1
|
Park JW, Piknova B, Tunau-Spencer KJ, Thomas SM, Cai H, Walter PJ, Jenkins A, Hellinga D, Parver LM, Schechter AN. Dietary Nitrate Metabolism in Porcine Ocular Tissues Determined Using 15N-Labeled Sodium Nitrate Supplementation. Nutrients 2024; 16:1154. [PMID: 38674845 PMCID: PMC11054199 DOI: 10.3390/nu16081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Nitrate (NO3-) obtained from the diet is converted to nitrite (NO2-) and subsequently to nitric oxide (NO) within the body. Previously, we showed that porcine eye components contain substantial amounts of nitrate and nitrite that are similar to those in blood. Notably, cornea and sclera exhibited the capability to reduce nitrate to nitrite. To gain deeper insights into nitrate metabolism in porcine eyes, our current study involved feeding pigs either NaCl or Na15NO3 and assessing the levels of total and 15N-labeled NO3-/NO2- in various ocular tissues. Three hours after Na15NO3 ingestion, a marked increase in 15NO3- and 15NO2- was observed in all parts of the eye; in particular, the aqueous and vitreous humor showed a high 15NO3- enrichment (77.5 and 74.5%, respectively), similar to that of plasma (77.1%) and showed an even higher 15NO2- enrichment (39.9 and 35.3%, respectively) than that of plasma (19.8%). The total amounts of NO3- and NO2- exhibited patterns consistent with those observed in 15N analysis. Next, to investigate whether nitrate or nitrite accumulate proportionally after multiple nitrate treatments, we measured nitrate and nitrite contents after supplementing pigs with Na15NO3 for five consecutive days. In both 15N-labeled and total nitrate and nitrite analysis, we did not observe further accumulation of these ions after multiple treatments, compared to a single treatment. These findings suggest that dietary nitrate supplementation exerts a significant influence on nitrate and nitrite levels and potentially NO levels in the eye and opens up the possibility for the therapeutic use of dietary nitrate/nitrite to enhance or restore NO levels in ocular tissues.
Collapse
Affiliation(s)
- Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA; (J.W.P.); (B.P.); (K.J.T.-S.); (S.M.T.)
- Molecular Medicine Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA; (J.W.P.); (B.P.); (K.J.T.-S.); (S.M.T.)
- Molecular Medicine Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Khalid J. Tunau-Spencer
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA; (J.W.P.); (B.P.); (K.J.T.-S.); (S.M.T.)
- Molecular Medicine Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha M. Thomas
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA; (J.W.P.); (B.P.); (K.J.T.-S.); (S.M.T.)
- Molecular Medicine Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA; (H.C.); (P.J.W.)
- Clinical Mass Spectrometry Core, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter J. Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA; (H.C.); (P.J.W.)
- Clinical Mass Spectrometry Core, National Institutes of Health, Bethesda, MD 20892, USA
| | - Audrey Jenkins
- MedStar Health Research Institute, Washington, DC 20010, USA; (A.J.); (D.H.)
| | - David Hellinga
- MedStar Health Research Institute, Washington, DC 20010, USA; (A.J.); (D.H.)
| | - Leonard M. Parver
- Department of Ophthalmology, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Alan N. Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA; (J.W.P.); (B.P.); (K.J.T.-S.); (S.M.T.)
- Molecular Medicine Branch, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Salvatore SR, Gómez-Cortés P, Rowart P, Woodcock SR, Angel de la Fuente M, Chang F, Schopfer FJ. Digestive interaction between dietary nitrite and dairy products generates novel nitrated linolenic acid products. Food Chem 2024; 437:137767. [PMID: 37879157 PMCID: PMC10844836 DOI: 10.1016/j.foodchem.2023.137767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Nitrated fatty acids are important anti-inflammatory and protective lipids formed in the gastric compartment, with conjugated linoleic acid (rumenic acid, RA, 9Z,11E-18:2) being the primary substrate for lipid nitration. The recently reported identification of nitrated rumelenic acid (NO2-RLA) in human urine has led to hypothesize that rumelenic acid (RLA, 9Z,11E,15Z-18:3) from dairy fat is responsible for the formation of NO2-RLA. To evaluate the source and mechanism of NO2-RLA formation, 15N labeled standards of NO2-RLA were synthesized and characterized. Afterward, milk fat with different RA and RLA levels was administered to mice in the presence of nitrite, and the appearance of nitrated fatty acids in plasma and urine followed. We confirmed the formation of NO2-RLA and defined the main metabolites in plasma, urine, and tissues. In conclusion, RLA obtained from dairy products is the main substrate for forming this novel electrophilic lipid reported to be present in human urine.
