1
|
Harrison DG, Patrick DM. Immune Mechanisms in Hypertension. Hypertension 2024; 81:1659-1674. [PMID: 38881474 PMCID: PMC11254551 DOI: 10.1161/hypertensionaha.124.21355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
It is now apparent that immune mediators including complement, cytokines, and cells of the innate and adaptive immune system contribute not only to blood pressure elevation but also to the target organ damage that occurs in response to stimuli like high salt, aldosterone, angiotensin II, and sympathetic outflow. Alterations of vascular hemodynamic factors, including microvascular pulsatility and shear forces, lead to vascular release of mediators that affect myeloid cells to become potent antigen-presenting cells and promote T-cell activation. Research in the past 2 decades has defined specific biochemical and molecular pathways that are engaged by these stimuli and an emerging paradigm is these not only lead to immune activation, but that products of immune cells, including cytokines, reactive oxygen species, and metalloproteinases act on target cells to further raise blood pressure in a feed-forward fashion. In this review, we will discuss these molecular and pathophysiological events and discuss clinical interventions that might prove effective in quelling this inflammatory process in hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Nashville, TN 37212
| |
Collapse
|
2
|
Chang M, Wu G, Bao P, Yao S, Du M, Chu C, Wang D, Jia H, Sun Y, Yan Y, Zhang X, Hu G, Man Z, Guo T, Luo W, Li H, Wang Y, Mu J. Associations of E-proteinoid 3 receptor genetic polymorphisms with salt sensitivity, longitudinal blood pressure changes, and hypertension incidence in Chinese adults. J Clin Hypertens (Greenwich) 2024; 26:955-963. [PMID: 38952049 PMCID: PMC11301432 DOI: 10.1111/jch.14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/13/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024]
Abstract
The E-proteinoid 3 receptor (PTGER3), a member of the prostaglandin E2 (PGE2) subtype receptor, belongs to the G-protein-coupled superfamily of receptors. Animal studies have demonstrated its involvement in salt sensitivity by regulating sodium reabsorption. This study aimed to investigate the association between genetic variants of PTGER3 and salt sensitivity, longitudinal blood pressure (BP) changes, and the incidence of hypertension in Chinese adults. A chronic salt intake intervention was conducted involving 514 adults from 124 families in the 2004 Baoji Salt-Sensitivity Study Cohort in northern China. These participants followed a 3-day regular baseline diet, followed by a 7-day low-salt diet (3.0 g/d) and a 7-day high-salt diet (18 g/d), and were subsequently followed for 14 years. The findings revealed a significant relationship between the single nucleotide polymorphism (SNP) rs17482751 of PTGER3 and diastolic blood pressure (DBP) response to high salt intervention. Additionally, SNPs rs11209733, rs3765894, and rs2268062 were significantly associated with longitudinal changes in systolic blood pressure (SBP), DBP, and mean arterial pressure (MAP) during the 14-year follow-up period. SNP rs6424414 was significantly associated with longitudinal changes in DBP over 14 years. Finally, SNP rs17482751 showed a significant correlation with the incidence of hypertension over 14 years. These results emphasize the significant role of PTGER3 gene polymorphism in salt sensitivity, longitudinal BP changes, and the development of hypertension in the Chinese population.
