to a greater extent in kidneys from α2A-adrenoceptor-knockout mice. Activation of specific sodium transporters accompanied the exaggerated hypertensive BP response in α2A-adrenoceptor-deficient kidneys. These effects depend on renal nerves, as demonstrated by reduced severity of AngII-mediated hypertension and improved kidney function observed in α2A-adrenoceptor-knockout mice after renal denervation. CONCLUSIONS Our findings reveal a protective role of prejunctional inhibitory α2A-adrenoceptors in pathophysiologic conditions with an activated renin-angiotensin system, such as hypertensive kidney disease, and support the concept of sympatholytic therapy as a treatment.
Collapse
Affiliation(s)
- Lydia Hering
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Henning Hoch
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbruck Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Charité Medical Faculty Berlin, Berlin, Germany
| | - Guang Yang
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Annika Reil
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mina Yakoub
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vikram Gupta
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sebastian A Potthoff
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Vonend
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Nierenzentrum, DKD Helios Medical Center, Wiesbaden, Germany
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Susan B Gurley
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Lars C Rump
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany;
| |
Collapse
|
18
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 720] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
19
|
MST3 (mammalian Ste20-like protein kinase 3), a novel gene involved in ion homeostasis and renal regulation of blood pressure in spontaneous hypertensive rats. Int Urol Nephrol 2018; 50:2299-2307. [PMID: 30328087 DOI: 10.1007/s11255-018-2011-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022]
Abstract
Defective renal salt and water excretion, together with increased salt intake, frequently contributes to hypertension. Recent studies indicate that Ste20 family kinases, such as proline-alanine-rich Ste20-related kinase (SPAK) and oxidative stress-response protein 1 (OSR1), are regulators of cell volume, ion transport, and hypertension. The aim of this study was to investigate whether mammalian sterile 20-like protein kinase 3 (MST3), which is also a stress-regulated kinase, is involved in the development of hypertension. MST3 expression was compared in Wistar-Kyoto (WKY) and spontaneously hypertensive rat (SHR) kidneys. MST3 expression was markedly reduced in principal cells of the collecting ducts from the renal inner medulla of SHR. The downregulation of MST3 expression was observed before and after the onset of hypertension in SHR. Mice fed high-salt diets (HS) exhibited a significant increase in MST3 protein level. This is the first study reporting that MST3, a Ste20-like kinase, exerts a conserved regulatory role in sodium homeostasis after high-salt diet and in the development of hypertension.
Collapse
|
20
|
Mamenko M, Zaika O, Tomilin V, Jensen VB, Pochynyuk O. Compromised regulation of the collecting duct ENaC activity in mice lacking AT 1a receptor. J Cell Physiol 2018; 233:7217-7225. [PMID: 29574718 PMCID: PMC6301083 DOI: 10.1002/jcp.26552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
ENaC-mediated sodium reabsorption in the collecting duct (CD) is a critical determinant of urinary sodium excretion. Existing evidence suggest direct stimulatory actions of Angiotensin II (Ang II) on ENaC in the CD, independently of the aldosterone-mineralocorticoid receptor (MR) signaling. Deletion of the major renal AT1 receptor isoform, AT1a R, decreases blood pressure and reduces ENaC abundance despite elevated aldosterone levels. The mechanism of this insufficient compensation is not known. Here, we used patch clamp electrophysiology in freshly isolated split-opened CDs to investigate how AT1a R dysfunction compromises functional ENaC activity and its regulation by dietary salt intake. Ang II had no effect on ENaC activity in CDs from AT1a R -/- mice suggesting no complementary contribution of AT2 receptors. We next found that AT1a R deficient mice had lower ENaC activity when fed with low (<0.01% Na+ ) and regular (0.32% Na+ ) but not with high (∼2% Na+ ) salt diet, when compared to the respective values obtained in Wild type (WT) animals. Inhibition of AT1 R with losartan in wild-type animals reproduces the effects of genetic ablation of AT1a R on ENaC activity arguing against contribution of developmental factors. Interestingly, manipulation with aldosterone-MR signaling via deoxycosterone acetate (DOCA) and spironolactone had much reduced influence on ENaC activity upon AT1a R deletion. Consistently, AT1a R -/- mice have a markedly diminished MR abundance in cytosol. Overall, we conclude that AT1a R deficiency elicits a complex inhibitory effect on ENaC activity by attenuating ENaC Po and precluding adequate compensation via aldosterone cascade due to decreased MR availability.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - V Behrana Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
21
|