Collapse
Affiliation(s)
- Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Pilar Gómez-Cortés
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Miguel Angel de la Fuente
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Fei Chang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (VMI), Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Pinaffi-Langley ACDC, Dajani RM, Prater MC, Nguyen HVM, Vrancken K, Hays FA, Hord NG. Dietary Nitrate from Plant Foods: A Conditionally Essential Nutrient for Cardiovascular Health. Adv Nutr 2024; 15:100158. [PMID: 38008359 PMCID: PMC10776916 DOI: 10.1016/j.advnut.2023.100158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Under specific conditions, such as catabolic stress or systemic inflammation, endogenous nutrient production becomes insufficient and exogenous supplementation (for example, through dietary intake) is required. Herein, we propose consideration of a dietary nitrate from plant foods as a conditionally essential nutrient for cardiovascular health based on its role in nitric oxide homeostasis. Nitrate derived from plant foods may function as a conditionally essential nutrient, whereas nitrate obtained from other dietary sources, such as drinking water and cured/processed meats, warrants separate consideration because of the associated health risks. We have surveyed the literature and summarized epidemiological evidence regarding the effect of dietary nitrate on cardiovascular disease and risk factors. Meta-analyses and population-based observational studies have consistently demonstrated an inverse association of dietary nitrate with blood pressure and cardiovascular disease outcomes. Considering the available evidence, we suggest 2 different approaches to providing dietary guidance on nitrate from plant-based dietary sources as a nutrient: the Dietary Reference Intakes developed by the National Academies of Sciences, Engineering, and Medicine, and the dietary guidelines evaluated by the Academy of Nutrition and Dietetics. Ultimately, this proposal underscores the need for food-based dietary guidelines to capture the complex and context-dependent relationships between nutrients, particularly dietary nitrate, and health.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rosa M Dajani
- Nutrition and Food Services, San Francisco Health, University of California, San Francisco, CA, United States
| | - M Catherine Prater
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA, United States
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Franklin A Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Norman G Hord
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
4
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol-catalyzed formation of NO-ferroheme regulates intravascular NO signaling. Nat Chem Biol 2023; 19:1256-1266. [PMID: 37710075 PMCID: PMC10897909 DOI: 10.1038/s41589-023-01413-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Nitric oxide (NO) is an endogenously produced signaling molecule that regulates blood flow and platelet activation. However, intracellular and intravascular diffusion of NO are limited by scavenging reactions with several hemoproteins, raising questions as to how free NO can signal in hemoprotein-rich environments. We explore the hypothesis that NO can be stabilized as a labile ferrous heme-nitrosyl complex (Fe2+-NO, NO-ferroheme). We observe a reaction between NO, labile ferric heme (Fe3+) and reduced thiols to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation occurs when heme is solubilized in lipophilic environments such as red blood cell membranes or bound to serum albumin. The resulting NO-ferroheme resists oxidative inactivation, is soluble in cell membranes and is transported intravascularly by albumin to promote potent vasodilation. We therefore provide an alternative route for NO delivery from erythrocytes and blood via transfer of NO-ferroheme and activation of apo-soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzi Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brendan S Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA.
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
6
|
Distribution of dietary nitrate and its metabolites in rat tissues after 15N-labeled nitrate administration. Sci Rep 2023; 13:3499. [PMID: 36859526 PMCID: PMC9977953 DOI: 10.1038/s41598-023-28190-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 03/03/2023] Open
Abstract
The reduction pathway of nitrate (NO3-) and nitrite (NO2-) to nitric oxide (NO) contributes to regulating many physiological processes. To examine the rate and extent of dietary nitrate absorption and its reduction to nitrite, we supplemented rat diets with Na15NO3-containing water (1 g/L) and collected plasma, urine and several tissue samples. We found that plasma and urine showed 8.8- and 11.7-fold increases respectively in total nitrate concentrations in 1-day supplementation group compared to control. In tissue samples-gluteus, liver and eyes-we found 1.7-, 2.4- and 4.2-fold increases respectively in 1-day supplementation group. These increases remained similar in 3-day supplementation group. LC-MS/MS analysis showed that the augmented nitrate concentrations were primarily from the exogenously provided 15N-nitrate. Overall nitrite concentrations and percent of 15N-nitrite were also greatly increased in all samples after nitrate supplementation; eye homogenates showed larger increases compared to gluteus and liver. Moreover, genes related to nitrate transport and reduction (Sialin, CLC and XOR) were upregulated after nitrate supplementation for 3 days in muscle (Sialin 2.3-, CLC1 1.3-, CLC3 2.1-, XOR 2.4-fold) and eye (XOR 1.7-fold) homogenates. These results demonstrate that dietary nitrate is quickly absorbed into circulation and tissues, and it can be reduced to nitrite in tissues (and likely to NO) suggesting that nitrate-enriched diets can be an efficient intervention to enhance nitrite and NO bioavailability.