Collapse
Affiliation(s)
- Ming‐Ke Chang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Guan‐Ji Wu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of CardiologyXi'an Central Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Peng Bao
- Department of General PracticeXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shi Yao
- Guangdong Key Laboratory of Age‐Related Cardiac and Cerebral DiseasesAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Ming‐Fei Du
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Chao Chu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Dan Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Hao Jia
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yue Sun
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yu Yan
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Xi Zhang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Gui‐Lin Hu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Zi‐Yue Man
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Tong‐Shuai Guo
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Wen‐Jing Luo
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Hao Li
- Department of Critical Care MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yang Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Jian‐Jun Mu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| |
Collapse
|
3
|
van Dorst DCH, Mirabito Colafella KM, van Veghel R, Garrelds IM, de Vries R, Mathijssen RHJ, Danser AHJ, Versmissen J. Cyclooxygenase-2 inhibition prevents renal toxicity but not hypertension during sunitinib treatment. Eur J Pharmacol 2024; 962:176199. [PMID: 38029870 DOI: 10.1016/j.ejphar.2023.176199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Anticancer angiogenesis inhibitors cause hypertension and renal injury. Previously we observed in rats that high-dose aspirin (capable of blocking cyclooxygenase (COX)-1 and-2) was superior to low-dose aspirin (blocking COX-1 only) to prevent these side-effects during treatment with the angiogenesis inhibitor sunitinib, suggesting a role for COX-2. High-dose aspirin additionally prevented the rise in COX-derived prostacyclin (PGI2). Therefore, we studied the preventive effects of selective COX-2 inhibition and the hypothesized contributing role of PGI2 during angiogenesis inhibition. METHODS Male WKY rats received vehicle, sunitinib ((SU), 14 mg/kg/day) alone or combined with COX-2 inhibition (celecoxib, 10 mg/kg/day) or a PGI2 analogue (iloprost, 100 μg/kg/day) for 8 days (n = 8-9 per group). Mean arterial pressure (MAP) was measured via radiotelemetry, biochemical measurements were performed via ELISA and vascular function was assessed via wire myography. RESULTS SU increased MAP (17±1mmHg versus 3±1mmHg after vehicle on day 4, P < 0.002), which could not be significantly blunted by celecoxib (+12±3mmHg on day 4, P = 0.247), but was temporarily attenuated by iloprost (treatment days 1 + 2 only). Urinary PGI2 (996 ± 112 versus 51 ± 11ng/24h after vehicle, P < 0.001), but not circulating PGI2 increased during SU, which remained unaffected by celecoxib and iloprost. Celecoxib reduced sunitinib-induced albuminuria (0.36 ± 0.05 versus 0.58 ± 0.05mg/24h after SU, P = 0.005). Wire myography demonstrated increased vasoconstriction to endothelin-1 after SU (Emax P = 0.005 versus vehicle), which remained unaffected by celecoxib or iloprost. CONCLUSION Selective COX-2 inhibition ameliorates albuminuria during angiogenesis inhibition with sunitinib, which most likely acts independently of PGI2. To combat angiogenesis inhibitor-induced hypertension, dual rather than selective COX-1/2 blockade seems preferential.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Richard van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
5
|
Liu N, Tang J, Xue Y, Mok V, Zhang M, Ren X, Wang Y, Fu J. EP3 Receptor Deficiency Improves Vascular Remodeling and Cognitive Impairment in Cerebral Small Vessel Disease. Aging Dis 2022; 13:313-328. [PMID: 35111376 PMCID: PMC8782563 DOI: 10.14336/ad.2021.0627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/27/2021] [Indexed: 11/21/2022] Open
Abstract
Aging and hypertension are major risk factors for cerebral small vessel disease (CSVD). Anti-hypertensive therapy has achieved effective; however, incomplete results in treating CSVD, suggesting the need for additional treatments. Targeting abnormal inflammatory responses has become a topic of research interest. Small artery remodeling is the main pathological feature of CSVD. Inhibition of the E-prostanoid 3 (EP3) receptor has been shown to attenuate vascular remodeling in peripheral organs; however, little is known about its role in CSVD. Therefore, we investigated whether the deletion of EP3 attenuates the development of CSVD in an animal model-- stroke-prone renovascular hypertensive rat (RHRsp). We found that the cerebral small arteries of RHRsp exhibited increased EP3 expression. Despite no alleviation of hypertension, the deletion of EP3 still attenuated the cerebral small artery remodeling of RHRsp, as evidenced by reduced overexpression of extracellular matrix (ECM) in the vessel. In vitro experiments indicated that EP3 deletion regulated the expression of ECM by downregulating TGF-β1/Smad signaling. Furthermore, the Morris water maze test and magnetic resonance test demonstrated that EP3 knockout attenuated cognitive impairment of the RHRsp, possibly through increased cerebral blood flow. Together, our results indicate that the deletion of EP3 attenuates vascular remodeling and vascular cognitive impairment induced by hypertension, and blockade of the EP3 receptor may be a promising strategy for the treatment of CSVD.
