1
|
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies. Curr Hypertens Rep 2024; 26:483-495. [PMID: 39093387 PMCID: PMC11455731 DOI: 10.1007/s11906-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin-angiotensin-aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia. RECENT FINDINGS The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice. In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia.
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia.
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia.
| |
Collapse
|
2
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Niihata K, Nishiwaki H, Kinoshita M, Kurosawa K, Sakuramachi Y, Matsunaga S, Okamura S, Tsujii S, Hayashino Y, Kurita N. Association between urinary C-megalin levels and progressive kidney dysfunction: a cohort study based on the diabetes distress and care registry at Tenri (DDCRT 24). Acta Diabetol 2023; 60:1643-1650. [PMID: 37439857 DOI: 10.1007/s00592-023-02144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
AIMS The aim of this cohort study was to evaluate the association between urinary levels of C-megalin, a full-length form of megalin, and kidney dysfunction progression and its dependence on the urinary albumin-creatinine ratio (UACR) in individuals with diabetes. METHODS We enrolled 1,547 individuals with diabetes who visited the ambulatory clinic at Tenri Hospital, a regional tertiary-care hospital in Tenri City, Nara Prefecture, Japan, with an estimated glomerular filtration (eGFR) of ≥ 30 mL/min/1.73 m2. The hazard ratio (HR) and 95% confidence interval (CI) were estimated using Cox proportional hazard models to examine the association between urinary C-megalin levels and eGFR decline by ≥ 40% from baseline. RESULTS Urinary C-megalin level was not associated with ≥ 40% eGFR decline in an age-, sex-, eGFR-, systolic blood pressure-, hemoglobin-, and UACR-adjusted model in the 1,547 patients enrolled in the study. However, urinary C-megalin levels were associated with a ≥ 40% decline in eGFR when accounting for the relationship between urinary C-megalin levels and UACR in the model. This association was UACR-dependent. CONCLUSIONS High urinary C-megalin levels were associated with progressive kidney dysfunction in individuals with diabetes, and this association was attenuated by high UACRs.
Collapse
Affiliation(s)
- Kakuya Niihata
- Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan.
| | - Hiroki Nishiwaki
- Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
- Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan
- Showa University Research Administration Center (SURAC), Showa University, Shinagawa, Tokyo, Japan
| | - Maki Kinoshita
- Department of Clinical Laboratory, Tenri Hospital, Nara, Tenri, Japan
| | | | - Yui Sakuramachi
- Department of Endocrinology, Tenri Hospital, Nara, Tenri, Japan
| | | | | | - Satoru Tsujii
- Department of Endocrinology, Tenri Hospital, Nara, Tenri, Japan
| | | | - Noriaki Kurita
- Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
- Department of Innovative Research and Education for Clinicians and Trainees (DiRECT), Fukushima Medical University Hospital, Fukushima, Fukushima, Japan
- Center for Innovative Research for Communities and Clinical Excellence (CIRC2LE), Fukushima Medical University, Fukushima, Japan
- Institute for Health Outcomes and Process Evaluation Research (iHope International), Kyoto, Japan
| |
Collapse
|
4
|
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol 2023; 39:1900-1912. [PMID: 37348757 PMCID: PMC10730775 DOI: 10.1016/j.cjca.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.
Collapse
Affiliation(s)
- Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France; CEA, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Goto S, Hosojima M, Kabasawa H, Saito A. The endocytosis receptor megalin: From bench to bedside. Int J Biochem Cell Biol 2023; 157:106393. [PMID: 36863658 DOI: 10.1016/j.biocel.2023.106393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
The large (∼600 kDa) endocytosis receptor megalin/low-density lipoprotein receptor-related protein 2 is highly expressed at the apical membrane of proximal tubular epithelial cells (PTECs). Megalin plays an important role in the endocytosis of various ligands via interactions with intracellular adaptor proteins, which mediate the trafficking of megalin in PTECs. Megalin mediates the retrieval of essential substances, including carrier-bound vitamins and elements, and impairment of the endocytic process may result in the loss of those substances. In addition, megalin reabsorbs nephrotoxic substances such as antimicrobial (colistin, vancomycin, and gentamicin) or anticancer (cisplatin) drugs and advanced glycation end product-modified or fatty acid-containing albumin. The megalin-mediated uptake of these nephrotoxic ligands causes metabolic overload in PTECs and leads to kidney injury. Blockade or suppression of the megalin-mediated endocytosis of nephrotoxic substances may represent a novel therapeutic strategy for drug-induced nephrotoxicity or metabolic kidney disease. Megalin reabsorbs urinary biomarker proteins such as albumin, α1-microglobulin, β2-microglobulin, and liver-type fatty acid-binding protein; thus, the above-mentioned megalin-targeted therapy may have an effect on the urinary excretion of these biomarkers. We have previously established a sandwich enzyme-linked immunosorbent assay to measure the ectodomain (A-megalin) and full-length (C-megalin) forms of urinary megalin using monoclonal antibodies against the amino- and carboxyl-terminals of megalin, respectively, and reported their clinical usefulness. In addition, there have been reports of patients with novel pathological anti-brush border autoantibodies targeting megalin in the kidney. Even with these breakthroughs in the characterization of megalin, a large number of issues remain to be addressed in future research.
