1
|
Amiral J, Ferol R. Update on the measurement of "soluble angiotensin converting enzyme 2" in plasma and its emerging significance as a novel biomarker of cardiovascular and kidney diseases: A concise commentary. Transfus Apher Sci 2025; 64:104090. [PMID: 39923730 DOI: 10.1016/j.transci.2025.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Angiotensin Converting Enzyme 2 has emerged as a major cell-surface enzyme receptor for controlling the Renin-Angiotensin-Aldosterone-System. The SARS-Cov-2 pandemics has focused a major interest on that cell-surface receptor. It is the virus entry door for cell infection, and when inside it can replicate and lead to cell destruction. In some physio-pathological conditions, ADAM 17 and TMPSSR2 enzymes can cleave ACE2 on the cell surface and release its extra-cellular domain into the blood circulation. Measurement of this soluble protein then becomes possible, preferentially in plasma, but also in serum. Clinical studies have shown that Soluble ACE2 is an emerging biomarker for cardiovascular and kidney diseases and it could be of prognostic value for heart failure and kidney dysfunctions. In Covid-19 its diagnostic value is controversial, and the various studies lead to different conclusions. Many laboratory assays have been reported for the measurement of this biomarker. They concern enzymatic assays, aptamer methods, or immunoassays, either chemiluminescent or ELISA. Normal and pathological plasma concentrations reported with the various assays yet lack standardization and are very heterogenous. Recently introduced immunoassays tend to yield more compliant results despite variations due to the assay design and calibration, or the antibody targeted epitopes and reactivity. This article reports an ELISA designed with affinity purified rabbit polyclonal antibodies, obtained with recombinant ACE2 and calibrated with the recombinant protein in plasma. This assay has a global reactivity with the various ACE2 protein epitopes. Assay performance characteristics, and values measured in normal populations are presented. Availability of optimized ELISAs can contribute to a better harmonization of sACE2 measurements in plasma, and confirm its clinical significance as biomarker.
Collapse
Affiliation(s)
- Jean Amiral
- Scientific Hemostasis, Franconville, France.
| | - Rémy Ferol
- Scientific Hemostasis, Franconville, France
| |
Collapse
|
2
|
Degnes MHL, Westerberg AC, Andresen IJ, Henriksen T, Roland MCP, Zucknick M, Michelsen TM. Protein biomarker signatures of preeclampsia - a longitudinal 5000-multiplex proteomics study. Sci Rep 2024; 14:23654. [PMID: 39390022 PMCID: PMC11467422 DOI: 10.1038/s41598-024-73796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
We aimed to explore novel biomarker candidates and biomarker signatures of late-onset preeclampsia (LOPE) by profiling samples collected in a longitudinal discovery cohort with a high-throughput proteomics platform. Using the Somalogic 5000-plex platform, we analyzed proteins in plasma samples collected at three visits (gestational weeks (GW) 12-19, 20-26 and 28-34 in 35 women with LOPE (birth ≥ 34 GW) and 70 healthy pregnant women). To identify biomarker signatures, we combined Elastic Net with Stability Selection for stable variable selection and validated their predictive performance in a validation cohort. The biomarker signature with the highest predictive performance (AUC 0.88 (95% CI 0.85-0.97)) was identified in the last trimester of pregnancy (GW 28-34) and included the Fatty acid amid hydrolase 2 (FAAH2), HtrA serine peptidase 1 (HTRA1) and Interleukin-17 receptor C (IL17RC) together with sFLT1 and maternal age, BMI and nulliparity. Our biomarker signature showed increased or similar predictive performance to the sFLT1/PGF-ratio within our data set, and we were able to validate the biomarker signature in a validation cohort (AUC ≥ 0.90). Further validation of these candidates should be performed using another protein quantification platform in an independent cohort where the negative and positive predictive values can be validly calculated.
Collapse
Affiliation(s)
- Maren-Helene Langeland Degnes
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
| | - Ane Cecilie Westerberg
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Ina Jungersen Andresen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Dib MJ, Azzo JD, Zhao L, Salman O, Gan S, De Buyzere ML, De Meyer T, Ebert C, Gunawardhana K, Liu L, Gordon D, Seiffert D, Ching-Pin C, Zamani P, Cohen JB, Pourmussa B, Kun S, Gill D, Burgess S, van Empel V, Richards AM, Dennis J, Javaheri A, Mann DL, Cappola TP, Rietzschel E, Chirinos JA. Proteome-Wide Genetic Investigation of Large Artery Stiffness. JACC Basic Transl Sci 2024; 9:1178-1191. [PMID: 39534640 PMCID: PMC11551872 DOI: 10.1016/j.jacbts.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 11/16/2024]
Abstract
The molecular mechanisms contributing to large artery stiffness (LAS) are not fully understood. The aim of this study was to investigate the association between circulating plasma proteins and LAS using complementary proteomic and genomic analyses. A total of 106 proteins associated with carotid-femoral pulse-wave velocity, a noninvasive measure of LAS, were identified in 1,178 individuals from the Asklepios study cohort. Mendelian randomization analyses revealed causal effects of 13 genetically predicted plasma proteins on pulse pressure, including cartilage intermediate layer protein-2, high-temperature requirement A serine peptidase-1, and neuronal growth factor-1. These findings suggest potential novel therapeutic targets to reduce LAS and its related diseases.
Collapse
Affiliation(s)
- Marie-Joe Dib
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joe David Azzo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lei Zhao
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Oday Salman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushrima Gan
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marc L. De Buyzere
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | - Tim De Meyer
- Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | - Laura Liu
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - David Gordon
- Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | | | | - Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordana B. Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bianca Pourmussa
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seavmeiyin Kun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Stephen Burgess
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | | | - Ali Javaheri
- Washington University School of Medicine, St. Louis, Missouri, USA
- John J. Cochran Veterans Hospital, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas P. Cappola
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ernst Rietzschel
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | - Julio A. Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Carland C, Zhao L, Salman O, Cohen JB, Zamani P, Xiao Q, Dongre A, Wang Z, Ebert C, Greenawalt D, van Empel V, Richards AM, Doughty RN, Rietzschel E, Javaheri A, Wang Y, Schafer PH, Hersey S, Carayannopoulos LN, Seiffert D, Chang C, Gordon DA, Ramirez‐Valle F, Mann DL, Cappola TP, Chirinos JA. Urinary Proteomics and Outcomes in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033410. [PMID: 38639358 PMCID: PMC11179922 DOI: 10.1161/jaha.123.033410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Although several studies have addressed plasma proteomics in heart failure with preserved ejection fraction, limited data are available on the prognostic value of urinary proteomics. The objective of our study was to identify urinary proteins/peptides associated with death and heart failure admission in patients with heart failure with preserved ejection fraction. METHODS AND RESULTS The study population included participants enrolled in TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial). The relationship between urine protein levels and the risk of death or heart failure admission was assessed using Cox regression, in both nonadjusted analyses and adjusting for urine creatinine levels, and the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score. A total of 426 (12.4%) TOPCAT participants had urinary protein data and were included. There were 40 urinary proteins/peptides significantly associated with death or heart failure admission in nonadjusted analyses, 21 of which were also significant adjusted analyses. Top proteins in the adjusted analysis included ANGPTL2 (angiopoietin-like protein 2) (hazard ratio [HR], 0.5731 [95% CI, 0.47-0.7]; P=3.13E-05), AMY2A (α amylase 2A) (HR, 0.5496 [95% CI, 0.44-0.69]; P=0.0001), and DNASE1 (deoxyribonuclease-1) (HR, 0.5704 [95% CI, 0.46-0.71]; P=0.0002). Higher urinary levels of proteins involved in fibrosis (collagen VI α-1, collagen XV α-1), metabolism (pancreatic α-amylase 2A/B, mannosidase α class 1A member 1), and inflammation (heat shock protein family D member 1, inducible T cell costimulatory ligand) were associated with a lower risk of death or heart failure admission. CONCLUSIONS Our study identifies several novel associations between urinary proteins/peptides and outcomes in heart failure with preserved ejection fraction. Many of these associations are independent of clinical risk scores and may aid in risk stratification in this patient population.
