1
|
Xu D, Liu H, Yang J. Assessing causal relationships between gut microbiotas, metabolites, and pulmonary arterial hypertension through univariate Mendelian randomization study and bioinformatics analysis. J Hypertens 2025:00004872-990000000-00649. [PMID: 40110944 DOI: 10.1097/hjh.0000000000004003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Recent research has linked gut microbiotas and metabolites to the development and progression of pulmonary arterial hypertension (PAH) through the gut-lung axis. However, current studies on the causal relationship between gut microbiotas, gut microbiota derived metabolites, and PAH lack conclusive evidence. This study employed Mendelian randomization and bioinformatics analysis to reveal the possible causal links among them. METHODS Summary statistics of gut microbiotas, metabolites, and PAH were from GWAS. Univariate Mendelian randomization (inverse variance weighted and weighted median), reverse Mendelian randomization, and verification through other PAH GWAS cohorts were used to analyze the possible causal relationships between these gut microbiotas or gut microbiota derived metabolites and PAH. In addition, Cochran's Q statistic, MR-Egger regression intercept, MR-PRESSO global test, and the leave-one-out method were used for the sensitivity analysis. Based on this, we carried out an initial bioinformatics analysis to investigate its potential biological mechanisms. RESULTS Preliminary screening of the present research revealed four gut microbiotas (Genus Eubacteriumfissicatenagroup, Genus RuminococcaceaeUCG002, Genus Tyzzerella3, and Genus Sutterella) and one metabolite (taurolithocholate 3-sulfate) correlated with PAH. However, after validation in other PAH GWAS cohorts, only genetically increased Genus Tyzzerella3 (odds ratio: 0.54, 95% confidence interval: 0.37-0.80, P = 0.0018) correlated with a reduced risk for PAH, a relationship may be related to the keratan sulfate and glycosphingolipid synthesis. No significant heterogeneity, pleiotropy, or reversal causation effect was observed (P > 0.05). CONCLUSION Our Mendelian randomization analysis establishes a significant correlation between Genus Tyzzerella3 and PAH, positioning it as a prominent protective factor for PAH.
Collapse
Affiliation(s)
- Dongrui Xu
- School of Basic Medical Sciences, Dali University
| | - Hong Liu
- Department of Cardiology, Yunnan Provincial Engineering Research Center of Trans-plateau Cardiovascular Disease, The First Affiliated Hospital of Dali University, Dali, China
| | | |
Collapse
|
2
|
Chen J, Zhu T, Yang J, Shen M, Wang D, Gu B, Xu J, Zhang M, Hao X, Tang Z, Tong J, Du Y, Zhang B, Li H, Xu M. Geniposide Protects Against Myocardial Infarction Injury via the Restoration in Gut Microbiota and Gut-Brain Axis. J Cell Mol Med 2025; 29:e70406. [PMID: 39910683 PMCID: PMC11798748 DOI: 10.1111/jcmm.70406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Improving gut dysbiosis and impaired gut-brain axis has been a potent therapeutic strategy for treating myocardial infarction (MI). Geniposide (GEN), a traditional Chinese medicine extract, has demonstrated substantial cardioprotective properties post-MI. Nevertheless, the effect of GEN on gut microbial, gut-brain communication, and its potential mechanism remains unclear. In this study, we initially found that GEN significantly alleviated MI-induced cardiac dysfunction from echocardiographic data and decreased myocardial fibrosis, inflammation, apoptosis and hypertrophy post-MI. Additionally, we investigated the effects of GEN on gut pathology, and observed that GEN led to a remarkable change in gut microbiota as evidenced by altering β-diversity and short-chain fatty acids (SCFAs) levels, and alleviated intestinal damage indicated by reduced inflammation and barrier permeability post-MI. Finally, our investigation into brain pathology revealed that GEN induced a remarkable inhibition in PVN inflammation and sympathetic activity following MI. Collectively, these findings imply that the cardioprotective effects of GEN against MI were mediated possibly via an improvement in the impaired gut-brain axis. Mechanically, GEN-induced increase of microbiota-derived SCFAs might be the critical factor linking gut microbiota and reduced neuroinflammation with PVN, which leads to the suppression of sympathetic activation, therefore protecting the myocardium against MI-induced damage.
Collapse
Affiliation(s)
- Jie Chen
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Tong Zhu
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Jinbao Yang
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Mengqing Shen
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Danmei Wang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Boyuan Gu
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Jin Xu
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Mingxia Zhang
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Xiuli Hao
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Zheng Tang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Jie Tong
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Yan Du
- Department of NephrologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Bao Zhang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Hongbao Li
- Department of Physiology and PathophysiologyXi'an Jiaotong University School of Basic Medical SciencesXi'anChina
| | - MengLu Xu
- Department of NephrologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| |
Collapse
|
3
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
4
|
Zhang Z, Liang Y, Mo S, Zhao M, Li Y, Zhang C, Shan X, Liu S, Liao J, Luo X, Zhu J, Wang C, Jiang Q, Hou C, Hong W, Lai N, Chen Y, Xu L, Lu W, Wang J, Wang Z, Yang K. Oral administration of pioglitazone inhibits pulmonary hypertension by regulating the gut microbiome and plasma metabolome in male rats. Physiol Rep 2025; 13:e70174. [PMID: 39739369 DOI: 10.14814/phy2.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
The oral administrated thiazolidinediones (TZDs) have been widely reported to alleviate experimental pulmonary hypertension (PH). However, previous studies mainly focused on their beneficial effects on the cardiopulmonary vascular system but failed to determine their potential roles on gut microenvironment. This study aims to investigate the effects of pioglitazone, an oral TZD drug, on gut microbiome in classic PH rat models induced by hypoxia (HPH) or SU5416/hypoxia (SuHx-PH) and evaluate the therapeutic potential of supplementation of selective probiotics for experimental PH. Pioglitazone remarkably inhibited the PH pathogenesis in both models and reshaped the gut microbiome and plasma metabolome. Correlation analyses represented strong and unique association between the protective metabolites and bacteria genera (Roseburia, Lactobacillus, and Streptococcus) that were positively stimulated by pioglitazone. Supplementation of selective probiotics Roseburia intestinalis (R. intestinalis) partially attenuated SuHx-PH and rebuilt a novel gut microbiome and host metabolome. This study reports for the first time that oral administration of pioglitazone protects PH by regulating the gut microbiome and host metabolome, providing novel insights for the TZD drugs. The data also supports that modulation of gut microbiota by supplementation of selective probiotics could be a novel effective therapeutic strategy for the treatment of PH.
Collapse
Affiliation(s)
- Zizhou Zhang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaru Liang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Shaocong Mo
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingming Zhao
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Junqi Zhu
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Wang
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chi Hou
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ning Lai
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Kai Yang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
- State Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Abudukeremu A, Aikemu A, Yang T, Fang L, Aihemaitituoheti A, Zhang Y, Shanahaiti D, Nijiati Y. Effects of the ACE2-Ang-(1-7)-Mas axis on gut flora diversity and intestinal metabolites in SuHx mice. Front Microbiol 2024; 15:1412502. [PMID: 39247700 PMCID: PMC11380154 DOI: 10.3389/fmicb.2024.1412502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Pulmonary artery hypertension (PAH) poses a significant challenge due to its limited therapeutic options and high mortality rates. The ACE2-Ang-(1-7)-Mas axis plays a pivotal role in regulating blood pressure and inhibiting myocardial remodeling. However, the precise mechanistic links between the ACE2-Ang-(1-7)-Mas axis and PAH remain poorly understood. This study aimed to elucidate the involvement of the ACE2-Ang-(1-7)-Mas axis in the development of PAH. Methods PAH was induced in mice using Sugen5416/hypoxia, PAAT/PET ratio and PA were detected using cardiac ultrasound; inflammation related factors such as MCP-1, TNF, IL-10and IL-12p70 were detected in intestines using cytometric bead array (CBA) kits; histopathological and morphological changes in lung and intestinal tissues were assessed via HE staining and Masson staining to evaluate the progression of PAH. Immunohistochemistry and western blotting were employed to determine the expression levels of two tight junction proteins, occludin and ZO-1, in intestinal tissues. Additionally, 16rRNA sequencing and non-targeted metabolomics by LC-MS/MS techniques were utilized to investigate the impact of the ACE2-Ang-(1-7)-Mas axis on microbial diversity and metabolomics of intestinal contents. Results Activation of the ACE2-Ang-(1-7)-Mas axis improves heart function, reduces intestines inflammatory factors and ameliorates pathological and histological alterations in SuHx mice. This activation notably upregulated the expression of occludin and ZO-1 proteins in intestinal tissues and promoted the proliferation of SCFA-producing bacteria genera, such as g_Candidatus_Saccharimonas. Furthermore, it enhanced the abundance of beneficial metabolites, including tryptophan and butyric acid. Conclusion The findings suggest that modulation of the ACE2-Ang-(1-7)-Mas axis can alleviate PAH by regulating intestinal microbes and metabolites. These results highlight the potential of the ACE2-Ang-(1-7)-Mas axis as a promising therapeutic target for clinical management of PAH.
