1
|
Zeng Q, Luo X, Chen X, Luo W, Li R, Yang S, Yang J, Shu X, Li Q, Hu J, Ma L, Mantzoros CS. Renin-independent aldosteronism and metabolic dysfunction-associated steatotic liver disease and cirrhosis: A genetic association study. Clin Nutr 2025; 44:193-200. [PMID: 39708461 DOI: 10.1016/j.clnu.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND & AIMS Renin-independent aldosteronism (RIA) refers to a spectrum of autonomous aldosterone hypersecretion. We aimed to explore the genetical relationship between RIA and metabolic dysfunction-associated steatotic liver disease (MASLD) and cirrhosis. METHODS We included 125357 participants from the cohort of United Kingdom Biobank. We calculated a polygenic risk score (PRS) for RIA on the basis of reported data from genome-wide association studies, and performed an analysis of Phenome Wide Association Studies (PheWAS) on diverse outcomes. We explored the genetical relationship between RIA and MASLD or cirrhosis by using Mendelian randomization analysis. RESULTS An increased RIA PRS was associated with higher risks of MASLD and MASLD related cirrhosis, and the well-defined RIA related target organ damages such as hypertension or kidney diseases was also significant in the PheWAS analysis. When compared to individuals with low RIA PRS (tertile 1, 0.41-9.89), those with high RIA PRS (tertile 3, 13.58-23.16) showed significantly higher odds ratio (OR) of MASLD (OR 1.28, 95 % confidence interval [CI] 1.09-1.49) and cirrhosis (OR 1.49, 95%CI 1.03-2.16). In analyses of two-sample Mendelian randomization, genetically predicted RIA significantly correlated with elevated risks of MASLD and cirrhosis (inverse variance weighted odds ratio [95 % CI]: 1.05 [1.01-1.09]) for MASLD, 1.08 [1.02-1.13] for cirrhosis), meanwhile we observed no significant directional pleiotropy or heterogeneity. CONCLUSION Renin-independent aldosteronism is genetically associated with higher risks of MASLD and cirrhosis. Targeted treatment of autonomous aldosterone secretion may alleviate MASLD progression.
Collapse
Affiliation(s)
- Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Nephrology and Endocrinology, The People's Hospital of Tongliang District, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Xiaoyu Shu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Linqiang Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, United States of America
| |
Collapse
|
2
|
Besser LM, Forrester SN, Arabadjian M, Bancks MP, Culkin M, Hayden KM, Le ET, Pierre-Louis I, Hirsch JA. Structural and social determinants of health: The multi-ethnic study of atherosclerosis. PLoS One 2024; 19:e0313625. [PMID: 39556532 PMCID: PMC11573213 DOI: 10.1371/journal.pone.0313625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Researchers have increasingly recognized the importance of structural and social determinants of health (SSDOH) as key drivers of a multitude of diseases and health outcomes. The Multi-Ethnic Study of Atherosclerosis (MESA) is an ongoing, longitudinal cohort study of subclinical cardiovascular disease (CVD) that has followed geographically and racially/ethnically diverse participants starting in 2000. Since its inception, MESA has incorporated numerous SSDOH assessments and instruments to study in relation to CVD and aging outcomes. In this paper, we describe the SSDOH data available in MESA, systematically review published papers using MESA that were focused on SSDOH and provide a roadmap for future SSDOH-related studies. METHODS AND FINDINGS The study team reviewed all published papers using MESA data (n = 2,125) through January 23, 2023. Two individuals systematically reviewed titles, abstracts, and full text to determine the final number of papers (n = 431) that focused on at least one SSDOH variable as an exposure, outcome, or stratifying/effect modifier variable of main interest (discrepancies resolved by a third individual). Fifty-seven percent of the papers focused on racialized/ethnic groups or other macrosocial/structural factors (e.g., segregation), 16% focused on individual-level inequalities (e.g. income), 14% focused on the built environment (e.g., walking destinations), 10% focused on social context (e.g., neighborhood socioeconomic status), 34% focused on stressors (e.g., discrimination, air pollution), and 4% focused on social support/integration (e.g., social participation). Forty-seven (11%) of the papers combined MESA with other cohorts for cross-cohort comparisons and replication/validation (e.g., validating algorithms). CONCLUSIONS Overall, MESA has made significant contributions to the field and the published literature, with 20% of its published papers focused on SSDOH. Future SSDOH studies using MESA would benefit by using recently added instruments/data (e.g., early life educational quality), linking SSDOH to biomarkers to determine underlying causal mechanisms linking SSDOH to CVD and aging outcomes, and by focusing on intersectionality, understudied SSDOH (i.e., social support, social context), and understudied outcomes in relation to SSDOH (i.e., sleep, respiratory health, cognition/dementia).