Collapse
Affiliation(s)
- Corinne Carland
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Qing Xiao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Robert N. Doughty
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University Hospital and Ghent UniversityGhentBelgium
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | - Yixin Wang
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
5
|
Dib M, Levin MG, Zhao L, Diab A, Wang Z, Ebert C, Salman O, Azzo JD, Gan S, Zamani P, Cohen JB, Gill D, Burgess S, Zagkos L, van Empel V, Richards AM, Doughty R, Rietzschel ER, Kammerhoff K, Kvikstad E, Maranville J, Schafer P, Seiffert DA, Ramirez‐Valle F, Gordon DA, Chang C, Javaheri A, Mann DL, Cappola TP, Chirinos JA. Proteomic Associations of Adverse Outcomes in Human Heart Failure. J Am Heart Assoc 2024; 13:e031154. [PMID: 38420755 PMCID: PMC10944037 DOI: 10.1161/jaha.123.031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Identifying novel molecular drivers of disease progression in heart failure (HF) is a high-priority goal that may provide new therapeutic targets to improve patient outcomes. The authors investigated the relationship between plasma proteins and adverse outcomes in HF and their putative causal role using Mendelian randomization. METHODS AND RESULTS The authors measured 4776 plasma proteins among 1964 participants with HF with a reduced left ventricular ejection fraction enrolled in PHFS (Penn Heart Failure Study). Assessed were the observational relationship between plasma proteins and (1) all-cause death or (2) death or HF-related hospital admission (DHFA). The authors replicated nominally significant associations in the Washington University HF registry (N=1080). Proteins significantly associated with outcomes were the subject of 2-sample Mendelian randomization and colocalization analyses. After correction for multiple testing, 243 and 126 proteins were found to be significantly associated with death and DHFA, respectively. These included small ubiquitin-like modifier 2 (standardized hazard ratio [sHR], 1.56; P<0.0001), growth differentiation factor-15 (sHR, 1.68; P<0.0001) for death, A disintegrin and metalloproteinase with thrombospondin motifs-like protein (sHR, 1.40; P<0.0001), and pulmonary-associated surfactant protein C (sHR, 1.24; P<0.0001) for DHFA. In pathway analyses, top canonical pathways associated with death and DHFA included fibrotic, inflammatory, and coagulation pathways. Genomic analyses provided evidence of nominally significant associations between levels of 6 genetically predicted proteins with DHFA and 11 genetically predicted proteins with death. CONCLUSIONS This study implicates multiple novel proteins in HF and provides preliminary evidence of associations between genetically predicted plasma levels of 17 candidate proteins and the risk for adverse outcomes in human HF.
Collapse
Affiliation(s)
- Marie‐Joe Dib
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Michael G. Levin
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Ahmed Diab
- Washington University School of MedicineSt. LouisMOUSA
| | | | | | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Joe David Azzo
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Sushrima Gan
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Payman Zamani
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Renal‐Electrolyte and Hypertension Division, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUnited Kingdom
| | - Stephen Burgess
- MRC Integrative Epidemiology UnitUniversity of BristolUnited Kingdom
- Department of Public Health and Primary CareUniversity of CambridgeUnited Kingdom
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public HealthImperial College LondonLondonUnited Kingdom
| | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Cardiovascular Research InstituteNational University of SingaporeSingapore
| | - Rob Doughty
- Christchurch Heart InstituteUniversity of OtagoChristchurchNew Zealand
| | | | | | | | | | | | | | | | | | | | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
- John J. Cochran Veterans HospitalSt. LouisMOUSA
| | | | - Thomas P. Cappola
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Division of Cardiovascular MedicineHospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
6
|
Xiao Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Halemubieke S, Mei L, Lu Z, Yan Y, Wang L. Posttranslational modifications of ACE2 protein: Implications for SARS-CoV-2 infection and beyond. J Med Virol 2023; 95:e29304. [PMID: 38063421 DOI: 10.1002/jmv.29304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
The present worldwide pandemic of coronavirus disease 2019 (COVID-19) has highlighted the important function of angiotensin-converting enzyme 2 (ACE2) as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. A deeper understanding of ACE2 could offer insights into the mechanisms of SARS-CoV-2 infection. While ACE2 is subject to regulation by various factors in vivo, current research in this area is insufficient to fully elucidate the corresponding pathways of control. Posttranslational modification (PTM) is a powerful tool for broadening the variety of proteins. The PTM study of ACE2 will help us to make up for the deficiency in the regulation of protein synthesis and translation. However, research on PTM-related aspects of ACE2 remains limited, mostly focused on glycosylation. Accordingly, a comprehensive review of ACE2 PTMs could help us better understand the infection process and provide a basis for the treatment of COVID-19 and beyond.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shana Halemubieke
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
7
|
Xie J, Huang QF, Zhang Z, Dong Y, Xu H, Cao Y, Sheng CS, Li Y, Wang C, Wang X, Wang JG. Angiotensin-converting enzyme 2 in human plasma and lung tissue. Blood Press 2023; 32:6-15. [PMID: 36495008 DOI: 10.1080/08037051.2022.2154745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated plasma angiotensin-converting enzyme 2 (ACE2) concentration in a population sample and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue in patients who underwent lung surgery. MATERIALS AND METHODS The study participants were recruited from a residential area in the suburb of Shanghai for the plasma ACE2 concentration study (n = 503) and the lung tissue samples were randomly selected from the storage in Ruijin Hospital (80 men and 78 age-matched women). RESULTS In analyses adjusted for covariables, men had a significantly higher plasma ACE2 concentration (1.21 vs. 0.98 ng/mL, p = 0.027) and the mean intensity of ACE2 in the lung tissue (55.1 vs. 53.9 a.u., p = 0.037) than women. With age increasing, plasma ACE2 concentration decreased (p = 0.001), while the mean intensity of ACE2 in the lung tissue tended to increase (p = 0.087). Plasma ACE2 concentration was higher in hypertension than normotension, especially treated hypertension (1.23 vs. 0.98 ng/mL, p = 0.029 vs. normotension), with no significant difference between users of RAS inhibitors and other classes of antihypertensive drugs (p = 0.64). There was no significance of the mean intensity of ACE2 in the lung tissue between patients taking and those not taking RAS inhibitors (p = 0.14). Neither plasma ACE2 concentration nor the mean intensity of ACE2 in the lung tissue differed between normoglycemia and diabetes (p ≥ 0.20). CONCLUSION ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics of patients.Plain language summary What is the context? • The primary physiological function of ACE2 is the degradation of angiotensin I and II to angiotensin 1-9 and 1-7, respectively. • ACE2 was found to behave as a mediator of the severe acute respiratory syndrome coronavirus (SARS) infection. • There is little research on ACE2 in humans, especially in the lung tissue. • In the present report, we investigated plasma ACE2 concentration and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue respectively in two study populations. What is new? • Our study investigated both circulating and tissue ACE2 in human subjects. The main findings were: • In men as well as women, plasma ACE2 concentration was higher in younger than older participants, whereas the mean intensity of ACE2 in the lung tissue increase with age increasing. • Compared with normotension, hypertensive patients had higher plasma ACE2 concentration but similar mean intensity of ACE2 in the lung tissue. • Neither plasma ACE2 concentration nor lung tissue ACE2 expression significantly differed between users of RAS inhibitors and other classes of antihypertensive drugs. What is the impact? • ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics, such as sex, age, and treated and untreated hypertension. • A major implication is that plasma ACE2 concentration might not be an appropriate surrogate for the ACE2 expression in the lung tissue, and hence not a good predictor of SARS-COV-2 infection or fatality.
Collapse
Affiliation(s)
- Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihan Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Sheng Sheng
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wang S, Peng H, Chen F, Liu C, Zheng Q, Wang M, Wang J, Yu H, Xue E, Chen X, Wang X, Fan M, Qin X, Wu Y, Li J, Ye Y, Chen D, Hu Y, Wu T. Identification of genetic loci jointly influencing COVID-19 and coronary heart diseases. Hum Genomics 2023; 17:101. [PMID: 37964352 PMCID: PMC10647050 DOI: 10.1186/s40246-023-00547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/29/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Comorbidities of coronavirus disease 2019 (COVID-19)/coronary heart disease (CHD) pose great threats to disease outcomes, yet little is known about their shared pathology. The study aimed to examine whether comorbidities of COVID-19/CHD involved shared genetic pathology, as well as to clarify the shared genetic variants predisposing risks common to COVID-19 severity and CHD risks. METHODS By leveraging publicly available summary statistics, we assessed the genetically determined causality between COVID-19 and CHD with bidirectional Mendelian randomization. To further quantify the causality contributed by shared genetic variants, we interrogated their genetic correlation with the linkage disequilibrium score regression method. Bayesian colocalization analysis coupled with conditional/conjunctional false discovery rate analysis was applied to decipher the shared causal single nucleotide polymorphisms (SNPs). FINDINGS Briefly, we observed that the incident CHD risks post COVID-19 infection were partially determined by shared genetic variants. The shared genetic variants contributed to the causality at a proportion of 0.18 (95% CI 0.18-0.19) to 0.23 (95% CI 0.23-0.24). The SNP (rs10490770) located near LZTFL1 suggested direct causality (SNPs → COVID-19 → CHD), and SNPs in ABO (rs579459, rs495828), ILRUN(rs2744961), and CACFD1(rs4962153, rs3094379) may simultaneously influence COVID-19 severity and CHD risks. INTERPRETATION Five SNPs located near LZTFL1 (rs10490770), ABO (rs579459, rs495828), ILRUN (rs2744961), and CACFD1 (rs4962153, rs3094379) may simultaneously influence their risks. The current study suggested that there may be shared mechanisms predisposing to both COVID-19 severity and CHD risks. Genetic predisposition to COVID-19 is a causal risk factor for CHD, supporting that reducing the COVID-19 infection risk or alleviating COVID-19 severity among those with specific genotypes might reduce their subsequent CHD adverse outcomes. Meanwhile, the shared genetic variants identified may be of clinical implications for identifying the target population who are more vulnerable to adverse CHD outcomes post COVID-19 and may also advance treatments of 'Long COVID-19.'