Collapse
Affiliation(s)
- Sawako Goto
- Departments of Applied Molecular Medicine, Japan
| | - Michihiro Hosojima
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hideyuki Kabasawa
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | | |
Collapse
|
7
|
Xu C, Chen Y, Ramkumar N, Zou CJ, Sigmund CD, Yang T. Collecting duct renin regulates potassium homeostasis in mice. Acta Physiol (Oxf) 2023; 237:e13899. [PMID: 36264268 PMCID: PMC10754139 DOI: 10.1111/apha.13899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 01/03/2023]
Abstract
AIM The kaliuretic action of the renin-angiotensin-aldosterone system (RAAS) is well established as highlighted by hyperkalemia side effect of RAAS inhibitors but such action is usually ascribed to systemic RAAS. The present study addresses the involvement of intrarenal RAAS in K+ homeostasis with emphasis on locally generated renin within the collecting duct (CD). METHODS Wild-type (Floxed) and CD-specific deletion of renin (CD renin KO) mice were treated for 7 days with a high K+ (HK) diet to investigate the role of CD renin in kaliuresis regulation and further define the underlying mechanism with emphasis on analysis of intrarenal aldosterone biosynthesis. RESULTS In floxed mice, renin levels were elevated in the renal medulla and urine following a 1-week HK diet, indicating activation of the intrarenal renin. CD renin KO mice had blunted HK-induced intrarenal renin response and developed impaired kaliuresis and elevated plasma K+ level (4.45 ± 0.14 vs. 3.89 ± 0.04 mM, p < 0.01). In parallel, HK-induced intrarenal aldosterone and CYP11B2 expression along with expression of renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit alpha-1 (α-BK), α-Na+ -K+ -ATPase, and epithelial sodium channel (β-ENaC and cleaved-γ-ENaC) expression were all significantly blunted in CD renin KO mice in contrast to the unaltered responses of plasma aldosterone and adrenal CYP11B2. CONCLUSION Taken together, these results support a kaliuretic action of CD renin during HK intake.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Yanting Chen
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Nirupama Ramkumar
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, UT 84132
- Veterans Affairs Medical Center, Salt Lake City, Utah, UT 84132
| |
Collapse
|
8
|
Elsakka EGE, Mokhtar MM, Hegazy M, Ismail A, Doghish AS. Megalin, a multi-ligand endocytic receptor, and its participation in renal function and diseases: A review. Life Sci 2022; 308:120923. [PMID: 36049529 DOI: 10.1016/j.lfs.2022.120923] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The endocytosis mechanism is a complicated system that is essential for cell signaling and survival. Megalin, a membrane-associated endocytic receptor, and its related proteins such as cubilin, the neonatal Fc receptor for IgG, and NaPi-IIa are important in receptors-mediated endocytosis. Physiologically, megalin uptakes plasma vitamins and proteins from primary urine, preventing their loss. It also facilitates tubular retrieval of solutes and endogenous components that may be involved in modulation and recovery from kidney injuries. Moreover, megalin is responsible for endocytosis of xenobiotics and drugs in renal tubules, increasing their half-life and/or their toxicity. Fluctuations in megalin expression and/or functionality due to changes in its regulatory mechanisms are associated with some sort of kidney injury. Also, it's an important component of several pathological conditions, including diabetic nephropathy and Dent disease. Thus, exploring the fundamental role of megalin in the kidney might help in the protection and/or treatment of multiple kidney-related diseases. Hence, this review aimed to explore the physiological roles of megalin in the kidney and their implications for kidney-related injuries.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
9
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
10
|