Collapse
Affiliation(s)
- Asimuguli Abudukeremu
- Central Laboratory of Xinjiang Medical University, Urumqi, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Ainiwaer Aikemu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Department of Pharmacy, College of Xinjiang Uyghur Medicine, Hetian, China
- Xinjiang Key Laboratory of Hetian Characteristic Chinese Traditional Medicine Research, Hetian, China
- Engineering Research Center for Quality Control of Uyghur Medicinal Materials and Preparations, Hetian, China
| | - Tao Yang
- Central Laboratory of Xinjiang Medical University, Urumqi, China
| | - Lei Fang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | | | - Yupeng Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | | | - Yiliyaer Nijiati
- Central Laboratory of Xinjiang Medical University, Urumqi, China
- Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, China
| |
Collapse
|
6
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
7
|
Yang Y, Zhang H, Wang Y, Xu J, Shu S, Wang P, Ding S, Huang Y, Zheng L, Yang Y, Xiong C. Promising dawn in the management of pulmonary hypertension: The mystery veil of gut microbiota. IMETA 2024; 3:e159. [PMID: 38882495 PMCID: PMC11170974 DOI: 10.1002/imt2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 06/18/2024]
Abstract
The gut microbiota is a complex community of microorganisms inhabiting the intestinal tract, which plays a vital role in human health. It is intricately involved in the metabolism, and it also affects diverse physiological processes. The gut-lung axis is a bidirectional pathway between the gastrointestinal tract and the lungs. Recent research has shown that the gut microbiome plays a crucial role in immune response regulation in the lungs and the development of lung diseases. In this review, we present the interrelated factors concerning gut microbiota and the associated metabolites in pulmonary hypertension (PH), a lethal disease characterized by elevated pulmonary vascular pressure and resistance. Our research team explored the role of gut-microbiota-derived metabolites in cardiovascular diseases and established the correlation between metabolites such as putrescine, succinate, trimethylamine N-oxide (TMAO), and N, N, N-trimethyl-5-aminovaleric acid with the diseases. Furthermore, we found that specific metabolites, such as TMAO and betaine, have significant clinical value in PH, suggesting their potential as biomarkers in disease management. In detailing the interplay between the gut microbiota, their metabolites, and PH, we underscored the potential therapeutic approaches modulating this microbiota. Ultimately, we endeavor to alleviate the substantial socioeconomic burden associated with this disease. This review presents a unique exploratory analysis of the link between gut microbiota and PH, intending to propel further investigations in the gut-lung axis.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hanwen Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yaoyao Wang
- State Key Laboratory of Cardiovascular Disease, Department of Nephrology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Department of Genetics University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Peizhi Wang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Center for Molecular Cardiology University of Zurich Zurich Switzerland
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, School of Basic Medical Sciences, Health Science Center The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Beijing China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Changming Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
8
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
9
|
Wang H, Wang Y. What Makes the Gut-Lung Axis Working? From the Perspective of Microbiota and Traditional Chinese Medicine. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8640014. [PMID: 38274122 PMCID: PMC10810697 DOI: 10.1155/2024/8640014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Background An increasing number of studies have proved that gut microbiota is involved in the occurrence and development of various lung diseases and can interact with the diseased lung. The concept of the gut-lung axis (GLA) provides a new idea for the subsequent clinical treatment of lung diseases through human microbiota. This review aims to summarize the microbiota in the lung and gut and the interaction between them from the perspectives of traditional Chinese medicine and modern medicine. Method We conducted a literature search by using the search terms "GLA," "gut microbiota," "spleen," and "Chinese medicine" in the databases PubMed, Web of Science, and CNKI. We then explored the mechanism of action of the gut-lung axis from traditional Chinese medicine and modern medicine. Results The lung and gut microbiota enable the GLA to function through immune regulation, while metabolites of the gut microbiota also play an important role. The spleen can improve the gut microbiota to achieve the regulation of the GLA. Conclusion Improving the gut microbiota through qi supplementation and spleen fortification provides a new approach to the clinical treatment of lung diseases by regulating the GLA. Currently, our understanding of the GLA is limited, and more research is needed to explain its working principle.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Ying Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|
10
|
Mason T, Mukherjee B, Marino P. Pulmonary Hypertension and the Gut Microbiome. Biomedicines 2024; 12:169. [PMID: 38255274 PMCID: PMC10813515 DOI: 10.3390/biomedicines12010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The gut microbiome and its associated metabolites are integral to the maintenance of gut integrity and function. There is increasing evidence that its alteration, referred to as dysbiosis, is involved in the development of a systemic conditions such as cardiovascular disease (e.g., systemic hypertension, atherosclerosis). Pulmonary hypertension (PH) is a condition characterised by progressive remodelling and vasoconstriction of the pulmonary circulation, ultimately leading to right ventricular failure and premature mortality if untreated. Initial studies have suggested a possible association between dysbiosis of the microbiome and the development of PH. The aim of this article is to review the current experimental and clinical data with respect to the potential interaction between the gut microbiome and the pathophysiology of pulmonary hypertension. It will also highlight possible new therapeutic targets that may provide future therapies.
Collapse
Affiliation(s)
- Thomas Mason
- Lane Fox Respiratory Service, Guy’s & St Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
| | - Bhashkar Mukherjee
- Lane Fox Respiratory Service, Guy’s & St Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London SW3 6NP, UK
| | - Philip Marino
- Lane Fox Respiratory Service, Guy’s & St Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
11
|
Papavassiliou KA, Gogou VA, Papavassiliou AG. Angiotensin-Converting Enzyme 2 (ACE2) Signaling in Pulmonary Arterial Hypertension: Underpinning Mechanisms and Potential Targeting Strategies. Int J Mol Sci 2023; 24:17441. [PMID: 38139269 PMCID: PMC10744156 DOI: 10.3390/ijms242417441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating progressive disease characterized by excessive pulmonary vasoconstriction and abnormal vascular remodeling processes that lead to right-ventricular heart failure and, ultimately, death. Although our understanding of its pathophysiology has advanced and several treatment modalities are currently available for the management of PAH patients, none are curative and the prognosis remains poor. Therefore, further research is required to decipher the molecular mechanisms associated with PAH. Angiotensin-converting enzyme 2 (ACE2) plays an important role through its vasoprotective functions in cardiopulmonary homeostasis, and accumulating preclinical and clinical evidence shows that the upregulation of the ACE2/Angiotensin-(1-7)/MAS1 proto-oncogene, G protein-coupled receptor (Mas 1 receptor) signaling axis is implicated in the pathophysiology of PAH. Herein, we highlight the molecular mechanisms of ACE2 signaling in PAH and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol 2023; 39:1900-1912. [PMID: 37348757 PMCID: PMC10730775 DOI: 10.1016/j.cjca.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.
Collapse
Affiliation(s)
- Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France; CEA, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Pakhomov NV, Kostyunina DS, Macori G, Dillon E, Brady T, Sundaramoorthy G, Connolly C, Blanco A, Fanning S, Brennan L, McLoughlin P, Baugh JA. High-Soluble-Fiber Diet Attenuates Hypoxia-Induced Vascular Remodeling and the Development of Hypoxic Pulmonary Hypertension. Hypertension 2023; 80:2372-2385. [PMID: 37851762 DOI: 10.1161/hypertensionaha.123.20914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Hypoxic pulmonary hypertension is a difficult disease to manage that is characterized by sustained elevation of pulmonary vascular resistance and pulmonary artery pressure due to vasoconstriction, perivascular inflammation, and vascular remodeling. Consumption of soluble-fiber is associated with lower systemic blood pressure, but little is known about its ability to affect the pulmonary circulation. METHODS Mice were fed either a low- or high-soluble-fiber diet (0% or 16.9% inulin) and then exposed to hypoxia (FiO2, 0.10) for 21 days to induce pulmonary hypertension. The impact of diet on right ventricular systolic pressure and pulmonary vascular resistance was determined in vivo or in ex vivo isolated lungs, respectively, and correlated with alterations in the composition of the gut microbiome, plasma metabolome, pulmonary inflammatory cell phenotype, and lung proteome. RESULTS High-soluble-fiber diet increased the abundance of short-chain fatty acid-producing bacteria, with parallel increases in plasma propionate levels, and reduced the abundance of disease-related bacterial genera such as Staphylococcus, Clostridioides, and Streptococcus in hypoxic mice with parallel decreases in plasma levels of p-cresol sulfate. High-soluble-fiber diet decreased hypoxia-induced elevations of right ventricular systolic pressure and pulmonary vascular resistance. These changes were associated with reduced proportions of interstitial macrophages, dendritic cells, and nonclassical monocytes. Whole-lung proteomics revealed proteins and molecular pathways that may explain the effect of soluble-fiber supplementation. CONCLUSIONS This study demonstrates for the first time that a high-soluble-fiber diet attenuates hypoxia-induced pulmonary vascular remodeling and the development of pulmonary hypertension in a mouse model of hypoxic pulmonary hypertension and highlights diet-derived metabolites that may have an immuno-modulatory role in the lung.