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Miaoyi Zhang
- Department of Neurology, North Huashan hospital, Fudan University, No.108 Lu Xiang Road, Shanghai, China.
| | - Xue Ren
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Jianhui Fu, Huashan Hospital, Fudan University, Shanghai, China. ; Dr. Yilong Wang, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
- Correspondence should be addressed to: Dr. Jianhui Fu, Huashan Hospital, Fudan University, Shanghai, China. ; Dr. Yilong Wang, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
6
|
Bryson TD, Harding P. Prostaglandin E2 EP receptors in cardiovascular disease: An update. Biochem Pharmacol 2021; 195:114858. [PMID: 34822808 DOI: 10.1016/j.bcp.2021.114858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
This review article provides an update for the role of prostaglandin E2 receptors (EP1, EP2, EP3 and EP4) in cardiovascular disease. Where possible we have reported citations from the last decade although this was not possible for all of the topics covered due to the paucity of publications. The authors have attempted to cover the subjects of ischemia-reperfusion injury, arrhythmias, hypertension, novel protein binding partners of the EP receptors and their pathophysiological significance, and cardiac regeneration. These latter two topics bring studies of the EP receptors into new and exciting areas of research that are just beginning to be explored. Where there is peer-reviewed literature, the authors have placed particular emphasis on clinical studies although these are limited in number.
Collapse
Affiliation(s)
- Timothy D Bryson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
7
|
Innate immunity and clinical hypertension. J Hum Hypertens 2021; 36:503-509. [PMID: 34689174 DOI: 10.1038/s41371-021-00627-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023]
Abstract
Emerging evidence has supported a role of inflammation and immunity in the genesis of hypertension. In humans and experimental models of hypertension, cells of the innate and adaptive immune system enter target tissues, including vessels and the kidney, and release powerful mediators including cytokines, matrix metalloproteinases and reactive oxygen species that cause tissue damage, fibrosis and dysfunction. These events augment the blood pressure elevations in hypertension and promote end-organ damage. Factors that activate immune cells include sympathetic outflow, increased sodium within microenvironments where these cells reside, and signals received from the vasculature. In particular, the activated endothelium releases reactive oxygen species and interleukin (IL)-6 which in turn stimulate transformation of monocytes to become antigen presenting cells and produce cytokines like IL-1β and IL-23, which further affect T cell function to produce IL-17A. Genetic deletion or neutralization of these cytokines ameliorates hypertension and end-organ damage. In this review, we will consider in depth features of the hypertensive milieu that lead to these events and consider new treatment approaches to limit the untoward effects of inflammation in hypertension.