Yang T. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Curr Opin Nephrol Hypertens 2022; 31:351-357. [PMID: 35703290 PMCID: PMC9286065 DOI: 10.1097/mnh.0000000000000806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The (pro)renin receptor (PRR), also termed as ATPase H+ transporting accessory protein 2 (ATP6AP2), was originally cloned as a specific receptor for prorenin and renin [together called (pro)renin]. Given the wide tissue distribution of PRR, PRR was further postulated to act as a regulator of tissue renin. However, assigning a physiological role of PRR within the renin-angiotensin system (RAS) has been challenging largely due to its pleotropic functions in regulation of embryogenesis, autophagy, and H+ transport. The current review will summarize recent advances in understanding the roles of sPPR within the intrarenal RAS as well as those outside this local system. RECENT FINDINGS Site-1 protease (S1P) is a predominant source of sPPR at least in the kidney. So far most of the known physiological functions of PRR including renal handling of electrolytes and fluid and blood pressure are mediated by sPRR. In particular, sPRR serves as a positive regulator of collecting duct renin to activate the intrarenal RAS during water deprivation or angiotensin-II (AngII) infusion. However, PRR/sPRR can act in renin-independent manner under other circumstances. SUMMARY S1P-derived sPRR has emerged as a key regulator of kidney function and blood pressure and its relationship with the intrarenal RAS depends on the physiological context.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Xu C, Liu C, Xiong J, Yu J. Cardiovascular aspects of the (pro)renin receptor: Function and significance. FASEB J 2022; 36:e22237. [PMID: 35226776 DOI: 10.1096/fj.202101649rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs), including all types of disorders related to the heart or blood vessels, are the major public health problems and the leading causes of mortality globally. (Pro)renin receptor (PRR), a single transmembrane protein, is present in cardiomyocytes, vascular smooth muscle cells, and endothelial cells. PRR plays an essential role in cardiovascular homeostasis by regulating the renin-angiotensin system and several intracellular signals such as mitogen-activated protein kinase signaling and wnt/β-catenin signaling in various cardiovascular cells. This review discusses the current evidence for the pathophysiological roles of the cardiac and vascular PRR. Activation of PRR in cardiomyocytes may contribute to myocardial ischemia/reperfusion injury, cardiac hypertrophy, diabetic or alcoholic cardiomyopathy, salt-induced heart damage, and heart failure. Activation of PRR promotes vascular smooth muscle cell proliferation, endothelial cell dysfunction, neovascularization, and the progress of vascular diseases. In addition, phenotypes of animals transgenic for PRR and the hypertensive actions of PRR in the brain and kidney and the soluble PRR are also discussed. Targeting PRR in local tissues may offer benefits for patients with CVDs, including heart injury, atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunju Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Saigo S, Kino T, Uchida K, Sugawara T, Chen L, Sugiyama M, Azushima K, Wakui H, Tamura K, Ishigami T. Blood Pressure Elevation of Tubular Specific (P)RR Transgenic Mice and Lethal Tubular Degeneration due to Possible Intracellular Interactions between (P)RR and Alternative Renin Products. Int J Mol Sci 2021; 23:ijms23010302. [PMID: 35008728 PMCID: PMC8745386 DOI: 10.3390/ijms23010302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
The prorenin/renin receptor ((P)RR) is a multifunctional protein that is widely distributed in various organs. Despite intensive research for more than 20 years, this receptor has not been fully characterized. In this study, we generated mice overexpressing the tubular epithelial (P)RR gene ((P)RR-TG mice) to test the previously reported functional role of (P)RR by Ramkumar et al. in 2015 using tubular specific (P)RR KO mice. (P)RR-TG mice were maintained and analyzed in individual metabolic cages and were administered angiotensin II blocker (ARB), direct renin inhibitor (DRI), and bafilomycin, that is, vacuolar ATPase (V-ATPase) antagonist. (P)RR-TG mice were hypertensive and had alkalized urine with lower osmolality and Na+ excretion. ARB and DRI, but not bafilomycin, concurrently decreased blood pressure. Bafilomycin acidized urine of (P)RR-TG mice, or equivalently this phenomenon restored the effect of overexpressed transgene, suggesting that (P)RR functioned as a V-ATPase in renal tubules. Afterall, (P)RR-TG mice were mated with alternative renin transgenic mice (ARen2-TG), which we identified as intracellular renin previously, to generate double transgenic mice (DT-TG). Lethal renal tubular damage was observed in DT-TG mice, suggesting that intracellular renin may be a ligand for (P)RR in tubules. In summary, (P)RR did not substantially affect the tissue renin-angiotensin system (RAS) in our model of tubular specific (P)RR gene over-expression, but alternative intracellular renin may be involved in (P)RR signaling in addition to conventional V-ATPase function. Further investigations are warranted.