Collapse
Affiliation(s)
- Nikolai V Pakhomov
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - Daria S Kostyunina
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - Guerrino Macori
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Ireland (G.M., S.F.)
| | - Eugene Dillon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (E.D., A.B.)
| | - Tara Brady
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - Geetha Sundaramoorthy
- School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (G.S., C.C., L.B.)
| | - Claire Connolly
- School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (G.S., C.C., L.B.)
| | - Alfonso Blanco
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (E.D., A.B.)
| | - Séamus Fanning
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Ireland (G.M., S.F.)
| | - Lorraine Brennan
- School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (G.S., C.C., L.B.)
| | - Paul McLoughlin
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - John A Baugh
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| |
Collapse
|
14
|
Oliveira AC, Karas MM, Alves M, He J, de Kloet AD, Krause EG, Richards EM, Bryant AJ, Raizada MK. ACE2 overexpression in corticotropin-releasing-hormone cells offers protection against pulmonary hypertension. Front Neurosci 2023; 17:1223733. [PMID: 37638323 PMCID: PMC10447887 DOI: 10.3389/fnins.2023.1223733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background Pulmonary hypertension (PH), characterized by elevated pulmonary pressure and right heart failure, is a systemic disease involving inappropriate sympathetic activation and an impaired gut-brain-lung axis. Global overexpression of angiotensin converting enzyme 2 (ACE2), a cardiopulmonary protective enzyme of the renin-angiotensin system, attenuates PH induced by chronic hypoxia. Neurons within the paraventricular nucleus of the hypothalamus (PVN) that synthesize corticotropin-releasing hormone (CRH) are activated by stressors, like hypoxia, and this activation augments sympathetic outflow to cardiovascular tissues. These data coupled with our observations that ACE2 overexpression in CRH cells (CRH-ACE2KI mice) decreases anxiety-like behavior via suppression of hypothalamic-pituitary-adrenal (HPA) axis activity by decreasing CRH synthesis, led us to hypothesize that selective ACE2 overexpression in CRH neurons would protect against hypoxia-induced PH. Methods CRH-ACE2KI and WT male and female mice were exposed to chronic hypoxia (10%O2) or normoxia (21%O2) for 4 weeks in a ventilated chamber with continuous monitoring of oxygen and carbon dioxide concentrations (n = 7-10/group). Pulmonary hemodynamics were measured with Millar pressure catheters then tissues were collected for histological analyses. Results Chronic hypoxia induced a significant increase (36.4%) in right ventricular (RV) systolic pressure (RVSP) in WT mice, which was not observed in CRH-ACE2KI mice. No significant differences in RVSP were observed between male and female mice in any of the groups. Conclusion Overexpression of ACE2 in CRH cells was protective against hypoxia-induced PH. Since the majority of expression of CRH is in brain nuclei such as paraventricular nucleus of the hypothalamus (PVN) and/or central nucleus of the amygdala (CeA) these data indicate that the protective effects of ACE2 are, at least in part, centrally mediated. This contributes to the systemic nature of PH disease and that CRH neurons may play an important role in PH.
Collapse
Affiliation(s)
- Aline C. Oliveira
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marianthi M. Karas
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Alves
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jacky He
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Annette D. de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Eric G. Krause
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| | - Elaine M. Richards
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mohan K. Raizada
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Sharvin BL, Aburto MR, Cryan JF. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol Dis 2023; 179:106033. [PMID: 36758820 DOI: 10.1016/j.nbd.2023.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Research in the last decade has unveiled a crucial role for the trillions of microorganisms that reside in the gut in influencing host neurodevelopment across the lifespan via the microbiota-gut-brain axis. Studies have linked alterations in the composition, complexity, and diversity of the gut microbiota to changes in behaviour including abnormal social interactions, cognitive deficits, and anxiety- and depressive-like phenotypes. Moreover, the microbiota has been linked with neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Interestingly, there appears to be specific brain regions governing the neurocircuitry driving higher cognitive function that are susceptible to influence from manipulations to the host microbiome. This review will aim to elucidate the region-specific effects mediated by the gut microbiota, with a focus on translational animal models and some existing human neuroimaging data. Compelling preclinical evidence suggests disruption to normal microbiota-gut-brain signalling can have detrimental effects on the prefrontal cortex, amygdala, hippocampus, hypothalamus, and striatum. Furthermore, human neuroimaging studies have unveiled a role for the microbiota in mediating functional connectivity and structure of specific brain regions that can be traced back to neurocognition and behavioural output. Understanding these microbiota-mediated changes will aid in identifying unique therapeutic targets for treating neurological disorders associated with these regions.
Collapse
Affiliation(s)
- Brendan L Sharvin
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
Moutsoglou DM, Tatah J, Prisco SZ, Prins KW, Staley C, Lopez S, Blake M, Teigen L, Kazmirczak F, Weir EK, Kabage AJ, Guan W, Khoruts A, Thenappan T. Pulmonary Arterial Hypertension Patients Have a Proinflammatory Gut Microbiome and Altered Circulating Microbial Metabolites. Am J Respir Crit Care Med 2023; 207:740-756. [PMID: 36343281 PMCID: PMC10037487 DOI: 10.1164/rccm.202203-0490oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: Inflammation drives pulmonary arterial hypertension (PAH). Gut dysbiosis causes immune dysregulation and systemic inflammation by altering circulating microbial metabolites; however, little is known about gut dysbiosis and microbial metabolites in PAH. Objectives: To characterize the gut microbiome and microbial metabolites in patients with PAH. Methods: We performed 16S ribosomal RNA gene and shotgun metagenomics sequencing on stool from patients with PAH, family control subjects, and healthy control subjects. We measured markers of inflammation, gut permeability, and microbial metabolites in plasma from patients with PAH, family control subjects, and healthy control subjects. Measurements and Main Results: The gut microbiome was less diverse in patients with PAH. Shannon diversity index correlated with measures of pulmonary vascular disease but not with right ventricular function. Patients with PAH had a distinct gut microbial signature at the phylogenetic level, with fewer copies of gut microbial genes that produce antiinflammatory short-chain fatty acids (SCFAs) and secondary bile acids and lower relative abundances of species encoding these genes. Consistent with the gut microbial changes, patients with PAH had relatively lower plasma concentrations of SCFAs and secondary bile acids. Patients with PAH also had enrichment of species with the microbial genes that encoded the proinflammatory microbial metabolite trimethylamine. The changes in the gut microbiome and circulating microbial metabolites between patients with PAH and family control subjects were not as substantial as the differences between patients with PAH and healthy control subjects. Conclusions: Patients with PAH have proinflammatory gut dysbiosis, in which lower circulating SCFAs and secondary bile acids may facilitate pulmonary vascular disease. These findings support investigating modulation of the gut microbiome as a potential treatment for PAH.
Collapse
Affiliation(s)
| | - Jasmine Tatah
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Kurt W. Prins
- Division of Cardiovascular Medicine, Department of Medicine
| | - Christopher Staley
- Division of Basic and Translational Research, Department of Surgery, and
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Madelyn Blake
- Division of Cardiovascular Medicine, Department of Medicine
| | - Levi Teigen
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | | | | | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
17
|
Transcriptome and 16S rRNA Analyses Reveal That Hypoxic Stress Affects the Antioxidant Capacity of Largemouth Bass ( Micropterus salmoides), Resulting in Intestinal Tissue Damage and Structural Changes in Microflora. Antioxidants (Basel) 2022; 12:antiox12010001. [PMID: 36670863 PMCID: PMC9854696 DOI: 10.3390/antiox12010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Dissolved oxygen (DO) is a key factor affecting the health of aquatic organisms in an intensive aquaculture environment. In this study, largemouth bass (Micropterus salmoides) were subjected to acute hypoxic stress for 96 h (DO: 1.00 mg/L) followed by recovery under sufficient DO conditions (DO: 7.50 mg/L) for 96 h. Serum biochemical indices, intestinal histomorphology, the transcriptome, and intestinal microbiota were compared between hypoxia-treated fish and those in a control group. The results showed that hypoxia caused oxidative stress, exfoliation of the intestinal villus epithelium and villus rupture, and increased cell apoptosis. Transcriptome analyses revealed that antioxidant-, inflammation-, and apoptosis-related pathways were activated, and that the MAPK signaling pathway played an important role under hypoxic stress. In addition, 16S rRNA sequencing analyses revealed that hypoxic stress significantly decreased bacterial richness and identified the dominant phyla (Proteobacteria, Firmicutes) and genera (Mycoplasma, unclassified Enterobacterales, Cetobacterium) involved in the intestinal inflammatory response of largemouth bass. Pearson's correlation analyses showed that differentially expressed genes in the MAPK signaling pathway were significantly correlated with some microflora. The results of this study will help to develop strategies to reduce damage caused by hypoxic stress in aquacultured fish.