Collapse
|
8
|
Song CY, Singh P, Motiwala M, Shin JS, Lew J, Dutta SR, Gonzalez FJ, Bonventre JV, Malik KU. 2-Methoxyestradiol Ameliorates Angiotensin II-Induced Hypertension by Inhibiting Cytosolic Phospholipase A 2α Activity in Female Mice. Hypertension 2021; 78:1368-1381. [PMID: 34628937 PMCID: PMC8516072 DOI: 10.1161/hypertensionaha.121.18181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. We tested the hypothesis that CYP1B1 (cytochrome P450 1B1)-17β-estradiol metabolite 2-methoxyestradiol protects against Ang II (angiotensin II)–induced hypertension by inhibiting group IV cPLA2α (cytosolic phospholipase A2α) activity and production of prohypertensive eicosanoids in female mice. Ang II (700 ng/kg per minute, SC) increased mean arterial blood pressure (BP), systolic and diastolic BP measured by radiotelemetry, renal fibrosis, and reactive oxygen species production in wild-type mice (cPLA2α+/+/Cyp1b1+/+) that were enhanced by ovariectomy and abolished in intact and ovariectomized-cPLA2α−/−/Cyp1b1+/+ mice. Ang II–induced increase in SBP measured by tail-cuff, renal fibrosis, reactive oxygen species production, and cPLA2α activity measured by its phosphorylation in the kidney, and urinary excretion of prostaglandin E2 and thromboxane A2 metabolites were enhanced in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. 2-Methoxyestradiol and arachidonic acid metabolism inhibitor 5,8,11,14-eicosatetraynoic acid attenuated the Ang II–induced increase in SBP, renal fibrosis, reactive oxygen species production, and urinary excretion of prostaglandin E2, and thromboxane A2 metabolites in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. Antagonists of prostaglandin E2 and thromboxane A2 receptors EP1 and EP3 and TP, respectively, inhibited Ang II–induced increases in SBP and reactive oxygen species production and renal fibrosis in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. These data suggest that CYP1B1-generated metabolite 2-methoxyestradiol mitigates Ang II–induced hypertension and renal fibrosis by inhibiting cPLA2α activity, reducing prostaglandin E2, and thromboxane A2 production and stimulating EP1 and EP3 and TP receptors, respectively. Thus, 2-methoxyestradiol and the drugs that selectively block EP1 and EP3 and TP receptors could be useful in treating hypertension and its pathogenesis in females.
Collapse
Affiliation(s)
- Chi Young Song
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Purnima Singh
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Mustafa Motiwala
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Ji Soo Shin
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Jessica Lew
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Shubha R. Dutta
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Joseph V. Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (J.V.B.)
| | - Kafait U. Malik
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| |
Collapse
|
9
|
Singh P, Song CY, Dutta SR, Pingili A, Shin JS, Gonzalez FJ, Bonventre JV, Malik KU. 6β-Hydroxytestosterone Promotes Angiotensin II-Induced Hypertension via Enhanced Cytosolic Phospholipase A 2α Activity. Hypertension 2021; 78:1053-1066. [PMID: 34420370 PMCID: PMC8415516 DOI: 10.1161/hypertensionaha.121.17927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Supplemental Digital Content is available in the text. This study was conducted to test the hypothesis that the CYP1B1 (cytochrome P450 1B1)-testosterone metabolite 6β-hydroxytestosterone contributes to angiotensin II-induced hypertension by promoting activation of group IV cPLA2α (cytosolic phospholipase A2α) and generation of prohypertensive eicosanoids in male mice. Eight-week-old male intact or orchidectomized cPLA2α+/+/Cyp1b1+/+ and cPLA2α–/–/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1–/– mice were infused with angiotensin II (700 ng/kg/min, subcutaneous) for 2 weeks and injected with 6β-hydroxytestosterone (15 μg/g/every third day, intraperitoneal). Systolic blood pressure was measured by tail-cuff and confirmed by radiotelemetry. Angiotensin II-induced increase in systolic blood pressure, cardiac and renal collagen deposition, and reactive oxygen species production were reduced by disruption of the cPLA2α or Cyp1b1 genes or by administration of the arachidonic acid metabolism inhibitor 5,8,11,14-eicosatetraynoic acid to cPLA2α+/+/Cyp1b1+/+ mice. 6β-hydroxytestosterone treatment restored these effects of angiotensin II in cPLA2α+/+/Cyp1b1–/– mice but not in orchidectomized cPLA2α–/–/Cyp1b1+/+ mice, which were lowered by 5,8,11,14-eicosatetraynoic acid in cPLA2α+/+/Cyp1b1–/– mice. Antagonists of prostaglandin E2-EP1/EP3 receptors and thromboxane