Collapse
Affiliation(s)
- Sae Saigo
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Tabito Kino
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kotaro Uchida
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Takuya Sugawara
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Lin Chen
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Michiko Sugiyama
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Kengo Azushima
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Hiromichi Wakui
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Kouichi Tamura
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
| | - Tomoaki Ishigami
- Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (S.S.); (T.K.); (K.U.); (T.S.); (L.C.); (M.S.); (K.A.); (H.W.); (K.T.)
- Correspondence: or
| |
Collapse
|
13
|
Culver SA, Akhtar S, Rountree-Jablin C, Keller SR, Cathro HP, Gildea JJ, Siragy HM. Knockout of Nephron ATP6AP2 Impairs Proximal Tubule Function and Prevents High-Fat Diet-Induced Obesity in Male Mice. Endocrinology 2021; 162:bqab200. [PMID: 34534267 PMCID: PMC8489432 DOI: 10.1210/endocr/bqab200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/24/2022]
Abstract
ATP6AP2 expression is increased in the nephron during high-fat diet (HFD) and its knockout (ATP6AP2 KO) reduces body weight (WT) in mice. We evaluated the contribution of ATP6AP2 to urinary glucose (UG) and albumin (Ualb) handling during HFD. We hypothesized that nephron ATP6AP2 KO increases UG and Ualb and minimizes HFD-induced obesity. Eight-week-old male C57BL/6J mice with inducible nephron-specific ATP6AP2 KO and noninduced controls were fed either normal diet (ND, 12% kcal fat) or HFD (45% kcal fat) for 6 months. ATP6AP2 KO mice on ND had 20% (P < 0.01) lower WT compared with controls. HFD-fed mice had 41% (P < 0.05) greater WT than ND-fed control mice. In contrast, ATP6AP2 KO abrogated the increase in WT induced by HFD by 40% (P < 0.05). Mice on HFD had less caloric intake compared with ND controls (P < 0.01). There were no significant differences in metabolic rate between all groups. UG and Ualb was significantly increased in ATP6AP2 KO mice on both ND and HFD. ATP6AP2 KO showed greater levels of proximal tubule apoptosis and histologic evidence of proximal tubule injury. In conclusion, our results demonstrate that nephron-specific ATP6AP2 KO is associated with glucosuria and albuminuria, most likely secondary to renal proximal tubule injury and/or dysfunction. Urinary loss of nutrients may have contributed to the reduced WT of knockout mice on ND and lack of WT gain in response to HFD. Future investigation should elucidate the mechanisms by which loss of renal ATP6AP2 causes proximal tubule injury and dysfunction.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Safia Akhtar
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Callie Rountree-Jablin
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Susanna R Keller
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helen P Cathro
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
Cruz-López EO, Uijl E, Danser AHJ. Perivascular Adipose Tissue in Vascular Function: Does Locally Synthesized Angiotensinogen Play a Role? J Cardiovasc Pharmacol 2021; 78:S53-S62. [PMID: 34840262 DOI: 10.1097/fjc.0000000000001027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT In recent years, perivascular adipose tissue (PVAT) research has gained special attention in an effort to understand its involvement in vascular function. PVAT is recognized as an important endocrine organ that secretes procontractile and anticontractile factors, including components of the renin-angiotensin-aldosterone system, particularly angiotensinogen (AGT). This review critically addresses the occurrence of AGT in PVAT, its release into the blood stream, and its contribution to the generation and effects of angiotensins (notably angiotensin-(1-7) and angiotensin II) in the vascular wall. It describes that the introduction of transgenic animals, expressing AGT at 0, 1, or more specific location(s), combined with the careful measurement of angiotensins, has revealed that the assumption that PVAT independently generates angiotensins from locally synthesized AGT is incorrect. Indeed, selective deletion of AGT from adipocytes did not lower circulating AGT, neither under a control diet nor under a high-fat diet, and only liver-specific AGT deletion resulted in the disappearance of AGT from blood plasma and adipose tissue. An entirely novel scenario therefore develops, supporting local angiotensin generation in PVAT that depends on the uptake of both AGT and renin from blood, in addition to the possibility that circulating angiotensins exert vascular effects. The review ends with a summary of where we stand now and recommendations for future research.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
15
|