Collapse
Affiliation(s)
- Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Feng Chen
- Department of Intensive Care Unit, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Chunfang Liu
- School of Public Health, Baotou Medical College, Baotou, 014040, China
| | - Qiwen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiating Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Huan Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Enci Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xi Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xueheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Meng Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Ying Ye
- Department of Local Diseases Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350001, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Montezano AC, Camargo LL, Mary S, Neves KB, Rios FJ, Stein R, Lopes RA, Beattie W, Thomson J, Herder V, Szemiel AM, McFarlane S, Palmarini M, Touyz RM. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep 2023; 13:14086. [PMID: 37640791 PMCID: PMC10462711 DOI: 10.1038/s41598-023-41115-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.
Collapse
Affiliation(s)
- Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Karla B Neves
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Ross Stein
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Rheure A Lopes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Wendy Beattie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jacqueline Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Steven McFarlane
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
- McGill University, Montreal, Canada.
| |
Collapse
|
10
|
Farid Fahmy S, El Derany MO, Khorshid H, Saleh A, El-Demerdash E. Effect of renin angiotensin blockers on angiotensin converting enzyme 2 level in cardiovascular patients. BMC Pharmacol Toxicol 2023; 24:24. [PMID: 37060024 PMCID: PMC10103030 DOI: 10.1186/s40360-023-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Renin-angiotensin-aldosterone system (RAAS) is hypothesized to be in the center of COVID pathophysiology as the angiotensin converting enzyme 2 (ACE2) represents the main entrance of the virus, thus there is a need to address the effect of chronic use of RAAS blockers, as in case of treatment of cardiovascular diseases, on the expression of ACE2. Accordingly, this study aimed to clarify the effect of ACE inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) on ACE2 and to assess the correlation between ACE2 and several anthropometric and clinic-pathological factors. METHODS A total of 40 healthy controls and 60 Egyptian patients suffering from chronic cardiovascular diseases were enrolled in this study. Patients were divided into 40 patients treated with ACEIs and 20 patients treated with ARBs. Serum ACE2 levels were assessed by ELISA. RESULTS Assessment of serum ACE2 level in different groups showed a significant difference between ACEIs and healthy groups and ACEIs and ARBs group, while there was no difference between ARBs and healthy. Multivariate analysis using ACE2 level as constant and age, female sex, ACEIs use and myocardial infarction (MI) showed that there was a significant effect of female sex and ACEIs use on ACE2 level with no effect of age, MI and diabetes. CONCLUSION ACE2 levels varied between ACEIs and ARBs. It tends to be lower in ACEIs group and there is a strong positive association between ACE2 level and the female sex. This needs to be considered in Future studies to further understand the relationship between gender, sex hormones and ACE2 level. TRIAL REGISTRATION Retrospectively registered ClinicalTrials.gov ID: NCT05418361 (June 2022).
Collapse
Affiliation(s)
- Sarah Farid Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa Omar El Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hazem Khorshid
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ayman Saleh
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Leowattana W, Leowattana T, Leowattana P. Circulating angiotensin converting enzyme 2 and COVID-19. World J Clin Cases 2022; 10:12470-12483. [PMID: 36579082 PMCID: PMC9791519 DOI: 10.12998/wjcc.v10.i34.12470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a widespread outbreak since December 2019. The SARS-CoV-2 infection-related illness has been dubbed the coronavirus disease 2019 (COVID-19) by the World Health Organization. Asymptomatic and subclinical infections, a severe hyper-inflammatory state, and mortality are all examples of clinical signs. After attaching to the angiotensin converting enzyme 2 (ACE2) receptor, the SARS-CoV-2 virus can enter cells through membrane fusion and endocytosis. In addition to enabling viruses to cling to target cells, the connection between the spike protein (S-protein) of SARS-CoV-2 and ACE2 may potentially impair the functionality of ACE2. Blood pressure is controlled by ACE2, which catalyzes the hydrolysis of the active vasoconstrictor octapeptide angiotensin (Ang) II to the heptapeptide Ang-(1-7) and free L-Phe. Additionally, Ang I can be broken down by ACE2 into Ang-(1-9) and metabolized into Ang-(1-7). Numerous studies have demonstrated that circulating ACE2 (cACE2) and Ang-(1-7) have the ability to restore myocardial damage in a variety of cardiovascular diseases and have anti-inflammatory, antioxidant, anti-apoptotic, and anti-cardiomyocyte fibrosis actions. There have been some suggestions for raising ACE2 expression in COVID-19 patients, which might be used as a target for the creation of novel treatment therapies. With regard to this, SARS-CoV-2 is neutralized by soluble recombinant human ACE2 (hrsACE2), which binds the viral S-protein and reduces damage to a variety of organs, including the heart, kidneys, and lungs, by lowering Ang II concentrations and enhancing conversion to Ang-(1-7). This review aims to investigate how the presence of SARS-CoV-2 and cACE2 are related. Additionally, there will be discussion of a number of potential therapeutic approaches to tip the ACE/ACE-2 balance in favor of the ACE-2/Ang-(1-7) axis.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Bangkok, Thailand
| |
Collapse
|
13
|
Wu VC, Peng KY, Hu YH, Chang CC, Chan CK, Lai TS, Lin YH, Wang SM, Lu CC, Liu YC, Tsai YC, Chueh JS. Circulating Plasma Concentrations of ACE2 in Primary Aldosteronism and Cardiovascular Outcomes. J Clin Endocrinol Metab 2022; 107:3242-3251. [PMID: 36125178 PMCID: PMC9494503 DOI: 10.1210/clinem/dgac539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/29/2022]
Abstract
CONTEXT The plasma concentrations of angiotensin-converting enzyme 2 (pACE2) has been independently associated with cardiovascular diseases. OBJECTIVE Higher pACE2 concentrations may be found in patients with primary aldosteronism (PA) and might lead to increased cardiovascular events. METHODS Using an inception observational cohort, we examined pACE2 among 168 incident patients with PA. The expression of ACE2, serine protease 2 (TMPRSS2), and metalloprotease 17 (ADAM17) were assessed in peripheral blood mononuclear cells. RESULTS Incident PA and essential hypertension (EH) patients had similarly elevated pACE2 (47.04 ± 22.06 vs 46.73 ± 21.06 ng/mL; P = .937). Age was negatively (β = -2.15; P = .033) and higher serum potassium level (β = 2.29; P = .024) was positively correlated with higher pACE2 in PA patients. Clinical complete hypertension remission after adrenalectomy (Primary Aldosteronism Surgery Outcome criteria) was achieved in 36 (50%) of 72 surgically treated unilateral PA (uPA) patients. At follow-up, pACE2 decreased in surgically treated patients who had (P < .001) or had no (P = .006) hypertension remission, but the pACE2 attenuation was not statistically significant in uPA (P = .085) and bilateral PA (P = .409) administered with mineralocorticoid receptor antagonist (MRA). Persistently elevated pACE2 (> 23 ng/mL) after targeted treatments was related to all-cause mortality and cardiovascular events among PA patients (hazard ratio = 8.8; P = .04); with a mean follow-up of 3.29 years. TMPRSS2 messenger RNA (mRNA) expression was higher in uPA (P = .018) and EH (P = .038) patients than in normotensive controls; it was also decreased after adrenalectomy (P < .001). CONCLUSION PA and EH patients had elevated pACE2 and higher expression of TMPRSS2 mRNA compared to those of normotensive population. Persistently elevated pACE2 (> 23 ng/mL) after targeted treatments was associated risk of mortality and incident cardiovascular events.