Collapse
|
18
|
Gao AR, Li S, Tan XC, Huang T, Dong HJ, Xue R, Li JC, Zhang Y, Zhang YZ, Wang X. Xinyang Tablet attenuates chronic hypoxia-induced right ventricular remodeling via inhibiting cardiomyocytes apoptosis. Chin Med 2022; 17:134. [PMID: 36471367 PMCID: PMC9720925 DOI: 10.1186/s13020-022-00689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is one of the fatal pathologies developed under hypobaric hypoxia and eventually leads to right ventricular (RV) remodeling and RV failure. Clinically, the mortality rate of RV failure caused by HPH is high and lacks effective drugs. Xinyang Tablet (XYT), a traditional Chinese medicine exhibits significant efficacy in the treatment of congestive heart failure and cardiac dysfunction. However, the effects of XYT on chronic hypoxia-induced RV failure are not clear. METHODS The content of XYT was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Sprague-Dawley (SD) rats were housed in a hypobaric chamber (equal to the parameter in altitude 5500 m) for 21 days to obtain the RV remodeling model. Electrocardiogram (ECG) and hemodynamic parameters were measured by iWorx Acquisition & Analysis System. Pathological morphological changes in the RV and pulmonary vessels were observed by H&E staining and Masson's trichrome staining. Myocardial apoptosis was tested by TUNEL assay. Protein expression levels of TNF-α, IL-6, Bax, Bcl-2, and caspase-3 in the RV and H9c2 cells were detected by western blot. Meanwhile, H9c2 cells were induced by CoCl2 to establish a hypoxia injury model to verify the protective effect and mechanisms of XYT. A CCK-8 assay was performed to determine the viability of H9c2 cells. CoCl2-induced apoptosis was detected by Annexin-FITC/PI flow cytometry and Hoechst 33,258 staining. RESULTS XYT remarkably improved RV hemodynamic disorder and ECG parameters. XYT attenuated hypoxia-induced pathological injury in RV and pulmonary vessels. We also observed that XYT treatment decreased the expression levels of TNF-α, IL-6, Bax/Bcl-2 ratio, and the numbers of myocardial apoptosis in RV. In H9c2 myocardial hypoxia model, XYT protected H9c2 cells against Cobalt chloride (CoCl2)-induced apoptosis. We also found that XYT could antagonize CoCl2-induced apoptosis through upregulating Bcl-2, inhibiting Bax and caspase-3 expression. CONCLUSIONS We concluded that XYT improved hypoxia-induced RV remodeling and protected against cardiac injury by inhibiting apoptosis pathway in vivo and vitro models, which may be a promising therapeutic strategy for clinical management of hypoxia-induced cardiac injury.
Collapse
Affiliation(s)
- An-Ran Gao
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuo Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiao-Cui Tan
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Ting Huang
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Hua-Jin Dong
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Rui Xue
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jing-Cao Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - You-Zhi Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiao Wang
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| |
Collapse
|
19
|
Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H, Yuan JXJ. Pathogenic Mechanisms of Pulmonary Arterial Hypertension: Homeostasis Imbalance of Endothelium-Derived Relaxing and Contracting Factors. JACC. ASIA 2022; 2:787-802. [PMID: 36713766 PMCID: PMC9877237 DOI: 10.1016/j.jacasi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- ACE, angiotensin-converting enzyme
- EC, endothelial cell
- EDCF, endothelium-derived contracting factor
- EDRF, endothelium-derived relaxing factor
- ET, endothelin
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PG, prostaglandin
- TPH, tryptophan hydroxylase
- TXA2, thromboxane A2
- cGMP, cyclic guanosine monophosphate
- endothelial dysfunction
- endothelium-derived relaxing factor
- pulmonary arterial hypertension
- vascular homeostasis
Collapse
Affiliation(s)
- Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dustin R. Fraidenburg
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Ma PJ, Wang MM, Wang Y. Gut microbiota: A new insight into lung diseases. Biomed Pharmacother 2022; 155:113810. [DOI: 10.1016/j.biopha.2022.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022] Open
|
21
|
Xu ML, Peng B, Bai J, Li L, Du Y, Wang ZQ, Li SS, Liu XX, Dong YY, Wu JZ, Xiong LX, Chen L, Li HB, Jiang HL. Diosgenin exerts an antihypertensive effect in spontaneously hypertensive rats via gut-brain communication. Food Funct 2022; 13:9532-9543. [PMID: 35997017 DOI: 10.1039/d2fo00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gut microbiota is well-established to regulate host blood pressure. Diosgenin is a natural steroid sapogenin with documented anti-inflammatory, antioxidant and antihypertensive properties. We aimed to investigate whether the antihypertensive effects of diosgenin are mediated by the microbiota-gut-brain axis in spontaneously hypertensive rats (SHR). 15-Week-old male Wistar Kyoto rats (WKY) and age-matched SHR were randomly distributed into three groups: WKY, SHR treated with a vehicle, and SHR treated with diosgenin (100 mg kg-1). Our results showed that diosgenin prevented elevated systolic blood pressure (SBP) and ameliorated cardiac hypertrophy in SHR. Moreover, the gut microbiota composition and intestinal integrity were improved. Furthermore, increased butyrate-producing bacteria and plasma butyrate and decreased plasma lipopolysaccharides were observed in SHR treated with diosgenin. These findings were associated with reduced microglial activation and neuroinflammation in the paraventricular nucleus. Our findings suggest that diosgenin attenuates hypertension by reshaping the gut microbiota and improving the gut-brain axis.
Collapse
Affiliation(s)
- Meng-Lu Xu
- Dialysis Department of Nephrology Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. .,Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Bo Peng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| | - Juan Bai
- Department of Anesthesiology, Center for Brian Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lu Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Yan Du
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Zhi-Qiang Wang
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, China
| | - Sha-Sha Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Xiao-Xi Liu
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Yuan-Yuan Dong
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| | - Jun-Zhe Wu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| | - Ling-Xiao Xiong
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| | - Hong-Li Jiang
- Dialysis Department of Nephrology Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
22
|
唐 胡, 母 炜, 向 渝, 安 永. Effect of hepatocyte growth factor on mice with hypoxic pulmonary arterial hypertension: a preliminary study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:936-941. [PMID: 36036134 PMCID: PMC9425866 DOI: 10.7499/j.issn.1008-8830.2203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the association between hepatocyte growth factor (HGF) and treatment response in mice with hypoxic pulmonary arterial hypertension (HPAH) and the possibility of HGF as a new targeted drug for HPAH. METHODS After successful modeling, the HPAH model mice were randomly divided into two groups: HPAH group and HGF treatment group (tail vein injection of recombinant mouse HGF 1 mg/kg), with 10 mice in each group. Ten normal mice were used as the control group. After 5 weeks, echocardiography was used to measure tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio; the Griess method was used to measure the content of nitric oxide in serum; ELISA was used to measure the serum level of endothelin-1; transmission electron microscopy was used to observe changes in the ultrastructure of pulmonary artery. RESULTS Compared with the HGF treatment and normal control groups, the HPAH group had significantly higher tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio (P<0.05). The transmission electron microscopy showed that the HPAH group had massive destruction of vascular endothelial cells and disordered arrangement of the elastic membrane of arteriolar intima with rupture and loss. The structure of vascular endothelial cells was almost complete and the structure of arterial intima elastic membrane was almost normal in the HGF treatment group. Compared with the normal control and HGF treatment groups, the HPAH group had significantly higher serum levels of nitric oxide and endothelin-1 (P<0.05). CONCLUSIONS Increasing serum HGF level can alleviate the impact of HPAH on the cardiovascular system of mice, possibly by repairing endothelial cell injury, improving vascular remodeling, and restoring the normal vasomotor function of pulmonary vessels.
Collapse
|
23
|
Huang L, Zhang H, Liu Y, Long Y. The Role of Gut and Airway Microbiota in Pulmonary Arterial Hypertension. Front Microbiol 2022; 13:929752. [PMID: 35910623 PMCID: PMC9326471 DOI: 10.3389/fmicb.2022.929752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe clinical condition that is characterized pathologically by perivascular inflammation and pulmonary vascular remodeling that ultimately leads to right heart failure. However, current treatments focus on controlling vasoconstriction and have little effect on pulmonary vascular remodeling. Better therapies of PAH require a better understanding of its pathogenesis. With advances in sequencing technology, researchers have begun to focus on the role of the human microbiota in disease. Recent studies have shown that the gut and airway microbiota and their metabolites play an important role in the pathogenesis of PAH. In this review, we summarize the current literature on the relationship between the gut and airway microbiota and PAH. We further discuss the key crosstalk between the gut microbiota and the lung associated with PAH, and the potential link between the gut and airway microbiota in the pathogenesis of PAH. In addition, we discuss the potential of using the microbiota as a new target for PAH therapy.