Collapse
Affiliation(s)
- Lilah M. Besser
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Boca Raton, Florida, United States of America
| | - Sarah N. Forrester
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Milla Arabadjian
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, United States of America
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Margaret Culkin
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Kathleen M. Hayden
- Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Elaine T. Le
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Boca Raton, Florida, United States of America
| | - Isabelle Pierre-Louis
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jana A. Hirsch
- Urban Health Collaborative and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Huang D, Shang W, Xu M, Wan Q, Zhang J, Tang X, Shen Y, Wang Y, Yu Y. Genome-Wide Methylation Analysis Reveals a KCNK3-Prominent Causal Cascade on Hypertension. Circ Res 2024; 135:e76-e93. [PMID: 38841840 DOI: 10.1161/circresaha.124.324455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Despite advances in understanding hypertension's genetic structure, how noncoding genetic variants influence it remains unclear. Studying their interaction with DNA methylation is crucial to deciphering this complex disease's genetic mechanisms. METHODS We investigated the genetic and epigenetic interplay in hypertension using whole-genome bisulfite sequencing. Methylation profiling in 918 males revealed allele-specific methylation and methylation quantitative trait loci. We engineered rs1275988T/C mutant mice using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), bred them for homozygosity, and subjected them to a high-salt diet. Telemetry captured their cardiovascular metrics. Protein-DNA interactions were elucidated using DNA pull-downs, mass spectrometry, and Western blots. A wire myograph assessed vascular function, and analysis of the Kcnk3 gene methylation highlighted the mutation's role in hypertension. RESULTS We discovered that DNA methylation-associated genetic effects, especially in non-cytosine-phosphate-guanine (non-CpG) island and noncoding distal regulatory regions, significantly contribute to hypertension predisposition. We identified distinct methylation quantitative trait locus patterns in the hypertensive population and observed that the onset of hypertension is influenced by the transmission of genetic effects through the demethylation process. By evidence-driven prioritization and in vivo experiments, we unearthed rs1275988 in a cell type-specific enhancer as a notable hypertension causal variant, intensifying hypertension through the modulation of local DNA methylation and consequential alterations in Kcnk3 gene expression and vascular remodeling. When exposed to a high-salt diet, mice with the rs1275988C/C genotype exhibited exacerbated hypertension and significant vascular remodeling, underscored by increased aortic wall thickness. The C allele of rs1275988 was associated with elevated DNA methylation levels, driving down the expression of the Kcnk3 gene by attenuating Nr2f2 (nuclear receptor subfamily 2 group F member 2) binding at the enhancer locus. CONCLUSIONS Our research reveals new insights into the complex interplay between genetic variations and DNA methylation in hypertension. We underscore hypomethylation's potential in hypertension onset and identify rs1275988 as a causal variant in vascular remodeling. This work advances our understanding of hypertension's molecular mechanisms and encourages personalized health care strategies.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi, China (D.H.)
| | - Wenlong Shang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Mengtong Xu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Qiangyou Wan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine (Q.W.)
| | - Jin Zhang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Xiaofeng Tang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Yan Wang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| |
Collapse
|
4
|
Fan X, Ye Y, Saha A, Peng L, Pindi C, Wang Q, Yang L, Liu J, Tang X, Palermo G, Liao J, Xu T, Lu Y, Du G. Fine-tuning pH sensor H98 by remote essential residues in the hydrogen-bond network of mTASK-3. Int J Biol Macromol 2024; 273:132892. [PMID: 38878921 PMCID: PMC11583903 DOI: 10.1016/j.ijbiomac.2024.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/23/2024]
Abstract
TASK-3 generates a background K+ conductance which when inhibited by acidification depolarizes membrane potential and increases cell excitability. These channels sense pH by protonation of histidine residue H98, but recent evidence revealed that several other amino acid residues also contribute to TASK-3 pH sensitivity, suggesting that the pH sensitivity is determined by an intermolecular network. Here we use electrophysiology and molecular modeling to characterize the nature and requisite role(s) of multiple amino acids in pH sensing by TASK-3. Our results suggest that the pH sensor H98 and consequently pH sensitivity is influenced by remote amino acids that function as a hydrogen-bonding network to modulate ionic conductivity. Among the residues in the network, E30 and K79 are the most important for passing external signals near residue S31 to H98. The hydrogen-bond network plays a key role in selectivity or pH sensing in mTASK-3, and E30 and S31 in the network can modulate the conductive properties (E30) or reverse the pH sensitivity and selectivity of the channel (S31). Molecular dynamics simulations and pK1/2 calculation revealed that double mutants involving H98 + S31 primarily regulate the structure stability of the pore selectivity filter and pore loop regions, further strengthen the stability of the cradle suspension system, and alter the ionization state of E30 and K79, thereby preventing pore conformational change that normally occurs in response to varying extracellular pH. These results demonstrate that crucial residues in the hydrogen-bond network can remotely tune the pH sensing of mTASK-3 and may be a potential allosteric regulatory site for therapeutic molecule development.
Collapse
Affiliation(s)
- Xueming Fan
- Department of Pain Management, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Yifei Ye
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Li Peng
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Chinmai Pindi
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Qi Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangdong Tang
- Sleep Medicine Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Jiayu Liao
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Tingting Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guizhou, Guangdong 510530, China
| | - Yongzhi Lu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China.
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Hu J, Zeng Q, Chen X, Luo W, Tang Z, Mei M, Zhao W, Du Z, Liu Z, Li Q, Cheng Q, Yang S. Primary aldosteronism and lower-extremity arterial disease: a two-sample Mendelian randomization study. Cardiovasc Diabetol 2023; 22:352. [PMID: 38124109 PMCID: PMC10734059 DOI: 10.1186/s12933-023-02086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND AIMS Primary aldosteronism (PA) is an adrenal disorder of autonomous aldosterone secretion which promotes arterial injury. We aimed to explore whether PA is causally associated with lower-extremity arterial disease (LEAD). METHODS We included 39,713 patients with diabetes and 419,312 participants without diabetes from UK Biobank. We derived a polygenic risk score (PRS) for PA based on previous genome-wide association studies (GWAS). Outcomes included LEAD and LEAD related gangrene or amputation. We conducted a two-sample Mendelian randomization analysis for PA and outcomes to explore their potential causal relationship. RESULTS In whole population, individuals with a higher PA PRS had an increased risk of LEAD. Among patients with diabetes, compared to the subjects in the first tertile of PA PRS, subjects in the third tertile showed a 1.24-fold higher risk of LEAD (OR 1.24, 95% CI 1.03-1.49) and a 2.09-fold higher risk of gangrene (OR 2.09, 95% CI 1.27-3.44), and 1.72-fold higher risk of amputation (OR 1.72, 95% CI 1.10-2.67). Among subjects without diabetes, there was no significant association between PA PRS and LEAD, gangrene or amputation. Two-sample Mendelian randomization analysis indicated that genetically predictors of PA was significantly associated with higher risks of LEAD and gangrene (inverse variance weighted OR 1.20 [95% CI 1.08-1.34]) for LEAD, 1.48 [95% CI 1.28-1.70] for gangrene), with no evidence of significant heterogeneity or directional pleiotropy. CONCLUSIONS Primary aldosteronism is genetically and causally associated with higher risks of LEAD and gangrene, especially among patients with diabetes. Targeting on the autonomous aldosterone secretion may prevent LEAD progression.