Collapse
Affiliation(s)
- Vin Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya Hui Hu
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Chin Chen Chang
- Department of Imaging Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu branch, Hsin-Chu County, Taiwan
| | - Tai Shuan Lai
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shuo-Meng Wang
- Department of Urology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chun Liu
- Far Eastern Polyclinic of Far Eastern Medical FoundationTaipei CityTaiwan
| | - Yao-Chou Tsai
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Jeff S Chueh
- Address for correspondence: Jeff S Chueh, MD, PhD. Phone: +886 2 23123456 ext. 63098, and fax: +886 2 23952333
| |
Collapse
|
14
|
Histologic, viral, and molecular correlates of heart disease in fatal COVID-19. Ann Diagn Pathol 2022; 60:151983. [PMID: 35660807 PMCID: PMC9148434 DOI: 10.1016/j.anndiagpath.2022.151983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Cardiac manifestations are common in severe COVID-19. This study compared the histologic, viral, and molecular findings in cardiac tissue in fatal COVID-19 (n = 11) and controls (n = 11). In situ hybridization (SARS-CoV2 RNA) and immunohistochemistry for viral proteins and the host response were quantified for the samples and compared with qRTPCR and Western blot data. Control hearts showed a high resident population of macrophages that had variable ACE2 expression. Cardiac ACE2 expression was 10× greater in the heart tissues of cases and controls with obesity or type II diabetes. Multifocal endothelial cell swelling and degeneration, perivascular edema plus microvascular thrombi were unique to the cases. SARS-CoV2 RNA and nucleocapsid protein were rarely detected in situ in any COVID-19 heart. However, in each case abundant SARS-CoV-2 spike protein was evident. Co-expression experiments showed that the spike protein localized mostly to the ACE2+ interstitial macrophages/pericytes that were activated as evidenced by increased IL6 and TNFα expression. Western blots confirmed the presence of the viral spike protein, but not the nucleocapsid protein, in the cardiac homogenates. The intercalated disc proteins connexin 43, the primary cardiac gap junction protein, and NaV1.5, the predominant cardiac sodium channel, each showed marked lateral migration in the myocytes in the cases, which would increase the risk of reentrant arrhythmias. It is concluded that the viral spike protein, endocytosed by macrophages/pericytes, can induce a myocarditis with the possibility of conduction dysfunction due to abnormal localization of key intercalated disc proteins.
Collapse
|
15
|
Javaheri A, Diab A, Zhao L, Qian C, Cohen JB, Zamani P, Kumar A, Wang Z, Ebert C, Maranville J, Kvikstad E, Basso M, van Empel V, Richards AM, Doughty R, Rietzschell E, Kammerhoff K, Gogain J, Schafer P, Seiffert DA, Gordon DA, Ramirez-Valle F, Mann DL, Cappola TP, Chirinos JA. Proteomic Analysis of Effects of Spironolactone in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2022; 15:e009693. [PMID: 36126144 PMCID: PMC9504263 DOI: 10.1161/circheartfailure.121.009693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The TOPCAT trial (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) suggested clinical benefits of spironolactone treatment among patients with heart failure with preserved ejection fraction enrolled in the Americas. However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction has not been performed. METHODS We conducted aptamer-based proteomic analysis utilizing 5284 modified aptamers to 4928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction. Mean percentage change from baseline was calculated for each protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone. RESULTS Spironolactone therapy was associated with proteome-wide significant changes in 7 proteins. Among these, CARD18 (caspase recruitment domain-containing protein 18), PKD2 (polycystin 2), and PSG2 (pregnancy-specific glycoprotein 2) were upregulated, whereas HGF (hepatic growth factor), PLTP (phospholipid transfer protein), IGF2R (insulin growth factor 2 receptor), and SWP70 (switch-associated protein 70) were downregulated. CARD18, a caspase-1 inhibitor, was the most upregulated protein by spironolactone (-0.5% with placebo versus +66.5% with spironolactone, P<0.0001). The top canonical pathways that were significantly associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 signaling, atherosclerosis signaling, liver X receptor activation, and farnesoid X receptor activation. Among the top pathways, collagens were a consistent theme that increased in patients receiving placebo but decreased in patients randomized to spironolactone. CONCLUSIONS Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved collagens. In addition to effects on fibrosis, our studies suggest potential antiapoptotic effects of spironolactone in heart failure with preserved ejection fraction, a hypothesis that merits further exploration.
Collapse
Affiliation(s)
- Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO
| | - Lei Zhao
- Bristol Myers Squibb Company, Lawrenceville, NJ
| | - Chenao Qian
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jordana B. Cohen
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Payman Zamani
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Anupam Kumar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | | | | | | | | | | | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rob Doughty
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ernst Rietzschell
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| |
Collapse
|
16
|
Liu Q, Ruan H, Sheng Z, Sun X, Li S, Cui W, Li C. Nanoantidote for repression of acidosis pH promoting COVID-19 infection. VIEW 2022; 3:20220004. [PMID: 35937939 PMCID: PMC9347551 DOI: 10.1002/viw.20220004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023] Open
Abstract
Acidosis, such as respiratory acidosis and metabolic acidosis, can be induced by coronavirus disease 2019 (COVID-19) infection and is associated with increased mortality in critically ill COVID-19 patients. It remains unclear whether acidosis further promotes SARS-CoV-2 infection in patients, making virus removal difficult. For antacid therapy, sodium bicarbonate poses great risks caused by sodium overload, bicarbonate side effects, and hypocalcemia. Therefore, new antacid antidote is urgently needed. Our study showed that an acidosis-related pH of 6.8 increases SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression on the cell membrane by regulating intracellular microfilament polymerization, promoting SARS-CoV-2 pseudovirus infection. Based on this, we synthesized polyglutamic acid-PEG materials, used complexation of calcium ions and carboxyl groups to form the core, and adopted biomineralization methods to form a calcium carbonate nanoparticles (CaCO3-NPs) nanoantidote to neutralize excess hydrogen ions (H+), and restored the pH from 6.8 to approximately 7.4 (normal blood pH). CaCO3-NPs effectively prevented the heightened SARS-CoV-2 infection efficiency due to pH 6.8. Our study reveals that acidosis-related pH promotes SARS-CoV-2 infection, which suggests the existence of a positive feedback loop in which SARS-CoV-2 infection-induced acidosis enhances SARS-CoV-2 infection. Therefore, antacid therapy for acidosis COVID-19 patients is necessary. CaCO3-NPs may become an effective antacid nanoantidote superior to sodium bicarbonate.
Collapse
Affiliation(s)
- Qidong Liu
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopedic Department, Tongji Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Huitong Ruan
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhihao Sheng
- Department of AnesthesiologyShanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Xiaoru Sun
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationOrthopedic Department, Tongji Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Cheng Li
- Department of Anesthesiology and Perioperative MedicineShanghai Fourth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| |
Collapse
|
17
|
Yang Z, Macdonald-Dunlop E, Chen J, Zhai R, Li T, Richmond A, Klarić L, Pirastu N, Ning Z, Zheng C, Wang Y, Huang T, He Y, Guo H, Ying K, Gustafsson S, Prins B, Ramisch A, Dermitzakis ET, Png G, Eriksson N, Haessler J, Hu X, Zanetti D, Boutin T, Hwang SJ, Wheeler E, Pietzner M, Raffield LM, Kalnapenkis A, Peters JE, Viñuela A, Gilly A, Elmståhl S, Dedoussis G, Petrie JR, Polašek O, Folkersen L, Chen Y, Yao C, Võsa U, Pairo-Castineira E, Clohisey S, Bretherick AD, Rawlik K, Esko T, Enroth S, Johansson Å, Gyllensten U, Langenberg C, Levy D, Hayward C, Assimes TL, Kooperberg C, Manichaikul AW, Siegbahn A, Wallentin L, Lind L, Zeggini E, Schwenk JM, Butterworth AS, Michaëlsson K, Pawitan Y, Joshi PK, Baillie JK, Mälarstig A, Reiner AP, Wilson JF, Shen X. Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation 2022; 145:1398-1411. [PMID: 35387486 PMCID: PMC9047645 DOI: 10.1161/circulationaha.121.057888] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/02/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.
Collapse
Affiliation(s)
- Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Erin Macdonald-Dunlop
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
| | - Jiantao Chen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Ranran Zhai
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Ting Li
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Lucija Klarić
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- Human Technopole Viale Rita Levi-Montalcini, Milan, Italy (N.P.)
| | - Zheng Ning
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Chenqing Zheng
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
| | - Yipeng Wang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Yazhou He
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu (Y.H.)
| | - Huiming Guo
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences, Guangzhou, China (H.G.)
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (K.Y.)
- T.H. Chan School of Public Health, Harvard University, Boston, MA (K.Y.)
| | - Stefan Gustafsson
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Bram Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
| | - Anna Ramisch
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Technical University of Munich (TUM), School of Medicine, Germany (G.P.)
| | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
| | - Xiaowei Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville (X.H., A.W.M.)
| | - Daniela Zanetti
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A.)
- Stanford Cardiovascular Institute, Stanford University, CA (D.Z., T.L.A.)
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Shih-Jen Hwang
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin, Germany (M.P., C.L.)
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill (L.M.R.)
| | - Anette Kalnapenkis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
- Institute of Molecular and Cell Biology, University of Tartu, Estonia (A.K.)
| | - James E. Peters
- Department of Immunology and Inflammation, Imperial College London, UK (J.E.P.)
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
| | - Ana Viñuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK (A.V.)
