1
|
Ahn Y, Aung N, Ahn HS. A Comprehensive Review of Clinical Studies Applying Flow-Mediated Dilation. Diagnostics (Basel) 2024; 14:2499. [PMID: 39594169 PMCID: PMC11592698 DOI: 10.3390/diagnostics14222499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Flow-mediated dilation (FMD) is a noninvasive method to evaluate vascular endothelial function, which manifests the vascular inflammatory response, cell proliferation, and autoregulation. Since FMD is noninvasive and assesses commonly in the brachial artery by ultrasound, compared to other invasive methods such as optical coherence tomography (OCT) and intravascular ultrasound (IVUS), it is widely used to evaluate endothelial function and allows serial assessment. In this review, we present the currently accepted mechanisms and methods of FMD measurement with the studies applied in the current clinical practice using FMD. After all, the association with cardiovascular diseases is of substance, and so we introduce clinical studies of FMD related to cardiovascular disease such as diabetes, hyperlipidemia, chronic kidney disease, coronary artery disease, and peripheral vascular disease. In addition, studies related to pregnancy and COVID-19 were also inspected. Yet, endothelial examination is not endorsed as a cardiovascular prevention measure, for the lack of a clear standardized value methodology. Still, many studies recommend practicable FMD and would be a better prognostic value in the cardiovascular prognosis in future clinical research.
Collapse
Affiliation(s)
- Yuran Ahn
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul 06591, Republic of Korea;
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Nay Aung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
- National Institute for Health and Care Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London E1 4NS, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Hyo-Suk Ahn
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul 06591, Republic of Korea;
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Noda M, Kikuchi C, Hori E, Iwao T, Nagami C, Takeuchi M, Matsunaga T. Effect of Anagliptin on Vascular Injury in the Femoral Artery of Type 2 Diabetic Rats. Biol Pharm Bull 2024; 47:204-212. [PMID: 38246646 DOI: 10.1248/bpb.b23-00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Patients with diabetes mellitus (DM) often experience complications such as peripheral arterial disease (PAD), which is thought to be caused by vascular damage resulting from increased oxidative stress. Dipeptidyl peptidase-4 inhibitors have been reported to reduce oxidative stress, although the exact mechanism remains unclear. This study aimed to investigate the impact of long-term (6 weeks) anagliptin treatment at a dose of 200 mg/kg/d against oxidative stress in the femoral artery of Otsuka Long-Evans Tokushima Fatty (OLETF) rats using a well-established animal model for type 2 DM. Serum toxic advanced glycation end-products concentrations and blood glucose levels after glucose loading were significantly elevated in OLETF rats compared to Long-Evans Tokushima Otsuka (LETO) rats but were significantly suppressed by anagliptin administration. Plasma glucagon-like peptide-1 concentrations after glucose loading were significantly increased in anagliptin-treated rats. Superoxide production and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in femoral arteries were significantly increased in OLETF rats compared to LETO rats but were significantly decreased by anagliptin administration. The expressions of NADPH oxidase components (p22phox in the intima region and p22phox and gp91phox in the media region) in the femoral artery were significantly increased in OLETF rats compared to LETO rats but were significantly suppressed by anagliptin administration. Furthermore, the femoral artery showed increased wall thickness in OLETF rats compared to LETO rats, but anagliptin administration reduced the thickening. This study suggests that long-term anagliptin administration can reduce oxidative stress in femoral arteries and improve vascular injury.
Collapse
Affiliation(s)
- Masato Noda
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Chigusa Kikuchi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
- Laboratory of Community Medicine, Showa Pharmaceutical University
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Eisei Hori
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Chie Nagami
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
3
|
Ribeiro-Silva JC, Marques VB, Dos Santos L. Effects of dipeptidyl peptidase 4 inhibition on the endothelial control of the vascular tone. Am J Physiol Cell Physiol 2023; 325:C972-C980. [PMID: 37642237 PMCID: PMC11932530 DOI: 10.1152/ajpcell.00246.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a serine protease known to cleave incretin hormones, which stimulate insulin secretion after food intake, a fact that supported the development of its inhibitors (DPP4i or gliptins) for the treatment of type 2 diabetes mellitus. In addition to their glucose-lowering effects, DPP4i show benefits for the cardiovascular system that could be related, at least in part, to their protective action on vascular endothelium. DPP4i have been associated with the reversal of endothelial dysfunction, an important predictor of cardiovascular events and a hallmark of diseases such as atherosclerosis, diabetes mellitus, hypertension, and heart failure. In animal models of these diseases, DPP4i increase nitric oxide bioavailability and limits oxidative stress, thereby improving the endothelium-dependent relaxation. Similar effects on flow-mediated dilation and attenuation of endothelial dysfunction have also been noted in human studies, suggesting a value for gliptins in the clinical scenario, despite the variability of the results regarding the DPP4i used, treatment duration, and presence of comorbidities. In this mini-review, we discuss the advances in our comprehension of the DPP4i effects on endothelial regulation of vascular tone. Understanding the role of DPP4 and its involvement in the signaling mechanisms leading to endothelial dysfunction will pave the way for a broader use of DPP4i in conditions that endothelial dysfunction is a pivotal pathophysiological player.
Collapse
Affiliation(s)
- Joao Carlos Ribeiro-Silva
- Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States
| | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
4
|
Akashi N, Umemoto T, Yamada H, Fujiwara T, Yamamoto K, Taniguchi Y, Sakakura K, Wada H, Momomura SI, Fujita H. Teneligliptin, a DPP-4 Inhibitor, Improves Vascular Endothelial Function via Divergent Actions Including Changes in Circulating Endothelial Progenitor Cells. Diabetes Metab Syndr Obes 2023; 16:1043-1054. [PMID: 37077576 PMCID: PMC10108873 DOI: 10.2147/dmso.s403125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
PURPOSE Dipeptidyl peptidase-4 (DPP-4) inhibitors increase endothelial progenitor cells (EPCs) in peripheral blood circulation. However, the underlying mechanisms and effects on vascular endothelial function remain unclear. We evaluated whether the DPP-4 inhibitor teneligliptin increases circulating EPCs by inhibiting stromal-derived factor-1α (SDF-1α) and improves flow-mediated vascular dilatation (FMD) in type 2 diabetes mellitus patients with acute coronary syndrome (ACS) or its risk factors. PATIENTS AND METHODS This single-center, open-label, prospective, randomized controlled trial evaluated 17 patients (hemoglobin A1c ≤7.5% and peak creatinine phosphokinase <2000 IU/mL) with ACS or a history of ACS or multiple cardiovascular risk factors. Metabolic variables of glucose and lipids, circulating EPCs, plasma DPP-4 activity, and SDF-1α levels, and FMD were evaluated at baseline and 28 ± 4 weeks after enrollment. Patients were randomly assigned to either the teneligliptin (n = 8) or control (n = 9) groups. RESULTS The DPP-4 activity (∆-509.5 ± 105.7 vs ∆32.8 ± 53.4 μU/mL) and SDF-1α levels (∆-695.6 ± 443.2 vs ∆11.1 ± 193.7 pg/mL) were significantly decreased after 28 weeks in the teneligliptin group than those in the control group. The number of EPCs showed an increasing trend in the teneligliptin treated group; albeit this did not reach statistical significance. Glucose and lipid levels were not significantly different between the groups before and after 28 weeks. However, FMD was significantly improved in the teneligliptin group when compared to the control group (∆3.8% ± 2.1% vs ∆-0.3% ± 2.9%, P=0.006). CONCLUSION Teneligliptin improved FMD through a mechanism other than increasing the number of circulating EPCs.
Collapse
Affiliation(s)
- Naoyuki Akashi
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Tomio Umemoto
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Correspondence: Tomio Umemoto, Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan, Tel +81-48-647-2111, Fax +81-48-648-5188, Email
| | - Hodaka Yamada
- Division of Endocrinology and Metabolism, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takayuki Fujiwara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kei Yamamoto
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yousuke Taniguchi
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Kenichi Sakakura
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiroshi Wada
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shin-ichi Momomura
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hideo Fujita
- Division of Cardiovascular Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
5
|
ASFUROGLU KALKAN E, AYDOĞAN Bİ, DINÇER İ, GÜLLÜ S. Effects of DPP-4 inhibitors on brain natriuretic peptide, neuropeptide Y, glucagon like peptide-1, substance P levels and global longitudinal strain measurements in type 2 diabetes mellitus patients. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1133314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: Previously, a significant relationship between saxagliptin treatment and increased rate of hospitalization for congestive heart failure was reported. We aimed to investigate effects of vildagliptin and saxagliptin on brain natriuretic peptide (BNP), neuropeptide Y (NPY), substance P (SP), glucagon like peptide-1 (GLP-1) levels and left ventricular global longitudinal strain (GLS), assessed by 3-dimensional speckle tracking echocardiography in uncontrolled type 2 Diabetes mellitus (T2DM).
Material and method: Thirty seven uncontrolled T2DM (HbA1c>7,5%) patients who were recently prescribed to either vildagliptin 50 mg BID (n=21) or saxagliptin 5 mg QD (n=16) were included in this study. Levels of BNP, NPY, SP, GLP-1 levels were measured at admission, first and third months of treatment. GLS was measured at admission and third month.
Results: In whole group, BNP and NPY values increased significantly at third month of treatment (p< 0.001, 0.004; respectively). In the vildagliptin group, BNP and NPY values increased significantly at third month of treatment (p=0.02 and p=0.04, respectively). In the saxagliptin group only BNP levels increased significantly (p=0.015). In both groups; SP, GLP-1 levels and GLS measurements did not change significantly during follow-up period.
Conclusion: The current study demonstrated that treatment with saxagliptin and vildagliptin, was associated with increased levels of BNP and NPY levels. No evidence of subclinical myocardial damage or cardiac dysfunction could be detected by GLS measurements. Since our study population had no previous clinical cardiac disorders, increases in BNP and NPY levels with these two DPP4 inhibitors can be considered as a safety signal.
Collapse
Affiliation(s)
- Emra ASFUROGLU KALKAN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, ANKARA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ
| | - Berna İmge AYDOĞAN
- ANKARA UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, ENDOCRINOLOGY AND METABOLIC DISEASES
| | - İrem DINÇER
- ANKARA UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF CARDIOLOGY
| | - Sevim GÜLLÜ
- ANKARA UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, ENDOCRINOLOGY AND METABOLIC DISEASES
| |
Collapse
|
6
|
Zainal AA, Merkhan MM. IMPACT OF ANTIDIABETIC DRUGS ON RISK AND OUTCOME OF COVID-19 INFECTION: A REVIEW. MILITARY MEDICAL SCIENCE LETTERS 2022; 91:140-160. [DOI: 10.31482/mmsl.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Comparison of the effects of empagliflozin and glimepiride on endothelial function in patients with type 2 diabetes: A randomized controlled study. PLoS One 2022; 17:e0262831. [PMID: 35171918 PMCID: PMC8849516 DOI: 10.1371/journal.pone.0262831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022] Open
Abstract
Patients with type 2 diabetes who have cardiovascular disease and are receiving empagliflozin have a lower rate of primary composite cardiovascular outcomes. In contrast, glimepiride increases cardiovascular hospitalization when combined with metformin. Here, we assessed the effects of empagliflozin and glimepiride on endothelial function using flow-mediated dilation (FMD). In this prospective, open-label, randomized, parallel-group study, 63 patients with type 2 diabetes received metformin and insulin glargine U100 for 12 weeks. This was followed by additional treatment with empagliflozin or glimepiride for 12 weeks. The primary outcome was the change in the FMD measurement (ΔFMDs) at 24 weeks of additional treatment. Secondary outcomes comprised changes in metabolic markers and body composition. The empagliflozin group (n = 33) and glimepiride group (n = 30) showed no significant differences in ΔFMDs (empagliflozin, −0.11 [95%CI: -1.02, 0.80]%; glimepiride, −0.34 [95%CI: -1.28, 0.60]%; P = 0.73). Additionally, changes in glycated hemoglobin were similar between the two groups. However, a significant difference in body weight change was observed (empagliflozin, −0.58 [95%CI: -1.60, 0.43] kg; glimepiride, 1.20 [95%CI: 0.15, 2.26] kg; P = 0.02). Moreover, a body composition analysis revealed that body fluid volume significantly decreased after empagliflozin treatment (baseline, 35.8 ± 6.8 L; after 12 weeks, −0.33 ± 0.72 L; P = 0.03). Hence, although empagliflozin did not improve endothelial function compared with glimepiride for patients with type 2 diabetes, it did decrease body fluid volumes. Thus, the coronary-protective effect of empagliflozin is not derived from endothelial function protection, but rather from heart failure risk reduction.