Collapse
Affiliation(s)
- Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Qinglian Zeng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Xiangjun Chen
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Wenjin Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Ziwei Tang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Mei Mei
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Wenrui Zhao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Zhipeng Du
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Zhiping Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China.
| | - Qingfeng Cheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China.
| | - Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi St, Chongqing, 400016, China.
| |
Collapse
|
6
|
Armstrong ND, Srinivasasainagendra V, Ammous F, Assimes TL, Beitelshees AL, Brody J, Cade BE, Ida Chen YD, Chen H, de Vries PS, Floyd JS, Franceschini N, Guo X, Hellwege JN, House JS, Hwu CM, Kardia SLR, Lange EM, Lange LA, McDonough CW, Montasser ME, O’Connell JR, Shuey MM, Sun X, Tanner RM, Wang Z, Zhao W, Carson AP, Edwards TL, Kelly TN, Kenny EE, Kooperberg C, Loos RJF, Morrison AC, Motsinger-Reif A, Psaty BM, Rao DC, Redline S, Rich SS, Rotter JI, Smith JA, Smith AV, Irvin MR, Arnett DK. Whole genome sequence analysis of apparent treatment resistant hypertension status in participants from the Trans-Omics for Precision Medicine program. Front Genet 2023; 14:1278215. [PMID: 38162683 PMCID: PMC10755672 DOI: 10.3389/fgene.2023.1278215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Apparent treatment-resistant hypertension (aTRH) is characterized by the use of four or more antihypertensive (AHT) classes to achieve blood pressure (BP) control. In the current study, we conducted single-variant and gene-based analyses of aTRH among individuals from 12 Trans-Omics for Precision Medicine cohorts with whole-genome sequencing data. Methods: Cases were defined as individuals treated for hypertension (HTN) taking three different AHT classes, with average systolic BP ≥ 140 or diastolic BP ≥ 90 mmHg, or four or more medications regardless of BP (n = 1,705). A normotensive control group was defined as individuals with BP < 140/90 mmHg (n = 22,079), not on AHT medication. A second control group comprised individuals who were treatment responsive on one AHT medication with BP < 140/ 90 mmHg (n = 5,424). Logistic regression with kinship adjustment using the Scalable and Accurate Implementation of Generalized mixed models (SAIGE) was performed, adjusting for age, sex, and genetic ancestry. We assessed variants using SKAT-O in rare-variant analyses. Single-variant and gene-based tests were conducted in a pooled multi-ethnicity stratum, as well as self-reported ethnic/racial strata (European and African American). Results: One variant in the known HTN locus, KCNK3, was a top finding in the multi-ethnic analysis (p = 8.23E-07) for the normotensive control group [rs12476527, odds ratio (95% confidence interval) = 0.80 (0.74-0.88)]. This variant was replicated in the Vanderbilt University Medical Center's DNA repository data. Aggregate gene-based signals included the genes AGTPBP, MYL4, PDCD4, BBS9, ERG, and IER3. Discussion: Additional work validating these loci in larger, more diverse populations, is warranted to determine whether these regions influence the pathobiology of aTRH.
Collapse
Affiliation(s)
- Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, United States
| | - Themistocles L. Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Amber L. Beitelshees
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jennifer Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James S. Floyd
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jacklyn N. Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John S. House
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Ethan M. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - May E. Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Megan M. Shuey
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Rikki M. Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, United States
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Todd L. Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tanika N. Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Dabeeru C. Rao
- Division of Biostatistics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stephen S. Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, United States
| | - Albert V. Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Donna K. Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
7
|
Saint-Martin Willer A, Santos-Gomes J, Adão R, Brás-Silva C, Eyries M, Pérez-Vizcaino F, Capuano V, Montani D, Antigny F. Physiological and pathophysiological roles of the KCNK3 potassium channel in the pulmonary circulation and the heart. J Physiol 2023; 601:3717-3737. [PMID: 37477289 DOI: 10.1113/jp284936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Joana Santos-Gomes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mélanie Eyries
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
8
|
Julian CG, Houck JA, Fallahi S, Lazo-Vega L, Matarazzo CJ, Diamond B, Miranda-Garrido V, Krause BJ, Moore LG, Shortt JA, Toledo-Jaldin L, Lorca RA. Altered placental ion channel gene expression in preeclamptic high-altitude pregnancies. Physiol Genomics 2023; 55:357-367. [PMID: 37458464 PMCID: PMC10642922 DOI: 10.1152/physiolgenomics.00013.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by ADMIXTURE, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (ABCC9, ATP2A2, CACNA1C, KCNE1, KCNJ8, KCNK3, KCNMA1, KCNQ1, KCNQ4, PKD2, and TRPV6) and two were upregulated (KCNQ3 and SCNN1G). KCNE1 expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. SCNN1G was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.
Collapse
Affiliation(s)
- Colleen G Julian
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Julie A Houck
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sahand Fallahi
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Litzi Lazo-Vega
- Department of Obstetrics and Gynecology, Hospital Materno-Infantil, La Paz, Bolivia
| | - Christopher J Matarazzo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Breea Diamond
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | | | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Jonathan A Shortt
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lilian Toledo-Jaldin
- Department of Obstetrics and Gynecology, Hospital Materno-Infantil, La Paz, Bolivia
| | - Ramón A Lorca
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
9
|
Lenzini L, Pintus G, Rossitto G, Seccia TM, Rossi GP. Primary Aldosteronism and Drug Resistant Hypertension: A "Chicken-Egg" Story. Exp Clin Endocrinol Diabetes 2023; 131:409-417. [PMID: 37054985 DOI: 10.1055/a-2073-3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Drug-resistant arterial hypertension (RH) is a major risk factor for cardiovascular disease, often due to overlooked underlying causes. Identification of such causes poses significant clinical challenges. In this setting, primary aldosteronism (PA) is a frequent cause of RH and its prevalence in RH patients is likely higher than 20%.The pathophysiological link between PA and the development and maintenance of RH involves target organ damage and the cellular and extracellular effects of aldosterone excess that promote pro-inflammatory and pro-fibrotic changes in the kidney and vasculature.The feasibility of adrenal vein sampling in PA patients with RH, and the clinical benefit achieved by adrenalectomy, further emphasize the need to implement systematic screening for this common form of secondary hypertension in the management of a high-risk population as RH patients.: We herein review the current knowledge of the factors that contribute to the RH phenotype with a focus on PA and discuss the issues regarding the screening for PA in this setting and the therapeutic approaches (surgical and medical) aimed at resolving RH caused by PA.
