1
|
Mendelson JB, Sternbach JD, Blake JC, Kim M, Moon RA, Raveendran RM, Hartweck LM, Tollison W, Lahiri M, Carney JP, Markowski T, Higgins L, Lewandowski CT, Kazmirczak F, Choudhary G, Prins KW. Multi-omic Evaluations Nominate an ER-Mitochondrial Axis and Inflammatory Macrophage as Drivers of Right Atrial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644722. [PMID: 40196578 PMCID: PMC11974768 DOI: 10.1101/2025.03.22.644722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Right atrial (RA) dysfunction is an emerging risk factor for poor outcomes in pulmonary arterial hypertension, however the mechanisms underlying compromised RA function are understudied. Objectives Multi-omic analyses defined the cellular and molecular mediators associated with RA dysfunction in pulmonary artery banded (PAB) swine. Methods 4-week-old castrated male Yorkshire pigs were subjected to PAB and aged six weeks to induce right heart failure. Cardiac MRI evaluated RA size and function. snRNAseq defined the cell-specific alterations in RA tissue. Mitochondrial proteomics and metabolomics analyses examined the metabolic alterations in RA samples. Inducible pluripotent stem cell-derived atrial cardiomyocytes (iPSC-ACM) were treated with tunicamycin to induce endoplasmic reticulum (ER) stress and mitochondrial structure and function were probed. Results PAB induced RA dilation/dysfunction and atrial cardiomyocyte hypertrophy. snRNAseq demonstrated PAB altered the cellular composition of the RA defined by increased inflammatory macrophages and an alteration of cardiomyocyte subpopulations. RA cardiomyocytes exhibited ER stress and mitochondrial metabolic enzyme dysregulation. PAB RAs, but not PAB right ventricles, had downregulation of branched chain amino acid degrading enzymes. Metabolomics profiling revealed BCAA and fatty acid metabolism were impaired in the dysfunctional RA. Tunicamycin-induced ER stress disrupted mitochondrial structure/function in iPSC-ACMs. Conclusions Multi-omic evaluations demonstrate RA dysfunction is characterized by cardiomyocyte metabolic derangements due to ER dysregulation and an accumulation of pro-inflammatory macrophages.
Collapse
|
2
|
Huang Y, Zhao J, Zhou Z, Guo X, Xu Y, Huang T, Meng S, Cao Z, Xu D, Zhao Q, Yin Z, Jiang H, Yu L, Wang H. Persistent hypertension induces atrial remodeling and atrial fibrillation through DNA damage and ATM/CHK2/p53 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167534. [PMID: 39366645 DOI: 10.1016/j.bbadis.2024.167534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, with hypertension emerging as an independent risk factor. Previous literature has established associations between DNA damage response (DDR) and autophagy in relation to the pathogenesis of AF. The aim of this study was to evaluate the effect of atrial DNA damage response in persistent hypertension-induced atrial electrical and structural remodeling, and to further explore the potential therapeutic targets. Patient samples, spontaneous hypertensive rats (SHR) and angiotensin II (Ang II)-challenged HL-1 cells were employed to elucidate the detailed mechanisms. Bioinformatics analysis and investigation on human atrial samples revealed a critical role of DDR in the pathogenesis of AF. The markers of atrial DNA damage, DDR, autophagy, inflammation and fibrosis were detected by western blot, immunofluorescence, monodansyl cadaverine (MDC) assay and transmission electron microscopy. Compared with the control group, SHR exhibited significant atrial electrical and structural remodeling, abnormal increase of autophagy, inflammation, and fibrosis, which was accompanied by excessive activation of DDR mediated by the ATM/CHK2/p53 pathway. These detrimental changes were validated by in vitro experiments. Ang II-challenged HL-1 cells also exhibited significantly elevated γH2AX expression, and markers related to autophagy, inflammation as well as structural remodeling. Additionally, inhibition of ATM with KU55933 (a specific ATM inhibitor) significantly reversed these effects. Collectively, these data demonstrate that DNA damage and the subsequently overactivated ATM/CHK2/p53 pathway play critical roles in hypertension-induced atrial remodeling and the susceptibility to AF. Targeting ATM/CHK2/p53 signaling may serve as a potential therapeutic strategy against AF.