Collapse
|
7
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol catalyzed formation of NO-ferroheme regulates canonical intravascular NO signaling. RESEARCH SQUARE 2023:rs.3.rs-2402224. [PMID: 36711928 PMCID: PMC9882697 DOI: 10.21203/rs.3.rs-2402224/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is an endogenously produced physiological signaling molecule that regulates blood flow and platelet activation. However, both the intracellular and intravascular diffusion of NO is severely limited by scavenging reactions with hemoglobin, myoglobin, and other hemoproteins, raising unanswered questions as to how free NO can signal in hemoprotein-rich environments, like blood and cardiomyocytes. We explored the hypothesis that NO could be stabilized as a ferrous heme-nitrosyl complex (Fe 2+ -NO, NO-ferroheme) either in solution within membranes or bound to albumin. Unexpectedly, we observed a rapid reaction of NO with free ferric heme (Fe 3+ ) and a reduced thiol under physiological conditions to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation reaction occurs readily when the hemin is solubilized in lipophilic environments, such as red blood cell membranes, or bound to serum albumin. NO-ferroheme albumin is stable, even in the presence of excess oxyhemoglobin, and potently inhibits platelet activation. NO-ferroheme-albumin administered intravenously to mice dose-dependently vasodilates at low- to mid-nanomolar concentrations. In conclusion, we report the fastest rate of reductive nitrosylation observed to date to generate a NO-ferroheme molecule that resists oxidative inactivation, is soluble in cell membranes, and is transported intravascularly by albumin to promote potent vasodilation.
Collapse
Affiliation(s)
- Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qinzi Xu
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brendan S. Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jason J. Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
8
|
Miller GD, Nesbit BA, Kim-Shapiro DB, Basu S, Berry MJ. Effect of Vitamin C and Protein Supplementation on Plasma Nitrate and Nitrite Response following Consumption of Beetroot Juice. Nutrients 2022; 14:1880. [PMID: 35565845 PMCID: PMC9100995 DOI: 10.3390/nu14091880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Beetroot juice is a food high in nitrate and is associated with cardiometabolic health benefits and enhanced exercise performance through the production of nitric oxide in the nitrate−nitrite−nitric oxide pathway. Since various food components influence this pathway, the aim of this trial was to study the effect of beetroot juice alone and in conjunction with vitamin C or protein on the acute response to plasma nitrate and nitrite levels in healthy middle- to older-aged adults. In this cross-over trial, each participant received, in a randomized order, a single dose of Beet It Sport® alone; Beet It Sport®, plus a 200 mg vitamin C supplement; and Beet It Sport® plus 15 g of whey protein. Plasma levels of nitrate and nitrite were determined prior to and at 1 and 3 h after intervention. Log plasma nitrate and nitrite was calculated to obtain data that were normally distributed, and these data were analyzed using two-way within-factors ANOVA, with time and treatment as the independent factors. There were no statistically significant differences for log plasma nitrate (p = 0.308) or log plasma nitrite (p = 0.391) values across treatments. Log plasma nitrate increased significantly from pre-consumption levels after 1 h (p < 0.001) and 3 h (p < 0.001), but plasma nitrate was lower at 3 h than 1 h (p < 0.001). Log plasma nitrite increased from pre to 1 h (p < 0.001) and 3 h (p < 0.001) with log values at 3 h higher than at 1 h (p = 0.003). In this cohort, we observed no differences in log plasma nitrate and nitrite at 1 h and 3 h after co-ingesting beetroot juice with vitamin C or a whey protein supplement compared to beetroot juice alone. Further research needs to be undertaken to expand the blood-sampling time-frame and to examine factors that may influence the kinetics of the plasma nitrate to nitrite efficacy, such as differences in fluid volume and osmolarity between treatments employed.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA;
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| | - Beverly A. Nesbit
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| | - Daniel B. Kim-Shapiro
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Swati Basu
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, USA;
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA; (B.A.N.); (D.B.K.-S.); (S.B.)
| |
Collapse
|
9
|
Antioxidant tempol modulates the increases in tissue nitric oxide metabolites concentrations after oral nitrite administration. Chem Biol Interact 2021; 349:109658. [PMID: 34543659 DOI: 10.1016/j.cbi.2021.109658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.
