1
|
Ziegler AA, Lawton SBR, Fekete EM, Brozoski DT, Wagner VA, Grobe CC, Sigmund CD, Nakagawa P, Grobe JL, Segar JL. Early-life sodium restriction programs autonomic dysfunction and salt sensitivity in male C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2025; 328:R109-R120. [PMID: 39548798 PMCID: PMC11905802 DOI: 10.1152/ajpregu.00250.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Preterm birth increases the risk of cardiometabolic disease in adulthood. Infants born during the second trimester of pregnancy, a critical period of hypothalamic development, are at risk of sodium (Na) depletion due to renal immaturity and large urine Na losses. We previously demonstrated in male mice that Na restriction during the equivalent mouse hypothalamic development period [postnatal day (PD)21-PD42] programs long-term changes in energy balance via increased thermogenic sympathetic nervous activity. We therefore hypothesized that early-life Na restriction programs changes in cardiovascular control via altered autonomic activity. C57BL/6J male mice were supplied a low (0.04%) Na or supplemented (0.30%) Na diet from PD21 to PD42, before return to standard (0.15%) Na diet. Hemodynamic and autonomic functions were assessed by radiotelemetry and acute administration of autonomic antagonists before and after all animals were switched to a high Na diet (HSD; 1% Na) at 12 wk of age. Mice were additionally treated with the angiotensin II type 1 receptor antagonist losartan for 2 wk. On standard diet, early-life Na restriction resulted in small but significantly different hemodynamic responses to autonomic blockers without any effect on systolic blood pressure (SBP) or heart rate. HSD increased SBP in 0.04% but not 0.30% Na mice, accompanied by increased cardiac sympathetic activity. Losartan had a greater BP-lowering effect in early-life Na-restricted mice. Our findings suggest that Na restriction during a critical hypothalamic developmental period programs long-term changes in the autonomic control of cardiovascular functions and may offer insight into the increased risk of cardiovascular disease in former preterm infants.NEW & NOTEWORTHY Mechanisms by which preterm birth increases the risk of adult-onset cardiometabolic diseases are not well understood. The renin-angiotensin system (RAS) has been implicated in the programming of adult disease, although contributors to RAS dysregulation remain to be identified. Findings from this study suggest that failure to maintain postnatal sodium homeostasis during a critical developmental window may contribute to RAS dysregulation and the risk of salt sensitivity of autonomic and cardiovascular function.
Collapse
Affiliation(s)
- Alisha A Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Samuel B R Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva M Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Yu GF, Yu LQ, Lai QR, Li W. Role of ENaC in gender-associated differences in blood pressure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:527-532. [PMID: 39968083 PMCID: PMC11831749 DOI: 10.22038/ijbms.2025.81832.17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/18/2024] [Indexed: 02/20/2025]
Abstract
Objectives Sexual dimorphism in blood pressure regulation has been extensively noted in humans, but the underlying mechanisms remain to be fully understood. Our research aims to investigate the possible correlation between gender-associated differences in blood pressure and renal sodium transport. Materials and Methods We measured male and female mice's blood pressure, urine, and plasma sodium concentration when fed a regular or high-Na+ diet. After that, their renal sodium transporters were assessed by western blot and immunofluorescence. For further investigation, male mice were castrated to observe the differences in blood pressure and renal sodium transporters compared to normal mice. Results Male mice exhibited higher blood pressure and lower renal sodium excretion than female littermates. Furthermore, the blood pressure of male mice exhibited a more significant and rapid increase relative to female mice when the diet was switched from control sodium to high sodium. Western blot and immunofluorescent staining revealed that in male mice, the sodium transporters epithelial sodium channel (ENaC) and the upstream kinases SPAK (Ste20-related proline/alanine-rich kinase), OSR1 (oxidative stress response kinase 1), and WNK4 (Lysine-Deficient Protein Kinase 4) were elevated. Beyond that, male mice exhibited lowered blood pressure and reduced abundance of ENaC (α, β, and γ) after castration. Conclusion ENaC plays a significant role in gender-associated differences in blood pressure and renal sodium reabsorption.