Blood pressure regulation by the angiotensin type 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens 2018; 27:1-7. [PMID: 29045337 DOI: 10.1097/mnh.0000000000000373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of hypertension. Homeostatic actions of the RAS, such as increasing blood pressure (BP) and vasoconstriction, are mediated via type 1 (AT1) receptors for angiotensin II. All components of the RAS are present in the renal proximal tubule, which reabsorbs the bulk of the glomerular filtrate, making this segment of the nephron a location of great interest for solute handling under RAS influence. This review highlights recent studies that illustrate the key role of renal proximal tubule AT1 receptors in BP regulation. RECENT FINDINGS A variety of investigative approaches have demonstrated that angiotensin II signaling via AT1a receptors, specifically in the renal proximal tubule, is a major regulator of BP and sodium homeostasis. Reduction of proximal tubule AT1a receptors led to lower BPs, whereas overexpression generally caused increased BPs. SUMMARY AT1a receptors in the proximal tubule are critical to the regulation of BP by the kidney and the RAS. The pattern of BP modulation is associated with alterations in sodium transporters. As a key site for sodium homeostasis, the renal proximal tubule could hence be a potential target in the treatment of hypertension.
Collapse
|
22
|
Wolf E, Diaz EJ, Hollis AN, Hoang TA, Azad HA, Bendt KM, Griffiths RC, Sparks MA. Vascular type 1 angiotensin receptors control blood pressure by augmenting peripheral vascular resistance in female mice. Am J Physiol Renal Physiol 2018; 315:F997-F1005. [PMID: 29897266 DOI: 10.1152/ajprenal.00639.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (ANG II) is a major mediator of hypertension pathogenesis. In addition, there are well-documented differences in expression of the renin-angiotensin system (RAS) components and ANG II responses between males and females, which may explain sex differences in blood pressure (BP) and hypertension epidemiology. We previously showed that type 1A angiotensin (AT1A) receptors in vascular smooth muscle cells (VSMCs) play a critical role in BP regulation and hypertension pathogenesis, but these studies were carried out in male mice. Therefore, the major goal of the current studies was to examine the impact of VSMC AT1A receptors on BP and hypertension pathogenesis in female mice. We found that elimination of VSMC AT1A receptors in female mice reduced (≈8 mmHg) baseline BP without altering sodium sensitivity. The severity of ANG II-induced hypertension was diminished (≈33% reduction in BP), particularly during the last 2 wk of chronic ANG II infusion, compared with controls, but natriuresis was not altered during the first 5 days of ANG II infusion. Urinary norepinephrine levels were enhanced in female SMKO compared with control mice. There was a virtually complete elimination of ANG II-induced kidney hemodynamic responses with attenuation of acute vasoconstrictor responses in the systemic vasculature. These findings demonstrate that direct vascular actions of AT1A receptors play a prominent role in BP control and hypertension pathogenesis in female mice.
Collapse
Affiliation(s)
- Erin Wolf
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Edward J Diaz
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Alison N Hollis
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thien A Hoang
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Hooman A Azad
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Katharine M Bendt
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Robert C Griffiths
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center , Durham, North Carolina.,Renal Section, Durham Veterans Affairs Medical Center , Durham, North Carolina
| |
Collapse
|
23
|
PGE 2 EP 1 receptor inhibits vasopressin-dependent water reabsorption and sodium transport in mouse collecting duct. J Transl Med 2018; 98:360-370. [PMID: 29251736 DOI: 10.1038/labinvest.2017.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
PGE2 regulates glomerular hemodynamics, renin secretion, and tubular transport. This study examined the contribution of PGE2 EP1 receptors to sodium and water homeostasis. Male EP1-/- mice were bred with hypertensive TTRhRen mice (Htn) to evaluate blood pressure and kidney function at 8 weeks of age in four groups: wildtype (WT), EP1-/-, Htn, HtnEP1-/-. Blood pressure and water balance were unaffected by EP1 deletion. COX1 and mPGE2 synthase were increased and COX2 was decreased in mice lacking EP1, with increases in EP3 and reductions in EP2 and EP4 mRNA throughout the nephron. Microdissected proximal tubule sglt1, NHE3, and AQP1 were increased in HtnEP1-/-, but sglt2 was increased in EP1-/- mice. Thick ascending limb NKCC2 was reduced in the cortex but increased in the medulla. Inner medullary collecting duct (IMCD) AQP1 and ENaC were increased, but AVP V2 receptors and urea transporter-1 were reduced in all mice compared to WT. In WT and Htn mice, PGE2 inhibited AVP-water transport and increased calcium in the IMCD, and inhibited sodium transport in cortical collecting ducts, but not in EP1-/- or HtnEP1-/- mice. Amiloride (ENaC) and hydrochlorothiazide (pendrin inhibitor) equally attenuated the effect of PGE2 on sodium transport. Taken together, the data suggest that EP1 regulates renal aquaporins and sodium transporters, attenuates AVP-water transport and inhibits sodium transport in the mouse collecting duct, which is mediated by both ENaC and pendrin-dependent pathways.