Collapse
Affiliation(s)
- Linlin Huang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Hongdie Zhang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Yijun Liu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
| | - Yang Long
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yang Long
| |
Collapse
|
24
|
Chakraborty C, Sharma AR, Bhattacharya M, Dhama K, Lee SS. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. World J Gastroenterol 2022; 28:2802-2822. [PMID: 35978881 PMCID: PMC9280735 DOI: 10.3748/wjg.v28.i25.2802] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/19/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to a severe respiratory illness and alters the gut microbiota, which dynamically interacts with the human immune system. Microbiota alterations include decreased levels of beneficial bacteria and augmentation of opportunistic pathogens. Here, we describe critical factors affecting the microbiota in coronavirus disease 2019 (COVID-19) patients. These include, such as gut microbiota imbalance and gastrointestinal symptoms, the pattern of altered gut microbiota composition in COVID-19 patients, and crosstalk between the microbiome and the gut-lung axis/gut-brain-lung axis. Moreover, we have illustrated the hypoxia state in COVID-19 associated gut microbiota alteration. The role of ACE2 in the digestive system, and control of its expression using the gut microbiota is discussed, highlighting the interactions between the lungs, the gut, and the brain during COVID-19 infection. Similarly, we address the gut microbiota in elderly or co-morbid patients as well as gut microbiota dysbiosis of in severe COVID-19. Several clinical trials to understand the role of probiotics in COVID-19 patients are listed in this review. Augmented inflammation is one of the major driving forces for COVID-19 symptoms and gut microbiome disruption and is associated with disease severity. However, understanding the role of the gut microbiota in immune modulation during SARS-CoV-2 infection may help improve therapeutic strategies for COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| | | | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| |
Collapse
|
25
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Wu P, Zhu T, Tan Z, Chen S, Fang Z. Role of Gut Microbiota in Pulmonary Arterial Hypertension. Front Cell Infect Microbiol 2022; 12:812303. [PMID: 35601107 PMCID: PMC9121061 DOI: 10.3389/fcimb.2022.812303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota and its metabolites play an important role in maintaining host homeostasis. Pulmonary arterial hypertension (PAH) is a malignant clinical syndrome with a frightening mortality. Pulmonary vascular remodeling is an important feature of PAH, and its pathogenesis is not well established. With the progress of studies on intestinal microbes in different disease, cumulative evidence indicates that gut microbiota plays a major role in PAH pathophysiology. In this review, we will systematically summarize translational and preclinical data on the correlation between gut dysbiosis and PAH and investigate the role of gut dysbiosis in the causation of PAH. Then, we point out the potential significance of gut dysbiosis in the diagnosis and treatment of PAH as well as several problems that remain to be resolved in the field of gut dysbiosis and PAH. All of this knowledge of gut microbiome might pave the way for the extension of novel pathophysiological mechanisms, diagnosis, and targeted therapies for PAH.
Collapse
|
27
|
Ikubo Y, Sanada TJ, Hosomi K, Park J, Naito A, Shoji H, Misawa T, Suda R, Sekine A, Sugiura T, Shigeta A, Nanri H, Sakao S, Tanabe N, Mizuguchi K, Kunisawa J, Suzuki T, Tatsumi K. Altered gut microbiota and its association with inflammation in patients with chronic thromboembolic pulmonary hypertension: a single-center observational study in Japan. BMC Pulm Med 2022; 22:138. [PMID: 35395844 PMCID: PMC8994357 DOI: 10.1186/s12890-022-01932-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is considered to be associated with chronic inflammation; however, the underlying mechanism remains unclear. Recently, altered gut microbiota were found in patients with pulmonary arterial hypertension (PAH) and in experimental PAH models. The aim of this study was to characterize the gut microbiota in patients with CTEPH and assess the relationship between gut dysbiosis and inflammation in CTEPH. Methods In this observational study, fecal samples were collected from 11 patients with CTEPH and 22 healthy participants. The abundance of gut microbiota in these fecal samples was assessed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Inflammatory cytokine and endotoxin levels were also assessed in patients with CTEPH and control participants. Results The levels of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and macrophage inflammatory protein (MIP)-1α were elevated in patients with CTEPH. Plasma endotoxin levels were significantly increased in patients with CTEPH (P < 0.001), and were positively correlated with TNF-α, IL-6, IL-8, and MIP-1α levels. The 16S rRNA gene sequencing and the principal coordinate analysis revealed the distinction in the gut microbiota between patients with CTEPH (P < 0.01) and control participants as well as the decreased bacterial alpha-diversity in patients with CTEPH. A random forest analysis for predicting the distinction in gut microbiota revealed an accuracy of 80.3%. Conclusion The composition of the gut microbiota in patients with CTEPH was distinct from that of healthy participants, which may be associated with the elevated inflammatory cytokines and endotoxins in CTEPH. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01932-0.
Collapse
Affiliation(s)
- Yumiko Ikubo
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Takayuki Jujo Sanada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan.
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akira Naito
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Hiroki Shoji
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Tomoko Misawa
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Rika Suda
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan.,Department of Respirology, Chibaken Saiseikai Narashino Hospital, Narashino, Japan
| | - Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Toshihiko Sugiura
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Ayako Shigeta
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Hinako Nanri
- Section of Energy Metabolism, Department of Nutrition and Metabolism, National Institute of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan.,Department of Respirology, Chibaken Saiseikai Narashino Hospital, Narashino, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| |
Collapse
|
28
|
Tanreqing Injection Regulates Cell Function of Hypoxia-Induced Human Pulmonary Artery Smooth Muscle Cells (HPASMCs) through TRPC1/CX3CL1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3235102. [PMID: 35186183 PMCID: PMC8856792 DOI: 10.1155/2022/3235102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Hypoxia-induced pulmonary arterial hypertension (HPAH) is due to hypoxia caused by vascular endothelial cell remolding and damage. Previous studies have suggested that CX3CL1 plays an important role in HPAH which is affected by oxidative stress. Ca2+ channel activation correlated with increasing NF-κB levels induced by ROS. Tanreqing injection (TRQ) is a traditional Chinese medicine (TCM) for acute upper respiratory tract infection and acute pneumonia. In the present study, we explored the effect of TRQ on human pulmonary artery smooth muscle cells (HPASMCs) undergoing hypoxia and feasible molecular mechanisms involved in. Cell proliferation was assayed using CCK8 kits. Immunofluorescence and western blotting along with ELISA assay were performed to investigate the effect of TRQ on hypoxia-induced ROS, Ca2+, hydroxyl free radicals, and the expression of Ca2+ channel protein TRPC1, CX3CR1, HIF-1α, NF-κBp65, and p-NF-κBp65 in HPASMCs. Human CX3CL1 and the inhibitor of TRPC1 as SKF96365 were used for further investigation. TRQ inhibited hypoxia-induced increasing cell adhesion, ROS, Ca2+, hydroxyl free radicals, CX3CR1, HIF-1α, NF-κBp65 activation, and even on TRPC1 expression in HPASMC which tended to be attenuated even reversed by CX3CL1. Our results suggested that TRQ might help to attenuate remodeling of HPASMC through inhibiting the ROS and TRPC1/CX3CL1 signaling pathway.
Collapse
|
29
|
Huang Y, Lin F, Tang R, Bao C, Zhou Q, Ye K, Shen Y, Liu C, Hong C, Yang K, Tang H, Wang J, Lu W, Wang T. Gut Microbial Metabolite Trimethylamine N-Oxide Aggravates Pulmonary Hypertension. Am J Respir Cell Mol Biol 2022; 66:452-460. [PMID: 35100519 DOI: 10.1165/rcmb.2021-0414oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Trimethylamine N-oxide (TMAO), a metabolite derived from intestine microbial flora, enhances vascular inflammation in a variety of cardiovascular disease, and the bacterial communities associated with trimethylamine N-oxide (TMAO) metabolism is higher in pulmonary hypertension (PH) patients. The effects of TMAO on PH, however, has not been elucidated. In the present study, we found that circulating TMAO was elevated in intermediate to high-risk PH patients when compared to healthy control or low-risk PH patients. In monocrotaline-induced rat PH models, circulating TMAO was elevated; and reduction of TMAO using 3,3-dimethyl-1-butanol (DMB) significantly decreased right ventricle systolic pressure, pulmonary vascular muscularization in both monocrotaline-induced rat PH and hypoxia induced mice PH models. RNA sequencing of rat lungs revealed that DMB treatment significant suppressed the pathways involved in cytokine-cytokine receptor interaction, and cytokine and chemokine signaling. Protein-protein interaction analysis of the differentially expressed transcripts regulated by DMB showed 5 hub genes with a strong connectivity of proinflammatory cytokines and chemokines including Kng1, Cxcl1, Cxcl2, CxcL6 and Il6. In vitro, TMAO significantly increased the expression of Kng1, Cxcl1, Cxcl2, CxcL6 and Il6 in bone marrow derived macrophage. And TMAO-treated conditioned medium from macrophage increased the proliferation and migration of pulmonary artery smooth muscle cells; but TMAO treatment did not change the proliferation or migration of pulmonary artery smooth muscle cells. In conclusion, our study demonstrates that TMAO is increased in severe PH, and the reduction of TMAO decreases pulmonary vascular muscularization and alleviates PH via suppressing the macrophage production of chemokines and cytokines.