Collapse
Affiliation(s)
- Guo-feng Yu
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China, 310052
- These authors contributed equally to this work
| | - Li-qin Yu
- Qiaosi Branch, First People’s Hospital of Linping District, Hangzhou, Zhejiang Province, China
- These authors contributed equally to this work
| | - Qin-rui Lai
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China, 310052
| | - Wei Li
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China, 310052
| |
Collapse
|
3
|
Frame AA, Nist KM, Kim K, Puleo F, Moreira JD, Swaldi H, McKenna J, Wainford RD. Integrated renal and sympathetic mechanisms underlying the development of sex- and age-dependent hypertension and the salt sensitivity of blood pressure. GeroScience 2024; 46:6435-6458. [PMID: 38976131 PMCID: PMC11494650 DOI: 10.1007/s11357-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Aging is a non-modifiable understudied risk factor for hypertension. We hypothesized that sympathetically mediated activation of renal sodium reabsorption drives age-dependent hypertension and the salt sensitivity of blood pressure (BP). Using 3-, 8-, and 16-month-old male and female Sprague-Dawley rats as a model of normal aging, we assessed BP, indices of sympathetic tone, and the physiological responses to acute and chronic sodium challenge including sodium chloride cotransporter (NCC) regulation. The effects of renal nerve ablation and NCC antagonism were assessed in hypertensive male rats. We observed sex-dependent impaired renal sodium handling (24 h sodium balance (meq), male 3-month 0.36 ± 0.1 vs. 16-month 0.84 ± 0.2; sodium load excreted during 5% bodyweight isotonic saline volume expansion (%) male 3-month 77 ± 5 vs. 16-month 22 ± 8), hypertension (MAP (mmHg) male 3-month 123 ± 4 vs. 16-month 148 ± 6), and the salt sensitivity of BP in aged male, but not female, rats. Attenuated sympathoinhibitory afferent renal nerve (ARN) responses contributed to increased sympathetic tone and hypertension in male rats. Increased sympathetic tone contributes to renal sodium retention, in part through increased NCC activity via a dysfunctional with-no-lysine kinase-(WNK) STE20/SPS1-related proline/alanine-rich kinase signaling pathway, to drive hypertension and the salt sensitivity of BP in aged male rats. NCC antagonism and renal nerve ablation, which reduced WNK dysfunction and decreased NCC activity, attenuated age-dependent hypertension in male Sprague-Dawley rats. The contribution of an impaired sympathoinhibitory ARN reflex to sex- and age-dependent hypertension in an NCC-dependent manner, via an impaired WNK1/WNK4 dynamic, suggests this pathway as a mechanism-based target for the treatment of age-dependent hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kayla M Nist
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Franco Puleo
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse D Moreira
- Department of Health Sciences, Sargent College, Boston University, Boston, MA, USA
| | - Hailey Swaldi
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - James McKenna
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA.
| |
Collapse
|
4
|
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024; 12:2580. [PMID: 39595146 PMCID: PMC11591633 DOI: 10.3390/biomedicines12112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC's central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches.
Collapse
Affiliation(s)
- Annalisa Castagna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Gabriele Mango
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Nicola Martinelli
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Luigi Marzano
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| |
Collapse
|
5
|
You R, Jia Z. Pathophysiological role of Na-Cl cotransporter in kidneys, blood pressure, and metabolism. Hum Cell 2024; 37:1306-1315. [PMID: 38985392 DOI: 10.1007/s13577-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The Na-Cl cotransporter (NCC) is a well-recognized regulator of ion transportation in the kidneys that facilitates Na+ reabsorption in the distal convoluted tubule. It is also the pharmacologic inhibitory target of thiazide diuretics, a class of front-line antihypertensive agents that have been widely used for decades. NCC is a potent regulator of Na+ reabsorption and homeostasis. Hence, its overactivation and suppression lead to hypertension and hypotension, respectively. Genetic mutations that affect NCC function contribute to several diseases such as Gordon and Gitelman syndromes. We summarized the role of NCC in various physiologic processes and pathological conditions, such as maintaining ion and water homeostasis, controlling blood pressure, and influencing renal physiology and injury. In addition, we discussed the recent advancements in understanding cryo-EM structure of NCC, the regulatory mechanisms and binding mode of thiazides with NCC, and novel physiologic implications of NCC in regulating the cross-talk between the immune system and adipose tissue or the kidneys. This review contributes to a comprehensive understanding of the pivotal role of NCC in maintaining ion homeostasis, regulating blood pressure, and facilitating kidney function and NCC's novel role in immune and metabolic regulation.