Trial registration: This trial was registered on September 13, 2016; UMIN000024001.
Collapse
|
8
|
Shi H, Peng M, Liu Y, Kan Z, Li W, Yang T. Retracted: Effect of dipeptidyl peptidase-4 inhibitors on the progression of atherosclerosis in patients with type 2 diabetes mellitus: A meta-analysis of randomised controlled trials. Int J Clin Pract 2021; 75:e14213. [PMID: 33819377 DOI: 10.1111/ijcp.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/14/2021] [Indexed: 11/26/2022] Open
Abstract
Yang, T, Li, W, Kan, Z, Liu, Y, Peng, M, Shi, H, Effect of dipeptidyl peptidase-4 inhibitors on the progression of atherosclerosis in patients with type 2 diabetes mellitus: A meta-analysis of randomised controlled trials. Int J Clin Pract. 2021; 00:e14213. https://onlinelibrary.wiley.com/doi/10.1111/ijcp.14213. The above article from the International Journal of Clinical Practice, published online on 5 April 2021 in Wiley Online Library (wileyonlinelibrary.com), has been retracted at the request of the authors, and by agreement of the journal Editor in Chief, Charles Young, and John Wiley and Sons Ltd. The retraction has been agreed following an author review of the research which led to the removal of some studies which did not meet the inclusion criteria. Following the removal of these studies the overall sample size was too small and the studies still included too heterogenuous for the results and conclusions to be reliable.
Collapse
Affiliation(s)
- Hongshuo Shi
- College of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yufan Liu
- College of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zunqi Kan
- College of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenwen Li
- College of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tiantian Yang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Antoniou S, Naka KK, Papadakis M, Bechlioulis A, Tsatsoulis A, Michalis LK, Tigas S. Effect of glycemic control on markers of subclinical atherosclerosis in patients with type 2 diabetes mellitus: A review. World J Diabetes 2021; 12:1856-1874. [PMID: 34888012 PMCID: PMC8613661 DOI: 10.4239/wjd.v12.i11.1856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/29/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the predominant cause of death in type 2 diabetes mellitus (T2DM). Evidence suggests a strong association between duration and degree of hyperglycemia and vascular disease. However, large trials failed to show cardiovascular benefit after intensive glycemic control, especially in patients with longer diabetes duration. Atherosclerosis is a chronic and progressive disease, with a long asymptomatic phase. Subclinical atherosclerosis, which is impaired in T2DM, includes impaired vasodilation, increased coronary artery calcification (CAC), carotid intima media thickness, arterial stiffness, and reduced arterial elasticity. Each of these alterations is represented by a marker of subclinical atherosclerosis, offering a cost-effective alternative compared to classic cardiac imaging. Their additional use on top of traditional risk assessment strengthens the predictive risk for developing coronary artery disease (CAD). We, herein, review the existing literature on the effect of glycemic control on each of these markers separately. Effective glycemic control, especially in earlier stages of the disease, attenuates progression of structural markers like intima-media thickness and CAC. Functional markers are improved after use of newer anti-diabetic agents, such as incretin-based treatments or sodium-glucose co-transporter-2 inhibitors, especially in T2DM patients with shorter disease duration. Larger prospective trials are needed to enhance causal inferences of glycemic control on clinical endpoints of CAD.
Collapse
Affiliation(s)
- Sofia Antoniou
- Department of Endocrinology, University of Ioannina, Ioannina 45110, Greece
| | - Katerina K Naka
- 2nd Department of Cardiology and Michaelidion Cardiac Center, University of Ioannina, Ioannina 45110, Greece
| | - Marios Papadakis
- Department of Surgery II, University of Witten-Herdecke, Wuppertal 42283, Germany
| | - Aris Bechlioulis
- 2nd Department of Cardiology and Michaelidion Cardiac Center, University of Ioannina, Ioannina 45110, Greece
| | | | - Lampros K Michalis
- 2nd Department of Cardiology and Michaelidion Cardiac Center, University of Ioannina, Ioannina 45110, Greece
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
10
|
Wang X, Gu H, Li K, Lin J, Zhu Y, Deng W. DPP4 inhibitor reduces portal hypertension in cirrhotic rats by normalizing arterial hypocontractility. Life Sci 2021; 284:119895. [PMID: 34450166 DOI: 10.1016/j.lfs.2021.119895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
AIMS Dipeptidyl peptidase-4 inhibitor (DPP4i), a new antidiabetic agent, is reported to affect the progression of chronic liver diseases. The study aims to investigate the effects of DPP4i on contractile response, splanchnic hemodynamics, and portal pressure in cirrhotic rats. MATERIALS AND METHODS A rat model of carbon tetrachloride-induced cirrhosis was used in this study. Sixteen rats with cirrhosis were treated with DDP4i sitagliptin for 5 consecutive days. Portal and systemic pressures and portal blood flow were measured. Mesenteric arterioles were isolated, and concentration-response curves to norepinephrine (NE) were evaluated. The expression of NADPH oxidase (Nox)1, Nox2, Nox4, and soluble epoxide hydrolase (sEH) were detected. Reactive oxygen species (ROS) and epoxyeicosatrienoic acid (EET) levels in mesenteric arteries were also measured. KEY FINDINGS In cirrhotic rats, sitagliptin significantly reduced portal blood flow and portal pressure without effects on systemic pressure and reversed the decreased response of mesenteric arterioles to NE in an endothelium-dependent manner. Sitagliptin suppressed the increased Nox4 expression and ROS production. In vitro studies showed that Nox4 inhibitor enhanced arteriolar response to NE and reduced hydrogen peroxide (H2O2) level in cirrhotic rats. Sitagliptin also reduced EET levels and increased sEH expression of mesenteric vessels. Pre-incubation with sEH inhibitor in vitro reversed sitagliptin-induced augmentation of response to NE in cirrhotic rats. SIGNIFICANCE DPP4 inhibition by sitagliptin in vivo has beneficial effects on portal hypertension in cirrhotic rats through normalizing arterial hypocontractility. DDP4 inhibitor may be a novel strategy in the treatment of patients with cirrhosis and portal hypertension.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Radiation Oncology, The Third Hospital of Nanchang, Nanchang 330025, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kaichun Li
- Oncology Department, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Yiming Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China.
| |
Collapse
|
11
|
Love KM, Barrett EJ, Malin SK, Reusch JEB, Regensteiner JG, Liu Z. Diabetes pathogenesis and management: the endothelium comes of age. J Mol Cell Biol 2021; 13:500-512. [PMID: 33787922 PMCID: PMC8530521 DOI: 10.1093/jmcb/mjab024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Endothelium, acting as a barrier, protects tissues against factors that provoke insulin resistance and type 2 diabetes and itself responds to the insult of insulin resistance inducers with altered function. Endothelial insulin resistance and vascular dysfunction occur early in the evolution of insulin resistance-related disease, can co-exist with and even contribute to the development of metabolic insulin resistance, and promote vascular complications in those affected. The impact of endothelial insulin resistance and vascular dysfunction varies depending on the blood vessel size and location, resulting in decreased arterial plasticity, increased atherosclerosis and vascular resistance, and decreased tissue perfusion. Women with insulin resistance and diabetes are disproportionately impacted by cardiovascular disease, likely related to differential sex-hormone endothelium effects. Thus, reducing endothelial insulin resistance and improving endothelial function in the conduit arteries may reduce atherosclerotic complications, in the resistance arteries lead to better blood pressure control, and in the microvasculature lead to less microvascular complications and more effective tissue perfusion. Multiple diabetes therapeutic modalities, including medications and exercise training, improve endothelial insulin action and vascular function. This action may delay the onset of type 2 diabetes and/or its complications, making the vascular endothelium an attractive therapeutic target for type 2 diabetes and potentially type 1 diabetes.
Collapse
MESH Headings
- Age Factors
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/ethnology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Comorbidity
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Exercise
- Female
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Male
- Racial Groups
- Risk Factors
- Sex Factors
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
- Division of Endocrinology, Metabolism and Nutrition, Rutgers University, New Brunswick, NJ, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Institute of Translational Medicine and Research, Rutgers University, New Brunswick, NJ, USA
| | - Jane E B Reusch
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | - Judith G Regensteiner
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Maruhashi T, Higashi Y. Pathophysiological Association between Diabetes Mellitus and Endothelial Dysfunction. Antioxidants (Basel) 2021; 10:antiox10081306. [PMID: 34439553 PMCID: PMC8389282 DOI: 10.3390/antiox10081306] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction plays a critical role in atherosclerosis progression, leading to cardiovascular complications. There are significant associations between diabetes mellitus, oxidative stress, and endothelial dysfunction. Oxidative stress is increased by chronic hyperglycemia and acute glucose fluctuations induced by postprandial hyperglycemia in patients with diabetes mellitus. In addition, selective insulin resistance in the phosphoinositide 3-kinase/Akt/endothelial nitric oxide (NO) synthase pathway in endothelial cells is involved in decreased NO production and increased endothelin-1 production from the endothelium, resulting in endothelial dysfunction. In a clinical setting, selecting an appropriate therapeutic intervention that improves or augments endothelial function is important for preventing diabetic vascular complications. Hypoglycemic drugs that reduce glucose fluctuations by decreasing the postprandial rise in blood glucose levels, such as glinides, α-glucosidase inhibitors and dipeptidyl peptidase 4 inhibitors, and hypoglycemic drugs that ameliorate insulin sensitivity, such as thiazolidinediones and metformin, are expected to improve or augment endothelial function in patients with diabetes. Glucagon-like peptide 1 receptor agonists, metformin, and sodium-glucose cotransporter 2 inhibitors may improve endothelial function through multiple mechanisms, some of which are independent of glucose control or insulin signaling. Oral administration of antioxidants is not recommended in patients with diabetes due to the lack of evidence for the efficacy against diabetic complications.
Collapse
Affiliation(s)
- Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5831
| |
Collapse
|
13
|
Houben AJ, Stehouwer CD. Microvascular dysfunction: Determinants and treatment, with a focus on hyperglycemia. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2020.100073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
14
|
Acute Effects of Metformin and Vildagliptin after a Lipid-Rich Meal on Postprandial Microvascular Reactivity in Patients with Type 2 Diabetes and Obesity: A Randomized Trial. J Clin Med 2020; 9:jcm9103228. [PMID: 33050169 PMCID: PMC7601890 DOI: 10.3390/jcm9103228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 01/26/2023] Open
Abstract
Background: Type 2 diabetes mellitus and obesity are both related to endothelial dysfunction. Postprandial lipemia is a cardiovascular risk. Notably, it is known that a high-fat diet may elicit microvascular dysfunction, even in healthy subjects. Since anti-diabetic drugs have different mechanisms of action and also distinct vascular benefits, we aimed to compare the results of two anti-diabetic drugs after the intake of a lipid-rich meal on microcirculation in patients with type 2 diabetes and obesity. In parallel, we also investigated the metabolic profile, oxidative stress, inflammation, plasma viscosity, and some gastrointestinal peptides. Subjects/Methods: We included 38 drug-naïve patients, all women aged between 19 and 50 years, with BMI ≥ 30 kg/m2. We performed endothelial measurements and collected samples before (fasting) and after the intake of a lipid-rich meal at 30, 60, 120, and 180 min. Patients were randomized to metformin or vildagliptin, given orally just before the meal. Endothelial function was assessed by videocapillaroscopy and laser-Doppler flowmetry to investigate microvascular reactivity. Besides, we also investigated plasma viscosity, inflammatory and oxidative stress biomarkers, gastrointestinal peptides, and metabolic profile in all time points. Results: No differences at baseline were noted between groups. Vildagliptin increased glucagon-like peptide-1 compared to metformin. Paired comparisons showed that, during the postprandial period, vildagliptin significantly changed levels of insulin and glucagon-like peptide-1, and also the dipeptidyl peptidase-4 activity, while metformin had effects on plasma glucose solely. Metformin use during the test meal promoted an increase in functional capillary density, while vildagliptin kept non-nutritive microvascular blood flow and vasomotion unchanged. Conclusions: After the intake of a lipid-rich meal, the use of vildagliptin preserved postprandial non-nutritive microflow and vasomotion, while metformin increased capillary recruitment, suggesting protective and different mechanisms of action on microcirculation.