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (A.G., E.Z.)
| | - Sölve Elmståhl
- Faculty of Medicine, Lund University, Sweden (S. Elmståhl)
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece (G.D.)
| | - John R. Petrie
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK (J. Petrie)
| | - Ozren Polašek
- University of Split School of Medicine, Croatia (O.P.)
- Algebra University College, Ilica, Zagreb, Croatia (O.P.)
| | | | - Yan Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Chen Yao
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
| | - Erola Pairo-Castineira
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
| | - Andrew D. Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Konrad Rawlik
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
| | - GenOMICC Consortium†
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China (X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
- Human Technopole Viale Rita Levi-Montalcini, Milan, Italy (N.P.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu (Y.H.)
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences, Guangzhou, China (H.G.)
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (K.Y.)
- T.H. Chan School of Public Health, Harvard University, Boston, MA (K.Y.)
- Department of Immunology and Inflammation, Imperial College London, UK (J.E.P.)
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Technical University of Munich (TUM), School of Medicine, Germany (G.P.)
- Uppsala Clinical Research Center, Sweden (N.E.)
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
- Center for Public Health Genomics, University of Virginia, Charlottesville (X.H., A.W.M.)
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A.)
- Stanford Cardiovascular Institute, Stanford University, CA (D.Z., T.L.A.)
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
- Department of Genetics, University of North Carolina at Chapel Hill (L.M.R.)
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
- Institute of Molecular and Cell Biology, University of Tartu, Estonia (A.K.)
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK (A.V.)
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden (A.M.)
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (A.G., E.Z.)
- Faculty of Medicine, Lund University, Sweden (S. Elmståhl)
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece (G.D.)
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK (J. Petrie)
- University of Split School of Medicine, Croatia (O.P.)
- Danish National Genome Center, Copenhagen, Denmark (L.F.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
- Algebra University College, Ilica, Zagreb, Croatia (O.P.)
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Germany (E.Z.)
- Affinity Proteomics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden (J.M.S.)
- British Heart Foundation Centre of Research Excellence, University of Cambridge, UK (A.S.B.)
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, UK (A.S.B.)
- Department of Surgical Sciences, Uppsala University, Sweden (K.M.)
- Intensive Care Unit, Royal Infirmary of Edinburgh, UK (J.K.B.)
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin, Germany (M.P., C.L.)
| | - IMI-DIRECT Consortium†
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China (X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
- Human Technopole Viale Rita Levi-Montalcini, Milan, Italy (N.P.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu (Y.H.)
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences, Guangzhou, China (H.G.)
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (K.Y.)
- T.H. Chan School of Public Health, Harvard University, Boston, MA (K.Y.)
- Department of Immunology and Inflammation, Imperial College London, UK (J.E.P.)
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.)
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Technical University of Munich (TUM), School of Medicine, Germany (G.P.)
- Uppsala Clinical Research Center, Sweden (N.E.)
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
- Center for Public Health Genomics, University of Virginia, Charlottesville (X.H., A.W.M.)
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A.)
- Stanford Cardiovascular Institute, Stanford University, CA (D.Z., T.L.A.)
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
- Department of Genetics, University of North Carolina at Chapel Hill (L.M.R.)
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
- Institute of Molecular and Cell Biology, University of Tartu, Estonia (A.K.)
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK (A.V.)
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden (A.M.)
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (A.G., E.Z.)
- Faculty of Medicine, Lund University, Sweden (S. Elmståhl)
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece (G.D.)
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK (J. Petrie)
- University of Split School of Medicine, Croatia (O.P.)
- Danish National Genome Center, Copenhagen, Denmark (L.F.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
- Algebra University College, Ilica, Zagreb, Croatia (O.P.)
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Germany (E.Z.)
- Affinity Proteomics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden (J.M.S.)
- British Heart Foundation Centre of Research Excellence, University of Cambridge, UK (A.S.B.)
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, UK (A.S.B.)
- Department of Surgical Sciences, Uppsala University, Sweden (K.M.)
- Intensive Care Unit, Royal Infirmary of Edinburgh, UK (J.K.B.)
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin, Germany (M.P., C.L.)
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.)
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.)
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.)
- Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin, Germany (M.P., C.L.)
| | - Daniel Levy
- Framingham Heart Study, MA (S.-J.H., C.Y., D.L.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.)
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Themistocles L. Assimes
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A.)
- Stanford Cardiovascular Institute, Stanford University, CA (D.Z., T.L.A.)
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
| | - Ani W. Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville (X.H., A.W.M.)
| | - Agneta Siegbahn
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.)
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.)
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (A.G., E.Z.)
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Germany (E.Z.)
| | - Jochen M. Schwenk
- Affinity Proteomics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden (J.M.S.)
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.)
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.)
- British Heart Foundation Centre of Research Excellence, University of Cambridge, UK (A.S.B.)
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, UK (A.S.B.)
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Sweden (K.M.)
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
| | - J. Kenneth Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.)
- Intensive Care Unit, Royal Infirmary of Edinburgh, UK (J.K.B.)
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden (A.M.)
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.)
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.)
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.)
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China (X.S.)
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.)
- Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.)
| |
Collapse
|
18
|
Jiang W, Jones JC, Shankavaram U, Sproull M, Camphausen K, Krauze AV. Analytical Considerations of Large-Scale Aptamer-Based Datasets for Translational Applications. Cancers (Basel) 2022; 14:2227. [PMID: 35565358 PMCID: PMC9105298 DOI: 10.3390/cancers14092227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The development and advancement of aptamer technology has opened a new realm of possibilities for unlocking the biocomplexity available within proteomics. With ultra-high-throughput and multiplexing, alongside remarkable specificity and sensitivity, aptamers could represent a powerful tool in disease-specific research, such as supporting the discovery and validation of clinically relevant biomarkers. One of the fundamental challenges underlying past and current proteomic technology has been the difficulty of translating proteomic datasets into standards of practice. Aptamers provide the capacity to generate single panels that span over 7000 different proteins from a singular sample. However, as a recent technology, they also present unique challenges, as the field of translational aptamer-based proteomics still lacks a standardizing methodology for analyzing these large datasets and the novel considerations that must be made in response to the differentiation amongst current proteomic platforms and aptamers. We address these analytical considerations with respect to surveying initial data, deploying proper statistical methodologies to identify differential protein expressions, and applying datasets to discover multimarker and pathway-level findings. Additionally, we present aptamer datasets within the multi-omics landscape by exploring the intersectionality of aptamer-based proteomics amongst genomics, transcriptomics, and metabolomics, alongside pre-existing proteomic platforms. Understanding the broader applications of aptamer datasets will substantially enhance current efforts to generate translatable findings for the clinic.
Collapse
Affiliation(s)
- Will Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, NIH/NCI/CCR, Bethesda, MD 20892, USA;
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (W.J.); (U.S.); (M.S.); (K.C.)
| |
Collapse
|
19
|
Zhang Q, Ling S, Hu K, Liu J, Xu JW. Role of the renin-angiotensin system in NETosis in the coronavirus disease 2019 (COVID-19). Pharmacotherapy 2022; 148:112718. [PMID: 35176710 PMCID: PMC8841219 DOI: 10.1016/j.biopha.2022.112718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
Myocardial infarction and stroke are the leading causes of death in the world. Numerous evidence has confirmed that hypertension promotes thrombosis and induces myocardial infarction and stroke. Recent findings reveal that neutrophil extracellular traps (NETs) are involved in the induction of myocardial infarction and stroke. Meanwhile, patients with severe COVID-19 suffer from complications such as myocardial infarction and stroke with pathological signs of NETs. Due to the extremely low amount of virus detected in the blood and remote organs (e.g., heart, brain and kidney) in a few cases, it is difficult to explain the mechanism by which the virus triggers NETosis, and there may be a different mechanism than in the lung. A large number of studies have found that the renin-angiotensin system regulates the NETosis at multiple levels in patients with COVID-19, such as endocytosis of SARS-COV-2, abnormal angiotensin II levels, neutrophil activation and procoagulant function at multiple levels, which may contribute to the formation of reticular structure and thrombosis. The treatment of angiotensin-converting enzyme inhibitors (ACEI), angiotensin II type 1 receptor blockers (ARBs) and neutrophil recruitment and active antagonists helps to regulate blood pressure and reduce the risk of net and thrombosis. The review will explore the possible role of the angiotensin system in the formation of NETs in severe COVID-19.