Collapse
Affiliation(s)
- Ran You
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Kim K, Nist KM, Puleo F, McKenna J, Wainford RD. Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2024; 327:F277-F289. [PMID: 38813592 PMCID: PMC11460337 DOI: 10.1152/ajprenal.00150.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na+-Cl- cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na+ reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.NEW & NOTEWORTHY NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na+-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kayla M Nist
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Franco Puleo
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - James McKenna
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
8
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. Sci Rep 2024; 14:495. [PMID: 38177257 PMCID: PMC10767006 DOI: 10.1038/s41598-023-50816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) excised from 3-month, 8-month, and 8-month denervated rats were subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
- Anastasia Gkousioudi
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Margherita Razzoli
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Jesse D Moreira
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA.
- Division of Cardiology, School of Medicine, HSRB II, Emory University, 1750 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Jang S, Kim JY, Kim CW, Kim I. Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats. J Cardiovasc Dev Dis 2023; 10:414. [PMID: 37887861 PMCID: PMC10607114 DOI: 10.3390/jcdd10100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
This study aimed to delineate the effect of sodium chloride on the induction of inflammatory responses and the development of hypertension in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. Splenocytes were isolated from the spleens of SS and SR rats, and cultured on anti-CD3-coated plates for 5 days. The cultured splenic T-cells were challenged with a hypertonic salt solution (0, 20, or 40 mM) in the absence or presence of IL-6 (0, 20, or 60 ng/mL), TGF-β (0, 5, or 15 ng/mL), or IL-23 (0, 10, or 30 ng/mL), and analyzed via ELISA, flow cytometry, and immunofluorescence. The hypertonic salt solution potentiated IL-17A production, as well as the differentiation of Th17 cells via IL-6/TGF-β/IL-23, exclusively in SS rats. However, it did not affect IL-10 production or the differentiation of Treg cells in any of the groups. Furthermore, it potentiated the signal of RORγt in IL-6-treated splenic T-cells from SS rats. To summarize, cultured splenic T-cells exhibited enhanced inflammatory responses on exposure to a hypertonic salt solution in SS rats only, which indicated that sodium chloride and inflammatory cytokines synergistically drove the induction of pathogenic Th17 cells and the development of hypertension in this group only.
Collapse
Affiliation(s)
- Sungmin Jang
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. RESEARCH SQUARE 2023:rs.3.rs-3273236. [PMID: 37720022 PMCID: PMC10503847 DOI: 10.21203/rs.3.rs-3273236/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) were excised from 3-, 8- and 8-month-old denervated rats, and subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
| | | | - Jesse D Moreira
- Boston University Avedisian and Chobanian School of Medicine
| | | | | |
Collapse
|
11
|
Taweh O, Moreira JD. Proposed mechanisms of hypertension and risk of adverse cardiovascular outcomes in LGBT communities. Am J Physiol Heart Circ Physiol 2023; 325:H522-H528. [PMID: 37477686 DOI: 10.1152/ajpheart.00346.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Hypertension (HTN), a highly prevalent public issue affecting one in two adults in the United States, has recently been shown to differentially burden individuals belonging to marginalized communities, such as the lesbian, gay, bisexual, and transgender (LGBT) communities. The minority stress theory posits that a unique combination of marginalization-related psychosocial stressors and coping behaviors may underlie the increased burden of diseases like HTN in LGBT populations. Uncontrolled or poorly managed HTN often leads to the development of adverse cardiovascular outcomes, such as heart failure (HF). Despite our understanding of minority stress theory and demonstrated associations between LGBT identities and HTN, the mechanisms whereby psychosocial stress drives HTN in LGBT populations remain unclear. This mini-review discusses the physiological systems governing blood pressure and the epidemiology of HTN across different subgroups of LGBT people. In addition, we propose mechanisms demonstrated in the general population whereby psychological stress has been implicated in elevating blood pressure that may be occurring in LGBT populations. Finally, we discuss the limitations of current studies and methodological frameworks to make suggestions for study designs to better delineate the mechanisms of psychosocial stress-related HTN in LGBT communities.