Collapse
|
10
|
Nettersheim FS, Lemties J, Braumann S, Geißen S, Bokredenghel S, Nies R, Hof A, Winkels H, Freeman BA, Klinke A, Rudolph V, Baldus S, Mehrkens D, Mollenhauer M, Adam M. Nitro-oleic acid (NO2-OA) reduces thoracic aortic aneurysm progression in a mouse model of Marfan syndrome. Cardiovasc Res 2021; 118:2211-2225. [PMID: 34324651 DOI: 10.1093/cvr/cvab256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023] Open
Abstract
AIMS Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene. It is associated with formation of thoracic aortic aneurysms that can potentially be a life-threatening condition due to aortic rupture or dissection. Excessive non-canonical transforming growth factor beta signalling, mediated by activation of extracellular-signal regulated kinases 1/2 (ERK1/2), as well as inducible nitric oxide synthase (NOS2)-dependent nitric oxide production have been identified to drive aortic pathology in MFS through induction of elastin fragmentation and smooth muscle cell apoptosis. Despite promising results in animal studies, specific pharmacological interventions approved for clinical use in patients with MFS-related aortic disease are rare. Nitro-oleic acid (NO2-OA) is an endogenously generated signalling modulator, which is available as an oral compound and has been shown to inhibit ERK1/2 activation and NOS2 expression in different disease models, thereby exerting promising therapeutic effects. In this study, we investigated whether NO2-OA decreases aortic dilation in MFS. METHODS AND RESULTS Eight-week-old MFS (Fbn1C1041G/+) mice were treated with NO2-OA or vehicle for four weeks via subcutaneously implanted osmotic minipumps. Echocardiography indicated progressive ascending aortic dilation and wall stiffening in MFS mice, which was significantly attenuated by NO2-OA treatment. This protective effect was mediated by inhibition of aortic ERK1/2, Smad2 as well as nuclear factor kappa B overactivation and consequent attenuation of elastin fragmentation by matrix metalloproteinase 2, apoptosis and collagen deposition. Critically, the therapeutic efficacy of NO2-OA in MFS was further emphasized by demonstrating its capability to reduce lethal aortic complications in Fbn1C1041G/+mice challenged with Angiotensin II. CONCLUSION NO2-OA distinctly attenuates progression of aortic dilation in MFS via modulation of well-established disease-mediating pathways, thereby meriting further investigation into its application as a therapeutic agent for the treatment of this condition. TRANSLATIONAL PERSPECTIVE Thoracic aortic aneurysm formation is the major life-threatening complication of Marfan syndrome, a relatively common genetic connective tissue disorder. Although various potential therapeutic targets have been identified, specific pharmacological treatment options are still unavailable. In this study, we demonstrate that Nitro-oleic acid reduces ascending aortic elastin fragmentation, apoptosis, and fibrotic remodelling in Marfan syndrome through inhibition of extracellular-signal regulated kinases 1/2, Smad2 as well as nuclear factor kappa B overactivation and thereby mitigates aneurysm formation. Thus, Nitro-oleic acid, which has been developed as an oral compound, emerges as a potential treatment option for Marfan-related aortic disease.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Julian Lemties
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Braumann
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Senai Bokredenghel
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Richard Nies
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexander Hof
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Anna Klinke
- Agnes-Wittenborg-Institute, Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Agnes-Wittenborg-Institute, Department of General and Interventional Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Stephan Baldus
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matti Adam
- Department of Cardiology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
12
|
Fazzari M, Woodcock SR, Rowart P, Ricart K, Lancaster JR, Patel R, Vitturi DA, Freeman BA, Schopfer FJ. Endogenous generation of nitro-fatty acid hybrids having dual nitrate ester (RONO 2) and nitroalkene (RNO 2) substituents. Redox Biol 2021; 41:101913. [PMID: 33819836 PMCID: PMC8049994 DOI: 10.1016/j.redox.2021.101913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
Organic nitrate esters, long-recognized therapies for cardiovascular disorders, have not been detected biologically. We characterize in rat stomach unsaturated fatty acid nitration reactions that proceed by generation of nitro-nitrate intermediates (NO2-ONO2-FA) via oxygen and nitrite dependent reactions. NO2-ONO2-lipids represent ∼70% of all nitrated lipids in the stomach and they decay in vitro at neutral or basic pH by the loss of the nitrate ester group (-ONO2) from the carbon backbone upon deprotonation of the α-carbon (pKa ∼7), yielding nitrate, nitrite, nitrosative species, and an electrophilic fatty acid nitroalkene product (NO2-FA). Of note, NO2-FA are anti-inflammatory and tissue-protective signaling mediators, which are undergoing Phase II trials for the treatment of kidney and pulmonary diseases. The decay of NO2-ONO2-FA occurs during intestinal transit and absorption, leading to the formation of NO2-FA that were subsequently detected in circulating plasma triglycerides. These observations provide new insight into unsaturated fatty acid nitration mechanisms, identify nitro-nitrate ester-containing lipids as intermediates in the formation of both secondary nitrogen oxides and electrophilic fatty acid nitroalkenes, and expand the scope of endogenous products stemming from metabolic reactions of nitrogen oxides.
Collapse
Affiliation(s)
- Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA.