Collapse
|
24
|
Prieto MC, Reverte V, Mamenko M, Kuczeriszka M, Veiras LC, Rosales CB, McLellan M, Gentile O, Jensen VB, Ichihara A, McDonough AA, Pochynyuk OM, Gonzalez AA. Collecting duct prorenin receptor knockout reduces renal function, increases sodium excretion, and mitigates renal responses in ANG II-induced hypertensive mice. Am J Physiol Renal Physiol 2017; 313:F1243-F1253. [PMID: 28814438 DOI: 10.1152/ajprenal.00152.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na+ reabsorption via activation of epithelial Na+ channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na+ handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD (CDPRR-KO). At basal conditions, CDPRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na+ excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg-1·min-1), the increases in systolic BP and diastolic BP were mitigated in CDPRR-KO mice. CDPRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CDPRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments.
Collapse
Affiliation(s)
- Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana;
| | - Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Mykola Mamenko
- University of Texas Health Science Center at Houston, Houston Texas
| | - Marta Kuczeriszka
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Matthew McLellan
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Oliver Gentile
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - V Behrana Jensen
- Veterinary Medicine and Surgery, UT MD Anderson Cancer Center, Houston, Texas
| | - Atsuhiro Ichihara
- Tokyo Women's Medical University, Department of Medicine II, Tokyo, Japan; and
| | | | - Oleh M Pochynyuk
- University of Texas Health Science Center at Houston, Houston Texas
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
25
|
Endothelial progenitor cells and hypertension: current concepts and future implications. Clin Sci (Lond) 2017; 130:2029-2042. [PMID: 27729472 DOI: 10.1042/cs20160587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
The discovery of endothelial progenitor cells (EPCs), a group of cells that play important roles in angiogenesis and the maintenance of vascular endothelial integrity, has led to considerable improvements in our understanding of the circulatory system and the regulatory mechanisms of vascular homoeostasis. Despite lingering disputes over where EPCs actually originate and how they facilitate angiogenesis, extensive research in the past decade has brought about significant advancements in this field of research, establishing EPCs as an essential element in the pathogenesis of various diseases. EPC and hypertensive disorders, especially essential hypertension (EH, also known as primary hypertension), represent one of the most appealing branches in this area of research. Chronic hypertension remains a major threat to public health, and the exact pathologic mechanisms of EH have never been fully elucidated. Is there a relationship between EPC and hypertension? If so, what is the nature of such relationship-is it mediated by blood pressure alterations, or other factors that lie in between? How can our current knowledge about EPCs be utilized to advance the prevention and clinical management of hypertension? In this review, we set out to answer these questions by summarizing the current concepts about EPC pathophysiology in the context of hypertension, while attempting to point out directions for future research on this subject.
Collapse
|
26
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
27
|
Affiliation(s)
- Katrina M Mirabito Colafella
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (K.M.M.C., A.H.J.D.); and Cardiovascular Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Australia (K.M.M.C.)