Collapse
Affiliation(s)
- Omar Taweh
- T. H. Chan School of Medicine, University of Massachusetts Worcester, Worcester, Massachusetts, United States
| | - Jesse D Moreira
- Q.U.E.E.R. Laboratory, Programs in Human Physiology, Department of Health Sciences, Boston University Sargent College, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Gao ZX, Wei QC, Shu TT, Li ST, Zhou R, Li MY, Mao ZH, Liu DW, Liu ZS, Wu P. Kir4.1 deletion prevents salt-sensitive hypertension in early streptozotocin-induced diabetic mice via Na + -Cl - cotransporter in the distal convoluted tubule. J Hypertens 2023; 41:958-970. [PMID: 37016934 DOI: 10.1097/hjh.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
OBJECTIVES Functional impairment of renal sodium handling and blood pressure (BP) homeostasis is an early characteristic manifestation of type 1 diabetes. However, the underlying mechanisms remain unclear. METHODS Metabolic cages, radio-telemetry, immunoblotting, and electrophysiology were utilized to examine effects of high salt (8% NaCl, HS) intake on Na + /K + balance, BP, Na + -Cl - cotransporter (NCC) function, and basolateral K + channel activity in the distal convoluted tubule (DCT) under diabetic conditions. RESULTS Improper Na + balance, hypernatremia, and a mild but significant increase in BP were found in streptozotocin (STZ)-induced diabetic mice in response to HS intake for 7 days. Compared to the vehicle, STZ mice showed increased Kir4.1 expression and activity in the DCT, a more negative membrane potential, higher NCC abundance, and enhanced hydrochlorothiazide-induced natriuretic effect. However, HS had no significant effect on basolateral Kir4.1 expression/activity and DCT membrane potential, or NCC activity under diabetic conditions, despite a downregulation in phosphorylated NCC abundance. In contrast, HS significantly downregulated the expression of Na + -H + exchanger 3 (NHE3) and cleaved epithelial sodium channel-γ in STZ mice, despite an increase in NHE3 abundance after STZ treatment. Kir4.1 deletion largely abolished STZ-induced upregulation of NCC expression and prevented BP elevation during HS intake. Interestingly, HS causes severe hypokalemia in STZ-treated kidney-specific Kir4.1 knockout (Ks-Kir4.1 KO) mice and lead to death within a few days, which could be attributed to a higher circulating aldosterone level. CONCLUSIONS We concluded that Kir4.1 is required for upregulating NCC activity and may be essential for developing salt-sensitive hypertension in early STZ-induced diabetes.