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA
| | - Karina Ricart
- Department of Pathology, University of Alabama, 901 19th Street South, Birmingham, 35294, AL, USA
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, 15213, PA, USA
| | - Rakesh Patel
- Department of Pathology, University of Alabama, 901 19th Street South, Birmingham, 35294, AL, USA
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, 15213, PA, USA; Center for Critical Care Nephrology, Pittsburgh, 15213, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, 15213, PA, USA
| |
Collapse
|
13
|
Grippo V, Mojovic M, Pavicevic A, Kabelac M, Hubatka F, Turanek J, Zatloukalova M, Freeman BA, Vacek J. Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes. Redox Biol 2021; 38:101756. [PMID: 33181478 PMCID: PMC7658499 DOI: 10.1016/j.redox.2020.101756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022] Open
Abstract
Fatty acid nitroalkenes (NO2-FA) are endogenously-generated products of the reaction of metabolic and inflammatory-derived nitrogen dioxide (.NO2) with unsaturated fatty acids. These species mediate signaling actions and induce adaptive responses in preclinical models of inflammatory and metabolic diseases. The nitroalkene substituent possesses an electrophilic nature, resulting in rapid and reversible reactions with biological nucleophiles such as cysteine, thus supporting post-translational modifications (PTM) of proteins having susceptible nucleophilic centers. These reactions contribute to enzyme regulation, modulation of inflammation and cell proliferation and the regulation of gene expression responses. Herein, focus is placed on the reduction-oxidation (redox) characteristics and stability of specific NO2-FA regioisomers having biological and clinical relevance; nitro-oleic acid (NO2-OA), bis-allylic nitro-linoleic acid (NO2-LA) and the conjugated diene-containing nitro-conjugated linoleic acid (NO2-cLA). Cyclic and alternating-current voltammetry and chronopotentiometry were used to the study of reduction potentials of these NO2-FA. R-NO2 reduction was observed around -0.8 V (vs. Ag/AgCl/3 M KCl) and is related to relative NO2-FA electrophilicity. This reduction process could be utilized for the evaluation of NO2-FA stability in aqueous milieu, shown herein to be pH dependent. In addition, electron paramagnetic resonance (EPR) spectroscopy was used to define the stability of the nitroalkene moiety under aqueous conditions, specifically under conditions where nitric oxide (.NO) release could be detected. The experimental data were supported by density functional theory calculations using 6-311++G (d,p) basis set and B3LYP functional. Based on experimental and computational approaches, the relative electrophilicities of these NO2-FA are NO2-cLA >> NO2-LA > NO2-OA. Micellarization and vesiculation largely define these biophysical characteristics in aqueous, nucleophile-free conditions. At concentrations below the critical micellar concentration (CMC), monomeric NO2-FA predominate, while at greater concentrations a micellar phase consisting of self-assembled lipid structures predominates. The CMC, determined by dynamic light scattering in 0.1 M phosphate buffer (pH 7.4) at 25 °C, was 6.9 (NO2-LA) 10.6 (NO2-OA) and 42.3 μM (NO2-cLA), respectively. In aggregate, this study provides new insight into the biophysical properties of NO2-FA that are important for better understanding the cell signaling and pharmacological potential of this class of mediators.
Collapse
Affiliation(s)
- Valentina Grippo
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 775 15, Czech Republic
| | - Milos Mojovic
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Aleksandra Pavicevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Martin Kabelac
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 370 05, Czech Republic
| | - Frantisek Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 775 15, Czech Republic
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc, 775 15, Czech Republic; The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno, 612 65, Czech Republic.
| |
Collapse
|
14
|
Hughan KS, Levine A, Helbling N, Anthony S, DeLany JP, Stefanovic-Racic M, Goodpaster BH, Gladwin MT. Effects of Oral Sodium Nitrite on Blood Pressure, Insulin Sensitivity, and Intima-Media Arterial Thickening in Adults With Hypertension and Metabolic Syndrome. Hypertension 2020; 76:866-874. [PMID: 32755471 PMCID: PMC7429358 DOI: 10.1161/hypertensionaha.120.14930] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nitrate-nitrite-NO pathway regulates NO synthase-independent vasodilation and NO signaling. Ingestion of inorganic nitrite has vasodilatory and blood pressure-lowering effects. Preclinical studies in rodent models suggest there may be a benefit of nitrite in lowering serum triglyceride levels and improving the metabolic syndrome. In a phase 2 study, we evaluated the safety and efficacy of chronic oral nitrite therapy in patients with hypertension and the metabolic syndrome. Twenty adult subjects with stage 1 or 2 hypertension and the metabolic syndrome were enrolled in an open-label safety and efficacy study. The primary efficacy end point was blood pressure reduction; secondary end points included insulin-dependent glucose disposal and endothelial function measured by flow-mediated dilation of the brachial artery and intima-media diameter of the carotid artery. Chronic oral nitrite therapy (40 mg/3× daily) was well tolerated. Oral nitrite significantly lowered systolic, diastolic, and mean arterial pressures, but tolerance was observed after 10 to 12 weeks of therapy. There was significant improvement in the intima-media thickness of the carotid artery and trends toward improvements in flow-mediated dilation of the brachial artery and insulin sensitivity. Chronic oral nitrite therapy is safe in patients with hypertension and the metabolic syndrome. Despite an apparent lack of enzymatic tolerance to nitrite, we observed tolerance after 10 weeks of chronic therapy, which requires additional mechanistic studies and possible therapeutic dose titration in clinical trials. Nitrite may be a safe therapy to concominantly improve multiple features of the metabolic syndrome including hypertension, insulin resistance, and endothelial dysfunction. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT01681810.