Collapse
Affiliation(s)
- Yuhang Huang
- State Key Laboratory of Respiratory Disease, 555049, Guangzhou, China
| | - Fanjie Lin
- State Key Laboratory of Respiratory Disease, 555049, Guangzhou, China
| | - Ruidi Tang
- State Key Laboratory of Respiratory Disease, 555049, Guangzhou, China
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, 555049, Guangzhou, China
| | - Qingxun Zhou
- Guangzhou Medical University, Guangzhou Institute of Respiratory Diseases, Guangzhou, China
| | - Kaiwen Ye
- Guangzhou Medical University, 26468, Guangzhou Institute of Respiratory Diseases, Guangzhou, China
| | - Yi Shen
- State Key Laboratory of Respiratory Disease, 555049, Guangzhou, China
| | - Chunli Liu
- Guangzhou Institute of Respiratory Disease, 518877, Respiratory Medicine, Guangzhou, China
| | - Cheng Hong
- Guangzhou Medical University The First Associated Hospital, Guangzhou Institute of Respiratory Diseases, Guangzhou, China
| | - Kai Yang
- Guangzhou Institute of Respiratory Diseases, Guangzhou, China
| | - Haiyang Tang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- The University of Arizona, 8041, Medicine, Tucson, Arizona, United States
| | - Wenju Lu
- Guangzhou Medical University The First Associated Hospital, Guangzhou Institute of Respiratory Diseases, Guangzhou, China
| | - Tao Wang
- Guangzhou Institute of Respiratory Disease, 518877, Respiratory Medicine, Guangzhou, China;
| |
Collapse
|
30
|
Xia WJ, Xu ML, Yu XJ, Du MM, Li XH, Yang T, Li L, Li Y, Kang KB, Su Q, Xu JX, Shi XL, Wang XM, Li HB, Kang YM. Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes 2022; 13:1-24. [PMID: 33382364 PMCID: PMC7781639 DOI: 10.1080/19490976.2020.1854642] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise (Ex) has long been recognized to produce beneficial effects on hypertension (HTN). This coupled with evidence of gut dysbiosis and an impaired gut-brain axis led us to hypothesize that reshaping of gut microbiota and improvement in impaired gut-brain axis would, in part, be associated with beneficial influence of exercise. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise for 12 weeks, whereas, detrained groups underwent 8 weeks of moderate-intensity exercise followed by 4 weeks of detraining. Fecal microbiota, gut pathology, intestinal inflammation, and permeability, brain microglia and neuroinflammation were analyzed. We observed that exercise training resulted in a persistent decrease in systolic blood pressure in the SHR. This was associated with increase in microbial α diversity, altered β diversity, and enrichment of beneficial bacterial genera. Furthermore, decrease in the number of activated microglia, neuroinflammation in the hypothalamic paraventricular nucleus, improved gut pathology, inflammation, and permeability were also observed in the SHR following exercise. Interestingly, short-term detraining did not abolish these exercise-mediated improvements. Finally, fecal microbiota transplantation from exercised SHR into sedentary SHR resulted in attenuated SBP and an improved gut-brain axis. These observations support our concept that an impaired gut-brain axis is linked to HTN and exercise ameliorates this impairment to induce antihypertensive effects.
Collapse
Affiliation(s)
- Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Meng-Meng Du
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’anChina
| | - Tao Yang
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OHUSA
| | - Lu Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’anChina
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Kai B. Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Jia-Xi Xu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’anChina
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| |
Collapse
|
31
|
Oliveira AC, Yang T, Li J, Sharma RK, Karas MK, Bryant AJ, de Kloet AD, Krause EG, Joe B, Richards EM, Raizada MK. Fecal matter transplant from Ace2 overexpressing mice counteracts chronic hypoxia-induced pulmonary hypertension. Pulm Circ 2022; 12:e12015. [PMID: 35506083 PMCID: PMC9052990 DOI: 10.1002/pul2.12015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
Recent evidence suggests pulmonary hypertension (PH), a disease of the pulmonary vasculature actually has multiorgan pathophysiology and perhaps etiology. Herein, we demonstrated that fecal matter transplantation from angiotensin-converting enzyme 2 overexpressing mice counteracted the effects of chronic hypoxia to prevent pulmonary hypertension, neuroinflammation, and gut dysbiosis in wild type recipients.
Collapse
Affiliation(s)
- Aline C. Oliveira
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Tao Yang
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, Center for Hypertension and Precision MedicineUniversity of ToledoToledoOhioUSA
| | - Jing Li
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Ravindra K. Sharma
- Department of Medicine, Division of Nephrology, Hypertension and Renal TransplantationUniversity of Florida College of MedicineGainesvilleFloraUSA
| | - Marianthi K. Karas
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Annette D. de Kloet
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Eric G. Krause
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Bina Joe
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, Center for Hypertension and Precision MedicineUniversity of ToledoToledoOhioUSA
| | - Elaine M. Richards
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
32
|
Chen ZY, Xiao HW, Dong JL, Li Y, Wang B, Fan SJ, Cui M. Gut Microbiota-Derived PGF2α Fights against Radiation-Induced Lung Toxicity through the MAPK/NF-κB Pathway. Antioxidants (Basel) 2021; 11:antiox11010065. [PMID: 35052569 PMCID: PMC8773112 DOI: 10.3390/antiox11010065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Radiation pneumonia is a common and intractable side effect associated with radiotherapy for chest cancer and involves oxidative stress damage and inflammation, prematurely halting the remedy and reducing the life quality of patients. However, the therapeutic options for the complication have yielded disappointing results in clinical application. Here, we report an effective avenue for fighting against radiation pneumonia. Faecal microbiota transplantation (FMT) reduced radiation pneumonia, scavenged oxidative stress and improved lung function in mouse models. Local chest irradiation shifted the gut bacterial taxonomic proportions, which were preserved by FMT. The level of gut microbiota-derived PGF2α decreased following irradiation but increased after FMT. Experimental mice with PGF2α replenishment, via an oral route, exhibited accumulated PGF2α in faecal pellets, peripheral blood and lung tissues, resulting in the attenuation of inflammatory status of the lung and amelioration of lung respiratory function following local chest irradiation. PGF2α activated the FP/MAPK/NF-κB axis to promote cell proliferation and inhibit apoptosis with radiation challenge; silencing MAPK attenuated the protective effect of PGF2α on radiation-challenged lung cells. Together, our findings pave the way for the clinical treatment of radiotherapy-associated complications and underpin PGF2α as a gut microbiota-produced metabolite.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Hui-Wen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Jia-Li Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| |
Collapse
|
33
|
Li HB, Xu ML, Du MM, Yu XJ, Bai J, Xia WJ, Dai ZM, Li CX, Li Y, Su Q, Wang XM, Dong YY, Kang YM. Curcumin ameliorates hypertension via gut-brain communication in spontaneously hypertensive rat. Toxicol Appl Pharmacol 2021; 429:115701. [PMID: 34453990 DOI: 10.1016/j.taap.2021.115701] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
Gut dysbiosis and dysregulation of gut-brain communication have been identified in hypertensive patients and animal models. Previous studies have shown that probiotic or prebiotic treatments exert positive effects on the pathophysiology of hypertension. This study aimed to examine the hypothesis that the microbiota-gut-brain axis is involved in the antihypertensive effects of curcumin, a potential prebiotic obtained from Curcuma longa. Male 8- to 10-week-old spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were divided into four groups: WKY rats and SHRs treated with vehicle and SHRs treated with curcumin in dosage of 100 or 300 mg/kg/day for 12 weeks. Our results show that the elevated blood pressure of SHRs was markedly decreased in both curcumin-treated groups. Curcumin treatment also altered the gut microbial composition and improved intestinal pathology and integrity. These factors were associated with reduced neuroinflammation and oxidative stress in the hypothalamus paraventricular nucleus (PVN). Moreover, curcumin treatment increased butyrate levels in the plasma, which may be the result of increased butyrate-producing gut microorganisms. In addition, curcumin treatment also activated G protein-coupled receptor 43 (GPR 43) in the PVN. These results indicate that curcumin reshapes the composition of the gut microbiota and ameliorates the dysregulation of the gut-brain communication to induce antihypertensive effects.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| | - Meng-Lu Xu
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Meng-Meng Du
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Juan Bai
- Department of Anesthesiology, Center for Brian Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Zhi-Ming Dai
- Department of Anesthesia, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Yuan-Yuan Dong
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| |
Collapse
|
34
|
Sajdel-Sulkowska EM. A Dual-Route Perspective of SARS-CoV-2 Infection: Lung- vs. Gut-specific Effects of ACE-2 Deficiency. Front Pharmacol 2021; 12:684610. [PMID: 34177593 PMCID: PMC8226136 DOI: 10.3389/fphar.2021.684610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, primarily considered a respiratory virus, is increasingly recognized as having gastrointestinal aspects based on its presence in the gastrointestinal (GI) tract and feces. SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 (ACE-2), a critical member of the renin-angiotensin-aldosterone system (RAAS) involved in the regulation of blood pressure and fluid system. In addition to the systemic endocrine functions, RAAS components are also involved in intracrine and organ-specific local functions. The angiotensin-converting enzyme 2 (ACE-2) is a key component of RAAS and a receptor for SARS-CoV-2. It is expressed in many tissues with gastrointestinal (GI) tract ACE-2 levels far exceeding those in the respiratory tract. SARS-CoV-2 binding to its receptor results in a deficiency of ACE-2 activity in endocrine, intracrine, and local lung and GI tract ACE-2. The local ACE-2 has different organ-specific functions, including hypertension-independent activities; dysregulations of these functions may contribute to multiorgan COVID-19 pathology, its severity, long-term effects, and mortality. We review supporting evidence from this standpoint. Notably, COVID-19 comorbidities involving hypertension, obesity, heart disease, kidney disease, and diabetes are associated with gastrointestinal problems and display ACE-2 deficits. While RAAS inhibitors target both endocrine and intracrine ACE-2 activity, the deficit of the local ACE-2 activity in the lungs and more so in the gut have not been targeted. Consequently, the therapeutic approach to COVID-19 should be carefully reconsidered. Ongoing clinical trials testing oral probiotic bound ACE-2 delivery are promising.