Collapse
Affiliation(s)
- Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi-Chao Wei
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Ting-Ting Shu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shu-Ting Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Rui Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Ming-Yan Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University
- Institute of Nephrology, Zhengzhou University
- Henan Province Clinical Research Center for Kidney Disease
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
13
|
Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010286. [PMID: 36613730 PMCID: PMC9820686 DOI: 10.3390/ijms24010286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a common clinical disease with an increasing incidence, affecting 10 to 15% of the world's population. Hypertension is the most common and modifiable risk factor for preventing adverse cardiovascular outcomes in patients with CKD. A survey from developed countries shows that 47% of hypertensive patients over the age of 20 have uncontrolled blood pressure (BP), and the control rate is even lower in developing countries. CKD is both a common cause of uncontrolled hypertension and a risk factor for altered sequelae. In particular, studies have demonstrated that abnormal blood-pressure patterns in CKD patients, such as non-dipping-blood-pressure patterns, are associated with a significantly increased risk of cardiovascular (CV) disease. The distal convoluted tubule (DCT) is a region of the kidney, and although only 5-10% of the sodium (Na+) filtered by the glomerulus is reabsorbed by DCT, most studies agree that Na-Cl cotransporter (NCC) in human, rabbit, mouse, and rat kidneys is the most important route of sodium reabsorption across the DCT for maintaining the homeostasis of sodium. The regulation of NCC involves a large and complex network structure, including certain physiological factors, kinases, scaffold proteins, transporter phosphorylation, and other aspects. This regulation network includes various levels. Naturally, cross-talk between the components of this system must occur in order to relay the important signals to the transporter to play its role. Knowledge of the mechanisms regulating NCC activation is critical for understanding and treating hypertension and CKD. Previous studies from our laboratory have investigated the mechanisms through which NCC is activated in several different models. In the following sections, we review the literature on the mechanisms of NCC in relation to hypertension in CKD.
Collapse
|
14
|
Kim CW, Young Kim J, Lee S, Kim I. Dahl salt-resistant rats are protected against angiotensin II-induced hypertension. Biochem Pharmacol 2022; 203:115193. [DOI: 10.1016/j.bcp.2022.115193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
|
15
|
Zhao Y, Li L, Lu Z, Hu Y, Zhang H, Sun F, Li Q, He C, Shu W, Wang L, Cao T, Luo Z, Yan Z, Liu D, Gao P, Zhu Z. Sodium-Glucose Cotransporter 2 Inhibitor Canagliflozin Antagonizes Salt-Sensitive Hypertension Through Modifying Transient Receptor Potential Channels 3 Mediated Vascular Calcium Handling. J Am Heart Assoc 2022; 11:e025328. [PMID: 35904193 PMCID: PMC9375510 DOI: 10.1161/jaha.121.025328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Salt-sensitive hypertension is highly prevalent and associated with cardiorenal damage. Large clinical trials have demonstrated that SGLT2 (sodium-glucose cotransporter 2) inhibitors exert hypotensive effect and cardiorenal protective benefits in patients with hypertension with and without diabetes. However, the underlying mechanism remains elusive. Methods and Results Dahl salt-sensitive rats and salt-insensitive controls were fed with 8% high-salt diet and some of them were treated with canagliflozin. The blood pressure, urinary sodium excretion, and vascular function were detected. Transient receptor potential channel 3 (TRPC3) knockout mice were used to explain the mechanism. Canagliflozin treatment significantly reduced high-salt-induced hypertension and this effect was not totally dependent on urinary sodium excretion in salt-sensitive hypertensive rats. Assay of vascular function and proteomics showed that canagliflozin significantly inhibited vascular cytoplasmic calcium increase and vasoconstriction in response to high-salt diet. High salt intake increased vascular expression of TRPC3 in salt-sensitive rats, which could be alleviated by canagliflozin treatment. Overexpression of TRPC3 mimicked salt-induced vascular cytosolic calcium increase in vitro and knockout of TRPC3 erased the antihypertensive