van Thiel BS, van der Linden J, Ridwan Y, Garrelds IM, Vermeij M, Clahsen-van Groningen MC, Qadri F, Alenina N, Bader M, Roks AJM, Danser AHJ, Essers J, van der Pluijm I. In Vivo Renin Activity Imaging in the Kidney of Progeroid Ercc1 Mutant Mice. Int J Mol Sci 2021; 22:ijms222212433. [PMID: 34830315 PMCID: PMC8619549 DOI: 10.3390/ijms222212433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Changes in the renin–angiotensin system, known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. While the renin–angiotensin system is suppressed during aging, little is known about its regulation and activity within tissues. However, this knowledge is required to successively treat or prevent renal disease in the elderly. Ercc1 is involved in important DNA repair pathways, and when mutated causes accelerated aging phenotypes in humans and mice. In this study, we hypothesized that unrepaired DNA damage contributes to accelerated kidney failure. We tested the use of the renin-activatable near-infrared fluorescent probe ReninSense680™ in progeroid Ercc1d/− mice and compared renin activity levels in vivo to wild-type mice. First, we validated the specificity of the probe by detecting increased intrarenal activity after losartan treatment and the virtual absence of fluorescence in renin knock-out mice. Second, age-related kidney pathology, tubular anisokaryosis, glomerulosclerosis and increased apoptosis were confirmed in the kidneys of 24-week-old Ercc1d/− mice, while initial renal development was normal. Next, we examined the in vivo renin activity in these Ercc1d/− mice. Interestingly, increased intrarenal renin activity was detected by ReninSense in Ercc1d/− compared to WT mice, while their plasma renin concentrations were lower. Hence, this study demonstrates that intrarenal RAS activity does not necessarily run in parallel with circulating renin in the aging mouse. In addition, our study supports the use of this probe for longitudinal imaging of altered RAS signaling in aging.
Collapse
Affiliation(s)
- Bibi S. van Thiel
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
- Department of Vascular Surgery, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
| | - Janette van der Linden
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
- Department of Experimental Cardiology, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - Ingrid M. Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - Marcel Vermeij
- Department of Pathology, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (M.V.); (M.C.C.-v.G.)
| | | | | | - Natalia Alenina
- Max Delbrück Center, 13125 Berlin, Germany; (F.Q.); (N.A.); (M.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Michael Bader
- Max Delbrück Center, 13125 Berlin, Germany; (F.Q.); (N.A.); (M.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité—University Medicine, 10117 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (I.M.G.); (A.J.M.R.); (A.H.J.D.)
| | - Jeroen Essers
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Department of Vascular Surgery, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
- Correspondence: (J.E.); (I.v.d.P.); Tel.: +31-10-7043604 (J.E.); +31-10-7043724 (I.v.d.P.); Fax: +31-10-7044743 (J.E. & I.v.d.P.)
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands; (B.S.v.T.); (J.v.d.L.); (Y.R.)
- Department of Vascular Surgery, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
- Correspondence: (J.E.); (I.v.d.P.); Tel.: +31-10-7043604 (J.E.); +31-10-7043724 (I.v.d.P.); Fax: +31-10-7044743 (J.E. & I.v.d.P.)
| |
Collapse
|
16
|
Hoffmann N, Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021; 173:105922. [PMID: 34607004 DOI: 10.1016/j.phrs.2021.105922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The (pro)renin receptor [(P)RR, Atp6ap2] was initially discovered as a membrane-bound binding partner of prorenin and renin. A soluble (P)RR has additional paracrine effects and is involved in metabolic syndrome and kidney damage. Meanwhile it is clear that most of the effects of the (P)RR are independent of prorenin. In the kidney, (P)RR plays an important role in renal dysfunction by activating proinflammatory and profibrotic molecules. In the brain, (P)RR is expressed in cardiovascular regulatory nuclei and is linked to hypertension. (P)RR is known to be an essential component of the v-ATPase as a key accessory protein and plays an important role in kidney, brain and heart via regulating the pH of the extracellular space and intracellular compartments. V-ATPase and (P)RR together act on WNT and mTOR signalling pathways, which are responsible for cellular homeostasis and autophagy. (P)RR through its role in v-ATPase assembly and function is also important for fast recycling endocytosis by megalin. In the kidney, megalin together with v-ATPase and (P)RR is crucial for endocytic uptake of components of the RAS and their intracellular processing. In the brain, (P)RR, v-ATPases and megalin are important regulators both during development and in the adult. All three proteins are associated with diseases such as XLMR, XMRE, X-linked parkinsonism and epilepsy, cognitive disorders with Parkinsonism, spasticity, intellectual disability, and Alzheimer's Disease which are characterized by impaired neuronal function and/or neuronal loss. The present review focusses on the relevant effects of Atp6ap2 without assigning them necessarily to the RAS. Mechanistically, many effects can be well explained by the role of Atp6ap2 for v-ATPase assembly and function. Furthermore, application of a soluble (P)RR analogue as new therapeutic option is discussed.