A2-TP receptors decreased the effect of 6β-hydroxytestosterone in restoring the angiotensin II-induced increase in systolic blood pressure, cardiac and renal collagen deposition, and reactive oxygen species production in cPLA2α+/+/Cyp1b1–/– mice. These data suggest that 6β-hydroxytestosterone promotes angiotensin II-induced increase in systolic blood pressure and associated pathogenesis via cPLA2α activation and generation of eicosanoids, most likely prostaglandin E2 and thromboxane A2 that exerts prohypertensive effects by stimulating EP1/EP3 and TP receptors, respectively. Therefore, agents that selectively block these receptors could be useful in treating testosterone exacerbated angiotensin II-induced hypertension and its pathogenesis.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Chi Young Song
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Shubha R Dutta
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Ajeeth Pingili
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Ji Soo Shin
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Kafait U Malik
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| |
Collapse
|
10
|
Abstract
Dr Irvine Page proposed the Mosaic Theory of Hypertension in the 1940s advocating that hypertension is the result of many factors that interact to raise blood pressure and cause end-organ damage. Over the years, Dr Page modified his paradigm, and new concepts regarding oxidative stress, inflammation, genetics, sodium homeostasis, and the microbiome have arisen that allow further refinements of the Mosaic Theory. A constant feature of this approach to understanding hypertension is that the various nodes are interdependent and that these almost certainly vary between experimental models and between individuals with hypertension. This review discusses these new concepts and provides an introduction to other reviews in this compendium of Circulation Research.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center
| | - Thomas M. Coffman
- Cardiovascular and Metabolic Disorders Research Program, Duke-National University of Singapore Medical School
| | | |
Collapse
|
11
|
Wang FF, Ba J, Yu XJ, Shi XL, Liu JJ, Liu KL, Fu LY, Su Q, Li HB, Kang KB, Yi QY, Wang SQ, Gao HL, Qi J, Li Y, Zhu GQ, Kang YM. Central Blockade of E-Prostanoid 3 Receptor Ameliorated Hypertension Partially by Attenuating Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus of Spontaneously Hypertensive Rats. Cardiovasc Toxicol 2021; 21:286-300. [PMID: 33165770 DOI: 10.1007/s12012-020-09619-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022]
Abstract
Hypertension, as one of the major risk factors for cardiovascular disease, significantly affects human health. Prostaglandin E2 (PGE2) and the E3-class prostanoid (EP3) receptor have previously been demonstrated to modulate blood pressure and hemodynamics in various animal models of hypertension. The PGE2-evoked pressor and biochemical responses can be blocked with the EP3 receptor antagonist, L-798106 (N-[(5-bromo-2methoxyphenyl)sulfonyl]-3-[2-(2-naphthalenylmethyl) phenyl]-2-propenamide). In the hypothalamic paraventricular nucleus (PVN), sympathetic excitation can be introduced by PGE2, which can activate EP3 receptors located in the PVN. In such a case, the central knockdown of EP3 receptor can be considered as a potential therapeutic modality for hypertension management. The present study examined the efficacy of the PVN infusion of L-798106, by performing experiments on spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs). The rats were administered with chronic bilateral PVN infusion of L-798106 (10 μg/day) or the vehicle for 28 days. The results indicated that the SHRs had a higher mean arterial pressure (MAP), an increased Fra-like (Fra-LI) activity in the PVN, as well as a higher expression of gp91phox, mitogen-activated protein kinase (MAPK), and proinflammatory cytokines in the PVN compared with the WKYs. Additionally, the expression of Cu/Zn-SOD in the PVN of the SHRs was reduced compared with the WKYs. The bilateral PVN infusion of L-798106 significantly reduced MAP, as well as plasma norepinephrine (NE) levels in the SHRs. It also inhibited Fra-LI activity and reduced the expression of gp91phox, proinflammatory cytokines, and MAPK, whereas it increased the expression of Cu/Zn-SOD in the PVN of SHRs. In addition, L-798106 restored the balance of the neurotransmitters in the PVN. On the whole, the findings of the present study demonstrate that the PVN blockade of EP3 receptor can ameliorate hypertension and cardiac hypertrophy partially by attenuating ROS and proinflammatory cytokines, and modulating neurotransmitters in the PVN.