effect of canagliflozin. Mechanistically, high-salt-induced activation of NCX1 (sodium-calcium exchanger 1) reverse mode increased cytoplasmic calcium level and vasoconstriction, which required TRPC3, and this process could be blocked by canagliflozin. Conclusions We define a previously unrecognized role of TRPC3/NCX1 mediated vascular calcium dysfunction in the development of high-salt-induced hypertension, which can be improved by canagliflozin treatment. This pathway is potentially a novel therapeutic target to antagonize salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Hexuan Zhang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Wentao Shu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhidan Luo
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| |
Collapse
|
16
|
Amraei R, Moreira JD, Wainford RD. Central Gαi 2 Protein Mediated Neuro-Hormonal Control of Blood Pressure and Salt Sensitivity. Front Endocrinol (Lausanne) 2022; 13:895466. [PMID: 35837296 PMCID: PMC9275552 DOI: 10.3389/fendo.2022.895466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension, a major public health issue, is estimated to contribute to 10% of all deaths worldwide. Further, the salt sensitivity of blood pressure is a critical risk factor for the development of hypertension. The hypothalamic paraventricular nucleus (PVN) coordinates neuro-hormonal responses to alterations in plasma sodium and osmolality and multiple G Protein-Coupled Receptors (GPCRs) are involved in fluid and electrolyte homeostasis. In acute animal studies, our laboratory has shown that central Gαi/o subunit protein signal transduction mediates hypotensive and bradycardic responses and that Gz/q, proteins mediate the release of arginine vasopressin (AVP) and subsequent aquaretic responses to acute pharmacological stimuli. Extending these studies, our laboratory has shown that central Gαi2 proteins selectively mediate the hypotensive, sympathoinhibitory and natriuretic responses to acute pharmacological activation of GPCRs and in response to acute physiological challenges to fluid and electrolyte balance. In addition, following chronically elevated dietary sodium intake, salt resistant rats demonstrate site-specific and subunit-specific upregulation of Gαi2 proteins in the PVN, resulting in sympathoinhibition and normotension. In contrast, chronic dietary sodium intake in salt sensitive animals, which fail to upregulate PVN Gαi2 proteins, results in the absence of dietary sodium-evoked sympathoinhibition and salt sensitive hypertension. Using in situ hybridization, we observed that Gαi2 expressing neurons in parvocellular division of the PVN strongly (85%) colocalize with GABAergic neurons. Our data suggest that central Gαi2 protein-dependent responses to an acute isotonic volume expansion (VE) and elevated dietary sodium intake are mediated by the peripheral sensory afferent renal nerves and do not depend on the anteroventral third ventricle (AV3V) sodium sensitive region or the actions of central angiotensin II type 1 receptors. Our translational human genomic studies have identified three G protein subunit alpha I2 (GNAI2) single nucleotide polymorphisms (SNPs) as potential biomarkers in individuals with salt sensitivity and essential hypertension. Collectively, PVN Gαi2 proteins-gated pathways appear to be highly conserved in salt resistance to counter the effects of acute and chronic challenges to fluid and electrolyte homeostasis on blood pressure via a renal sympathetic nerve-dependent mechanism.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jesse D. Moreira
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
17
|
Frame AA, Nist KM, Kim K, Kuwabara JT, Wainford RD. Natriuresis During an Acute Intravenous Sodium Chloride Infusion in Conscious Sprague Dawley Rats Is Mediated by a Blood Pressure-Independent α1-Adrenoceptor-Mediated Mechanism. Front Physiol 2022; 12:784957. [PMID: 35111076 PMCID: PMC8802910 DOI: 10.3389/fphys.2021.784957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that sense alterations in total body sodium content to facilitate sodium homeostasis in response to an acute sodium challenge that does not increase blood pressure have not been fully elucidated. We hypothesized that the renal sympathetic nerves are critical to mediate natriuresis via α1- or β-adrenoceptors signal transduction pathways to maintain sodium balance in the face of acute increases in total body sodium content that do not activate the pressure-natriuresis mechanism. To address this hypothesis, we used acute bilateral renal denervation (RDNX), an anteroventral third