Collapse
Affiliation(s)
- L Lenzini
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - G Pintus
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - G Rossitto
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - T M Seccia
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - G P Rossi
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Hu J, Chen X, Luo Y, Yang J, Zeng Q, Luo W, Shu X, Cheng Q, Gong L, Wang Z, Li Q, Yang S. Renin-independent aldosteronism and chronic kidney disease in diabetes: Observational and Mendelian randomization analyses. Metabolism 2023:155593. [PMID: 37236301 DOI: 10.1016/j.metabol.2023.155593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Renin-independent aldosteronism (RIA) describes the spectrum of autonomous aldosterone secretion from mild to overt. We aimed to explore whether RIA is causally associated with chronic kidney disease (CKD) in patients with diabetes. METHODS We cross-sectionally included 1027, 402 and 39,709 patients with any type of diabetes from cohorts of EIMDS, CONPASS and UK Biobank, respectively. In EIMDS, we defined RIA and renin-dependent aldosteronism based on plasma aldosterone and renin concentrations. We performed captopril challenge test to confirm renin-dependent or independent aldosteronism in CONPASS. In UK Biobank, we generated genetic instruments for RIA based on the genome-wide association studies (GWAS). We extracted the corresponding single nucleotide polymorphisms (SNPs) information from the GWAS data of CKD in diabetes. We harmonized the SNP-RIA and SNP-CKD data to conduct the two-sample Mendelian randomization analyses. FINDINGS In EIMDS and CONPASS, when compared to subjects with normal aldosterone concentration or renin-dependent aldosteronism, participants with RIA had a lower estimated glomerular filtration rate, a higher prevalence of CKD, and a higher multivariate-adjusted odds ratio (OR) of CKD (OR 2.62 [95%CI 1.09-6.32] in EIMDS, and 4.31 [1.39-13.35] in CONPASS). The two-sample Mendelian randomization analysis indicated that RIA was significantly associated with a higher risk of CKD (inverse variance weighted OR 1.10 [95 % CI 1.05-1.14]), with no evidence of significant heterogeneity or substantial directional pleiotropy. INTERPRETATION Among patients with diabetes, renin-independent aldosteronism is causally associated with a higher risk of CKD. Targeted treatment of autonomous aldosterone secretion may benefit renal function in diabetes.
Collapse
Affiliation(s)
- Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Bishan Hospital of Chongqing, Bishan hospital of Chongqing medical university, China
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Qinglian Zeng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Shu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, China
| | - Qingfeng Cheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Gong
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Huang S, Wang J, Liu N, Li P, Wu S, Qi L, Xia L. A cross-tissue transcriptome association study identifies key genes in essential hypertension. Front Genet 2023; 14:1114174. [PMID: 36845374 PMCID: PMC9950398 DOI: 10.3389/fgene.2023.1114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Genome-wide association study (GWAS) have identified over 1,000 loci associated with blood pressure. However, these loci only explain 6% of heritability. Transcriptome-wide association studies (TWAS) combine GWAS summary data with expression quantitative trait loci (eQTL) to provide a better approach to finding genes associated with complex traits. GWAS summary data (N = 450,584) for essential hypertension originating from European samples were subjected to Post-GWAS analysis using FUMA software and then combined with eQTL data from Genotype-Tissues Expression Project (GTEx) v8 for TWAS analysis using UTMOST, FUSION software, and then validated the results with SMR. FUMA identified 346 significant genes associated with hypertension, FUSION identified 461, and UTMOST cross-tissue analysis identified 34, of which 5 were common. SMR validation identified 3 key genes: ENPEP, USP38, and KCNK3. In previous GWAS studies on blood pressure regulation, the association of ENPEP and KCNK3 with hypertension has been established, and the association between USP38 and blood pressure regulation still needs further validation.
Collapse
Affiliation(s)
- Sihui Huang
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China,Leshan Vocational and Technical College, Leshan, China
| | - Jie Wang
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Nannan Liu
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Ping Li
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Sha Wu
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Luming Qi
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China,*Correspondence: Luming Qi, ; Lina Xia,
| | - Lina Xia
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China,*Correspondence: Luming Qi, ; Lina Xia,
| |
Collapse
|
12
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
13
|
Gancayco CA, Gerding MR, Breault DT, Beenhakker MP, Barrett PQ, Guagliardo NA. Intrinsic Adrenal TWIK-Related Acid-Sensitive TASK Channel Dysfunction Produces Spontaneous Calcium Oscillations Sufficient to Drive AngII (Angiotensin II)-Unresponsive Hyperaldosteronism. Hypertension 2022; 79:2552-2564. [PMID: 36129175 PMCID: PMC10167771 DOI: 10.1161/hypertensionaha.122.19557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Ion channel mutations in calcium regulating genes strongly associate with AngII (angiotensin II)-independent aldosterone production. Here, we used an established mouse model of in vivo aldosterone autonomy,
Cyp11b2
-driven deletion of TWIK-related acid-sensitive potassium channels (TASK-1 and TASK-3, termed zona glomerulosa [zG]-TASK-loss-of-function), and selective pharmacological TASK channel inhibition to determine whether channel dysfunction in native, electrically excitable zG cell rosette-assemblies: (1) produces spontaneous calcium oscillatory activity and (2) is sufficient to drive substantial aldosterone autonomy.
Methods:
We imaged calcium activity in adrenal slices expressing a zG-specific calcium reporter (GCaMP3), an in vitro experimental approach that preserves the native rosette assembly and removes potentially confounding extra-adrenal contributions. In parallel experiments, we measured acute aldosterone production from adrenal slice cultures.
Results:
Absent from untreated WT slices, we find that either adrenal-specific genetic deletion or acute pharmacological TASK channel inhibition produces spontaneous oscillatory bursting behavior and steroidogenic activity (2.4-fold) that are robust, sustained, and equivalent to activities evoked by 3 nM AngII in WT slices. Moreover, spontaneous activity in zG-TASK-loss-of-function slices and inhibitor-evoked activity in WT slices are unresponsive to AngII regulation over a wide range of concentrations (50 pM to 3 µM).