Collapse
|
15
|
Dipeptidyl peptidase-4 inhibitors and risk of venous thromboembolism: data mining of FDA adverse event reporting system. Int J Clin Pharm 2020; 42:1364-1368. [DOI: 10.1007/s11096-020-01037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/11/2020] [Indexed: 10/23/2022]
|
16
|
Kim YK, Song J. Potential of Glucagon-Like Peptide 1 as a Regulator of Impaired Cholesterol Metabolism in the Brain. Adv Nutr 2020; 11:1686-1695. [PMID: 32627818 PMCID: PMC7666911 DOI: 10.1093/advances/nmaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Cerebral vascular diseases are the most common high-mortality diseases worldwide. Their onset and development are associated with glycemic imbalance, genetic background, alteration of atherosclerotic factors, severe inflammation, and abnormal cholesterol metabolism. Recently, the gut-brain axis has been highlighted as the key to the solution for cerebral vessel dysfunction in view of cholesterol metabolism and systemic lipid circulation. In particular, glucagon-like peptide 1 (GLP-1) is a cardinal hormone that regulates blood vessel function and cholesterol homeostasis and acts as a critical messenger between the brain and gut. GLP-1 plays a systemic regulatory role in cholesterol homeostasis and blood vessel function in various organs through blood vessels. Even though GLP-1 has potential in the treatment and prevention of cerebral vascular diseases, the importance of and relation between GLP-1 and cerebral vascular diseases are not fully understood. Herein, we review recent findings on the functions of GLP-1 in cerebral blood vessels in association with cholesterol metabolism.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | | |
Collapse
|
17
|
Ferrari F, Moretti A, Villa RF. The treament of hyperglycemia in acute ischemic stroke with incretin-based drugs. Pharmacol Res 2020; 160:105018. [PMID: 32574826 DOI: 10.1016/j.phrs.2020.105018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Considerable experimental and clinical evidence suggests that both diabetes mellitus (DM) and post-stroke hyperglycemia are associated with increased mortality rate and worsened clinical conditions in acute ischemic stroke (AIS) patients. Insulin treatment does not seem to provide convincing benefits for these patients, therefore prompting a change of strategy. The selective agonists of Glucagon-Like Peptide-1 Receptors (GLP-1Ras) and the Inhibitors of Dipeptidyl Peptidase-IV (DPP-IVIs, gliptins) are two newer classes of glucose-lowering drugs used for the treatment of DM. This review examines in detail the rationale for their development and the physicochemical, pharmacokinetic and pharmacodynamic properties and clinical activities. Emphasis will be placed on their neuroprotective effects at cellular and molecular levels in experimental models of acute cerebral ischemia. In perspective, an adequate basis does exist for a novel therapeutic approach to hyperglycemia in AIS patients through the additive treatment with GLP-1Ras plus DPP-IVIs.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Advanced Diagnostic and Therapeutic Technologies, Section of Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy; Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Antonio Moretti
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Roberto Federico Villa
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Vinci MC, Gambini E, Bassetti B, Genovese S, Pompilio G. When Good Guys Turn Bad: Bone Marrow's and Hematopoietic Stem Cells' Role in the Pathobiology of Diabetic Complications. Int J Mol Sci 2020; 21:ijms21113864. [PMID: 32485847 PMCID: PMC7312629 DOI: 10.3390/ijms21113864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes strongly contributes to the development of cardiovascular disease, the leading cause of mortality and morbidity in these patients. It is widely accepted that hyperglycemia impairs hematopoietic stem/progenitor cell (HSPC) mobilization from the bone marrow (BM) by inducing stem cell niche dysfunction. Moreover, a recent study demonstrated that type 2 diabetic patients are characterized by significant depletion of circulating provascular progenitor cells and increased frequency of inflammatory cells. This unbalance, potentially responsible for the reduction of intrinsic vascular homeostatic capacity and for the establishment of a low-grade inflammatory status, suggests that bone BM-derived HSPCs are not only victims but also active perpetrators in diabetic complications. In this review, we will discuss the most recent literature on the molecular mechanisms underpinning hyperglycemia-mediated BM dysfunction and differentiation abnormality of HSPCs. Moreover, a section will be dedicated to the new glucose-lowering therapies that by specifically targeting the culprits may prevent or treat diabetic complications.
Collapse
Affiliation(s)
- Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
- Correspondence: ; Tel.: +39-02-5800-2028
| | - Elisa Gambini
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| | - Beatrice Bassetti
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| | - Stefano Genovese
- Unit of Diabetes, Endocrine and Metabolic Diseases, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy;
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| |
Collapse
|
19
|
Mirabelli M, Chiefari E, Puccio L, Foti DP, Brunetti A. Potential Benefits and Harms of Novel Antidiabetic Drugs During COVID-19 Crisis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3664. [PMID: 32456064 PMCID: PMC7277613 DOI: 10.3390/ijerph17103664] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Patients with diabetes have been reported to have enhanced susceptibility to severe or fatal COVID-19 infections, including a high risk of being admitted to intensive care units with respiratory failure and septic complications. Given the global prevalence of diabetes, affecting over 450 million people worldwide and still on the rise, the emerging COVID-19 crisis poses a serious threat to an extremely large vulnerable population. However, the broad heterogeneity and complexity of this dysmetabolic condition, with reference to etiologic mechanisms, degree of glycemic derangement and comorbid associations, along with the extensive sexual dimorphism in immune responses, can hamper any patient generalization. Even more relevant, and irrespective of glucose-lowering activities, DPP4 inhibitors and GLP1 receptor agonists may have a favorable impact on the modulation of viral entry and overproduction of inflammatory cytokines during COVID-19 infection, although current evidence is limited and not univocal. Conversely, SGLT2 inhibitors may increase the likelihood of COVID-19-related ketoacidosis decompensation among patients with severe insulin deficiency. Mindful of their widespread popularity in the management of diabetes, addressing potential benefits and harms of novel antidiabetic drugs to clinical prognosis at the time of a COVID-19 pandemic deserves careful consideration.
Collapse
Affiliation(s)
- Maria Mirabelli
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (M.M.); (E.C.); (D.P.F.)
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (M.M.); (E.C.); (D.P.F.)
| | - Luigi Puccio
- Complex Operative Unit of Endocrinology and Diabetes, Hospital Pugliese-Ciaccio, 88100 Catanzaro, Italy;
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (M.M.); (E.C.); (D.P.F.)
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (M.M.); (E.C.); (D.P.F.)
| |
Collapse
|
20
|
Hamidi V, Riggs K, Zhu L, Bermudez Saint Andre K, Westby C, Coverdale S, Dursteler A, Wang H, Miller Iii C, Taegtmeyer H, Gutierrez AD. Acute Exenatide Therapy Attenuates Postprandial Vasodilation in Humans with Prediabetes: A Randomized Controlled Trial. Metab Syndr Relat Disord 2020; 18:225-233. [PMID: 32228379 PMCID: PMC7262649 DOI: 10.1089/met.2019.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: The state of prediabetes comprises atherosclerotic changes leading to decreased vascular function in humans. This study examined the effects on incretin mimetics on vascular physiology in the prediabetic postprandial state. Methods: Fifteen obese adults with prediabetes participated in a randomized, crossover, double-blinded trial comparing the postprandial effects of exenatide, saxagliptin, and placebo on peripheral vasodilation. All studies utilized a standardized high-fat meal. Resting and peak forearm blood flow (FBF) were measured via strain gauge venous occlusion plethysmography, and makers of vascular dysfunction were measured in plasma. Results: Exenatide attenuated resting FBF at 3 hr (P = 0.003) and 6 hr (P = 0.056) postmeal, compared to placebo. Nonsignificant reductions in resting FBF were observed between saxagliptin and placebo at the same time points. No group differences were observed for peak FBF, plasma nitrotyrosine, and plasma 8-iso-prostaglandin F2alpha. A transient increase in plasma triglyceride was abated in the exenatide group, when compared to saxagliptin and placebo groups. Only exenatide group showed no significant upsurge in plasma insulin. Plasma-free fatty acids significantly declined in all three groups, although less markedly for exenatide. Postmeal glucose increased at 2 hr with placebo and saxagliptin, but simultaneously decreased with exenatide. Conclusions: Acute treatment with exenatide blunted the postprandial vasodilatory effect of a high-fat meal in prediabetes. Exenatide's acute effects derived primarily from multiple endothelium-independent processes. Trial Registration Number: NCT02104739.
Collapse
Affiliation(s)
- Vala Hamidi
- Department of Medicine, Division of Endocrinology, University of California, San Diego, California, USA
| | - Kayla Riggs
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Liang Zhu
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, Texas, USA
| | | | | | - Sara Coverdale
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, Texas, USA
| | - Amy Dursteler
- Department of Internal Medicine, University of California Los Angeles-Olive View, Los Angeles, California, USA
| | - Hongyu Wang
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, Texas, USA
| | - Charles Miller Iii
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, Texas, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, Texas, USA
| | - Absalon D Gutierrez
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
21
|
Paschou SA, Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Antonopoulos AS, Batzias K, Tsigkou V, Mourouzis K, Vryonidou A, Tentolouris N, Vavouranakis M, Tousoulis D. The Effect of DPP-4i on Endothelial Function and Arterial Stiffness in Patients with Type 2 Diabetes: A Systematic Review of Randomized Placebo-controlled Trials. Curr Pharm Des 2020; 26:5980-5987. [PMID: 32303166 DOI: 10.2174/1381612826666200417153241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
Abstract
We systematically reviewed the literature regarding the impact of dipeptidyl peptidase-4 inhibitors (DPP-4i) on vascular function, including endothelial function and arterial stiffness, as predictors of atherosclerosis progression and cardiovascular disease in patients with type 2 diabetes mellitus (T2DM). We searched PubMed in order to identify clinical trials that investigated the effect of DPP-4i on vascular function in patients with T2DM when compared with placebo. Although 168 articles were initially found, only 6 studies (total 324 patients) investigated the effect of DPP-4i in comparison with placebo, specifically linagliptin and sitagliptin, and satisfied the inclusion criteria. There are scarce data to indicate that linagliptin may enhance endothelial function and exert a slight beneficial effect on arterial wall properties. Sitagliptin seems to have a neutral effect on these variables. Further trials are needed to elucidate the topic. The standards of reporting were in accordance with the PRISMA guidelines.
Collapse
Affiliation(s)
- Stavroula A Paschou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Bletsa
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota K Stampouloglou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios S Antonopoulos
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Batzias
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Tsigkou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Mourouzis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic and Internal Medicine, Diabetes Center, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavouranakis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Tentolouris A, Eleftheriadou I, Tzeravini E, Tsilingiris D, Paschou SA, Siasos G, Tentolouris N. Endothelium as a Therapeutic Target in Diabetes Mellitus: From Basic Mechanisms to Clinical Practice. Curr Med Chem 2020; 27:1089-1131. [PMID: 30663560 DOI: 10.2174/0929867326666190119154152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Endothelium plays an essential role in human homeostasis by regulating arterial blood pressure, distributing nutrients and hormones as well as providing a smooth surface that modulates coagulation, fibrinolysis and inflammation. Endothelial dysfunction is present in Diabetes Mellitus (DM) and contributes to the development and progression of macrovascular disease, while it is also associated with most of the microvascular complications such as diabetic retinopathy, nephropathy and neuropathy. Hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia are the main factors involved in the pathogenesis of endothelial dysfunction. Regarding antidiabetic medication, metformin, gliclazide, pioglitazone, exenatide and dapagliflozin exert a beneficial effect on Endothelial Function (EF); glimepiride and glibenclamide, dipeptidyl peptidase-4 inhibitors and liraglutide have a neutral effect, while studies examining the effect of insulin analogues, empagliflozin and canagliflozin on EF are limited. In terms of lipid-lowering medication, statins improve EF in subjects with DM, while data from short-term trials suggest that fenofibrate improves EF; ezetimibe also improves EF but further studies are required in people with DM. The effect of acetylsalicylic acid on EF is dose-dependent and lower doses improve EF while higher ones do not. Clopidogrel improves EF, but more studies in subjects with DM are required. Furthermore, angiotensin- converting-enzyme inhibitors /angiotensin II receptor blockers improve EF. Phosphodiesterase type 5 inhibitors improve EF locally in the corpus cavernosum. Finally, cilostazol exerts favorable effect on EF, nevertheless, more data in people with DM are required.