Collapse
Affiliation(s)
- Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany.
| |
Collapse
|
17
|
Faria J, Gerritsen KGF, Nguyen TQ, Mihaila SM, Masereeuw R. Diabetic proximal tubulopathy: Can we mimic the disease for in vitro screening of SGLT inhibitors? Eur J Pharmacol 2021; 908:174378. [PMID: 34303664 DOI: 10.1016/j.ejphar.2021.174378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
Diabetic kidney disease (DKD) is the foremost cause of renal failure. While the glomeruli are severely affected in the course of the disease, the main determinant for disease progression is the tubulointerstitial compartment. DKD does not develop in the absence of hyperglycemia. Since the proximal tubule is the major player in glucose reabsorption, it has been widely studied as a therapeutic target for the development of new therapies. Currently, there are several proximal tubule cell lines available, being the human kidney-2 (HK-2) and human kidney clone-8 (HKC-8) cell lines the ones widely used for studying mechanisms of DKD. Studies in these models have pushed forward the understanding on how DKD unravels, however, these cell culture models possess limitations that hamper research, including lack of transporters and dedifferentiation. The sodium-glucose cotransporters (SGLT) are identified as key players in glucose reabsorption and pharmacological inhibitors have shown to be beneficial for the long-term clinical outcome in DKD. However, their mechanism of action has, as of yet, not been fully elucidated. To comprehend the protective effects of SGLT inhibitors, it is essential to understand the complete functional, structural, and molecular features of the disease, which until now have been difficult to recapitulate. This review addresses the molecular events of diabetic proximal tubulopathy. In addition, we evaluate the protective role of SGLT inhibitors in cardiovascular and renal outcomes, and provide an overview of various in vitro models mimicking diabetic proximal tubulopathy used so far. Finally, new insights on advanced in vitro systems to surpass past limitations are postulated.
Collapse
Affiliation(s)
- João Faria
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Karin G F Gerritsen
- Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Tri Q Nguyen
- Dept. Pathology, University Medical Center Utrecht, the Netherlands
| | - Silvia M Mihaila
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands; Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Rosalinde Masereeuw
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| |
Collapse
|
18
|
Sun Y, Tan L, Neuman RI, Broekhuizen M, Schoenmakers S, Lu X, Danser AHJ. Megalin, Proton Pump Inhibitors and the Renin-Angiotensin System in Healthy and Pre-Eclamptic Placentas. Int J Mol Sci 2021; 22:ijms22147407. [PMID: 34299027 PMCID: PMC8306182 DOI: 10.3390/ijms22147407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
Soluble Fms-like tyrosine kinase-1 (sFlt-1) is increased in pre-eclampsia. The proton pump inhibitor (PPI) lowers sFlt-1, while angiotensin increases it. To investigate whether PPIs lower sFlt-1 by suppressing placental renin–angiotensin system (RAS) activity, we studied gene expression and protein abundance of RAS components, including megalin, a novel endocytic receptor for prorenin and renin, in placental tissue obtained from healthy pregnant women and women with early-onset pre-eclampsia. Renin, ACE, ACE2, and the angiotensin receptors were expressed at identical levels in healthy and pre-eclamptic placentas, while both the (pro)renin receptor and megalin were increased in the latter. Placental prorenin levels were upregulated in pre-eclamptic pregnancies. Angiotensinogen protein, but not mRNA, was detectable in placental tissue, implying that it originates from maternal blood. Ex vivo placental perfusion revealed a complete washout of angiotensinogen, while prorenin release remained constant. The PPI esomeprazole dose-dependently reduced megalin/(pro)renin receptor-mediated renin uptake in Brown Norway yolk sac epithelial cells and decreased sFlt-1 secretion from placental villous explants. Megalin inhibition blocked angiotensinogen uptake in epithelial cells. In conclusion, our data suggest that placental RAS activity depends on angiotensinogen taken up from the maternal systemic circulation. PPIs might interfere with placental (pro)renin-AGT uptake/transport, thereby reducing angiotensin formation as well as angiotensin-induced sFlt-1 synthesis.