Collapse
|
35
|
Tawa M, Nagata R, Sumi Y, Nakagawa K, Sawano T, Ohkita M, Matsumura Y. Preventive effects of nitrate-rich beetroot juice supplementation on monocrotaline-induced pulmonary hypertension in rats. PLoS One 2021; 16:e0249816. [PMID: 33831045 PMCID: PMC8031446 DOI: 10.1371/journal.pone.0249816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
Beetroot (Beta vulgaris L.) has a high level of nitrate; therefore, its dietary intake could increase nitric oxide (NO) level in the body, possibly preventing the development of pulmonary hypertension (PH). In this study, we examined the effects of beetroot juice (BJ) supplementation on PH and the contribution of nitrate to such effects using a rat model of monocrotaline (MCT, 60 mg/kg s.c.)-induced PH. Rats were injected subcutaneously with saline or 60 mg/kg MCT and were sacrificed 28 days after the injection. In some rats injected with MCT, BJ was supplemented from the day of MCT injection to the day of sacrifice. First, MCT-induced right ventricular systolic pressure elevation, pulmonary arterial medial thickening and muscularization, and right ventricular hypertrophy were suppressed by supplementation with low-dose BJ (nitrate: 1.3 mmol/L) but not high-dose BJ (nitrate: 4.3 mmol/L). Of the plasma nitrite, nitrate, and their sum (NOx) levels, only the nitrate levels were found to be increased by the high-dose BJ supplementation. Second, in order to clarify the possible involvement of nitrate in the preventive effects of BJ on PH symptoms, the effects of nitrate-rich BJ (nitrate: 0.9 mmol/L) supplementation were compared with those of the nitrate-depleted BJ. While the former exerted preventive effects on PH symptoms, such effects were not observed in rats supplemented with nitrate-depleted BJ. Neither supplementation with nitrate-rich nor nitrate-depleted BJ affected plasma nitrite, nitrate, and NOx levels. These findings suggest that a suitable amount of BJ ingestion, which does not affect systemic NO levels, can prevent the development of PH in a nitrate-dependent manner. Therefore, BJ could be highly useful as a therapy in patients with PH.
Collapse
Affiliation(s)
- Masashi Tawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- * E-mail: ,
| | - Rikako Nagata
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yuiko Sumi
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Keisuke Nakagawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Tatsuya Sawano
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yasuo Matsumura
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
36
|
Li Y, Salih Ibrahim RM, Chi HL, Xiao T, Xia WJ, Li HB, Kang YM. Altered Gut Microbiota is Involved in the Anti-Hypertensive Effects of Vitamin C in Spontaneously Hypertensive Rat. Mol Nutr Food Res 2021; 65:e2000885. [PMID: 33547879 DOI: 10.1002/mnfr.202000885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/07/2020] [Indexed: 01/25/2023]
Abstract
SCOPE Gut dysbiosis and dysregulation of the gut-brain-axis contributes to the pathogenesis of hypertension. Vitamin C (VC) is a common dietary supplement that shows the ability to lower the elevated blood pressure in hypertensive animals. Thus, the hypothesis that the gut microbiota is involved in the anti-hypertensive effect of VC is proposed. METHODS AND RESULTS The changes of the gut microbiota and pathology in a spontaneously hypertensive rat (SHR) model after daily oral intake of VC in dosage of 200 or 1000 mg kg-1 are examined. After 4 weeks, the elevated blood pressure of SHRs in both VC-treated groups is attenuated. Sequencing of the gut microbiota shows improvement in its diversity and abundance. Bioinformatic analysis suggests restored metabolism and biosynthesis-related functions of the gut, which are confirmed by the improvement of gut pathology and integrity. Analysis of the hypothalamus paraventricular nucleus (PVN), the central pivot of blood pressure regulation, also shows reduced inflammatory responses and oxidative stress. CONCLUSIONS The reduced blood pressure, enriched gut microbiota, improved gut pathology and integrity, and reduced inflammatory responses and oxidative stress in the PVN together suggest that the anti-hypertensive effects of VC involve reshaping of gut microbiota composition and function.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Rawya Mohamed Salih Ibrahim
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Hong-Li Chi
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Tong Xiao
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| |
Collapse
|
37
|
Hypertension Editors' Picks: Gut Microbiome. Hypertension 2021; 77:e35-e41. [PMID: 33611938 PMCID: PMC7968965 DOI: 10.1161/hypertensionaha.121.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Chen IC, Lin JY, Liu YC, Chai CY, Yeh JL, Hsu JH, Wu BN, Dai ZK. Angiotensin-Converting Enzyme 2 Activator Ameliorates Severe Pulmonary Hypertension in a Rat Model of Left Pneumonectomy Combined With VEGF Inhibition. Front Med (Lausanne) 2021; 8:619133. [PMID: 33681251 PMCID: PMC7933511 DOI: 10.3389/fmed.2021.619133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a life-threatening and deteriorating disease with no promising therapy available currently due to its diversity and complexity. An imbalance between vasoconstriction and vasodilation has been proposed as the mechanism of PAH. Angiotensin-converting enzyme 2 (ACE2), which catalyzes the hydrolysis of the vasoconstrictor angiotensin (Ang) II into the vasodilator Ang-(1-7), has been shown to be an important regulator of blood pressure and cardiovascular diseases. Herein we hypothesized diminazene aceturate (DIZE), an ACE2 activator, could ameliorate the development of PAH and pulmonary vascular remodeling. Methods: A murine model of PAH was established using left pneumonectomy (PNx) on day 0 followed by injection of a single dose of the VEGF receptor-2 inhibitor SU5416 (25 mg/kg) subcutaneously on day 1. All hemodynamic and biochemical measurements were done at the end of the study on day 42. Animals were divided into 4 groups (n = 6–8/group): (1) sham-operated group, (2) vehicle-treatment group (SuPNx42), (3) early treatment group (SuPNx42/DIZE1−42) with DIZE at 15 mg/kg/day, subcutaneously from day 1 to day 42, and (4) late treatment group (SuPNx42/DIZE29−42) with DIZE from days 29–42. Results: In both the early and late treatment groups, DIZE significantly attenuated the mean pulmonary artery pressure, pulmonary arteriolar remodeling, and right ventricle brain natriuretic peptide (BNP), as well as reversed the overexpression of ACE while up-regulating the expression of Ang-(1-7) when compared with the vehicle-treatment group. In addition, the early treatment group also significantly decreased plasma BNP and increased the expression of eNOS. Conclusions: ACE2 activator has therapeutic potentials for preventing and attenuating the development of PAH in an animal model of left pneumonectomy combined with VEGF inhibition. Activation of ACE2 may thus be a useful therapeutic strategy for the treatment of human PAH.