Collapse
|
20
|
Recent Developments in Clinical Plasma Proteomics—Applied to Cardiovascular Research. Biomedicines 2022; 10:biomedicines10010162. [PMID: 35052841 PMCID: PMC8773619 DOI: 10.3390/biomedicines10010162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human plasma proteome mirrors the physiological state of the cardiovascular system, a fact that has been used to analyze plasma biomarkers in routine analysis for the diagnosis and monitoring of cardiovascular diseases for decades. These biomarkers address, however, only a very limited subset of cardiovascular diseases, such as acute myocardial infarct or acute deep vein thrombosis, and clinical plasma biomarkers for the diagnosis and stratification cardiovascular diseases that are growing in incidence, such as heart failure and abdominal aortic aneurysm, do not exist and are urgently needed. The discovery of novel biomarkers in plasma has been hindered by the complexity of the human plasma proteome that again transforms into an extreme analytical complexity when it comes to the discovery of novel plasma biomarkers. This complexity is, however, addressed by recent achievements in technologies for analyzing the human plasma proteome, thereby facilitating the possibility for novel biomarker discoveries. The aims of this article is to provide an overview of the recent achievements in technologies for proteomic analysis of the human plasma proteome and their applications in cardiovascular medicine.
Collapse
|
21
|
Theodorakopoulou MP, Alexandrou ME, Boutou AK, Ferro CJ, Ortiz A, Sarafidis P. Renin-angiotensin system blockers during the COVID-19 pandemic: an update for patients with hypertension and chronic kidney disease. Clin Kidney J 2021; 15:397-406. [PMID: 35198155 PMCID: PMC8754739 DOI: 10.1093/ckj/sfab272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/12/2022] Open
Abstract
Hypertension and chronic kidney disease (CKD) are among the most common comorbidities associated with coronavirus disease 2019 (COVID-19) severity and mortality risk. Renin–angiotensin system (RAS) blockers are cornerstones in the treatment of both hypertension and proteinuric CKD. In the early months of the COVID-19 pandemic, a hypothesis emerged suggesting that the use of RAS blockers may increase susceptibility for COVID-19 infection and disease severity in these populations. This hypothesis was based on the fact that angiotensin-converting enzyme 2 (ACE2), a counter regulatory component of the RAS, acts as the receptor for severe acute respiratory syndrome coronavirus 2 cell entry. Extrapolations from preliminary animal studies led to speculation that upregulation of ACE2 by RAS blockers may increase the risk of COVID-19-related adverse outcomes. However, these hypotheses were not supported by emerging evidence from observational and randomized clinical trials in humans, suggesting no such association. Herein we describe the physiological role of ACE2 as part of the RAS, discuss its central role in COVID-19 infection and present original and updated evidence from human studies on the association between RAS blockade and COVID-19 infection or related outcomes, with a particular focus on hypertension and CKD.
Collapse
Affiliation(s)
| | - Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
22
|
Almengló C, Couselo-Seijas M, Agra RM, Varela-Román A, García-Acuña JM, González-Peteiro M, González-Juanatey JR, Eiras S, Álvarez E. Soluble angiotensin-converting enzyme levels in heart failure or acute coronary syndrome: revisiting its modulation and prognosis value. J Mol Med (Berl) 2021; 99:1741-1753. [PMID: 34529122 PMCID: PMC8443916 DOI: 10.1007/s00109-021-02129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
The main objective was to compare the meaning of soluble angiotensin-converting enzyme-2 (sACE2) plasma levels modulation on the prognosis of two cohorts of heart failure (HF) and acute coronary syndrome (ACS). We conducted an observational clinical study where sACE2 was measured in two cohorts of HF or ACS (102 patients each), matched by age and gender. The primary endpoint (cardiac death) and the secondary endpoints (non-fatal myocardial infarction or HF readmission) were registered during a 5-year follow-up period. Association with pharmacotherapy was studied, and the effects of cardiovascular drugs on ACE isoforms expression were analysed in human umbilical vein endothelial cells (HUVEC) in vitro. The levels of sACE2 were significantly higher in the HF than ACS cohort. sACE2 was inversely related with the leukocytes number and directly with urea levels. In the ACS cohort, sACE2 was associated with age and glycaemic parameters, but in the HF cohort, the association was with N-terminal pro-B-type natriuretic peptide. The levels of sACE2 were related to long-term prognosis and confirmed as a non-independent predictor in the HF cohort. Soluble ACE2 was higher in patients treated with angiotensin receptors blockers and β-blockers, accordingly with losartan and metoprolol upregulation of ACE1 and ACE2 in HUVECs. Plasma levels of sACE2 were higher in HF than in ACS, independently of age and gender, and were related to long-term cardiac death in the HF cohort. Losartan and metoprolol, but not enalapril, upregulated ACE expression in endothelial cells, accordingly with higher levels of sACE2 in patients using these drugs.
Collapse
Affiliation(s)
- Cristina Almengló
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Marinela Couselo-Seijas
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Rosa M Agra
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Alfonso Varela-Román
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - José M García-Acuña
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Mercedes González-Peteiro
- Departamento de Enfermería, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - José R González-Juanatey
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Sonia Eiras
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - Ezequiel Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain.
- CIBERCV, Madrid, Spain.
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
23
|
Wang K, Gheblawi M, Nikhanj A, Munan M, MacIntyre E, O'Neil C, Poglitsch M, Colombo D, Del Nonno F, Kassiri Z, Sligl W, Oudit GY. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Hypertension 2021; 79:365-378. [PMID: 34844421 DOI: 10.1161/hypertensionaha.121.18295] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Mahmoud Gheblawi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Anish Nikhanj
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Matt Munan
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.)
| | - Erika MacIntyre
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Respirology, Department of Medicine, University of Alberta, Edmonton, Canada. (E.M.)
| | - Conar O'Neil
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | | | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| |
Collapse
|
24
|
Núñez-Gil IJ, Olier I, Feltes G, Viana-Llamas MC, Maroun-Eid C, Romero R, Fernández-Rozas I, Uribarri A, Becerra-Muñoz VM, Alfonso-Rodriguez E, García-Aguado M, Elola J, Castro-Mejía A, Pepe M, Garcia-Prieto JF, Gonzalez A, Ugo F, Cerrato E, Bondia E, Raposeiras-Roubin S, Mendez JLJ, Espejo C, López-Masjuan Á, Marin F, López-Pais J, Abumayyaleh M, Corbi-Pascual M, Liebetrau C, Ramakrishna H, Estrada V, Macaya C, Fernandez-Ortiz A. Renin-angiotensin system inhibitors effect before and during hospitalization in COVID-19 outcomes: Final analysis of the international HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID-19) registry. Am Heart J 2021; 237:104-115. [PMID: 33845032 PMCID: PMC8047303 DOI: 10.1016/j.ahj.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/03/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The use of Renin-Angiotensin system inhibitors (RASi) in patients with coronavirus disease 2019 (COVID-19) has been questioned because both share a target receptor site. METHODS HOPE-COVID-19 (NCT04334291) is an international investigator-initiated registry. Patients are eligible when discharged after an in-hospital stay with COVID-19, dead or alive. Here, we analyze the impact of previous and continued in-hospital treatment with RASi in all-cause mortality and the development of in-stay complications. RESULTS We included 6503 patients, over 18 years, from Spain and Italy with data on their RASi status. Of those, 36.8% were receiving any RASi before admission. RASi patients were older, more frequently male, with more comorbidities and frailer. Their probability of death and ICU admission was higher. However, after adjustment, these differences disappeared. Regarding RASi in-hospital use, those who continued the treatment were younger, with balanced comorbidities but with less severe COVID19. Raw mortality and secondary events were less frequent in RASi. After adjustment, patients receiving RASi still presented significantly better outcomes, with less mortality, ICU admissions, respiratory insufficiency, need for mechanical ventilation or prone, sepsis, SIRS and renal failure (p<0.05 for all). However, we did not find differences regarding the hospital use of RASi and the development of heart failure. CONCLUSION RASi historic use, at admission, is not related to an adjusted worse prognosis in hospitalized COVID-19 patients, although it points out a high-risk population. In this setting, the in-hospital prescription of RASi is associated with improved survival and fewer short-term complications.