Collapse
Affiliation(s)
- Anastasios Tentolouris
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Evangelia Tzeravini
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Tsilingiris
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Stavroula A Paschou
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
23
|
Koska J, Osredkar T, D'Souza K, Sands M, Sinha S, Zhang W, Meyer C, Reaven PD. Effects of saxagliptin on adipose tissue inflammation and vascular function in overweight and obese people: a placebo-controlled study. Diabet Med 2019; 36:1399-1407. [PMID: 30580454 DOI: 10.1111/dme.13889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
AIMS To test the effect of the dipeptidyl peptidase-4 inhibitor saxagliptin on adipose tissue inflammation and microvascular function, and whole-body postprandial endothelial function. METHODS A randomized, double-blind, placebo-controlled, parallel study was conducted between June 2013 and November 2016 in 44 overweight or obese people without diabetes (saxagliptin, n=28; placebo, n=16). Subcutaneous abdominal adipose tissue biopsies, a 4-h fat-enriched meal test and peripheral arterial tonometry for measurement of endothelial function were performed at baseline and after 6 weeks of treatment with saxagliptin (5 mg/day) or matching placebo. RESULTS Forty participants were analysed (saxagliptin, n=26; placebo, n=14). Secretion of interleukin-8 from adipose tissue explants was reduced after saxagliptin (median fold-change from baseline: 0.8 saxagliptin vs 3.3 placebo; P=0.02). Adipose tissue expression of thioredoxin-inhibitory protein (TxNIP) was lower after saxagliptin (0.75 vs 1.0; P=0.02), while there were no significant differences in adipose tissue secretion of interleukin-1b, interleukin-6 or macrophage chemoattractant protein 1 (MCP-1), adipose tissue macrophage content, adipose tissue mRNA levels of mcp1, cd36, cd68, il6, il8, txnip and adpq, and activation of adipose tissue inflammatory pathways [extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF- κB)] or insulin-induced vasodilation of adipose tissue arterioles. Postprandial plasma glucose was slightly lower (by an estimated 0.3 mmol/l; P=0.01), while postprandial insulin, triglyceride levels and endothelial function were unchanged after saxagliptin. CONCLUSIONS The effect of saxagliptin on adipose tissue inflammation was relatively modest, with many inflammatory markers unchanged. We also found no evidence that saxagliptin therapy improved adipose tissue arteriole vasodilation or postprandial endothelial function.
Collapse
Affiliation(s)
- J Koska
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - T Osredkar
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - K D'Souza
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - M Sands
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - S Sinha
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - W Zhang
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - C Meyer
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - P D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
| |
Collapse
|
24
|
Barchetta I, Ciccarelli G, Barone E, Cimini FA, Ceccarelli V, Bertoccini L, Sentinelli F, Tramutola A, Del Ben M, Angelico F, Baroni MG, Lenzi A, Cavallo MG. Greater circulating DPP4 activity is associated with impaired flow-mediated dilatation in adults with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2019; 29:1087-1094. [PMID: 31431395 DOI: 10.1016/j.numecd.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Dipeptidyl peptidase 4 (DPP4) is a key enzyme involved in the regulation of the incretin system exerted by cleaving the glucagon-like peptide 1 (GLP-1); the blockage of DPP4, exerted by the antidiabetic agents DPP4-inhibitors (DPP4-I), results in greater GLP-1 concentration and improved glycaemic control. DPP4 acts also as a pro-inflammatory molecule and mediates vascular damage in experimental models. The relationship between DPP4 activity and endothelial function in diabetes has not been explored yet. Aim of this study was to investigate systemic plasma DPP4 activity in relation to endothelial function in patients with type 2 diabetes mellitus (T2DM). METHODS AND RESULTS Sixty-two T2DM individuals were recruited in our Diabetes outpatient clinics, Sapienza University, Rome, Italy. All participants underwent complete clinical work-up; endothelial function was evaluated by flow-mediated dilatation (FMD) test; plasma DPP4 activity was assessed by measuring the 7-amino-4-methylcoumarin (AMC) cleavage rate from the synthetic substrate H-glycyl-prolyl-AMC and compared with DPP4 activity measured in sixty-two age-, sex-, BMI-matched non-diabetic subjects. Patients with T2DM had significantly higher DPP4 activity than non-diabetic individuals (211,466 ± 87657 vs 158,087 ± 60267 nmol/min/ml, p < 0.001); in T2DM patients, greater DPP4 activity significantly correlated with lower FMD whereas was not associated with BMI and metabolic control. Greater systemic DPP4 activity was an independent predictor of reduced FMD after adjusting for age, gender and other confounders. CONCLUSIONS Circulating DPP4 activity is increased in individuals with T2DM and associated with signs of endothelial dysfunction such as impaired FMD. DPP4 may negatively affect endothelial function through mechanisms beyond glucose homeostasis and metabolic control.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Gea Ciccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Flavia A Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | | | - Maria Del Ben
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
| | - Francesco Angelico
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy
| | - Marco G Baroni
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Maria G Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
25
|
Morishita T, Uzui H, Ikeda H, Amaya N, Kaseno K, Ishida K, Fukuoka Y, Tada H. Effects of Sitagliptin on the Coronary Flow Reserve, Circulating Endothelial Progenitor Cells and Stromal Cell-derived Factor-1alpha. Intern Med 2019; 58:2773-2781. [PMID: 31243210 PMCID: PMC6815900 DOI: 10.2169/internalmedicine.2616-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective Circulating endothelial progenitor cells (EPCs) are regulated by stromal cell-derived factor-1alpha (SDF-1α) and are reduced in type 2 diabetes mellitus (DM). SDF-1α is a substrate of dipeptidyl-peptidase-4 (DPP-4), so we investigated whether or not DPP-4-inhibitors modulate EPC levels in type 2 DM patients with coronary artery disease (CAD). Methods Thirty patients with CAD and type 2 DM treated using an ordinary regimen were enrolled. EPC and SDF-1α levels were compared between those receiving additional 24-week treatment with a DPP-4-inhibitor (n=11) and no additional treatment (n=19). We determined the HbA1c, 1.5-Anhydro-D-glucitol (1,5-AG), coronary flow reserve (CFR), brain natriuretic peptide (BNP), E/e', and circulating EPC proportion and SDF-1α levels at baseline and the end of follow-up. The CFR was assessed using a dual-sensor-equipped guidewire. The primary endpoints were changes in the EPC count, SDF-1α levels, and CFR from baseline to the end of follow-up. The secondary endpoints were changes in the HbA1c and 1,5-AG, which are useful clinical markers of postprandial hyperglycemia, as well as the BNP and E/e'. Results After the 6-month follow-up, compared with ordinary regimen subjects, the patients receiving a DPP-4-inhibitor showed no significant increase in the EPC proportion (-0.01±0.50 vs. 0.02±0.77%, p=0.87), SDF-1α level (-600.4±653.6 vs. -283.2±543.1 pg/mL, p=0.18), or CFR (0.0±0.2 vs. 0.1±0.6, p=0.20), whereas both the 1.5-AG level (2.4±4.6 vs. -0.7±2.5 μg/dL, p=0.07) and HbA1c (-0.8±1.8 vs. 0.0±0.7%, p=0.02) were improved. There were no significant differences between the two groups in changes in the BNP and E/e'. Conclusion DPP-4 inhibition with sitagliptin did not increase or decrease the EPC proportion, SDF-1α level, or CFR, although the glycemic control was improved.
Collapse
Affiliation(s)
- Tetsuji Morishita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroyuki Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Naoki Amaya
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Kenichi Kaseno
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Kentaro Ishida
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Yoshitomo Fukuoka
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
26
|
DPP-4 inhibition enhanced renal tubular and myocardial GLP-1 receptor expression decreased in CKD with myocardial infarction. BMC Nephrol 2019; 20:75. [PMID: 30823876 PMCID: PMC6397488 DOI: 10.1186/s12882-019-1243-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Chronic kidney disease (CKD) is strongly associated with cardiovascular disease and is a significant risk factor for increased morbidity and mortality. In contrast, GLP-1 receptor (GLP-1R) activation has been shown to confer both renal and cardiovascular protection, though its relationship with CKD and CKD with myocardial ischemia/reperfusion (MI/R) remains poorly understood. Here, we investigated changes in renal and myocardial GLP-1R expression in the CKD rat model with MI/R. Methods Male Sprague Dawley rats with 5/6 nephrectomy were used as a rat model of CKD and CKD with MI/R. For myocardial ischemia, the left coronary artery was ligated and released for 30 min 1 week after 5/6 nephrectomy. Dipeptidyl-peptidase 4 (DPP-4) inhibitors were administered orally with linagliptin once daily for 8 weeks. Renal cortical and myocardial GLP-1R expression were measured via immunohistochemistry and western blot analysis. Results DPP-4 activity was increased in CKD. Western blot density of GLP-1R in renal cortex extracts revealed increased abundance 2 weeks after 5/6 nephrectomy, followed by a decrease at 8 weeks. In contrast, CKD and CKD with MI/R rats showed decreases in renal and cardiac expression of GLP-1R; these effects were attenuated in rats treated with linagliptin. Conclusions In CKD with MI/R, linagliptin attenuated renal injury and increased renal and myocardial GLP-1R expression. These data suggest that activation of renal and myocardial GLP-1R expression may provide both cardio- and renoprotective effects. Electronic supplementary material The online version of this article (10.1186/s12882-019-1243-z) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Bistola V, Lambadiari V, Dimitriadis G, Ioannidis I, Makrilakis K, Tentolouris N, Tsapas A, Parissis J. Possible mechanisms of direct cardiovascular impact of GLP-1 agonists and DPP4 inhibitors. Heart Fail Rev 2019; 23:377-388. [PMID: 29383638 DOI: 10.1007/s10741-018-9674-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a leading cause of cardiovascular morbidity and mortality worldwide. Traditional antidiabetic therapies targeting hyperglycemia reduce diabetic microvascular complications but have minor effects on macrovascular complications, including cardiovascular disease. Instead, cardiovascular complications are improved by antidiabetic medications (metformin) and other therapies (statins, antihypertensive medications) ameliorating insulin resistance and other associated metabolic abnormalities. Novel classes of antidiabetic drugs have proven efficacious in improving glycemia, while at the same time exert beneficial effects on pathophysiologic mechanisms of diabetes-related cardiovascular disease. In the present review, we will present current evidence of the cardiovascular effects of two new classes of antidiabetic medications, glucagon-like peptide 1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP4) inhibitors, focusing from mechanistic preclinical and clinical investigation to late-phase clinical testing.
Collapse
Affiliation(s)
- Vasiliki Bistola
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece.
| | - Vaia Lambadiari
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis Ioannidis
- Diabetes and Obesity Center, Konstantopouleio Hospital, Athens, Greece
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece
| |
Collapse
|
28
|
Neidert LE, Al-Tarhuni M, Goldman D, Kluess HA, Jackson DN. Endogenous dipeptidyl peptidase IV modulates skeletal muscle arteriolar diameter in rats. Physiol Rep 2019; 6. [PMID: 29380955 PMCID: PMC5789721 DOI: 10.14814/phy2.13564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study is to investigate that dipeptidyl peptidase IV (DPP‐IV) released from skeletal and vascular smooth muscle can increase arteriolar diameter in a skeletal muscle vascular bed by reducing neuropeptide Y (NPY)‐mediated vasoconstriction. We hypothesized that the effect of myokine DPP‐IV would be greatest in the smallest and least in the largest arterioles. Eight male Sprague Dawley rats (age 7–9 weeks; mass, mean ± SD: 258 ± 41 g) were anesthetized and the gluteus maximus dissected in situ for intravital microscopy analysis of arteriolar diameter of the vascular network. Computational modeling was performed on the diameter measurements to evaluate the overall impact of diameter changes on network resistance and flow distribution. In the first set of experiments, whey protein isolate powder was added to physiological saline solution, put in a heated reservoir, and applied to the preparation to induce release of DPP‐IV from the muscle. This resulted in an order‐dependent increase in arteriolar diameter, with the largest change in the 6A arterioles (63% more reactive than 1A arterioles; P < 0.05). This effect was abolished by adding the DPP‐IV inhibitor, Diprotin A. To test if the DPP‐IV released was affecting NPY‐mediated vasoconstriction, we applied NPY and whey protein, which resulted in attenuated vasoconstriction. These findings suggest that DPP‐IV is released from muscle and has a unique effect on blood flow, which appears to act on NPY to attenuate vasoconstriction. The findings suggest that DPP‐IV released from the skeletal or smooth muscle can alter muscle blood flow.