Collapse
Affiliation(s)
- Fang-Fang Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Functional Medicine, School of Basic Medical Sciences, Jiamusi University, Jiamusi, 154007, China
| | - Juan Ba
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shu-Qiu Wang
- Department of Functional Medicine, School of Basic Medical Sciences, Jiamusi University, Jiamusi, 154007, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine; Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
12
|
Wu J, Fang S, Lu KT, Wackman K, Schwartzman ML, Dikalov SI, Grobe JL, Sigmund CD. EP3 (E-Prostanoid 3) Receptor Mediates Impaired Vasodilation in a Mouse Model of Salt-Sensitive Hypertension. Hypertension 2021; 77:1399-1411. [PMID: 33641369 DOI: 10.1161/hypertensionaha.120.16518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jing Wu
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Shi Fang
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.).,Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa (S.F.)
| | - Ko-Ting Lu
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Kelsey Wackman
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla (M.L.S.)
| | - Sergey I Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (S.D.)
| | - Justin L Grobe
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| |
Collapse
|
13
|
Liu TH, Chen MH, Tu WQ, Liang QE, Tao WC, Jin Z, Xiao Y, Chen LG. Network and 16S rRNA Sequencing-Combined Approach Provides Insightal Evidence of Vitamin K 2 for Salt-Sensitive Hypertension. Front Nutr 2021; 8:639467. [PMID: 33718421 PMCID: PMC7943625 DOI: 10.3389/fnut.2021.639467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
Vitamin K2 (VK2), found to act to treat hypertension, has been widely used in the food and pharmaceutical industries nowadays. However, the potential targets and molecular mechanisms of VK2 for salt-sensitive hypertension have not been fully investigated. Therefore, the study aimed to investigate the potential molecular mechanisms of VK2 for salt-sensitive hypertension using network pharmacology and 16S rRNA sequencing strategy. The network pharmacology-based findings from KEGG enrichment analysis revealed that VK2-treated salt-sensitive hypertension was mechanically associated with the complement and coagulation cascades, calcium signaling pathway, renin–angiotensin system, etc. A total of 29 different bacteria in an animal experiment after VK2 supplementation were screened and functionally enriched using PICRUSt2. Additionally, 10 signaling pathways were identified in which the renin–angiotensin system was found to be the potential molecular mechanisms with the greatest change in multiple and statistical significance. Moreover, the results of the renin–angiotensin system-related protein expression exhibited VK2-inhibited renin–angiotensin system in salt-induced hypertensive mice, which significantly verified the previous biological and functional prediction analysis. Finally, spearman correlation analysis showed the different bacteria such as Dubosiella, Ileibacterium, etc., had a positive or negative correlation with renin–angiotensin system-related proteins in salt-induced mice. In conclusion, the potential molecular mechanisms of VK2 for salt-sensitive hypertension may be beneficially achieved by the specific inhibition of the renin–angiotensin system, contributing to the development for a new preventive strategy of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tian-Hao Liu
- College of Chinese medicine, Jinan University, Guangzhou, China
| | - Ming-Hao Chen
- College of medicine, Jinan University, Guangzhou, China
| | - Wan-Qing Tu
- College of Chinese medicine, Jinan University, Guangzhou, China
| | - Qiu-Er Liang
- College of Chinese medicine, Jinan University, Guangzhou, China
| | - Wen-Cong Tao
- College of Chinese medicine, Jinan University, Guangzhou, China
| | - Zhen Jin
- College of Chinese medicine, Jinan University, Guangzhou, China
| | - Ya Xiao
- College of Chinese medicine, Jinan University, Guangzhou, China
| | - Li-Guo Chen