Conclusions:
We provide proof of principle that spontaneous activity of zG cells within classic rosette assemblies evoked solely by a change in an intrinsic, dominant resting-state conductance can be a significant source of AngII-independent aldosterone production from native tissue.
Collapse
Affiliation(s)
| | - Molly R. Gerding
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, MA (D.T.B.)
- Harvard Stem Cell Institute, Cambridge, MA (D.T.B.)
| | - Mark P. Beenhakker
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| | - Paula Q. Barrett
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| | - Nick A. Guagliardo
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| |
Collapse
|
14
|
Alexander MR, Hank S, Dale BL, Himmel L, Zhong X, Smart CD, Fehrenbach DJ, Chen Y, Prabakaran N, Tirado B, Centrella M, Ao M, Du L, Shyr Y, Levy D, Madhur MS. A Single Nucleotide Polymorphism in SH2B3/LNK Promotes Hypertension Development and Renal Damage. Circ Res 2022; 131:731-747. [PMID: 36169218 PMCID: PMC9588739 DOI: 10.1161/circresaha.121.320625] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.
Collapse
Affiliation(s)
- Matthew R. Alexander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Hank
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Bethany L. Dale
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, VUMC, Nashville, TN, USA
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel J. Fehrenbach
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Yuhan Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | | | | | - Megan Centrella
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Mingfang Ao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Liping Du
- Department of Biostatistics, VUMC, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, VUMC, Nashville, TN
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA and Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meena S. Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, VUMC, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
15
|
Zu T, Lian H, Green B, Yu Y. Ultra-high Dimensional Quantile Regression for Longitudinal Data: an Application to Blood Pressure Analysis. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2022.2128806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tianhai Zu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heng Lian
- Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong Hong Kong, China
| | - Brittany Green
- Department of Information Systems, Analytics, and Operations, University of Louisville, Louisville, Kentucky, USA
| | - Yan Yu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
17
|
Barrett PQ, Guagliardo NA, Bayliss DA. Ion Channel Function and Electrical Excitability in the Zona Glomerulosa: A Network Perspective on Aldosterone Regulation. Annu Rev Physiol 2020; 83:451-475. [PMID: 33176563 DOI: 10.1146/annurev-physiol-030220-113038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aldosterone excess is a pathogenic factor in many hypertensive disorders. The discovery of numerous somatic and germline mutations in ion channels in primary hyperaldosteronism underscores the importance of plasma membrane conductances in determining the activation state of zona glomerulosa (zG) cells. Electrophysiological recordings describe an electrically quiescent behavior for dispersed zG cells. Yet, emerging data indicate that in native rosette structures in situ, zG cells are electrically excitable, generating slow periodic voltage spikes and coordinated bursts of Ca2+ oscillations. We revisit data to understand how a multitude of conductances may underlie voltage/Ca2+ oscillations, recognizing that zG layer self-renewal and cell heterogeneity may complicate this task. We review recent data to understand rosette architecture and apply maxims derived from computational network modeling to understand rosette function. The challenge going forward is to uncover how the rosette orchestrates the behavior of a functional network of conditional oscillators to control zG layer performance and aldosterone secretion.
Collapse
Affiliation(s)
- Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| |
Collapse
|
18
|
Duan W, Hicks J, Makara MA, Ilkayeva O, Abraham DM. TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. Am J Physiol Heart Circ Physiol 2020; 318:H566-H580. [PMID: 31977249 DOI: 10.1152/ajpheart.00739.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tandem pore domain acid-sensitive K+ (TASK) channels are present in cardiac tissue; however, their contribution to cardiac pathophysiology is not well understood. Here, we investigate the role of TASK-1 and TASK-3 in the pathogenesis of cardiac dysfunction using both human tissue and mouse models of genetic TASK channel loss of function. Compared with normal human cardiac tissue, TASK-1 gene expression is reduced in association with either cardiac hypertrophy alone or combined cardiac hypertrophy and heart failure. In a pressure overload cardiomyopathy model, TASK-1 global knockout (TASK-1 KO) mice have both reduced cardiac hypertrophy and preserved cardiac function compared with wild-type mice. In contrast to the TASK-1 KO mouse pressure overload response, TASK-3 global knockout (TASK-3 KO) mice develop cardiac hypertrophy and a delayed onset of cardiac dysfunction compared with wild-type mice. The cardioprotective effects observed in TASK-1 KO mice are associated with pressure overload-induced augmentation of AKT phosphorylation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression, with consequent augmentation of cardiac energetics and fatty acid oxidation. The protective effects of TASK-1 loss of function are associated with an enhancement of physiologic hypertrophic signaling and preserved metabolic functions. These findings may provide a rationale for TASK-1 channel inhibition in the treatment of cardiac dysfunction.NEW & NOTEWORTHY The role of tandem pore domain acid-sensitive K+ (TASK) channels in cardiac function is not well understood. This study demonstrates that TASK channel gene expression is associated with the onset of human cardiac hypertrophy and heart failure. TASK-1 and TASK-3 strongly affect the development of pressure overload cardiomyopathies in genetic models of TASK-1 and TASK-3 loss of function. The effects of TASK-1 loss of function were associated with enhanced AKT phosphorylation and expression of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) transcription factor. These data suggest that TASK channels influence the development of cardiac hypertrophy and dysfunction in response to injury.
Collapse
Affiliation(s)
- Wei Duan
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jonné Hicks
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Dennis M Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
19
|
Guagliardo NA, Yao J, Stipes EJ, Cechova S, Le TH, Bayliss DA, Breault DT, Barrett PQ. Adrenal Tissue-Specific Deletion of TASK Channels Causes Aldosterone-Driven Angiotensin II-Independent Hypertension. Hypertension 2019; 73:407-414. [PMID: 30580687 PMCID: PMC6326871 DOI: 10.1161/hypertensionaha.118.11962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The renin-angiotensin system tightly controls aldosterone synthesis. Dysregulation is evident in hypertension (primary aldosteronism), low renin, and resistant hypertension) but also can exist in normotension. Whether chronic, mild aldosterone autonomy can elicit hypertension remains untested. Previously, we reported that global genetic deletion of 2 pore-domain TWIK-relative acid-sensitive potassium channels, TASK-1 and TASK-3, from mice produces striking aldosterone excess, low renin, and hypertension. Here, we deleted TASK-1 and TASK-3 channels selectively from zona glomerulosa cells and generated a model of mild aldosterone autonomy with attendant hypertension that is aldosterone-driven and Ang II (angiotensin II)-independent. This study shows that a zona glomerulosa-specific channel defect can produce mild autonomous hyperaldosteronism sufficient to cause chronic blood pressure elevation.