ventricle (AV3V) lesion and α1- or β-antagonism during an acute 1M NaCl sodium challenge in conscious male Sprague Dawley rats. An acute 1M NaCl infusion did not alter blood pressure and evoked profound natriuresis and sympathoinhibition. Acute bilateral RDNX attenuated the natriuretic and sympathoinhibitory responses evoked by a 1M NaCl infusion [peak natriuresis (μeq/min) sham 14.5 ± 1.3 vs. acute RDNX: 9.2 ± 1.4, p < 0.05; plasma NE (nmol/L) sham control: 44 ± 4 vs. sham 1M NaCl infusion 11 ± 2, p < 0.05; acute RDNX control: 42 ± 6 vs. acute RDNX 1M NaCl infusion 25 ± 3, p < 0.05]. In contrast, an AV3V lesion did not impact the cardiovascular, renal excretory or sympathoinhibitory responses to an acute 1M NaCl infusion. Acute i.v. α1-adrenoceptor antagonism with terazosin evoked a significant drop in baseline blood pressure and significantly attenuated the natriuretic response to a 1M NaCl load [peak natriuresis (μeq/min) saline 17.2 ± 1.4 vs. i.v. terazosin 7.8 ± 2.5, p < 0.05]. In contrast, acute β-adrenoceptor antagonism with i.v. propranolol infusion did not impact the cardiovascular or renal excretory responses to an acute 1M NaCl infusion. Critically, the natriuretic response to an acute 1M NaCl infusion was significantly blunted in rats receiving a s.c. infusion of the α1-adrenoceptor antagonist terazosin at a dose that did not lower baseline blood pressure [peak natriuresis (μeq/min) sc saline: 18 ± 1 vs. sc terazosin 7 ± 2, p < 0.05]. Additionally, a s.c. infusion of the α1-adrenoceptor antagonist terazosin further attenuated the natriuretic response to a 1M NaCl infusion in acutely RDNX animals. Collectively these data indicate a specific role of a blood pressure-independent renal sympathetic nerve-dependent α1-adrenoceptor-mediated pathway in the natriuretic and sympathoinhibitory responses evoked by acute increases in total body sodium.
Collapse
Affiliation(s)
- Alissa A. Frame
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Jill T. Kuwabara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Richard D. Wainford,
| |
Collapse
|
18
|
Moreira JD, Nist KM, Carmichael CY, Kuwabara JT, Wainford RD. Sensory Afferent Renal Nerve Activated Gαi 2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges. Front Physiol 2021; 12:771167. [PMID: 34916958 PMCID: PMC8669768 DOI: 10.3389/fphys.2021.771167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
We have previously reported that brain Gαi2 subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin of the signal that drives the endogenous activation and up-regulation of PVN Gαi2 subunit protein signal transduction pathways is unknown. By central oligodeoxynucleotide (ODN) administration we show that the pressor responses to central acute administration and central infusion of sodium chloride occur independently of brain Gαi2 protein pathways. In response to an acute volume expansion, we demonstrate, via the use of selective afferent renal denervation (ADNX) and anteroventral third ventricle (AV3V) lesions, that the sensory afferent renal nerves, but not the sodium sensitive AV3V region, are mechanistically involved in Gαi2 protein mediated natriuresis to an acute volume expansion [peak natriuresis (μeq/min) sham AV3V: 43 ± 4 vs. AV3V 45 ± 4 vs. AV3V + Gαi2 ODN 25 ± 4, p < 0.05; sham ADNX: 43 ± 4 vs. ADNX 23 ± 6, AV3V + Gαi2 ODN 25 ± 3, p < 0.05]. Furthermore, in response to chronically elevated dietary sodium intake, endogenous up-regulation of PVN specific Gαi2 proteins does not involve the AV3V region and is mediated by the sensory afferent renal nerves to counter the development of the salt sensitivity of blood pressure (MAP [mmHg] 4% NaCl; Sham ADNX 124 ± 4 vs. ADNX 145 ± 4, p < 0.05; Sham AV3V 125 ± 4 vs. AV3V 121 ± 5). Additionally, the development of the salt sensitivity of blood pressure following central ODN-mediated Gαi2 protein down-regulation occurs independently of the actions of the brain angiotensin II type 1 receptor. Collectively, our data suggest that in response to alterations in whole body sodium the peripheral sensory afferent renal nerves, but not the central AV3V sodium sensitive region, evoke the up-regulation and activation of PVN Gαi2 protein gated pathways to maintain a salt resistant phenotype. As such, both the sensory afferent renal nerves and PVN Gαi2 protein gated pathways, represent potential targets for the treatment of the salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Jesse D. Moreira
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Medicine, School of Medicine, Boston University, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, School of Medicine, Boston University, Boston, MA, United States