Collapse
Affiliation(s)
- Iván J Núñez-Gil
- Hospital Clínico San Carlos, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Iván Olier
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
| | | | | | - Charbel Maroun-Eid
- Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Rodolfo Romero
- Hospital Universitario Getafe, Universidad Europea de Madrid, Madrid, Spain
| | | | - Aitor Uribarri
- Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Victor M Becerra-Muñoz
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Málaga, Spain
| | | | | | - Javier Elola
- Instituto para la Mejora de la Asistencia Sanitaria, IMAS, Madrid, Spain
| | - Alex Castro-Mejía
- Hospital General del norte de Guayaquil IESS Los Ceibos, Guayaquil, Ecuador
| | - Martino Pepe
- Azienda ospedaliero-universitaria consorziale policlinico di Bari, Bari, Italy
| | | | - Adelina Gonzalez
- Hospital Universitario Infanta Sofia, San Sebastian de los Reyes, Madrid, Spain
| | | | - Enrico Cerrato
- San Luigi Gonzaga University Hospital, Orbassano and Rivoli Infermi Hospital, Rivoli (Turin), Italy
| | - Elvira Bondia
- Hospital Clínico Universitario, Incliva, Universidad de Valencia, Valencia, Spain
| | - Sergio Raposeiras-Roubin
- Hospital Universitario Álvaro Cunqueiro, Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| | | | - Carolina Espejo
- Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | | | - Francisco Marin
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, CIBERCV, Murcia, Spain
| | - Javier López-Pais
- Complejo Hospitalario Universitario de Santiago de Compostela, Santiago, Spain
| | - Mohammad Abumayyaleh
- University Medical Center Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | | | | | | | - Vicente Estrada
- Hospital Clínico San Carlos, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carlos Macaya
- Hospital Clínico San Carlos, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Antonio Fernandez-Ortiz
- Hospital Clínico San Carlos, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
25
|
Low plasma angiotensin-converting enzyme 2 level in diabetics increases the risk of severe COVID-19 infection. Aging (Albany NY) 2021; 13:12301-12307. [PMID: 33962399 PMCID: PMC8148475 DOI: 10.18632/aging.202967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/02/2021] [Indexed: 01/25/2023]
Abstract
Patients with pre-existing chronic diseases are more susceptible to coronavirus disease 2019 (COVID-19), yet the underlying causes of increased risk are of infection remain unclear. Angiotensin-converting- enzyme 2 (ACE2), the cell surface receptor that recognizes the coronavirus spike protein has protective effects against inflammation and chronic hyperglycemia in animal models. The roles of ACE2 in severe SARS-CoV-2 infections remains ambiguous due to contradictory findings. In this study, we aimed to investigate the relationship between human plasma ACE2 levels in diabetics and the high risk of severe SARS-CoV-2 infection. First, the medical records of 245 patients with SARS-CoV-2-positive who have chronic diseases were analyzed. We also recruited 404 elderly subjects with comorbid chronic diseases such as diabetes mellitus, coronary heart disease, cerebrovascular disease, hypertension and obesity, and investigated the ACE2 plasma levels. Plasma concentrations of ACE2 were much lower (2973.83±2196.79 pg/mL) in diabetics with chronic disease than in healthy controls (4308.21±2352.42 pg/ml), and the use of hypoglycemia drugs was associated with lower circulating concentrations of ACE2 (P=1.49E-08). Diabetics with lower plasma levels of ACE2 may be susceptible to severe COVID-19. Our findings suggest that the poor prognosis in patients with diabetes infected with SARS-CoV-2 may be due to low circulating ACE2 levels.
Collapse
|
26
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
27
|
George B, Amjesh R, Paul AM, Santhoshkumar TR, Pillai MR, Kumar R. Evidence of a dysregulated vitamin D endocrine system in SARS-CoV-2 infected patient's lung cells. Sci Rep 2021; 11:8570. [PMID: 33883570 PMCID: PMC8060306 DOI: 10.1038/s41598-021-87703-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Although a defective vitamin D endocrine system has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D endocrine system and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D endocrine system in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes, as potentially modulated by vitamin D endocrine system, were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D endocrine system in SARS-CoV-2-infected cells. Protein-protein interaction network of differentially expressed vitamin D-modulated genes were enriched in the immune system, NF-κB/cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results presented here povide computational evidence to implicate a dysregulated vitamin D endocrine system in the pathobiology of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Revikumar Amjesh
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA.
| |
Collapse
|
28
|
Hennessy S, Cohen JB. Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers, and COVID-19: Demonstrating the Actionability of Real-World Evidence. Am J Hypertens 2021; 34:327-329. [PMID: 33156920 PMCID: PMC7717152 DOI: 10.1093/ajh/hpaa177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordana B Cohen
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Zimmermann T, Walter JE, Lopez‐Ayala P, Strebel I, Amrein M, Koechlin M, Honegger U, Mueller C. Influence of renin-angiotensin-aldosterone system inhibitors on plasma levels of angiotensin-converting enzyme 2. ESC Heart Fail 2021; 8:1717-1721. [PMID: 34596976 PMCID: PMC8006721 DOI: 10.1002/ehf2.13249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
AIMS Concern has been raised that treatment with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the expression of angiotensin-converting enzyme 2 (ACE2), which acts as the entry receptor for SARS-CoV-2, and lead to an increased risk of death from SARS-CoV-2. We aimed to address this concern by evaluating the in vivo relationship of treatment with ACE inhibitors and angiotensin receptor blockers (ARB) with circulating plasma concentrations of ACE2 in a large cohort of patients with established cardiovascular disease (n = 1864) or cardiovascular risk factors (n = 2144) but without a history of heart failure. METHODS AND RESULTS Angiotensin-converting enzyme 2 was measured in 4008 patients (median age 68, 33% women, 31% on ACE-inhibitors, 31% on ARB) using the SOMAscan proteomic platform (SomaLogic Inc, Colorado, USA). Plasma concentration of ACE2 was comparable in 1250 patients on ACE inhibitors (mean 5.99) versus patients without ACE inhibitors (mean 5.98, P = 0.54). Similarly, plasma concentration of ACE2 was comparable in 1260 patients on ARB (mean 5.99) versus patients without ARB (mean 5.98, P = 0.50). Plasma concentration of ACE2 was comparable in 2474 patients on either ACE inhibitors or ARB (mean 5.99) versus patients without ACE inhibitors or ARB (mean 5.98, P = 0.31). Multivariable quantile regression model analysis confirmed the lack of association between treatment with ACE inhibitors or ARB and ACE2 concentrations. Body mass index showed the only positive association with ACE2 plasma concentration (effect 0.015, 95% confidence interval 0.002 to 0.028, P = 0.024). CONCLUSIONS In a large cohort of patients with established cardiovascular disease or cardiovascular risk factors but without heart failure, ACE inhibitors and ARB were not associated with higher plasma concentrations of ACE2.
Collapse
Affiliation(s)
- Tobias Zimmermann
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Intensive Care MedicineUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Joan Elias Walter
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of RadiologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pedro Lopez‐Ayala
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Ivo Strebel
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Melissa Amrein
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Michael Koechlin
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Ursina Honegger
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB) and Department of CardiologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | |
Collapse
|
30
|
Ma M, Xu Y, Su Y, Ong SB, Hu X, Chai M, Zhao M, Li H, Fan X, Chen Y, Xu D, Xu X. Single-Cell Transcriptome Analysis Decipher New Potential Regulation Mechanism of ACE2 and NPs Signaling Among Heart Failure Patients Infected With SARS-CoV-2. Front Cardiovasc Med 2021; 8:628885. [PMID: 33718452 PMCID: PMC7952310 DOI: 10.3389/fcvm.2021.628885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Aims: COVID-19 patients with comorbidities such as hypertension or heart failure (HF) are associated with poor clinical outcomes. The cellular distribution of Angiotensin-converting enzyme 2 (ACE2), the critical enzyme for SARS-CoV-2 infection, in the human heart is unknown. We explore the underlying mechanism that leads to increased susceptibility to SARS-CoV-2 in patients with cardiovascular diseases and patients of cardiac dysfunction have increased risk of multi-organ injury compared with patients of normal cardiac function. Methods and Results: We analyzed single-cell RNA sequencing (scRNA-seq) data in both normal and failing hearts. The results demonstrated that ACE2 is present in cardiomyocytes (CMs) and non-CMs, while the number of ACE2-postive (ACE2+) CMs and ACE2 gene expression in these CMs are significantly increased in the failing hearts. Interestingly, both brain natriuretic peptides (BNP) and atrial natriuretic peptide (ANP) are significantly up-regulated in the ACE2+ CMs, which is consistent with other studies that ACE2, ANP, and BNP increased in HF patients. We found that genes related to virus entry, virus replication and suppression of interferon-gamma signaling are all up-regulated in failing CMs, and the increase was significantly higher in ACE2+ CMs, suggesting that these CMs may be more vulnerable to virus infection. As the level of expression of both ACE2 and BNP in CMs were up-regulated, we further performed retrospective analysis of the plasma BNP levels and clinical outcomes of 91 COVID-19 patients from a single-center. Patients with higher plasma BNP were associated with significantly higher mortality and expression levels of inflammatory and infective markers. Conclusion: In the failing heart, the upregulation of ACE2 and virus infection associated genes could potentially facilitate SARS-CoV-2 virus entry and replication in these vulnerable cardiomyocyte subsets. COVID-19 patients with higher plasma BNP levels had poorer clinical outcomes. These observations may allude to a potential regulatory association between ACE2 and BNP in mediating myocarditis associated with COVID-19.