Collapse
Affiliation(s)
- I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jao-Yu Lin
- Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Liu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Exercise and food supplement of vitamin C ameliorate hypertension through improvement of gut microflora in the spontaneously hypertensive rats. Life Sci 2021; 269:119097. [PMID: 33482189 DOI: 10.1016/j.lfs.2021.119097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
AIMS Exercise and food supplement of vitamin C (VC) are beneficial to human health, especially for those who suffer from hypertension. Here we tend to explore if gut microflora is involved in the anti-hypertensive effects of exercise and VC-supplement therapies. MATERIALS AND METHODS With the spontaneously hypertensive rat (SHR) model, the small intestine pathology and the fecal microbiota was analyzed along with the pro- and anti-inflammatory cytokines (PICs and AICs) and reactive oxygen species (ROS) in the hypothalamus paraventricular nucleus (PVN) and intestine. KEY FINDINGS We found that both exercise and VC intake, individually or combined, were able to alleviate the blood pressure in the SHRs comparing to the normotensive control Wistar-kyoto (WKY) rats. The expression level of PICs in the PVN and intestine of the SHRs was down-regulated while the AICs were up-regulated after treatments, together with down-regulation of ROS in the PVN. At meantime, the gut pathology was dramatically improved in the SHRs with exercise training or VC intake. Analysis of the gut microflora revealed significant changes in their composition. Several important micro-organisms that were deficient in the SHRs were found up-regulated by the treatments, including Turicibacter and Romboutsia which are involved in the short-chain fatty acid production. SIGNIFICANCE Exercise training and VC intake individually can modify the gut microflora composition and improve the inflammatory state in both PVN and intestine, which contribute to their anti-hypertensive function. Combination of the two treatments enhanced their effects and worth to be considered as a non-medical aid for the hypertensive patients.
Collapse
|
40
|
Sharma R, Li J, Krishnan S, Richards E, Raizada M, Mohandas R. Angiotensin-converting enzyme 2 and COVID-19 in cardiorenal diseases. Clin Sci (Lond) 2021; 135:1-17. [PMID: 33399851 PMCID: PMC7796300 DOI: 10.1042/cs20200482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023]
Abstract
The rapid spread of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought into focus the key role of angiotensin-converting enzyme 2 (ACE2), which serves as a cell surface receptor required for the virus to enter cells. SARS-CoV-2 can decrease cell surface ACE2 directly by internalization of ACE2 bound to the virus and indirectly by increased ADAM17 (a disintegrin and metalloproteinase 17)-mediated shedding of ACE2. ACE2 is widely expressed in the heart, lungs, vasculature, kidney and the gastrointestinal (GI) tract, where it counteracts the deleterious effects of angiotensin II (AngII) by catalyzing the conversion of AngII into the vasodilator peptide angiotensin-(1-7) (Ang-(1-7)). The down-regulation of ACE2 by SARS-CoV-2 can be detrimental to the cardiovascular system and kidneys. Further, decreased ACE2 can cause gut dysbiosis, inflammation and potentially worsen the systemic inflammatory response and coagulopathy associated with SARS-CoV-2. This review aims to elucidate the crucial role of ACE2 both as a regulator of the renin-angiotensin system and a receptor for SARS-CoV-2 as well as the implications for Coronavirus disease 19 and its associated cardiovascular and renal complications.
Collapse
Affiliation(s)
- Ravindra K. Sharma
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Jing Li
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Suraj Krishnan
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Elaine M. Richards
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Mohan K. Raizada
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| |
Collapse
|
41
|
|
42
|
Oliveira AC, Richards EM, Karas MM, Pepine CJ, Raizada MK. Would Repurposing Minocycline Alleviate Neurologic Manifestations of COVID-19? Front Neurosci 2020; 14:577780. [PMID: 33117121 PMCID: PMC7561411 DOI: 10.3389/fnins.2020.577780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marianthi M Karas
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Sharma RK, Stevens BR, Obukhov AG, Grant MB, Oudit GY, Li Q, Richards EM, Pepine CJ, Raizada MK. ACE2 (Angiotensin-Converting Enzyme 2) in Cardiopulmonary Diseases: Ramifications for the Control of SARS-CoV-2. Hypertension 2020; 76:651-661. [PMID: 32783758 DOI: 10.1161/hypertensionaha.120.15595] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Discovery of ACE2 (angiotensin-converting enzyme 2) revealed that the renin-angiotensin system has 2 counterbalancing arms. ACE2 is a major player in the protective arm, highly expressed in lungs and gut with the ability to mitigate cardiopulmonary diseases such as inflammatory lung disease. ACE2 also exhibits activities involving gut microbiome, nutrition, and as a chaperone stabilizing the neutral amino acid transporter, B0AT1, in gut. But the current interest in ACE2 arises because it is the cell surface receptor for the novel coronavirus, severe acute respiratory syndrome coronavirus-2, to infect host cells, similar to severe acute respiratory syndrome coronavirus-2. This suggests that ACE2 be considered harmful, however, because of its important other roles, it is paradoxically a potential therapeutic target for cardiopulmonary diseases, including coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2. This review describes the discovery of ACE2, its physiological functions, and its place in the renin-angiotensin system. It illustrates new analyses of the structure of ACE2 that provides better understanding of its actions particularly in lung and gut, shedding of ACE2 by ADAM17 (a disintegrin and metallopeptidase domain 17 protein), and role of TMPRSS2 (transmembrane serine proteases 2) in severe acute respiratory syndrome coronavirus-2 entry into host cells. Cardiopulmonary diseases are associated with decreased ACE2 activity and the mitigation by increasing ACE2 activity along with its therapeutic relevance are addressed. Finally, the potential use of ACE2 as a treatment target in COVID-19, despite its role to allow viral entry into host cells, is suggested.
Collapse
Affiliation(s)
- Ravindra K Sharma
- From the Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine (R.K.S.), University of Florida College of Medicine, Gainesville
| | - Bruce R Stevens
- Department of Physiology and Functional Genomics (B.R.S., E.M.R., M.K.R.), University of Florida College of Medicine, Gainesville
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis (A.G.O.)
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama College of Medicine, Birmingham (M.B.G.)
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta College of Medicine, Edmonton, Canada (G.Y.O.)
| | - Qiuhong Li
- Department of Ophthalmology (Q.L.), University of Florida College of Medicine, Gainesville
| | - Elaine M Richards
- Department of Physiology and Functional Genomics (B.R.S., E.M.R., M.K.R.), University of Florida College of Medicine, Gainesville
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), University of Florida College of Medicine, Gainesville
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics (B.R.S., E.M.R., M.K.R.), University of Florida College of Medicine, Gainesville
| |
Collapse
|
44
|
Sharma RK, Oliveira AC, Yang T, Kim S, Zubcevic J, Aquino V, Lobaton GO, Goel R, Richards EM, Raizada MK. Pulmonary arterial hypertension-associated changes in gut pathology and microbiota. ERJ Open Res 2020; 6:00253-2019. [PMID: 32743008 PMCID: PMC7383054 DOI: 10.1183/23120541.00253-2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence implicates an interplay among multiple organs such as brain, vasculature, gut and lung in the development of established pulmonary arterial hypertension (PAH). This has led us to propose that activated microglia mediated-enhanced sympathetic activation contributes to PAH pathophysiology. Since enhanced sympathetic activity is observed in human PAH and the gut is highly innervated by sympathetic nerves that regulate its physiological functions, we hypothesized that PAH would be associated with gut pathophysiology. A monocrotaline rat model of PAH was utilized to investigate the link between gut pathology and PAH. Haemodynamics, histology, immunocytochemistry and 16S RNA gene sequencing were used to assess cardiopulmonary functions, gut pathology and gut microbial communities respectively. Monocrotaline treatment caused increased right ventricular systolic pressure, haemodynamics and pathological changes associated with PAH. PAH animals also showed profound gut pathology that included increased intestinal permeability, increased muscularis layer, decreased villi length and goblet cells. These changes in gut pathology were associated with alterations in microbial communities, some unique to PAH animals. Furthermore, enhanced gut-neural communication involving the paraventricular nucleus of the hypothalamus and increased sympathetic drive were observed. In conclusion, our data show the presence of gut pathology and distinct changes in gut microbiota and increased sympathetic activity in PAH. They suggest that dysfunctional gut-brain crosstalk could be critical in PAH and considered a future therapeutic target for PAH.
Collapse
Affiliation(s)
- Ravindra K. Sharma
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Aline C. Oliveira
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Tao Yang
- Dept of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
| | - Seungbum Kim
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Jasenka Zubcevic
- Dept of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Victor Aquino
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Gilberto O. Lobaton
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Ruby Goel
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Elaine M. Richards
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Mohan K. Raizada
- Dept of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Gheblawi M, Wang K, Oudit GY. ACE2 (Angiotensin-Converting Enzyme 2)-Mediated Protection From Pulmonary Hypertension. Hypertension 2020; 76:28-29. [DOI: 10.1161/hypertensionaha.120.15175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mahmoud Gheblawi
- From the Department of Physiology (M.G., G.Y.O.), University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute (M.G., K.W., G.Y.O.), University of Alberta, Edmonton, Canada
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine (K.W., G.Y.O.), University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute (M.G., K.W., G.Y.O.), University of Alberta, Edmonton, Canada
| | - Gavin Y. Oudit
- From the Department of Physiology (M.G., G.Y.O.), University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine (K.W., G.Y.O.), University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute (M.G., K.W., G.Y.O.), University of Alberta, Edmonton, Canada
| |
Collapse
|