| | - Casey Y. Carmichael
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Jill T. Kuwabara
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
19
|
Kamiar A, Yousefi K, Dunkley JC, Webster KA, Shehadeh LA. β 2-Adrenergic receptor agonism as a therapeutic strategy for kidney disease. Am J Physiol Regul Integr Comp Physiol 2021; 320:R575-R587. [PMID: 33565369 PMCID: PMC8163614 DOI: 10.1152/ajpregu.00287.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022]
Abstract
Approximately 14% of the general population suffer from chronic kidney disease that can lead to acute kidney injury (AKI), a condition with up to 50% mortality for which there is no effective treatment. Hypertension, diabetes, and cardiovascular disease are the main comorbidities, and more than 660,000 Americans have kidney failure. β2-Adrenergic receptors (β2ARs) have been extensively studied in association with lung and cardiovascular disease, but with limited scope in kidney and renal diseases. β2ARs are expressed in multiple parts of the kidney including proximal and distal convoluted tubules, glomeruli, and podocytes. Classical and noncanonical β2AR signaling pathways interface with other intracellular mechanisms in the kidney to regulate important cellular functions including renal blood flow, electrolyte balance and salt handling, and tubular function that in turn exert control over critical physiology and pathology such as blood pressure and inflammatory responses. Nephroprotection through activation of β2ARs has surfaced as a promising field of investigation; however, there is limited data on the pharmacology and potential side effects of renal β2AR modulation. Here, we provide updates on some of the major areas of preclinical kidney research involving β2AR signaling that have advanced to describe molecular pathways and identify potential drug targets some of which are currently under clinical development for the treatment of kidney-related diseases.
Collapse
Affiliation(s)
- Ali Kamiar
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keyvan Yousefi
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Julian C Dunkley
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keith A Webster
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Poulsen SB, Cheng L, Penton D, Kortenoeven MLA, Matchkov VV, Loffing J, Little R, Murali SK, Fenton RA. Activation of the kidney sodium chloride cotransporter by the β2-adrenergic receptor agonist salbutamol increases blood pressure. Kidney Int 2021; 100:321-335. [PMID: 33940111 DOI: 10.1016/j.kint.2021.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The thiazide-sensitive sodium-chloride-cotransporter (NCC) in the kidney distal convoluted tubule (DCT) plays an essential role in sodium and potassium homeostasis. Here, we demonstrate that NCC activity is increased by the β2-adrenoceptor agonist salbutamol, a drug prevalently used to treat asthma. Relative to β1-adrenergic receptors, the β2-adrenergic receptors were greatly enriched in mouse DCT cells. In mice, administration of salbutamol increased NCC phosphorylation (indicating increased activity) within 30 minutes but also caused hypokalemia, which also increases NCC phosphorylation. In ex vivo kidney slices and isolated tubules, salbutamol increased NCC phosphorylation in the pharmacologically relevant range of 0.01-10 μM, an effect observed after 15 minutes and maintained at 60 minutes. Inhibition of the inwardly rectifying potassium channel (Kir) 4.1 or the downstream with-no-lysine kinases (WNKs) and STE20/SPS1-related proline alanine-rich kinase (SPAK) pathway greatly attenuated, but did not prevent, salbutamol-induced NCC phosphorylation. Salbutamol increased cAMP in tubules, kidney slices and mpkDCT cells (model of DCT). Phosphoproteomics indicated that protein phosphatase 1 (PP1) was a key upstream regulator of salbutamol effects. A role for PP1 and the PP1 inhibitor 1 (I1) was confirmed in tubules using inhibitors of PP1 or kidney slices from I1 knockout mice. On normal and high salt diets, salbutamol infusion increased systolic blood pressure, but this increase was normalized by thiazide suggesting a role for NCC. Thus, β2-adrenergic receptor signaling modulates NCC activity via I1/PP1 and WNK-dependent pathways, and chronic salbutamol administration may be a risk factor for hypertension.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - David Penton
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | | - Robert Little
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.
| |
Collapse
|