Collapse
Affiliation(s)
- Mengqiu Ma
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanhua Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Su
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sang-Bing Ong
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, China.,Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children's Hospital (HKCH), Hong Kong, China.,Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, China.,Institute for Translational Medicine, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Kunming Institute of Zoology-The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xingdong Hu
- Department of Critical Care Medicine, The Third people's Hospital of Guizhou Province, Guiyang, China
| | - Min Chai
- Department of Critical Care Medicine, Ezhou Central Hospital, Ezhou, China
| | - Maojun Zhao
- Emergency Department, The First People's Hospital of Guiyang, Guiyang, China
| | - Hong Li
- Immunity, Inflammation & Disease Laboratory, The National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Xiaojuan Fan
- Key Laboratory of Environment and Genes Related to Diseases, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojiang Xu
- Kelly Government Solutions, Rockville, MD, United States
| |
Collapse
|
31
|
Gressens SB, Leftheriotis G, Dussaule JC, Flamant M, Levy BI, Vidal-Petiot E. Controversial Roles of the Renin Angiotensin System and Its Modulators During the COVID-19 Pandemic. Front Physiol 2021; 12:624052. [PMID: 33692701 PMCID: PMC7937723 DOI: 10.3389/fphys.2021.624052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, the coronavirus 2019 (COVID-19) pandemic has rapidly spread and overwhelmed healthcare systems worldwide, urging physicians to understand how to manage this novel infection. Early in the pandemic, more severe forms of COVID-19 have been observed in patients with cardiovascular comorbidities, who are often treated with renin-angiotensin aldosterone system (RAAS)-blockers, such as angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs), but whether these are indeed independent risk factors is unknown. The cellular receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the membrane-bound angiotensin converting enzyme 2 (ACE2), as for SARS-CoV(-1). Experimental data suggest that expression of ACE2 may be increased by RAAS-blockers, raising concerns that these drugs may facilitate viral cell entry. On the other hand, ACE2 is a key counter-regulator of the RAAS, by degrading angiotensin II into angiotensin (1-7), and may thereby mediate beneficial effects in COVID-19. These considerations have raised concerns about the management of these drugs, and early comments shed vivid controversy among physicians. This review will describe the homeostatic balance between ACE-angiotensin II and ACE2-angiotensin (1-7) and summarize the pathophysiological rationale underlying the debated role of the RAAS and its modulators in the context of the pandemic. In addition, we will review available evidence investigating the impact of RAAS blockers on the course and prognosis of COVID-19 and discuss why retrospective observational studies should be interpreted with caution. These considerations highlight the importance of solid evidence-based data in order to guide physicians in the management of RAAS-interfering drugs in the general population as well as in patients with more or less severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Simon B Gressens
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France
| | - Georges Leftheriotis
- Laboratory of Molecular Physiology and Medicine, Université Cote d'Azur, Nice, France
| | - Jean-Claude Dussaule
- Sorbonne Université, INSERM, Unité des Maladies Rénales Fréquentes et Rares: des Mécanismes Moléculaires à la Médecine Personnalisée, AP-HP, Hôpital Tenon, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Martin Flamant
- Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France.,Inserm U1149, Centre for Research on Inflammation, Université de Paris, Paris, France
| | | | - Emmanuelle Vidal-Petiot
- Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France.,Inserm U1149, Centre for Research on Inflammation, Université de Paris, Paris, France
| |
Collapse
|
32
|
Bengtson CD, Montgomery RN, Nazir U, Satterwhite L, Kim MD, Bahr NC, Castro M, Baumlin N, Salathe M. An Open Label Trial to Assess Safety of Losartan for Treating Worsening Respiratory Illness in COVID-19. Front Med (Lausanne) 2021; 8:630209. [PMID: 33681257 PMCID: PMC7926174 DOI: 10.3389/fmed.2021.630209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Coronavirus disease 2019 (COVID-19) can cause disruption of the renin-angiotensin system in the lungs, possibly contributing to pulmonary capillary leakage. Thus, angiotensin receptor blockers (ARBs) may improve respiratory failure. Objective: Assess safety of losartan for use in respiratory failure related to COVID-19 (NCT04335123). Methods: Single arm, open label trial of losartan in those hospitalized with respiratory failure related to COVID-19. Oral losartan (25 mg daily for 3 days, then 50 mg) was administered from enrollment until day 14 or hospital discharge. A post-hoc external control group with patients who met all inclusion criteria was matched 1:1 to the treatment group using propensity scores for comparison. Measures: Primary outcome was cumulative incidence of any adverse events. Secondary, explorative endpoints included measures of respiratory failure, length of stay and vital status. Results: Of the 34 participants enrolled in the trial, 30 completed the study with a mean age SD of 53.8 ± 17.7 years and 17 males (57%). On losartan, 24/30 (80%) experienced an adverse event as opposed to 29/30 (97%) of controls, with a lower average number of adverse events on losartan relative to control (2.2 vs. 3.3). Using Poisson regression and controlling for age, sex, race, date of enrollment, disease severity at enrollment, and history of high-risk comorbidities, the incidence rate ratio of adverse events on losartan relative to control was 0.69 (95% CI: 0.49-0.97) Conclusions: Losartan appeared safe for COVID-19-related acute respiratory compromise. To assess true efficacy, randomized trials are needed.
Collapse
Affiliation(s)
- Charles D. Bengtson
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robert N. Montgomery
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Usman Nazir
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lewis Satterwhite
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael D. Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nathan C. Bahr
- Department of Internal Medicine, Division of Infectious Diseases, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mario Castro
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
33
|
Gómez-Mendoza DP, Lara-Ribeiro AC, Verano-Braga T. Pathological cardiac remodeling seen by the eyes of proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140622. [PMID: 33607275 DOI: 10.1016/j.bbapap.2021.140622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Cardiac remodeling involves cellular and structural changes that occur as consequence of multifactorial events to maintain the homeostasis. The progression of pathological cardiac remodeling involves a transition from adaptive to maladaptive changes that eventually leads to impairment of ventricular function and heart failure. In this scenario, proteins are key elements that orchestrate molecular events as increased expression of fetal genes, neurohormonal and second messengers' activation, contractile dysfunction, rearrangement of the extracellular matrix and alterations in heart geometry. Mass spectrometry based-proteomics has emerged as a sound method to study protein dysregulation and identification of cardiac diseases biomarkers in plasma. In this review, we summarize the main findings related to large-scale proteome modulation of cardiac cells and extracellular matrix occurred during pathological cardiac remodeling. We describe the recent proteomic progresses in the selection of protein targets and introduce the renin-angiotensin system as an interesting target for the treatment of pathological cardiac remodeling.
Collapse
Affiliation(s)
- Diana Paola Gómez-Mendoza
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Ana Carolina Lara-Ribeiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
34
|
Cohen JB, South AM, Shaltout HA, Sinclair MR, Sparks MA. Renin-angiotensin system blockade in the COVID-19 pandemic. Clin Kidney J 2021; 14:i48-i59. [PMID: 33796285 PMCID: PMC7929063 DOI: 10.1093/ckj/sfab026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
In the early months of the coronavirus disease 2019 (COVID-19) pandemic, a hypothesis emerged suggesting that pharmacologic inhibitors of the renin–angiotensin system (RAS) may increase COVID-19 severity. This hypothesis was based on the role of angiotensin-converting enzyme 2 (ACE2), a counterregulatory component of the RAS, as the binding site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), allowing viral entry into host cells. Extrapolations from prior evidence led to speculation that upregulation of ACE2 by RAS blockade may increase the risk of adverse outcomes from COVID-19. However, counterarguments pointed to evidence of potential protective effects of ACE2 and RAS blockade with regard to acute lung injury, as well as substantial risks from discontinuing these commonly used and important medications. Here we provide an overview of classic RAS physiology and the crucial role of ACE2 in systemic pathways affected by COVID-19. Additionally, we critically review the physiologic and epidemiologic evidence surrounding the interactions between RAS blockade and COVID-19. We review recently published trial evidence and propose important future directions to improve upon our understanding of these relationships.
Collapse
Affiliation(s)
- Jordana B Cohen
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew M South
- Section of Nephrology, Department of Pediatrics, Brenner Children's Hospital, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Surgery, Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, NC, USA.,Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hossam A Shaltout
- Department of Surgery, Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, NC, USA.,Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Matthew R Sinclair
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Renal Section, Durham VA Health Care System, Durham, NC, USA
| |
Collapse
|
35
|
Kuriakose J, Montezano A, Touyz R. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021; 135:387-407. [PMID: 33511992 PMCID: PMC7846970 DOI: 10.1042/cs20200480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
Collapse
Affiliation(s)
- Jithin Kuriakose
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
36
|
Matarese A, Gambardella J, Sardu C, Santulli G. miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19. Biomedicines 2020; 8:462. [PMID: 33143053 PMCID: PMC7693865 DOI: 10.3390/biomedicines8110462] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.
Collapse
Affiliation(s)
- Alessandro Matarese
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- AORN “Antonio Cardarelli”, 80100 Naples, Italy
| | - Jessica Gambardella
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Medical Sciences, International University of Health and Medical Sciences “S. Camillo”, 00131 Rome, Italy
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|