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands (K.M.M.C., A.H.J.D.); and Cardiovascular Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Australia (K.M.M.C.).
| |
Collapse
|
28
|
Yang G, Chu PL, Rump LC, Le TH, Stegbauer J. ACE2 and the Homolog Collectrin in the Modulation of Nitric Oxide and Oxidative Stress in Blood Pressure Homeostasis and Vascular Injury. Antioxid Redox Signal 2017; 26:645-659. [PMID: 27889958 DOI: 10.1089/ars.2016.6950] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Hypertension is the leading risk factor causing mortality and morbidity worldwide. Angiotensin (Ang) II, the most active metabolite of the renin-angiotensin system, plays an outstanding role in the pathogenesis of hypertension and vascular injury. Activation of angiotensin converting enzyme 2 (ACE2) has shown to attenuate devastating effects of Ang II in the cardiovascular system by reducing Ang II degradation and increasing Ang-(1-7) generation leading to Mas receptor activation. Recent Advances: Activation of the ACE2/Ang-(1-7)/Mas receptor axis reduces hypertension and improves vascular injury mainly through an increased nitric oxide (NO) bioavailability and decreased reactive oxygen species production. Recent studies reported that shedding of the enzymatically active ectodomain of ACE2 from the cell surface seems to regulate its activity and serves as an interorgan communicator in cardiovascular disease. In addition, collectrin, an ACE2 homolog with no catalytic activity, regulates blood pressure through an NO-dependent mechanism. CRITICAL ISSUES Large body of experimental data confirmed sustained beneficial effects of ACE2/Ang-(1-7)/Mas receptor axis activation on hypertension and vascular injury. Experimental studies also suggest that activation of collectrin might be beneficial in hypertension and endothelial dysfunction. Their role in clinical hypertension is unclear as selective and reliable activators of both axes are not yet available. FUTURE DIRECTIONS This review will highlight the results of recent research progress that illustrate the role of both ACE and collectrin in the modulation of NO and oxidative stress in blood pressure homeostasis and vascular injury, providing evidence for the potential therapeutic application of ACE2 and collectrin in hypertension and vascular disease. Antioxid. Redox Signal. 26, 645-659.
Collapse
Affiliation(s)
- Guang Yang
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| | - Pei-Lun Chu
- 2 Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, Virginia.,3 Department of Internal Medicine, Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Lars C Rump
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| | - Thu H Le
- 2 Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Johannes Stegbauer
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
29
|
Stegbauer J, Chen D, Herrera M, Sparks MA, Yang T, Königshausen E, Gurley SB, Coffman TM. Resistance to hypertension mediated by intercalated cells of the collecting duct. JCI Insight 2017; 2:e92720. [PMID: 28405625 PMCID: PMC5374064 DOI: 10.1172/jci.insight.92720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023] Open
Abstract
The renal collecting duct (CD), as the terminal segment of the nephron, is responsible for the final adjustments to the amount of sodium excreted in urine. While angiotensin II modulates reabsorptive functions of the CD, the contribution of these actions to physiological homeostasis is not clear. To examine this question, we generated mice with cell-specific deletion of AT1A receptors from the CD. Elimination of AT1A receptors from both principal and intercalated cells (CDKO mice) had no effect on blood pressures at baseline or during successive feeding of low- or high-salt diets. In contrast, the severity of hypertension caused by chronic infusion of angiotensin II was paradoxically exaggerated in CDKO mice compared with controls. In wild-type mice, angiotensin II induced robust expression of cyclooxygenase-2 (COX-2) in renal medulla, primarily localized to intercalated cells. Upregulation of COX-2 was diminished in CDKO mice, resulting in reduced generation of vasodilator prostanoids. This impaired expression of COX-2 has physiological consequences, since administration of a specific COX-2 inhibitor to CDKO and control mice during angiotensin II infusion equalized their blood pressures. Stimulation of COX-2 was also triggered by exposure of isolated preparations of medullary CDs to angiotensin II. Deletion of AT1A receptors from principal cells alone did not affect angiotensin II-dependent COX2 stimulation, implicating intercalated cells as the main source of COX2 in this setting. These findings suggest a novel paracrine role for the intercalated cell to attenuate the severity of hypertension. Strategies for preserving or augmenting this pathway may have value for improving the management of hypertension.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Division of Nephrology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Daian Chen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Marcela Herrera
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Matthew A. Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Ting Yang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Eva Königshausen
- Division of Nephrology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Susan B. Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Thomas M. Coffman
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|