Collapse
Affiliation(s)
- Nick A Guagliardo
- From the Department of Pharmacology (N.A.G., J.Y., E.J.S., D.A.B, P.Q.B.), University of Virginia School of Medicine, Charlottesville
| | - Junlan Yao
- From the Department of Pharmacology (N.A.G., J.Y., E.J.S., D.A.B, P.Q.B.), University of Virginia School of Medicine, Charlottesville
| | - Eric J Stipes
- From the Department of Pharmacology (N.A.G., J.Y., E.J.S., D.A.B, P.Q.B.), University of Virginia School of Medicine, Charlottesville
| | - Sylvia Cechova
- Division of Nephrology, Department of Medicine (S.C., T.H.L.), University of Virginia School of Medicine, Charlottesville
| | - Thu H Le
- Division of Nephrology, Department of Medicine (S.C., T.H.L.), University of Virginia School of Medicine, Charlottesville
| | - Douglas A Bayliss
- From the Department of Pharmacology (N.A.G., J.Y., E.J.S., D.A.B, P.Q.B.), University of Virginia School of Medicine, Charlottesville
| | - David T Breault
- Department of Pediatrics/Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA (D.T.B.)
| | - Paula Q Barrett
- From the Department of Pharmacology (N.A.G., J.Y., E.J.S., D.A.B, P.Q.B.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
20
|
Genetic causes of primary aldosteronism. Exp Mol Med 2019; 51:1-12. [PMID: 31695023 PMCID: PMC6834635 DOI: 10.1038/s12276-019-0337-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
Primary aldosteronism is characterized by at least partially autonomous production of the adrenal steroid hormone aldosterone and is the most common cause of secondary hypertension. The most frequent subforms are idiopathic hyperaldosteronism and aldosterone-producing adenoma. Rare causes include unilateral hyperplasia, adrenocortical carcinoma and Mendelian forms (familial hyperaldosteronism). Studies conducted in the last eight years have identified somatic driver mutations in a substantial portion of aldosterone-producing adenomas, including the genes KCNJ5 (encoding inwardly rectifying potassium channel GIRK4), CACNA1D (encoding a subunit of L-type voltage-gated calcium channel CaV1.3), ATP1A1 (encoding a subunit of Na+/K+-ATPase), ATP2B3 (encoding a Ca2+-ATPase), and CTNNB1 (encoding ß-catenin). In addition, aldosterone-producing cells were recently reported to form small clusters (aldosterone-producing cell clusters) beneath the adrenal capsule. Such clusters accumulate with age and appear to be more frequent in individuals with idiopathic hyperaldosteronism. The fact that they are associated with somatic mutations implicated in aldosterone-producing adenomas also suggests a precursor function for adenomas. Rare germline variants of CYP11B2 (encoding aldosterone synthase), CLCN2 (encoding voltage-gated chloride channel ClC-2), KCNJ5, CACNA1H (encoding a subunit of T-type voltage-gated calcium channel CaV3.2), and CACNA1D have been reported in different subtypes of familial hyperaldosteronism. Collectively, these studies suggest that primary aldosteronism is largely due to genetic mutations in single genes, with potential implications for diagnosis and therapy.
Collapse
|
21
|
Iniesta R, Campbell D, Venturini C, Faconti L, Singh S, Irvin MR, Cooper-DeHoff RM, Johnson JA, Turner ST, Arnett DK, Weale ME, Warren H, Munroe PB, Cruickshank K, Padmanabhan S, Lewis C, Chowienczyk P. Gene Variants at Loci Related to Blood Pressure Account for Variation in Response to Antihypertensive Drugs Between Black and White Individuals. Hypertension 2019; 74:614-622. [PMID: 31327267 DOI: 10.1161/hypertensionaha.118.12177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selection of antihypertensive treatment according to self-defined ethnicity is recommended by some guidelines but might be better guided by individual genotype rather than ethnicity or race. We compared the extent to which variation in blood pressure response across different ethnicities may be explained by genetic factors: genetically defined ancestry and gene variants at loci known to be associated with blood pressure. We analyzed data from 5 trials in which genotyping had been performed (n=4696) and in which treatment responses to β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blocker, thiazide or thiazide-like diuretic and calcium channel blocker were available. Genetically defined ancestry for proportion of African ancestry was computed using the 1000 genomes population database as a reference. Differences in response to the thiazide diuretic hydrochlorothiazide, the β-blockers atenolol and metoprolol, the angiotensin-converting enzyme inhibitor lisinopril, and the angiotensin receptor blocker candesartan were more closely associated to genetically defined ancestry than self-defined ethnicity in admixed subjects. A relatively small number of gene variants related to loci associated with drug-signaling pathways (KCNK3, SULT1C3, AMH, PDE3A, PLCE1, PRKAG2) with large effect size (-3.5 to +3.5 mm Hg difference in response per allele) and differing allele frequencies in black versus white individuals explained a large proportion of the difference in response to candesartan and hydrochlorothiazide between these groups. These findings suggest that a genomic precision medicine approach can be used to individualize antihypertensive treatment within and across populations without recourse to surrogates of genetic structure such as self-defined ethnicity.