Collapse
Affiliation(s)
| | - Mohammed Al-Tarhuni
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Heidi A Kluess
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
29
|
Teodoro JS, Nunes S, Rolo AP, Reis F, Palmeira CM. Therapeutic Options Targeting Oxidative Stress, Mitochondrial Dysfunction and Inflammation to Hinder the Progression of Vascular Complications of Diabetes. Front Physiol 2019; 9:1857. [PMID: 30705633 PMCID: PMC6344610 DOI: 10.3389/fphys.2018.01857] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus is a leading cause of morbidity and mortality worldwide, given its serious associated complications. Despite constant efforts and intensive research, an effective, ubiquitous treatment still eludes the scientific community. As such, the identification of novel avenues of research is key to the potential discovery of this evasive "silver bullet." We focus on this review on the matter of diabetic injury to endothelial tissue and some of the pivotal underlying mechanisms, including hyperglycemia and hyperlipidemia evoked oxidative stress and inflammation. In this sense, we revisited the most promising therapeutic interventions (both non-pharmacological and antidiabetic drugs) targeting oxidative stress and inflammation to hinder progression of vascular complications of diabetes. This review article gives particular attention to the relevance of mitochondrial function, an often ignored and understudied organelle in the vascular endothelium. We highlight the importance of mitochondrial function and number homeostasis in diabetic conditions and discuss the work conducted to address the aforementioned issue by the use of various therapeutic strategies. We explore here the functional, biochemical and bioenergetic alterations provoked by hyperglycemia in the endothelium, from elevated oxidative stress to inflammation and cell death, as well as loss of tissue function. Furthermore, we synthetize the literature regarding the current and promising approaches into dealing with these alterations. We discuss how known agents and therapeutic behaviors (as, for example, metformin, dietary restriction or antioxidants) can restore normality to mitochondrial and endothelial function, preserving the tissue's function and averting the aforementioned complications.
Collapse
Affiliation(s)
- João S Teodoro
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Woodman OL, Ortega JM, Hart JL, Klein T, Potocnik S. Influence of type-4 dipeptidyl peptidase inhibition on endothelium-dependent relaxation of aortae from a db/db mouse model of type 2 diabetes: a comparison with the effect of glimepiride. Diabetes Metab Syndr Obes 2019; 12:1449-1458. [PMID: 31496778 PMCID: PMC6701666 DOI: 10.2147/dmso.s215086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the effects of the type-4 dipeptidyl peptidase (DPP-4) inhibitors linagliptin and vildagliptin as well as the sulfonylurea glimepiride on endothelium-dependent relaxation of aortae from female db/db mice with established hyperglycemia to determine whether these treatments were able to attenuate diabetes-induced endothelial dysfunction. MATERIALS AND METHODS The mice were treated with glimepiride (2 mg/kg po per day, weeks 1-6, n=12), glimepiride plus vildagliptin (glimepiride 2 mg/kg po per day, weeks 1-6; vildagliptin 3 mg/kg po per day, weeks 4-6, n=11), glimepiride plus linagliptin (glimepiride 2 mg/kg po per day, weeks 1-6; linagliptin 3 mg/kg po per day, weeks 4-6, n=11) or linagliptin (3 mg/kg po per day, weeks 1-6, n=12). Endothelium-dependent relaxation using acetylcholine was assessed in the absence and presence of pharmacological tools (TRAM-34 1 μM; apamin 1 μM; N-nitro-L-arginine [L-NNA] 100 μM; 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one [ODQ] 10 μM) to distinguish relaxation mediated by nitric oxide (NO). RESULTS Linagliptin was associated with a significant improvement in endothelium-dependent relaxation (ACh Rmax; db/db 41±1%, linagliptin 73±6%, p<0.05). The enhanced response was maintained in the presence of TRAM-34+ apamin (ACh Rmax; db/db 23±6%, linagliptin 60±6%, p<0.01), ie, when the endothelium-dependent relaxation was mediated by NO. There was no evidence for a contribution from KCa channel opening to responses under any conditions. Glimepiride had no effect on endothelium-dependent relaxation when given alone (ACh Rmax 38±3%). The addition of linagliptin or vildagliptin to glimepiride did not significantly improve endothelium-dependent relaxation. All treatments caused some decrease in aortic superoxide production but the effect of linagliptin was significantly greater than glimepiride (linagliptin 534±60 relative luminescence unit [RLU], glimepiride 1471±265 RLU, p<0.05). CONCLUSION Linagliptin is superior to glimepiride in regard to the preservation of endothelium-dependent relaxation in the presence of hyperglycemia and the improvement in endothelial function in response to linagliptin treatment is associated with greater antioxidant activity compared to glimepiride.
Collapse
Affiliation(s)
- Owen L Woodman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Correspondence: Owen L WoodmanBaker Heart & Diabetes Institute, PO Box 6492, Melbourne3004, AustraliaTel +61 38 532 1917Email
| | - Jacinta M Ortega
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joanne L Hart
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Simon Potocnik
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
31
|
Batzias K, Antonopoulos AS, Oikonomou E, Siasos G, Bletsa E, Stampouloglou PK, Mistakidi CV, Noutsou M, Katsiki N, Karopoulos P, Charalambous G, Thanopoulou A, Tentolouris N, Tousoulis D. Effects of Newer Antidiabetic Drugs on Endothelial Function and Arterial Stiffness: A Systematic Review and Meta-Analysis. J Diabetes Res 2018; 2018:1232583. [PMID: 30622967 PMCID: PMC6304901 DOI: 10.1155/2018/1232583] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Newer antidiabetic drugs, i.e., dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium-glucose cotransporter-2 (SGLT-2) inhibitors, and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may exert distinct cardiovascular effects. We sought to explore their impact on vascular function. METHODS Published literature was systematically searched up to January 2018 for clinical studies assessing the effects of DPP-4 inhibitors, GLP-1 RAs, and SGLT-2 inhibitors on endothelial function and arterial stiffness, assessed by flow-mediated dilation (FMD) of the brachial artery and pulse wave velocity (PWV), respectively. For each eligible study, we used the mean difference (MD) with 95% confidence intervals (CIs) for FMD and PWV. The pooled MD for FMD and PWV were calculated by using a random-effect model. The presence of heterogeneity among studies was evaluated by the I 2 statistic. RESULTS A total of 26 eligible studies (n = 668 patients) were included in the present meta-analysis. Among newer antidiabetic drugs, only SGLT-2 inhibitors significantly improved FMD (pooled MD 1.14%, 95% CI: 0.18 to 1.73, p = 0.016), but not DPP-4 inhibitors (pooled MD = 0.86%, 95% CI: -0.15 to 1.86, p = 0.095) or GLP-1 RA (pooled MD = 2.37%, 95% CI: -0.51 to 5.25, p = 0.107). Both GLP-1 RA (pooled MD = -1.97, 95% CI: -2.65 to -1.30, p < 0.001) and, to a lesser extent, DPP-4 inhibitors (pooled MD = -0.18, 95% CI: -0.30 to -0.07, p = 0.002) significantly decreased PWV. CONCLUSIONS Newer antidiabetic drugs differentially affect endothelial function and arterial stiffness, as assessed by FMD and PWV, respectively. These findings could explain the distinct effects of these drugs on cardiovascular risk of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Konstantinos Batzias
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Evanthia Bletsa
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiota K. Stampouloglou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Chara-Vasiliki Mistakidi
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Marina Noutsou
- Diabetes Center, 2nd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Athens, Greece
| | - Niki Katsiki
- Second Department of Internal Medicine, Hippokration University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Periklis Karopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Charalambous
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Anastasia Thanopoulou
- Diabetes Center, 2nd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Athens, Greece
| | - Nicholas Tentolouris
- First Department of Propaedeutic and Internal Medicine, Division of Diabetes, Laiko University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
32
|
Cosenso-Martin LN, Giollo-Júnior LT, Fernandes LAB, Cesarino CB, Nakazone MA, Machado MDN, Yugar-Toledo JC, Vilela-Martin JF. Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: a randomized controlled trial. Acta Diabetol 2018; 55:1237-1245. [PMID: 30094725 DOI: 10.1007/s00592-018-1204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
AIMS Several trials have reported that dipeptidyl peptidase-4 (DPP-4) inhibitors, used to treat type 2 diabetes (T2DM), improve endothelial function. The current study investigated the effects of vildagliptin, a DPP-4 inhibitor, compared to glibenclamide on endothelial function, arterial stiffness, and blood pressure in patients with T2DM and hypertension. METHODS Patients aged over 35 years with T2DM and hypertension, but without cardiovascular disease, were randomly allocated to treatment with vildagliptin (n = 25) or glibenclamide (n = 25). Both groups took metformin. Endothelial function was evaluated by peripheral artery tonometry (Endo-PAT 2000) to calculate the reactive hyperemia index (RHI) and arterial stiffness. Primary outcome was change in the RHI after 12 weeks of treatment. Twenty-four-hour non-invasive ambulatory blood pressure monitoring was performed using a Mobil-O-Graph® 24-h PWA monitor. Arterial stiffness was assessed using the augmentation index corrected for 75 bpm (AIx75), pulse wave velocity (PWV) and central systolic blood pressure (cSBP). RESULTS There were no changes in the RHI in the vildagliptin group (before 2.35 ± 0.59; after 2.24 ± 0.60; p value = NS) or in the glibenclamide group (before 2.36 ± 0.52; after 2.34 ± 0.50; p value = NS), with no differences between groups (p value = NS). There was also no difference between vildagliptin and glibenclamide treatment in respect to AIx75 (p value = NS), cSBP (p value = NS) or PWV (p value = NS). CONCLUSIONS Vildagliptin and glibenclamide similarly do not change the endothelial function and arterial stiffness after 12 weeks of treatment in diabetic and hypertensive patients without cardiovascular disease. Thus, vildagliptin has a neutral effect on vascular function. TRIAL REGISTRATION ClinicalTrials.gov: NCT02145611, registered on 11 Jun 2013.
Collapse
Affiliation(s)
- Luciana Neves Cosenso-Martin
- Internal Medicine Division, Hospital de Base, State Medical School at São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Luiz Tadeu Giollo-Júnior
- Hypertension Clinic, State Medical School at São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | | | - Cláudia Bernardi Cesarino
- Hypertension Clinic, State Nursing School at São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Marcelo Arruda Nakazone
- Cardiology Department, Hospital de Base, State Medical School at São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Maurício de Nassau Machado
- Cardiology Department, Hospital de Base, State Medical School at São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Juan Carlos Yugar-Toledo
- Hypertension Clinic, State Medical School at São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - José Fernando Vilela-Martin
- Hypertension Clinic, Internal Medicine Department, Hospital de Base, State Medical School at São José do Rio Preto (FAMERP), Ave Brig. Faria Lima 5416, São José do Rio Preto, 15090-000, São Paulo, Brazil.
| |
Collapse
|
33
|
Zhu B, Li Y, Mei W, He M, Ding Y, Meng B, Zhao H, Xiang G. Alogliptin improves endothelial function by promoting autophagy in perivascular adipose tissue of obese mice through a GLP-1-dependent mechanism. Vascul Pharmacol 2018; 115:55-63. [PMID: 30447331 DOI: 10.1016/j.vph.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) regulates vascular function in a paracrine manner and the vasodilatory effect of PVAT on vessels is completely abolished in obesity. In addition, autophagy is required for maintaining biological function of PVAT and has been shown to be inhibited in obesity. The aim of this study was to explore whether alogliptin improves endothelial function by promoting autophagy in PVAT in obese mice. METHODS C57BL/6 mice were maintained on high fat diet with or without alogliptin intervention for 3 months. Vasorelaxation function of thoracic aorta with or without PVAT was determined. Autophagy related protein level of p62 and LC3B, along with phosphorylated mTOR (p-mTOR) were evaluated. In addition, the effects of alogliptin on autophagy were also investigated in cultured adipocytes. RESULTS The presence of PVAT significantly impaired endothelium-dependent vasodilation in obese mice and alogliptin intervention corrected this defect. Autophagy in PVAT was decreased in obese mice and alogliptin intervention activated autophagy. Activating autophagy in PVAT improved endothelium-dependent vasodilation while blocking it in PVAT impaired vasodilation function. Further, addition of glucagon-like peptide-1 (GLP-1) but not alogliptin alone activated autophagy. Moreover, GLP-1 and alogliptin co-treatment did not show additive effect on activating autophagy. CONCLUSIONS These results revealed that promoting autophagy in PVAT improved endothelial function in response to alogliptin intervention. Additionally, the beneficial effect of alogliptin intervention on PVAT was GLP-1 dependent.