Collapse
Affiliation(s)
- Kara S Hughan
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Andrea Levine
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Nicole Helbling
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Steven Anthony
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - James P DeLany
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Maja Stefanovic-Racic
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Bret H. Goodpaster
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| | - Mark T. Gladwin
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
15
|
Vitturi DA, Maynard C, Olsufka M, Straub AC, Krehel N, Kudenchuk PJ, Nichol G, Sayre M, Kim F, Dezfulian C. Nitrite elicits divergent NO-dependent signaling that associates with outcome in out of hospital cardiac arrest. Redox Biol 2020; 32:101463. [PMID: 32087553 PMCID: PMC7033352 DOI: 10.1016/j.redox.2020.101463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 01/16/2023] Open
Abstract
Brain and heart injury cause most out-of-hospital cardiac arrest deaths but limited pharmacotherapy exists to protect these tissues. Nitrite is a nitric oxide precursor that is protective in pre-clinical models of ischemic injury and safe in Phase I testing. Protection may occur by cGMP generation via the sGC pathway or through S-nitrosothiol and nitrated conjugated linoleic acid (NO2-CLA) formation. We hypothesized that nitrite provided during CPR signals through multiple pathways and that activation of signals is associated with OHCA outcome. To this end, we performed a secondary analysis of a phase 1 study of intravenous nitrite administration during resuscitation in adult out-of-hospital cardiac arrest. Associations between whole blood nitrite and derived plasma signals (cGMP and NO2-CLA) with patient characteristics and outcomes were defined using Chi-square or t-tests and multiple logistic regression. Whole blood nitrite levels correlated inversely with plasma NO2-CLA (p = 0.039) but not with cGMP. Patients with shockable rhythms had higher cGMP (p = 0.027), NO2-CLA (p < 0.0001) and trended towards lower nitrite (p = 0.077). Importantly, plasma cGMP and NO2-CLA levels were higher in survivors (p = 0.033 and 0.019) and in those with good neurological outcome (p = 0.046 and 0.021). Nitrite was lower in patients with good neurologic outcome (p = 0.029). cGMP (OR 4.02; 95% CI 1.04–15.54; p = 0.044) and NO2-CLA (OR 3.74; 95% CI 1.11–12.65; p = 0.034) were associated with survival. Nitrite (OR 0.20; 95% CI 0.05–0.08; p = 0.026) and NO2-CLA (OR 3.96; 95% CI 1.01–15.60; p = 0.049) were associated with favorable neurologic outcome. In summary, nitrite administration was associated with increased plasma cGMP and NO2-CLA formation in selected OHCA patients. Furthermore, patients with the highest levels of cGMP and NO2-CLA were more likely to survive and experience better neurological outcomes.
Collapse
Affiliation(s)
- Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, USA
| | - Charles Maynard
- Department of Health Services, University of Washington, USA
| | - Michele Olsufka
- Department of Health Services, University of Washington, USA; Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, USA
| | - Nick Krehel
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, USA
| | - Peter J Kudenchuk
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Graham Nichol
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Michael Sayre
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Francis Kim
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Cameron Dezfulian
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, USA.