Collapse
Affiliation(s)
- Raquel Iniesta
- From the Department of Medical and Molecular Genetics (R.I., M.E.W., C.L.), King's College London, United Kingdom
| | | | - Cristina Venturini
- Department of Twin Research (C.V.), King's College London, United Kingdom
| | - Luca Faconti
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences (L.F., P.C.), King's College London, United Kingdom
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenetics, College of Pharmacy (R.M.C.-D., S.S., J.A.J.), University of Florida
| | | | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenetics, College of Pharmacy (R.M.C.-D., S.S., J.A.J.), University of Florida.,Division of Cardiovascular Medicine, College of Medicine (R.M.C.-D., J.A.J.), University of Florida
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenetics, College of Pharmacy (R.M.C.-D., S.S., J.A.J.), University of Florida
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (S.T.T.)
| | - Donna K Arnett
- Department of Epidemiology, University of Kentucky College of Public Health (D.K.A)
| | - Michael E Weale
- From the Department of Medical and Molecular Genetics (R.I., M.E.W., C.L.), King's College London, United Kingdom
| | - Helen Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry and Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, United Kingdom (H.W., P.B.M)
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry and Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, United Kingdom (H.W., P.B.M)
| | - Kennedy Cruickshank
- Department of Nutrition and Dietetics (K.C.), King's College London, United Kingdom
| | - Sandosh Padmanabhan
- Division of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.P.)
| | - Cathryn Lewis
- From the Department of Medical and Molecular Genetics (R.I., M.E.W., C.L.), King's College London, United Kingdom.,Department of Genetic Epidemiology and Statistics, Social, Genetic and Developmental Psychiatry Centre (C.L.), King's College London, United Kingdom
| | - Phil Chowienczyk
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences (L.F., P.C.), King's College London, United Kingdom
| |
Collapse
|
22
|
Messing M, Souza LCD, Cavalla F, Kookal KK, Rizzo G, Walji M, Silva R, Letra A. Investigating Potential Correlations between Endodontic Pathology and Cardiovascular Diseases Using Epidemiological and Genetic Approaches. J Endod 2019; 45:104-110. [DOI: 10.1016/j.joen.2018.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/04/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022]
|
23
|
Nasr N, Faucherre A, Borsotto M, Heurteaux C, Mazella J, Jopling C, Moha Ou Maati H. Identification and characterization of two zebrafish Twik related potassium channels, Kcnk2a and Kcnk2b. Sci Rep 2018; 8:15311. [PMID: 30333618 PMCID: PMC6192994 DOI: 10.1038/s41598-018-33664-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023] Open
Abstract
KCNK2 is a 2 pore domain potassium channel involved in maintaining cellular membrane resting potentials. Although KCNK2 is regarded as a mechanosensitive ion channel, it can also be gated chemically. Previous research indicates that KCNK2 expression is particularly enriched in neuronal and cardiac tissues. In this respect, KCNK2 plays an important role in neuroprotection and has also been linked to cardiac arrhythmias. KCNK2 has subsequently become an attractive pharmacologic target for developing preventative/curative strategies for neuro/cardio pathophysiological conditions. Zebrafish represent an important in vivo model for rapidly analysing pharmacological compounds. We therefore sought to identify and characterise zebrafish kcnk2 to allow this model system to be incorporated into therapeutic research. Our data indicates that zebrafish possess two kcnk2 orthologs, kcnk2a and kcnk2b. Electrophysiological analysis of both zebrafish Kcnk2 orthologs shows that, like their human counterparts, they are activated by different physiological stimuli such as mechanical stretch, polyunsaturated fatty acids and intracellular acidification. Furthermore, both zebrafish Kcnk2 channels are inhibited by the human KCNK2 inhibitory peptide spadin. Taken together, our results demonstrate that both Kcnk2a and Kcnk2b share similar biophysiological and pharmacological properties to human KCNK2 and indicate that the zebrafish will be a useful model for developing KCNK2 targeting strategies.
Collapse
Affiliation(s)
- Nathalie Nasr
- IGF, CNRS, INSERM, Université de Montpellier, Labex ICST, F-34094, Montpellier, France
| | - Adèle Faucherre
- IGF, CNRS, INSERM, Université de Montpellier, Labex ICST, F-34094, Montpellier, France
| | - Marc Borsotto
- IPMC, CNRS, INSERM, Université de Nice Sophia Antipolis, Labex ICST, F-06560, Valbonne, France
| | - Catherine Heurteaux
- IPMC, CNRS, INSERM, Université de Nice Sophia Antipolis, Labex ICST, F-06560, Valbonne, France
| | - Jean Mazella
- IPMC, CNRS, INSERM, Université de Nice Sophia Antipolis, Labex ICST, F-06560, Valbonne, France
| | - Chris Jopling
- IGF, CNRS, INSERM, Université de Montpellier, Labex ICST, F-34094, Montpellier, France.
| | - Hamid Moha Ou Maati
- IGF, CNRS, INSERM, Université de Montpellier, Labex ICST, F-34094, Montpellier, France.
| |
Collapse
|
24
|
Soares-Souza G, Borda V, Kehdy F, Tarazona-Santos E. Admixture, Genetics and Complex Diseases in Latin Americans and US Hispanics. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Verma A, Lucas A, Verma SS, Zhang Y, Josyula N, Khan A, Hartzel DN, Lavage DR, Leader J, Ritchie MD, Pendergrass SA. PheWAS and Beyond: The Landscape of Associations with Medical Diagnoses and Clinical Measures across 38,662 Individuals from Geisinger. Am J Hum Genet 2018; 102:592-608. [PMID: 29606303 PMCID: PMC5985339 DOI: 10.1016/j.ajhg.2018.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
Most phenome-wide association studies (PheWASs) to date have used a small to moderate number of SNPs for association with phenotypic data. We performed a large-scale single-cohort PheWAS, using electronic health record (EHR)-derived case-control status for 541 diagnoses using International Classification of Disease version 9 (ICD-9) codes and 25 median clinical laboratory measures. We calculated associations between these diagnoses and traits with ∼630,000 common frequency SNPs with minor allele frequency > 0.01 for 38,662 individuals. In this landscape PheWAS, we explored results within diseases and traits, comparing results to those previously reported in genome-wide association studies (GWASs), as well as previously published PheWASs. We further leveraged the context of functional impact from protein-coding to regulatory regions, providing a deeper interpretation of these associations. The comprehensive nature of this PheWAS allows for novel hypothesis generation, the identification of phenotypes for further study for future phenotypic algorithm development, and identification of cross-phenotype associations.