Collapse
Affiliation(s)
- Biao Zhu
- Graduate School, Southern Medical University, Shatai Nan Road 1023, Guangzhou 510515, Guangdong Province, China; Department of Endocrinology, Wuhan General Hospital of Chinese People's Liberation Army, Wuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Wen Mei
- Department of Endocrinology, Wuhan General Hospital of Chinese People's Liberation Army, Wuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Mingjuan He
- Department of Endocrinology, Wuhan General Hospital of Chinese People's Liberation Army, Wuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Yan Ding
- Department of Endocrinology, Wuhan General Hospital of Chinese People's Liberation Army, Wuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Biying Meng
- Department of Endocrinology, Wuhan General Hospital of Chinese People's Liberation Army, Wuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Hui Zhao
- Department of Endocrinology, Wuhan General Hospital of Chinese People's Liberation Army, Wuluo Road 627, Wuhan 430070, Hubei Province, China
| | - Guangda Xiang
- Graduate School, Southern Medical University, Shatai Nan Road 1023, Guangzhou 510515, Guangdong Province, China; Department of Endocrinology, Wuhan General Hospital of Chinese People's Liberation Army, Wuluo Road 627, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
34
|
Automated Intracellular Calcium Profiles Extraction from Endothelial Cells Using Digital Fluorescence Images. Int J Mol Sci 2018; 19:ijms19113440. [PMID: 30400174 PMCID: PMC6274978 DOI: 10.3390/ijms19113440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Endothelial cells perform a wide variety of fundamental functions for the cardiovascular system, their proliferation and migration being strongly regulated by their intracellular calcium concentration. Hence it is extremely important to carefully measure endothelial calcium signals under different stimuli. A proposal to automate the intracellular calcium profiles extraction from fluorescence image sequences is presented. Digital image processing techniques were combined with a multi-target tracking approach supported by Kalman estimation. The system was tested with image sequences from two different stimuli. The first one was a chemical stimulus, that is, ATP, which caused small movements in the cells trajectories, thereby suggesting that the bath application of the agonist does not generate significant artifacts. The second one was a mechanical stimulus delivered by a glass microelectrode, which caused major changes in cell trajectories. The importance of the tracking block is evidenced since more accurate profiles were extracted, mainly for cells closest to the stimulated area. Two important contributions of this work are the automatic relocation of the region of interest assigned to the cells and the possibility of data extraction from big image sets in efficient and expedite way. The system may adapt to different kind of cell images and may allow the extraction of other useful features.
Collapse
|
35
|
Systematic Review of Efficacy and Safety of Newer Antidiabetic Drugs Approved from 2013 to 2017 in Controlling HbA1c in Diabetes Patients. PHARMACY 2018; 6:pharmacy6030057. [PMID: 29954090 PMCID: PMC6164486 DOI: 10.3390/pharmacy6030057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is the most common form of diabetes mellitus and accounts for about 95% of all diabetes cases. Many newer oral as well as parenteral antidiabetic drugs have been introduced in to the market in recent years to control hyperglycemic conditions in diabetes patients and many of these drugs produce potential side effects in diabetes patients. Hence, this systematic review was aimed to analyze and compare the efficacy and safety of oral antidiabetic agents in controlling HbA1c in T2DM patients, that were approved by the United States-Food and Drug Administration (US-FDA) from 2013 to 2017. All randomized controlled, double-blind trials published in English during the search period involving the newer antidiabetic agents were selected. In the outcome assessment comparison, semaglutide demonstrated the highest efficacy in lowering HbA1c, with a 1.6% reduction (p < 0.0001) when given at a dose of 1.0 mg. The safety profile of all the agents as compared to placebo or control were similar, with no or slight increase in the occurrence of adverse events (AEs) but no fatal reaction was reported. The most common AEs of all the antidiabetic agents were gastrointestinal in nature, with several cases of hypoglycemic events. However, among all these agents, semaglutide seems to be the most efficacious drug to improve glycemic control in terms of HbA1c. Alogliptin has the least overall frequency of AEs compared to other treatment groups.
Collapse
|
36
|
Xie W, Song X, Liu Z. Impact of dipeptidyl-peptidase 4 inhibitors on cardiovascular diseases. Vascul Pharmacol 2018; 109:17-26. [PMID: 29879463 DOI: 10.1016/j.vph.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/15/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitor is a novel group of medicine employed in type 2 diabetes mellitus (T2DM),which improves meal stimulated insulin secretion by protecting glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) from enzymatic degradation. Cardiovascular diseases are serious complications and leading causes of mortality among individuals with diabetes mellitus. Glycemic control per se seems to fail in preventing the progression of diabetic cardiovascular complications. DPP-4 has the capability to inactivate not only incretins, but also a series of cytokines, chemokines, and neuropeptides involved in inflammation, immunity, and vascular function. Pre-clinical studies suggested that DPP-4 inhibitors may have potential cardiovascular protective effects in addition to their antidiabetic actions. In recent years, a number of clinical trials have been conducted to evaluate the effect of different DPP-4 inhibitors on the cardiovascular system. We herein review the available clinical studies in cardiovascular effects played by each DPP-4 inhibitor and discuss the prospective application of DPP-4 inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Weijia Xie
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Street, Hangzhou 310009, People's Republic of China
| | - Xiaoxiao Song
- Department of Endocrinology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Street, Hangzhou 310009, People's Republic of China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Street, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
37
|
Tripolt NJ, Aberer F, Riedl R, Url J, Dimsity G, Meinitzer A, Stojakovic T, Aziz F, Hödl R, Brachtl G, Strunk D, Brodmann M, Hafner F, Sourij H. Effects of linagliptin on endothelial function and postprandial lipids in coronary artery disease patients with early diabetes: a randomized, placebo-controlled, double-blind trial. Cardiovasc Diabetol 2018; 17:71. [PMID: 29773079 PMCID: PMC5958406 DOI: 10.1186/s12933-018-0716-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early glucose lowering intervention in subjects with type 2 diabetes mellitus was demonstrated to be beneficial in terms of micro- and macrovascular risk reduction. However, most of currently ongoing cardiovascular outcome trials are performed in subjects with manifest atherosclerosis and long-standing diabetes. Therefore, the aim of this study is to investigate the effects of the dipeptidylpeptidase-4 inhibitor linagliptin in subjects with coronary artery disease (CAD) but early type 2 diabetes mellitus (T2DM) on a set of cardiovascular surrogate measurements. Methods In this randomized, placebo-controlled, double-blind, single-center study, we included subjects with early diabetes (postchallenge diabetes (2 h glucose > 200 mg/dl) or T2DM treated with diet only or on a stable dose of metformin monotherapy and an HbA1c < 75 mmol/mol) and established CAD. Participants were randomized to receive either linagliptin (5 mg) once daily orally or placebo for 12 weeks. The primary outcome was the change in flow mediated dilatation (FMD). The secondary objective was to investigate the effect of linagliptin treatment on arginine bioavailability ratios [Global arginine bioavailability ratio (GABR) and arginine to ornithine ratio (AOR)]. Arginine, ornithine and citrulline were measured in serum samples with a conventional usual amino acid analysis technique, involving separation of amino acids by ion exchange chromatography followed by postcolumn continuous reaction with ninhydrin. GABR was calculated by l-arginine divided by the sum of (l-ornithine plus l-citrulline). The AOR was calculated by dividing l-arginine by l-ornithine levels. Group comparisons were calculated by using a two-sample t-test with Satterthwaite adjustment for unequal variances. Results We investigated 43 patients (21% female) with a mean age of 63.3 ± 8.2 years. FMD at baseline was 3.5 ± 3.1% in the linagliptin group vs. 4.0 ± 2.9% in the placebo group. The change in mean FMD in the linagliptin group was not significantly different compared to the change in the placebo group (0.43 ± 4.84% vs. − 0.45 ± 3.01%; p = 0.486). No significant improvements were seen in the arginine bioavailability ratios (GABR; p = 0.608 and AOR; p = 0.549). Conclusion Linagliptin treatment in subjects with CAD and early T2DM did not improve endothelial function or the arginine bioavailability ratios. Trial registration ClinicalTrials.gov, NCT02350478 (https://clinicaltrials.gov/ct2/show/NCT02350478) Electronic supplementary material The online version of this article (10.1186/s12933-018-0716-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norbert J Tripolt
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Felix Aberer
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Jasmin Url
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gudrun Dimsity
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Faisal Aziz
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Ronald Hödl
- Center for Cardiovascular Rehabilitation St. Radegund, St. Radegund, Austria
| | - Gabriele Brachtl
- Experimental & Clinical Cell Therapy Institute, Spinal Cord & Tissue Regeneration Center Salzburg, Paracelsus Private Medical University, Salzburg, Austria
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Spinal Cord & Tissue Regeneration Center Salzburg, Paracelsus Private Medical University, Salzburg, Austria
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Franz Hafner
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria. .,Center for Biomarker Research in Medicine, CBmed, Graz, Austria.
| |
Collapse
|
38
|
Koyama T, Tanaka A, Yoshida H, Oyama JI, Toyoda S, Sakuma M, Inoue T, Otsuka Y, Node K. Comparison of the effects of linagliptin and voglibose on endothelial function in patients with type 2 diabetes and coronary artery disease: a prospective, randomized, pilot study (EFFORT). Heart Vessels 2018; 33:958-964. [PMID: 29427024 DOI: 10.1007/s00380-018-1136-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 12/28/2022]
Abstract
Endothelial dysfunction contributes to poor cardiovascular prognosis in patients with type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD). The effect of dipeptidyl peptidase-4 inhibitors on endothelial function remains controversial. We sought to compare the effects of linagliptin and voglibose on endothelial function, as assessed by reactive hyperemia-peripheral arterial tonometry (RH-PAT). Sixteen patients with newly diagnosed T2DM and CAD were randomized 1:1 to linagliptin (5 mg, once-daily) or voglibose (0.9 mg, thrice-daily). The RH-PAT and laboratory parameters, including 75 g oral glucose tolerance test, were measured at baseline and 3 months. Linagliptin increased serum levels of active glucagon-like peptide-1 and high-molecular-weight adiponectin. Age-, sex-, and baseline-adjusted changes in logarithmic RH-PAT index (LnRHI) after 3 months were significant between groups (linagliptin, 0.135 ± 0.097; voglibose, - 0.124 ± 0.091; P = 0.047). In the linagliptin group, change in LnRHI was positively correlated with change in high-density lipoprotein cholesterol and negatively correlated with changes in both urine albumin-to-creatinine ratio and high-sensitivity C-reactive protein. Furthermore, linagliptin treatment for 3 months reduced serum levels of both glucose and insulin at 2 h, relative to voglibose, in the age-, sex-, and baseline-adjusted model. Linagliptin improved endothelial function relative to voglibose, accompanied by amelioration of glycemic, renal, and cardiometabolic parameters, in patients with newly diagnosed T2DM and CAD.Trial registration Unique Trial Number, UMIN 000029169 ( https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000012442 ).
Collapse
Affiliation(s)
- Taku Koyama
- Department of Cardiology, Fukuoka Wajiro Hospital, Fukuoka, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan.
| | | | - Jun-Ichi Oyama
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Yoritaka Otsuka
- Department of Cardiology, Fukuoka Wajiro Hospital, Fukuoka, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan.
| |
Collapse
|
39
|
Kitao N, Miyoshi H, Furumoto T, Ono K, Nomoto H, Miya A, Yamamoto C, Inoue A, Tsuchida K, Manda N, Kurihara Y, Aoki S, Nakamura A, Atsumi T. The effects of vildagliptin compared with metformin on vascular endothelial function and metabolic parameters: a randomized, controlled trial (Sapporo Athero-Incretin Study 3). Cardiovasc Diabetol 2017; 16:125. [PMID: 29017497 PMCID: PMC5634845 DOI: 10.1186/s12933-017-0607-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/26/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitors may have protective effects in the early stage of atherosclerosis in patients with type 2 diabetes, although similar effects in advanced atherosclerosis were not shown in recent randomized placebo-controlled studies. Therefore, we investigated the efficacy of DPP-4 inhibitor on endothelial function and glycemic metabolism compared with high-dose metformin. METHODS In this multicenter, open-labeled, prospective, randomized, parallel-group comparison study, patients with type 2 diabetes treated with low-dose metformin (500-750 mg/day) were enrolled and randomly assigned to a vildagliptin, a DPP-4 inhibitor, add-on group (Vilda) or a double dose of metformin group (high Met) for 12 weeks. Flow-mediated dilation (FMD) and serum metabolic markers were assessed before and after treatment. In addition, glycemic control and metabolic parameters were also assessed. RESULTS Ninety-seven subjects (aged 58.7 ± 11.0 years; body mass index, 25.9 ± 4.4 kg/m2; HbA1c, 7.3 ± 0.5%; FMD, 5.8 ± 2.6%) were enrolled. Eight subjects dropped out by the end of the study. There were no significant differences between the two groups in baseline characteristics. After 12 weeks, HbA1c was significantly improved in the Vilda group compared with the high Met group (- 0.80 ± 0.38% vs. - 0.40 ± 0.47%, respectively; p < 0.01). However, there were no significant differences in FMD (- 0.51 [- 1.08-0.06]% vs. - 0.58 [- 1.20-0.04]%). Although the apolipoprotein B/apolipoprotein A1 ratio was significantly reduced in the Vilda group compared with baseline (0.66-0.62; p < 0.01), the change did not differ significantly between the two groups (- 0.04 vs. 0.00; p = 0.27). Adiponectin levels were significantly increased in the Vilda group compared with the high Met group (0.75 μg/mL vs. 0.01 μg/mL; p < 0.01). CONCLUSIONS Regardless of glycemic improvement, combination therapy of vildagliptin and metformin did not affect endothelial function but may exert favorable effects on adipokine levels and lipid profile in patients with type 2 diabetes without advanced atherosclerosis.