Collapse
Affiliation(s)
- Yuan Sun
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Health Science Center, Department of Physiology, Shenzhen University, Shenzhen 518061, China;
| | - Lunbo Tan
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Health Science Center, Department of Physiology, Shenzhen University, Shenzhen 518061, China;
| | - Rugina I. Neuman
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
| | - Michelle Broekhuizen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Division of Neonatology, Department of Pediatrics, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CN Rotterdam, The Netherlands;
| | - Xifeng Lu
- Health Science Center, Department of Physiology, Shenzhen University, Shenzhen 518061, China;
| | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 3015 CN Rotterdam, The Netherlands; (Y.S.); (L.T.); (R.I.N.); (M.B.)
- Correspondence: ; Tel.: +31-10-7043540
| |
Collapse
|
19
|
Peters J. "Nomen not est omen": the (pro)renin receptor and receptor-mediated endocytosis in the proximal tubule-a new (pro)renin-independent role forATP6ap2. Pflugers Arch 2021; 473:1173-1174. [PMID: 34240240 PMCID: PMC8302501 DOI: 10.1007/s00424-021-02597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Jörg Peters
- Institute of Physiology, University Medicine of Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
20
|
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17:481-492. [PMID: 33824491 PMCID: PMC8443079 DOI: 10.1038/s41581-021-00414-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA.,
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
21
|
Wiegel RE, von Versen-Höynck F, Steegers-Theunissen RPM, Steegers EAP, Danser AHJ. Prorenin periconceptionally and in pregnancy: Does it have a physiological role? Mol Cell Endocrinol 2021; 529:111281. [PMID: 33878417 DOI: 10.1016/j.mce.2021.111281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/30/2022]
Abstract
Pregnancy demands major cardiovascular, renal and endocrine changes to provide an adequate blood supply for the growing fetus. The renin-angiotensin-aldosterone system plays a key role in this adaptation process. One of its components, prorenin, is released in significant amounts from the ovary and uteroplacental unit. This review describes the sources of prorenin in the periconception period and in pregnancy, including its modulation by in-vitro fertilization protocols, and discusses its potential effects, among others focusing on preeclampsia. It ends with discussing the long-term consequences, even in later life, of inappropriate renin-angiotensin-aldosterone system activity in pregnancy and offers directions for future research. Ultimately, a full understanding of the role of prorenin periconceptionally and during pregnancy will help to develop tools to diagnose and/or prevent reproductive complications.
Collapse
Affiliation(s)
- Rosalieke E Wiegel
- Departments of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Eric A P Steegers
- Departments of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
22
|
Wiegel RE, von Versen-Höynck F, Steegers-Theunissen RPM, Steegers EAP, Danser AHJ. Prorenin periconceptionally and in pregnancy: Does it have a physiological role? Mol Cell Endocrinol 2021; 522:111118. [PMID: 33340569 DOI: 10.1016/j.mce.2020.111118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 01/19/2023]
Abstract
Pregnancy demands major cardiovascular, renal and endocrine changes to provide an adequate blood supply for the growing fetus. The renin-angiotensin-aldosterone system plays a key role in this adaptation process. One of its components, prorenin, is released in significant amounts from the ovary and uteroplacental unit. This review describes the sources of prorenin in the periconception period and in pregnancy, including its modulation by in-vitro fertilization protocols, and discusses its potential effects, among others focusing on preeclampsia. It ends with discussing the long-term consequences, even in later life, of inappropriate renin-angiotensin-aldosterone system activity in pregnancy and offers directions for future research. Ultimately, a full understanding of the role of prorenin periconceptionally and during pregnancy will help to develop tools to diagnose and/or prevent reproductive complications.
Collapse
Affiliation(s)
- Rosalieke E Wiegel
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Implementation of a Human Renal Proximal Tubule on a Chip for Nephrotoxicity and Drug Interaction Studies. J Pharm Sci 2021; 110:1601-1614. [PMID: 33545187 DOI: 10.1016/j.xphs.2021.01.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022]
Abstract
Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development. This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-β-d-glucosaminidase (NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion, Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved to be amenable to long-term experiments, and was easily transferred between laboratories. This proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal experimentation).