Collapse
Affiliation(s)
- Anurag Verma
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Lucas
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shefali S Verma
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yu Zhang
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Navya Josyula
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Anqa Khan
- Mount Holyoke College, South Hadley, MA 01075, USA
| | - Dustin N Hartzel
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Daniel R Lavage
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Joseph Leader
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah A Pendergrass
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA 17822, USA.
| |
Collapse
|
26
|
Regulation of aldosterone production by ion channels: From basal secretion to primary aldosteronism. Biochim Biophys Acta Mol Basis Dis 2018; 1864:871-881. [DOI: 10.1016/j.bbadis.2017.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/05/2017] [Accepted: 12/23/2017] [Indexed: 01/07/2023]
|
27
|
Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G, Antigny F, Lambert M, Humbert M, Czirják G, Enyedi P, Mathie A. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur Respir J 2017; 50:50/5/1700754. [PMID: 29122916 DOI: 10.1183/13993003.00754-2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
TWIK-related acid-sensitive potassium channel 1 (TASK-1 encoded by KCNK3) belongs to the family of two-pore domain potassium channels. This gene subfamily is constitutively active at physiological resting membrane potentials in excitable cells, including smooth muscle cells, and has been particularly linked to the human pulmonary circulation. TASK-1 channels are sensitive to a wide array of physiological and pharmacological mediators that affect their activity such as unsaturated fatty acids, extracellular pH, hypoxia, anaesthetics and intracellular signalling pathways. Recent studies show that modulation of TASK-1 channels, either directly or indirectly by targeting their regulatory mechanisms, has the potential to control pulmonary arterial tone in humans. Furthermore, mutations in KCNK3 have been identified as a rare cause of both familial and idiopathic pulmonary arterial hypertension. This review summarises our current state of knowledge of the functional role of TASK-1 channels in the pulmonary circulation in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria .,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| | - Bence M Nagy
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France
| | - Gábor Czirják
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Dept of Physiology, Semmelweis University, Budapest, Hungary
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK
| |
Collapse
|
28
|
Yao J, McHedlishvili D, McIntire WE, Guagliardo NA, Erisir A, Coburn CA, Santarelli VP, Bayliss DA, Barrett PQ. Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells. Hypertension 2017. [PMID: 28630209 DOI: 10.1161/hypertensionaha.116.08871] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ca2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K+ channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K+ channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells.
Collapse
Affiliation(s)
- Junlan Yao
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - David McHedlishvili
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - William E McIntire
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Nick A Guagliardo
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Alev Erisir
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Craig A Coburn
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Vincent P Santarelli
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Douglas A Bayliss
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.)
| | - Paula Q Barrett
- From the Departments of Pharmacology (J.Y., D.M., W.E.M., N.A.G., D.A.B., P.Q.B.) and Psychology (A.E.), University of Virginia School of Medicine, Charlottesville; Silverback Therapeutics, Inc, Seattle, WA (C.A.C.); and Department of Neuroscience, Merck & Co, Inc, West point, PA (V.P.S.).
| |
Collapse
|
29
|
Franceschini N, Carty CL, Lu Y, Tao R, Sung YJ, Manichaikul A, Haessler J, Fornage M, Schwander K, Zubair N, Bien S, Hindorff LA, Guo X, Bielinski SJ, Ehret G, Kaufman JD, Rich SS, Carlson CS, Bottinger EP, North KE, Rao DC, Chakravarti A, Barrett PQ, Loos RJF, Buyske S, Kooperberg C. Variant Discovery and Fine Mapping of Genetic Loci Associated with Blood Pressure Traits in Hispanics and African Americans. PLoS One 2016; 11:e0164132. [PMID: 27736895 PMCID: PMC5063457 DOI: 10.1371/journal.pone.0164132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Despite the substantial burden of hypertension in US minority populations, few genetic studies of blood pressure have been conducted in Hispanics and African Americans, and it is unclear whether many of the established loci identified in European-descent populations contribute to blood pressure variation in non-European descent populations. Using the Metabochip array, we sought to characterize the genetic architecture of previously identified blood pressure loci, and identify novel cardiometabolic variants related to systolic and diastolic blood pressure in a multi-ethnic US population including Hispanics (n = 19,706) and African Americans (n = 18,744). Several known blood pressure loci replicated in African Americans and Hispanics. Fourteen variants in three loci (KCNK3, FGF5, ATXN2-SH2B3) were significantly associated with blood pressure in Hispanics. The most significant diastolic blood pressure variant identified in our analysis, rs2586886/KCNK3 (P = 5.2 x 10−9), also replicated in independent Hispanic and European-descent samples. African American and trans-ethnic meta-analysis data identified novel variants in the FGF5, ULK4 and HOXA-EVX1 loci, which have not been previously associated with blood pressure traits. Our identification and independent replication of variants in KCNK3, a gene implicated in primary hyperaldosteronism, as well as a variant in HOTTIP (HOXA-EVX1) suggest that further work to clarify the roles of these genes may be warranted. Overall, our findings suggest that loci identified in European descent populations also contribute to blood pressure variation in diverse populations including Hispanics and African Americans—populations that are understudied for hypertension genetic risk factors.
Collapse
Affiliation(s)
- Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Cara L. Carty
- Center for Translational Science, George Washington University and Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Yingchang Lu
- Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ran Tao
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yun Ju Sung
- Division of Biostatistics, Washington University, St. Louis, Missouri, United States of America
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, 22908, United States of America
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine & Human Genetics Center, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Karen Schwander
- Division of Biostatistics, Washington University, St. Louis, Missouri, United States of America
| | - Niha Zubair
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lucia A. Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, LABiomed at Harbor-University of California at Los Angeles Medical Center, Torrance, California, United States of America
| | - Suzette J. Bielinski
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Georg Ehret
- Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Specialties of Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, Epidemiology, and Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, 22908, United States of America
| | - Christopher S. Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Erwin P. Bottinger
- Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - D. C. Rao
- Division of Biostatistics, Washington University, St. Louis, Missouri, United States of America
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paula Q. Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ruth J. F. Loos
- Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Steven Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|