Collapse
Affiliation(s)
- Naoyuki Kitao
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Hideaki Miyoshi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Tomoo Furumoto
- Department of Cardiovascular Medicine, NTT East Japan Sapporo Hospital, Sapporo, Japan
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kota Ono
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Nomoto
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Aika Miya
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Chiho Yamamoto
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Atsushi Inoue
- Japan Community Healthcare and Organization Hokkaido Hospital, Sapporo, Japan
| | | | | | | | | | - Akinobu Nakamura
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Tatsuya Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| |
Collapse
|
40
|
Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation 2017; 136:849-870. [PMID: 28847797 DOI: 10.1161/circulationaha.117.028136] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potentiation of glucagon-like peptide-1 (GLP-1) action through selective GLP-1 receptor (GLP-1R) agonism or by prevention of enzymatic degradation by inhibition of dipeptidyl peptidase-4 (DPP-4) promotes glycemic reduction for the treatment of type 2 diabetes mellitus by glucose-dependent control of insulin and glucagon secretion. GLP-1R agonists also decelerate gastric emptying, reduce body weight by reduction of food intake and lower circulating lipoproteins, inflammation, and systolic blood pressure. Preclinical studies demonstrate that both GLP-1R agonists and DPP-4 inhibitors exhibit cardioprotective actions in animal models of myocardial ischemia and ventricular dysfunction through incompletely characterized mechanisms. The results of cardiovascular outcome trials in human subjects with type 2 diabetes mellitus and increased cardiovascular risk have demonstrated a cardiovascular benefit (significant reduction in time to first major adverse cardiovascular event) with the GLP-1R agonists liraglutide (LEADER trial [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Ourcome Results], -13%) and semaglutide (SUSTAIN-6 trial [Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide], -24%). In contrast, cardiovascular outcome trials examining the safety of the shorter-acting GLP-1R agonist lixisenatide (ELIXA trial [Evaluation of Lixisenatide in Acute Coronary Syndrom]) and the DPP-4 inhibitors saxagliptin (SAVOR-TIMI 53 trial [Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53]), alogliptin (EXAMINE trial [Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome]), and sitagliptin (TECOS [Trial Evaluating Cardiovascular Outcomes With Sitagliptin]) found that these agents neither increased nor decreased cardiovascular events. Here we review the cardiovascular actions of GLP-1R agonists and DPP-4 inhibitors, with a focus on the translation of mechanisms derived from preclinical studies to complementary findings in clinical studies. We highlight areas of uncertainty requiring more careful scrutiny in ongoing basic science and clinical studies. As newer more potent GLP-1R agonists and coagonists are being developed for the treatment of type 2 diabetes mellitus, obesity, and nonalcoholic steatohepatitis, the delineation of the potential mechanisms that underlie the cardiovascular benefit and safety of these agents have immediate relevance for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Nauck
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.).
| | - Juris J Meier
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Matthew A Cavender
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Mirna Abd El Aziz
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Daniel J Drucker
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| |
Collapse
|
41
|
Takebayashi K, Suzuki T, Naruse R, Hara K, Suetsugu M, Tsuchiya T, Inukai T. Long-Term Effect of Alogliptin on Glycemic Control in Japanese Patients With Type 2 Diabetes: A 3.5-Year Observational Study. J Clin Med Res 2017; 9:802-808. [PMID: 28811859 PMCID: PMC5544487 DOI: 10.14740/jocmr3118w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/10/2017] [Indexed: 01/19/2023] Open
Abstract
Background The goal of the current study was to investigate the long-term effects (after 3 years or more) of alogliptin on glycemic control in Japanese patients with type 2 diabetes. Methods We retrospectively studied the effect of alogliptin on glycemic control in the patients with type 2 diabetes who had participated in our previous 3-month study and who continued to take alogliptin for at least 36 months. Results The mean duration of alogliptin treatment was 42.8 ± 2.2 months. In all 39 patients, a significant reduction in hemoglobin A1c (HbA1c) levels was noted between the baseline and final visit: 7.8±0.6% to 7.2±1.0% (P = 0.0001). A significant reduction in HbA1c levels was found in a subgroup of patients who did not change their anti-diabetic drugs or did decrease the dose of their sulfonylureas (SUs) or did change to a lower strength repaglinide (n = 32): 7.7±0.6% to 7.2±1.0% (P = 0.0005). A significant decrease in low-density lipoprotein cholesterol (LDL-C) levels was observed in all of the patients that had LDL-C levels determined (P = 0.0406) (n = 37), and in a subgroup of patients who had not taken either statins, fibrates, or pioglitazone, or who had taken one or more of these drugs but the doses were not changed during the observation period (P = 0.0250) (n = 27). Conclusion The current study found that alogliptin performed well for glycemic control when evaluated by HbA1c levels in a long-term observation period exceeding 3 years in Japanese patients with type 2 diabetes. Alogliptin may also decrease circulating LDL-C levels with long-term use.
Collapse
Affiliation(s)
- Kohzo Takebayashi
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| | - Tatsuhiko Suzuki
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| | - Rika Naruse
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| | - Kenji Hara
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| | - Mariko Suetsugu
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| | - Takafumi Tsuchiya
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| | - Toshihiko Inukai
- Department of Internal Medicine, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Saitama, Japan
| |
Collapse
|
42
|
Duan L, Rao X, Xia C, Rajagopalan S, Zhong J. The regulatory role of DPP4 in atherosclerotic disease. Cardiovasc Diabetol 2017; 16:76. [PMID: 28619058 PMCID: PMC5472996 DOI: 10.1186/s12933-017-0558-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
The increasing prevalence of atherosclerosis has become a worldwide health concern. Although significant progress has been made in the understanding of atherosclerosis pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest dipeptidyl peptidase-4 (DPP4), a regulator of inflammation and metabolism, may be involved in the development of atherosclerotic diseases. There has been increasing clinical and pre-clinical evidence showing DPP4-incretin axis is involved in cardiovascular disease. Although the cardiovascular outcome of DPP4 inhibition or incretin analogues has been or being evaluated by several large scale clinical trials, the exact role of DPP4 in atherosclerotic diseases is not completely understood. In the current review, we will summarize the recent advances in direct and indirect regulatory role of DPP4 in atherosclerosis.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Chang Xia
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
- Department of Microbiology and Immunology, Wuhan Polytechnic University, Wuhan, 430023 Hubei China
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Jixin Zhong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| |
Collapse
|
43
|
Xia C, Goud A, D'Souza J, Dahagam CH, Rao X, Rajagopalan S, Zhong J. DPP4 inhibitors and cardiovascular outcomes: safety on heart failure. Heart Fail Rev 2017; 22:299-304. [PMID: 28417296 PMCID: PMC5491332 DOI: 10.1007/s10741-017-9617-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is an important risk factor for cardiovascular disease. However, clinical data suggests intensive glycemic control significantly increase rather than decrease cardiovascular mortality, which is largely due to the fact that a majority of oral anti-diabetic drugs have adverse cardiovascular effect. There are several large-scale clinical trials evaluating the cardiovascular safety of DPP4 inhibitors, a novel class of oral anti-diabetic medications, which have been recently completed. They were proven to be safe with regard to cardiovascular outcomes. However, concerns on the safety of heart failure have been raised as the SAVOR-TIMI 53 trial reported a 27% increase in the risk for heart failure hospitalization in diabetic patients treated with DPP4 inhibitor saxagliptin. In this review, we will discuss recent advances in the heart failure effects of DPP4 inhibition and GLP-1 agonism.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science & Nursing, Wuhan Polytechnic University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building RM 4525, Cleveland, OH, 44106, USA
| | - Aditya Goud
- Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building RM 4525, Cleveland, OH, 44106, USA
| | - Jason D'Souza
- Divisionof Internal Medicine, Florida Hospital, Orlando, FL, 32804, USA
| | - CHanukya Dahagam
- Division of Internal Medicine, MedStar Health, Baltimore, MD, 21237, USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building RM 4525, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building RM 4525, Cleveland, OH, 44106, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building RM 4525, Cleveland, OH, 44106, USA.
| |
Collapse
|
44
|
Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res 2017; 120:226-241. [PMID: 28408314 DOI: 10.1016/j.phrs.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
The association of obesity and diabetes, termed "diabesity", defines a combination of primarily metabolic disorders with insulin resistance as the underlying common pathophysiology. Cardiovascular disorders associated with diabesity represent the leading cause of morbidity and mortality in the Western world. This makes diabesity, with its rising impacts on both health and economics, one of the most challenging biomedical and social threats of present century. The emerging comprehension of the genes whose alteration confers inter-individual differences on risk factors for diabetes or obesity, together with the potential role of genetically determined variants on mechanisms controlling responsiveness, effectiveness and safety of anti-diabetic therapy underlines the need of additional knowledge on molecular mechanisms involved in the pathophysiology of diabesity. Endothelial cell dysfunction, resulting from the unbalanced production of endothelial-derived vascular mediators, is known to be present at the earliest stages of insulin resistance and obesity, and may precede the clinical diagnosis of diabetes by several years. Once considered as a mere consequence of metabolic abnormalities, it is now clear that endothelial dysfunctional activity may play a pivotal role in the progression of diabesity. In the vicious circle where vascular defects and metabolic disturbances worsen and reinforce each other, a low-grade, chronic, and 'cold' inflammation (metaflammation) has been suggested to serve as the pathophysiological link that binds endothelial and metabolic dysfunctions. In this paradigm, it is important to consider how traditional antidiabetic treatments (specifically addressing metabolic dysregulation) may directly impact on inflammatory processes or cardiovascular function. Indeed, not all drugs currently available to treat diabetes possess the same anti-inflammatory potential, or target endothelial cell function equally. Perspective strategies pointing at reducing metaflammation or directly addressing endothelial dysfunction may disclose beneficial consequences on metabolic regulation. This review focuses on existing and potential new approaches ameliorating endothelial dysfunction and vascular inflammation in the context of diabesity.