- College of Chinese medicine, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Aschner M, Nguyen TT, Sinitskii AI, Santamaría A, Bornhorst J, Ajsuvakova OP, da Rocha JBT, Skalny AV, Tinkov AA. Isolevuglandins (isoLGs) as toxic lipid peroxidation byproducts and their pathogenetic role in human diseases. Free Radic Biol Med 2021; 162:266-273. [PMID: 33099003 DOI: 10.1016/j.freeradbiomed.2020.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Lipid peroxidation results in generation of a variety of lipid hydroperoxides and other highly reactive species that covalently modify proteins, nucleic acids, and other lipids, thus resulting in lipotoxicity. Although biological relevance of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) is well studied, the existing data on the role of isolevuglandins (isoLGs) in pathology are insufficient. Therefore, the objective of the present study was to review the existing data on biological effects of isoLG and isoLG adducts and their role in multiple diseases. Sixty four highly reactive levuglandin-like γ-ketoaldehyde (γ-KA, or isoketals, IsoK, or isolevuglandins, IsoLG) regio- and stereo-isomers are formed as products of arachidonic acid oxidation. IsoLGs react covalently with lysyl residues of proteins to form a stable adduct and intramolecular aminal, bispyrrole, and trispyrrole cross-links. Phosphatidylethanolamine was also shown to be the target for isoLG binding as compared to proteins and DNA. Free IsoLGs are not detectable in vivo, although isolevuglandin adduction to amino acid residues of particular proteins may be evaluated with liquid chromatography-tandem mass spectrometry. Adducts formed were shown to play a significant role in the development and maintenance of oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and inflammation. These, and more specific molecular pathways, link isoLG and isoLG-adduct formation to develop a variety of pathologies, including cardiovascular diseases (atherosclerosis, hypertension, heart failure), obesity and diabetes, cancer, neurodegeneration, eye diseases (retinal degeneration and glaucoma), as well as ageing. Hypothetically, isoLGs and isoLG adduct formation may be considered as the potential target for treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Thuy T Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Olga P Ajsuvakova
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
15
|
Hirooka Y. Sympathetic Activation in Hypertension: Importance of the Central Nervous System. Am J Hypertens 2020; 33:914-926. [PMID: 32374869 DOI: 10.1093/ajh/hpaa074] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system plays a critical role in the pathogenesis of hypertension. The central nervous system (CNS) organizes the sympathetic outflow and various inputs from the periphery. The brain renin-angiotensin system has been studied in various regions involved in controlling sympathetic outflow. Recent progress in cardiovascular research, particularly in vascular biology and neuroscience, as well as in traditional physiological approaches, has advanced the field of the neural control of hypertension in which the CNS plays a vital role. Cardiovascular research relating to hypertension has focused on the roles of nitric oxide, oxidative stress, inflammation, and immunity, and the network among various organs, including the heart, kidney, spleen, gut, and vasculature. The CNS mechanisms are similarly networked with these factors and are widely studied in neuroscience. In this review, I describe the development of the conceptual flow of this network in the field of hypertension on the basis of several important original research articles and discuss potential future breakthroughs leading to clinical precision medicine.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa City, Fukuoka, Japan
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Center, Takagi Hospital, Okawa City, Fukuoka, Japan
| |
Collapse
|
16
|
Xiao L, Harrison DG. Inflammation in Hypertension. Can J Cardiol 2020; 36:635-647. [PMID: 32389337 DOI: 10.1016/j.cjca.2020.01.013] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
For more than 50 years, evidence has accumulated that inflammation contributes to the pathogenesis of hypertension. Immune cells have been observed in vessels and kidneys of hypertensive humans. Biomarkers of inflammation, including high sensitivity C-reactive protein, various cytokines, and products of the complement pathway are elevated in humans with hypertension. Emerging evidence suggests that hypertension is accompanied and indeed initiated by activation of complement, the inflammasome, and by a change in the phenotype of circulating immune cells, particularly myeloid cells. High-dimensional transcriptomic analyses are providing insight into new subclasses of immune cells that are likely injurious in hypertension. These inflammatory events are interdependent and there is ultimately engagement of the adaptive immune system through mechanisms involving oxidative stress, modification of endogenous proteins, and alterations in antigen processing and presentation. These observations suggest new therapeutic opportunities to reduce end organ damage in hypertension might be used and guided by levels of inflammatory biomarkers.
Collapse
Affiliation(s)
- Liang Xiao
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David G Harrison
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|