Collapse
|
24
|
Effect of sodium bicarbonate supplementation on the renin-angiotensin system in patients with chronic kidney disease and acidosis: a randomized clinical trial. J Nephrol 2020; 34:1737-1745. [PMID: 33382448 PMCID: PMC8494695 DOI: 10.1007/s40620-020-00944-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Background Acidosis-induced kidney injury is mediated by the intrarenal renin-angiotensin system, for which urinary renin is a potential marker. Therefore, we hypothesized that sodium bicarbonate supplementation reduces urinary renin excretion in patients with chronic kidney disease (CKD) and metabolic acidosis. Methods Patients with CKD stage G4 and plasma bicarbonate 15–24 mmol/l were randomized to receive sodium bicarbonate (3 × 1000 mg/day, ~ 0.5 mEq/kg), sodium chloride (2 × 1,00 mg/day), or no treatment for 4 weeks (n = 15/arm). The effects on urinary renin excretion (primary outcome), other plasma and urine parameters of the renin-angiotensin system, endothelin-1, and proteinuria were analyzed. Results Forty-five patients were included (62 ± 15 years, eGFR 21 ± 5 ml/min/1.73m2, plasma bicarbonate 21.7 ± 3.3 mmol/l). Sodium bicarbonate supplementation increased plasma bicarbonate (20.8 to 23.8 mmol/l) and reduced urinary ammonium excretion (15 to 8 mmol/day, both P < 0.05). Furthermore, a trend towards lower plasma aldosterone (291 to 204 ng/L, P = 0.07) and potassium (5.1 to 4.8 mmol/l, P = 0.06) was observed in patients receiving sodium bicarbonate. Sodium bicarbonate did not significantly change the urinary excretion of renin, angiotensinogen, aldosterone, endothelin-1, albumin, or α1-microglobulin. Sodium chloride supplementation reduced plasma renin (166 to 122 ng/L), and increased the urinary excretions of angiotensinogen, albumin, and α1-microglobulin (all P < 0.05). Conclusions Despite correction of acidosis and reduction in urinary ammonium excretion, sodium bicarbonate supplementation did not improve urinary markers of the renin-angiotensin system, endothelin-1, or proteinuria. Possible explanations include bicarbonate dose, short treatment time, or the inability of urinary renin to reflect intrarenal renin-angiotensin system activity. Graphic abstract ![]()
Collapse
|
25
|
Bovée DM, Cuevas CA, Zietse R, Danser AHJ, Mirabito Colafella KM, Hoorn EJ. Salt-sensitive hypertension in chronic kidney disease: distal tubular mechanisms. Am J Physiol Renal Physiol 2020; 319:F729-F745. [DOI: 10.1152/ajprenal.00407.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) causes salt-sensitive hypertension that is often resistant to treatment and contributes to the progression of kidney injury and cardiovascular disease. A better understanding of the mechanisms contributing to salt-sensitive hypertension in CKD is essential to improve these outcomes. This review critically explores these mechanisms by focusing on how CKD affects distal nephron Na+ reabsorption. CKD causes glomerulotubular imbalance with reduced proximal Na+ reabsorption and increased distal Na+ delivery and reabsorption. Aldosterone secretion further contributes to distal Na+ reabsorption in CKD and is not only mediated by renin and K+ but also by metabolic acidosis, endothelin-1, and vasopressin. CKD also activates the intrarenal renin-angiotensin system, generating intratubular angiotensin II to promote distal Na+ reabsorption. High dietary Na+ intake in CKD contributes to Na+ retention by aldosterone-independent activation of the mineralocorticoid receptor mediated through Rac1. High dietary Na+ also produces an inflammatory response mediated by T helper 17 cells and cytokines increasing distal Na+ transport. CKD is often accompanied by proteinuria, which contains plasmin capable of activating the epithelial Na+ channel. Thus, CKD causes both local and systemic changes that together promote distal nephron Na+ reabsorption and salt-sensitive hypertension. Future studies should address remaining knowledge gaps, including the relative contribution of each mechanism, the influence of sex, differences between stages and etiologies of CKD, and the clinical relevance of experimentally identified mechanisms. Several pathways offer opportunities for intervention, including with dietary Na+ reduction, distal diuretics, renin-angiotensin system inhibitors, mineralocorticoid receptor antagonists, and K+ or H+ binders.
Collapse
Affiliation(s)
- Dominique M. Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Catharina A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|