Collapse
|
45
|
Cebrián-Cuenca AM, Núñez E, Núñez-Villota J, Consuegra-Sánchez L. What would be the fate of the association between saxagliptin and heart failure admission in the SAVOR-TIMI 53 trial if appropriate statistical methods should have been applied? Diabetes Res Clin Pract 2017; 126:320-321. [PMID: 28341488 DOI: 10.1016/j.diabres.2017.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
|
46
|
Zhang Z, Chen X, Lu P, Zhang J, Xu Y, He W, Li M, Zhang S, Jia J, Shao S, Xie J, Yang Y, Yu X. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovasc Diabetol 2017; 16:31. [PMID: 28249585 PMCID: PMC5333444 DOI: 10.1186/s12933-017-0512-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background Incretin-based agents, including dipeptidyl peptidase-4 inhibitors (DPP-4Is) and glucagon-like peptide-1 agonists (GLP-1As), work via GLP-1 receptor for hyperglycemic control directly or indirectly, but have different effect on cardiovascular (CV) outcomes. The present study is to evaluate and compare effects of incretin-based agents on CV and pancreatic outcomes in patients with type 2 diabetes mellitus (T2DM) and high CV risk. Methods Six prospective randomized controlled trials (EXMAINE, SAVOR-TIMI53, TECOS, ELIXA, LEADER and SUSTAIN-6), which included three trials for DPP-4Is and three trials for GLP-1As, with 55,248 participants were selected to assess the effect of different categories of incretin-based agents on death, CV outcomes (CV mortality, major adverse CV events, nonfatal myocardial infarction, nonfatal stroke, heart failure hospitalization), pancreatic events (acute pancreatitis and pancreatic cancer) as well as on hypoglycemia. Results When we evaluated the combined effect of six trials, the results suggested that incretin-based treatment had no significant effect on overall risks of CV and pancreatic outcomes compared with placebo. However, GLP-1As reduced all-cause death (RR = 0.90, 95% CI 0.82–0.98) and CV mortality (RR = 0.84, 95% CI 0.73–0.97), whereas DPP-4Is had no significant effect on CV outcomes but elevated the risk for acute pancreatitis (OR = 1.76, 95% CI 1.14–2.72) and hypoglycemia (both any and severe hypoglycemia), while GLP-1As lowered the risk of severe hypoglycemia. Conclusions GLP-1As decreased risks of all-cause and CV mortality and severe hypoglycemia, whereas DPP-4Is had no effect on CV outcomes but increased risks in acute pancreatitis and hypoglycemia. Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0512-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeqing Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Puhan Lu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Jianhua Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yongping Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Wentao He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Mengni Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Shujun Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Jing Jia
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Junhui Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
47
|
Widlansky ME, Puppala VK, Suboc TM, Malik M, Branum A, Signorelli K, Wang J, Ying R, Tanner MJ, Tyagi S. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc Med 2017; 22:189-196. [PMID: 28145158 DOI: 10.1177/1358863x16681486] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell culture and animal work indicate that dipeptidyl peptidase-4 (DPP-4) inhibition may exert cardiovascular benefits through favorable effects on the vascular endothelium. Prior human studies evaluating DPP-4 inhibition have shown conflicting results that may in part be related to heterogeneity of background anti-diabetes therapies. No study has evaluated the acute response of the vasculature to DPP-4 inhibition in humans. We recruited 38 patients with type 2 diabetes on stable background metformin therapy for a randomized, double-blind, placebo-controlled crossover trial of DPP-4 inhibition with sitagliptin (100 mg/day). Each treatment period was 8 weeks long separated by 4 weeks of washout. Endothelial function and plasma markers of endothelial activation (intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)) were measured prior to and 2 hours following acute dosing of sitagliptin or placebo, as well as following 8 weeks of intervention with each pill. Thirty subjects completed the study and were included in analyses. Neither acute nor chronic sitagliptin therapy resulted in significant changes in vascular endothelial function. While post-acute sitagliptin ICAM-1 levels were lower than that post-chronic sitagliptin, the ICAM-1 concentration was not significantly different than pre-acute sitagliptin levels or levels measured in relationship to placebo. There were no significant changes in plasma VCAM-1 levels at any time point. Acute and chronic sitagliptin therapies have neutral effects on the vascular endothelium in the setting of metformin background therapy. In conclusion, our findings suggest DPP-4 inhibition has a neutral effect on cardiovascular risk in patients without a history of heart failure or renal insufficiency. TRIAL REGISTRATION NCT01859793.
Collapse
Affiliation(s)
- Michael E Widlansky
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Venkata K Puppala
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tisha M Suboc
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mobin Malik
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amberly Branum
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kara Signorelli
- 2 Medical College of Wisconsin School of Medicine, Milwaukee, WI, USA
| | - Jingli Wang
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rong Ying
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Tanner
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhi Tyagi
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
48
|
Jax T, Stirban A, Terjung A, Esmaeili H, Berk A, Thiemann S, Chilton R, von Eynatten M, Marx N. A randomised, active- and placebo-controlled, three-period crossover trial to investigate short-term effects of the dipeptidyl peptidase-4 inhibitor linagliptin on macro- and microvascular endothelial function in type 2 diabetes. Cardiovasc Diabetol 2017; 16:13. [PMID: 28109295 PMCID: PMC5251248 DOI: 10.1186/s12933-016-0493-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/28/2016] [Indexed: 01/15/2023] Open
Abstract
Background Studies of dipeptidyl peptidase (DPP)-4 inhibitors report heterogeneous effects on endothelial function in patients with type 2 diabetes (T2D). This study assessed the effects of the DPP-4 inhibitor linagliptin versus the sulphonylurea glimepiride and placebo on measures of macro- and microvascular endothelial function in patients with T2D who represented a primary cardiovascular disease prevention population. Methods This crossover study randomised T2D patients (n = 42) with glycated haemoglobin (HbA1c) ≤7.5%, no diagnosed macro- or microvascular disease and on stable metformin background to linagliptin 5 mg qd, glimepiride 1–4 mg qd or placebo for 28 days. Fasting and postprandial macrovascular endothelial function, measured using brachial flow-mediated vasodilation, and microvascular function, measured using laser-Doppler on the dorsal thenar site of the right hand, were analysed after 28 days. Results Baseline mean (standard deviation) age, body mass index and HbA1c were 60.3 (6.0) years, 30.3 (3.0) kg/m2 and 7.41 (0.61)%, respectively. After 28 days, changes in fasting flow-mediated vasodilation were similar between the three study arms (treatment ratio, gMean [90% confidence interval]: linagliptin vs glimepiride, 0.884 [0.633–1.235]; linagliptin vs placebo, 0.884 [0.632–1.235]; glimepiride vs placebo, 1.000 [0.715–1.397]; P = not significant for all comparisons). Similarly, no differences were seen in postprandial flow-mediated vasodilation. However, under fasting conditions, linagliptin significantly improved microvascular function as shown by a 34% increase in hyperaemia area (P = 0.045 vs glimepiride), a 34% increase in resting blow flow (P = 0.011 vs glimepiride, P = 0.003 vs placebo), and a 25% increase in peak blood flow (P = 0.009 vs glimepiride, P = 0.003 vs placebo). There were no significant differences between treatments in postprandial changes. Linagliptin had no effect on heart rate or blood pressure. Rates of overall adverse events with linagliptin, glimepiride and placebo were 27.5, 61.0 and 35.0%, respectively. Fewer hypoglycaemic events were seen with linagliptin (5.0%) and placebo (2.5%) than with glimepiride (39.0%). Conclusions Linagliptin had no effect on macrovascular function in T2D, but significantly improved microvascular function in the fasting state. Trial registration ClinicalTrials.gov identifier—NCT01703286; registered October 1, 2012 Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0493-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Jax
- Profil Institut für Stoffwechselforschung GmbH, Hellersbergstr. 9, 41460, Neuss, Germany. .,Herzzentrum Wuppertal, Universität Witten/Herdecke, Witten, Germany.
| | - Alin Stirban
- Profil Institut für Stoffwechselforschung GmbH, Hellersbergstr. 9, 41460, Neuss, Germany
| | - Arne Terjung
- Profil Institut für Stoffwechselforschung GmbH, Hellersbergstr. 9, 41460, Neuss, Germany
| | | | - Andreas Berk
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sandra Thiemann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Robert Chilton
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Nikolaus Marx
- RWTH Aachen University, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
49
|
Ida S, Murata K, Betou K, Kobayashi C, Ishihara Y, Imataka K, Uchida A, Monguchi K, Kaneko R, Fujiwara R, Takahashi H. Effect of trelagliptin on vascular endothelial functions and serum adiponectin level in patients with type 2 diabetes: a preliminary single-arm prospective pilot study. Cardiovasc Diabetol 2016; 15:153. [PMID: 27809903 PMCID: PMC5096292 DOI: 10.1186/s12933-016-0468-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Background Trelagliptin, an oral DPP-4 inhibitor, which is administered once per week and characterized by a long half-life in blood. The effects of trelagliptin on vascular endothelial functions have not been clarified to date. The objective of the present study was to examine the effects of trelagliptin on vascular endothelial functions in patients with type 2 diabetes mellitus (DM) using flow-mediated dilatation (FMD), adiponectin, and asymmetric dimethylarginine (ADMA) as evaluation indicators. Methods This study was a preliminary single-arm prospective pilot study. The subjects of this study were type 2 DM patients aged 20–74 years, who visited our outpatient department. The patients were treated with trelagliptin, and their FMD, adiponectin, and ADMA levels were measured at baseline and at 12 weeks after initial treatment to determine the changes during the study period. Results A total of 27 patients, excluding three dropouts, were included in the population for analysis. Trelagliptin treatment showed no significant changes in FMD (2.42 ± 2.7% at baseline vs. 2.66 ± 3.8% post-treatment, P = 0.785) and ADMA (0.41 ± 0.0 µg/mL at baseline vs. 0.40 ± 0.0 µg/mL post-treatment, P = 0.402). Trelagliptin treatment resulted in a significant increase of serum adiponectin level (7.72 ± 6.9 µg/mL at baseline vs. 8.82 ± 8.3 µg/mL post-treatment, P < 0.002). Conclusions In this pilot study, trelagliptin treatment showed no significant changes in FMD. On the other hand, it was believed that trelagliptin treatment may increase serum adiponectin level. Trial Registrationhttp://www.umin.ac.jp (Trial ID UMIN000018311)
Collapse
Affiliation(s)
- Satoshi Ida
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan.
| | - Kazuya Murata
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Katunori Betou
- Department of Clinical Laboratory, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Chiaki Kobayashi
- Department of Clinical Laboratory, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Yuki Ishihara
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Kanako Imataka
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Akihiro Uchida
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Kou Monguchi
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Ryutaro Kaneko
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Ryoko Fujiwara
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| | - Hiroka Takahashi
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, 1-471-2 Funae, 1-Chome, Ise-shi, Mie, 516-8512, Japan
| |
Collapse
|
50
|
Baltzis D, Dushay JR, Loader J, Wu J, Greenman RL, Roustit M, Veves A. Effect of Linagliptin on Vascular Function: A Randomized, Placebo-controlled Study. J Clin Endocrinol Metab 2016; 101:4205-4213. [PMID: 27583476 PMCID: PMC5095255 DOI: 10.1210/jc.2016-2655] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022]
Abstract
CONTEXT The dipeptidyl peptidase-4 inhibitor, linagliptin, possesses pleiotropic vasodilatory, antioxidant, and anti-inflammatory properties in animals, independent of its glucose-lowering properties. Although large, randomized clinical trials are being conducted to better evaluate the efficacy and safety of linagliptin on cardiovascular outcomes, little is known about its effects on vascular function in humans. OBJECTIVE This study sought to evaluate the effect of linagliptin on surrogates of vascular and mitochondrial function. DESIGN AND SETTING This was a randomized, double-blind, placebo-controlled trial at a tertiary care center with a large type 2 diabetes referral base. PATIENTS AND INTERVENTION Forty participants with type 2 diabetes were included in a 12-wk treatment of either linagliptin 5mg/d or placebo. MAIN OUTCOME MEASURES Micro- and macrovascular functions were assessed using laser Doppler coupled with iontophoresis and with brachial flow-mediated dilation, respectively. Mitochondrial function was assessed by phosphorus-31 metabolites changes in the calf muscle measured by magnetic resonance spectroscopy. Circulating endothelial progenitor cells, as well as inflammatory cytokines, growth factors, and biomarkers of endothelial function were also quantified. RESULTS Linagliptin was associated with an increase in axon reflex-dependent vasodilation, a marker of neurovascular function (P = .05). A trend indicating increased endothelium-dependent microvascular reactivity was observed (P = .07). These were associated with decreases in concentrations of IFNγ (P < .05), IL-6 (P = .03), IL-12 (P < .03), and MIP-1 (P < .04) following linagliptin treatment when compared with placebo. CONCLUSIONS This study demonstrates that linagliptin tends to improve endothelial and neurovascular microvascular function and is associated with decreased markers of inflammation in patients with type 2 diabetes. There was no significant effect of linagliptin on mitochondrial function, macrovascular function, or endothelial progenitor cells.
Collapse
Affiliation(s)
- Dimitrios Baltzis
- Microcirculatory Laboratory and Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Jody R Dushay
- Microcirculatory Laboratory and Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Jordan Loader
- Microcirculatory Laboratory and Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Jim Wu
- Microcirculatory Laboratory and Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert L Greenman
- Microcirculatory Laboratory and Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Matthieu Roustit
- Microcirculatory Laboratory and Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Aristidis Veves
- Microcirculatory Laboratory and Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|