| |
Collapse
|
16
|
Lu H, Sun J, Liang W, Zhang J, Rom O, Garcia-Barrio MT, Li S, Villacorta L, Schopfer FJ, Freeman BA, Chen YE, Fan Y. Novel gene regulatory networks identified in response to nitro-conjugated linoleic acid in human endothelial cells. Physiol Genomics 2019; 51:224-233. [PMID: 31074702 PMCID: PMC6620647 DOI: 10.1152/physiolgenomics.00127.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/05/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Endothelial cell (EC) dysfunction is a crucial initiation event in the development of atherosclerosis and is associated with diabetes mellitus, hypertension, and heart failure. Both digestive and oxidative inflammatory conditions lead to the endogenous formation of nitrated derivatives of unsaturated fatty acids (FAs) upon generation of the proximal nitrating species nitrogen dioxide (·NO2) by nitric oxide (·NO) and nitrite-dependent reactions. Nitro-FAs (NO2-FAs) such as nitro-oleic acid (NO2-OA) and nitro-linoleic acid (NO2-LA) potently inhibit inflammation and oxidative stress, regulate cellular functions, and maintain cardiovascular homeostasis. Recently, conjugated linoleic acid (CLA) was identified as the preferential FA substrate of nitration in vivo. However, the functions of nitro-CLA (NO2-CLA) in ECs remain to be explored. In the present study, a distinct transcriptome regulated by NO2-CLA was revealed in primary human coronary artery endothelial cells (HCAECs) through RNA sequencing. Differential gene expression and pathway enrichment analysis identified numerous regulatory networks including those related to the modulation of inflammation, oxidative stress, cell cycle, and hypoxic responses by NO2-CLA, suggesting a diverse impact of NO2-CLA and other electrophilic nitrated FAs on cellular processes. These findings extend the understanding of the protective actions of NO2-CLA in cardiovascular diseases and provide new insight into the underlying mechanisms that mediate the pleiotropic cellular responses to NO2-CLA.
Collapse
Affiliation(s)
- Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Jinjian Sun
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Oren Rom
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Minerva T Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Shengdi Li
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg , Germany
| | - Luis Villacorta
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Yanbo Fan
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| |
Collapse
|
17
|
DeMartino AW, Kim‐Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176:228-245. [PMID: 30152056 PMCID: PMC6295445 DOI: 10.1111/bph.14484] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Inorganic nitrate (NO3 - ), nitrite (NO2 - ) and NO are nitrogenous species with a diverse and interconnected chemical biology. The formation of NO from nitrate and nitrite via a reductive 'nitrate-nitrite-NO' pathway and resulting in vasodilation is now an established complementary route to traditional NOS-derived vasodilation. Nitrate, found in our diet and abundant in mammalian tissues and circulation, is activated via reduction to nitrite predominantly by our commensal oral microbiome. The subsequent in vivo reduction of nitrite, a stable vascular reserve of NO, is facilitated by a number of haem-containing and molybdenum-cofactor proteins. NO generation from nitrite is enhanced during physiological and pathological hypoxia and in disease states involving ischaemia-reperfusion injury. As such, modulation of these NO vascular repositories via exogenously supplied nitrite and nitrate has been evaluated as a therapeutic approach in a number of diseases. Ultimately, the chemical biology of nitrate and nitrite is governed by local concentrations, reaction equilibrium constants, and the generation of transient intermediates, with kinetic rate constants modulated at differing physiological pH values and oxygen tensions. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
| | - Daniel B. Kim‐Shapiro
- Department of PhysicsWake Forest UniversityWinston‐SalemNCUSA
- Translational Science CenterWake Forest UniversityWinston‐SalemNCUSA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
18
|
Buchan GJ, Bonacci G, Fazzari M, Salvatore SR, Gelhaus Wendell S. Nitro-fatty acid formation and metabolism. Nitric Oxide 2018; 79:38-44. [PMID: 30006146 DOI: 10.1016/j.niox.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Nitro-fatty acids (NO2-FA) are pleiotropic modulators of redox signaling pathways. Their effects on inflammatory signaling have been studied in great detail in cell, animal and clinical models primarily using exogenously administered nitro-oleic acid. While we know a considerable amount regarding NO2-FA signaling, endogenous formation and metabolism is relatively unexplored. This review will cover what is currently known regarding the proposed mechanisms of NO2-FA formation, dietary modulation of endogenous NO2-FA levels, pathways of NO2-FA metabolism and the detection of NO2-FA and corresponding metabolites.
Collapse
Affiliation(s)
- Gregory J Buchan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gustavo Bonacci
- CIBICI - CONICET, Departamento de Bioquímica Clínica Facultad de Ciencias Químicas, (U.N.C.), Haya de la Torre y Medina Allende Ciudad Universitaria, Córdoba C.P. N°: X5000HUA, Argentina
| | - Marco Fazzari
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Fondazione Ri.MED, Via Bandiera 11, 90133 Palermo, Italy
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stacy Gelhaus Wendell
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Freeman BA, O'Donnell VB, Schopfer FJ. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide 2018; 77:106-111. [PMID: 29742447 DOI: 10.1016/j.niox.2018.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023]
Abstract
Foundational advances in eicosanoid signaling, the free radical biology of oxygen and nitric oxide and mass spectrometry all converged to enable the discovery of nitrated unsaturated fatty acids. Due to the unique biochemical characteristics of fatty acid nitroalkenes, these species undergo rapid and reversible Michael addition of biological nucleophiles such as cysteine, leading to the post-translational modification of low molecular weight and protein thiols. This capability has led to the present understanding that nitro-fatty acid reaction with the alkylation-sensitive cysteine proteome leads to physiologically-beneficial alterations in transcriptional regulatory protein function, gene expression and in vivo rodent model responses to metabolic and inflammatory stress. These findings motivated the preclinical and clinical development of nitro-fatty acids as new drug candidates for treating acute and chronic metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Beckel JM, de Groat WC. The effect of the electrophilic fatty acid nitro-oleic acid on TRP channel function in sensory neurons. Nitric Oxide 2018; 78:S1089-8603(17)30289-6. [PMID: 29578059 PMCID: PMC6151181 DOI: 10.1016/j.niox.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/28/2023]
Abstract
Nitro-oleic acid (NO2-OA) and related nitroalkenes are electrophilic fatty acid derivatives that are present in normal tissues at nanomolar concentrations and can increase significantly during inflammation. These substances can suppress multiple intracellular signaling pathways contributing to inflammation by reversible Michael addition reactions with nucleophilic residues such as cysteine and histidine leading to post-translational modification of proteins. NO2-OA also can influence inflammation and pain by acting on transient receptor potential (TRP) channels in primary sensory neurons. TRPV1, TRPA1 and TRPC can respond to electrophilic fatty acids because they have ankyrin-like repeats in their N terminus that are rich in cysteine residues that react with electrophiles and other thiol modifying species. NO2-OA acts on TRP channels to initially depolarize and induce firing in sensory neurons followed by desensitization and suppression of firing. In vivo experiments revealed that pretreatment with NO2-OA reduces nociceptive behavior evoked by local administration of a TRPA1 agonist (AITC) to the rat hind paw. These results raise the possibility that NO2-OA might be useful clinically to reduce neurogenic inflammation and certain types of painful sensations by desensitizing TRPA1 expressing nociceptive afferents.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
21
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
22
|
Woodcock CSC, Huang Y, Woodcock SR, Salvatore SR, Singh B, Golin-Bisello F, Davidson NE, Neumann CA, Freeman BA, Wendell SG. Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth. J Biol Chem 2017; 293:1120-1137. [PMID: 29158255 DOI: 10.1074/jbc.m117.814368] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/05/2017] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) comprises ∼20% of all breast cancers and is the most aggressive mammary cancer subtype. Devoid of the estrogen and progesterone receptors, along with the receptor tyrosine kinase ERB2 (HER2), that define most mammary cancers, there are no targeted therapies for patients with TNBC. This, combined with a high metastatic rate and a lower 5-year survival rate than for other breast cancer phenotypes, means there is significant unmet need for new therapeutic strategies. Herein, the anti-neoplastic effects of the electrophilic fatty acid nitroalkene derivative, 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA), were investigated in multiple preclinical models of TNBC. NO2-OA reduced TNBC cell growth and viability in vitro, attenuated TNFα-induced TNBC cell migration and invasion, and inhibited the tumor growth of MDA-MB-231 TNBC cell xenografts in the mammary fat pads of female nude mice. The up-regulation of these aggressive tumor cell growth, migration, and invasion phenotypes is mediated in part by the constitutive activation of pro-inflammatory nuclear factor κB (NF-κB) signaling in TNBC. NO2-OA inhibited TNFα-induced NF-κB transcriptional activity in human TNBC cells and suppressed downstream NF-κB target gene expression, including the metastasis-related proteins intercellular adhesion molecule-1 and urokinase-type plasminogen activator. The mechanisms accounting for NF-κB signaling inhibition by NO2-OA in TNBC cells were multifaceted, as NO2-OA (a) inhibited the inhibitor of NF-κB subunit kinase β phosphorylation and downstream inhibitor of NF-κB degradation, (b) alkylated the NF-κB RelA protein to prevent DNA binding, and (c) promoted RelA polyubiquitination and proteasomal degradation. Comparisons with non-tumorigenic human breast epithelial MCF-10A and MCF7 cells revealed that NO2-OA more selectively inhibited TNBC function. This was attributed to more facile mechanisms for maintaining redox homeostasis in normal breast epithelium, including a more favorable thiol/disulfide balance, greater extents of multidrug resistance protein-1 (MRP1) expression, and greater MRP1-mediated efflux of NO2-OA-glutathione conjugates. These observations reveal that electrophilic fatty acid nitroalkenes react with more alkylation-sensitive targets in TNBC cells to inhibit growth and viability.
Collapse
Affiliation(s)
- Chen-Shan Chen Woodcock
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yi Huang
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.,the Women's Cancer Research Center of the UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, and
| | - Steven R Woodcock
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Sonia R Salvatore
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bhupinder Singh
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Franca Golin-Bisello
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Nancy E Davidson
- the Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington 98109
| | - Carola A Neumann
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.,the Women's Cancer Research Center of the UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, and
| | - Bruce A Freeman
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
| | - Stacy G Wendell
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|