Collapse
Affiliation(s)
- Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaodong Guo
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yinli Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Dengyue Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Qiusheng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zongtao Yin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hui Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
3
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
Sang W, Yan X, Wang L, Sun H, Jian Y, Wang F, Tang B, Li Y. CALCOCO2 prevents AngII-induced atrial remodeling by regulating the interaction between mitophagy and mitochondrial stress. Int Immunopharmacol 2024; 140:112841. [PMID: 39094358 DOI: 10.1016/j.intimp.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The biological functions of mitochondrial complexes are closely related to the development of atrial fibrillation (AF). Calcium binding and coiled-coil domain 2 (CALCOCO2) is a novel and specific receptor for mitophagy; however, its function in AF remains unknown. Therefore, this study aimed to investigate the role and molecular mechanisms of CALCOCO2 in AF, especially its regulatory mechanism in mitophagy and mitochondrial stress. METHODS Mice and HL-1 cells were treated with AngII to establish in vitro and in vivo AF models. Additionally, we examined the effect of CALCOCO2 or DAP3 Binding Cell Death Enhancer 1 (DELE1) overexpression on mitophagy and mitochondrial stress in AF models. To investigate the role of mitophagy in the regulatory effects of CALCOCO2 in AF, HL-1 cells were treated with chloroquine, a mitophagy inhibitor. Moreover, mitochondrial parameters were examined using specific fluorescent probes, transmission electron microscopy, western blotting, immunohistochemistry, and confocal microscopy. RESULTS AngII severely impaired the normal morphology and function of mitochondria; inhibited mitophagy; promoted atrial mitochondrial stress, fibrosis, and oxidative stress; and accelerated the progression of atrial remodeling in atrial myocytes. However, CALCOCO2 overexpression reversed/ameliorated these AF-induced changes. Additionally, CALCOCO2 overexpression restored mitochondrial homeostasis in atrial muscle by activating mitophagy and ameliorating mitochondrial stress. Mechanistically, DELE1 overexpression increased mitochondrial reactive oxygen species level and the expression of mitochondrial stress proteins (HRI, eIF2α, and ATF4) even in CALCOCO2-expressing in vitro AF models.. CONCLUSIONS CALCOCO2 may serve as a potential target for AF therapy to prevent or reverse the progression of atrial remodeling by regulating mitophagy and DELE1-mediated mitochondrial stress.
Collapse
Affiliation(s)
- Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoji Yan
- Department of Emergency, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huaxin Sun
- Department of Cardiology, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Feifei Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Wang XH, Ning ZH, Xie Z, Ou Y, Yang JY, Liu YX, Huang H, Tang HF, Jiang ZS, Hu HJ. SIRT3/AMPK Signaling Pathway Regulates Lipid Metabolism and Improves Vulnerability to Atrial Fibrillation in Dahl Salt-Sensitive Rats. Am J Hypertens 2024; 37:901-908. [PMID: 39023012 DOI: 10.1093/ajh/hpae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3)/AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF. METHODS The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). Then DSH group was administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of Systolic blood pressure (SBP), the expression levels of lipid metabolism-related biomarkers, pathological examination of atrial fibrosis, and lipid accumulation, as well as AF inducibility and AF duration. RESULTS DSH decrease SIRT3, phosphorylation-AMPK, and very long-chain acyl-CoA dehydrogenase, (VLCAD) expression, increased FASN and FABP4 expression and concentrations of free fatty acid and triglyceride, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4. CONCLUSIONS We have confirmed that a high-salt diet can result in hypertension, and associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.
Collapse
Affiliation(s)
- Xiu-Heng Wang
- Department of Medical-Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhi-Hong Ning
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhong Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yun Ou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Jia-Yang Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yun-Xi Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Hong Huang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Hui-Fang Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhi-Sheng Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Heng-Jing Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
6
|
Wang M, Hou C, Jia F, Zhong C, Xue C, Li J. Aging-associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024; 23:e14309. [PMID: 39135295 PMCID: PMC11464128 DOI: 10.1111/acel.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/11/2024] Open
Abstract
Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.
Collapse
Affiliation(s)
- Meng‐Fei Wang
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Can Hou
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Fang Jia
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cheng‐Hao Zhong
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cong Xue
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Jian‐Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Wang XC, Zhou Y, Chen HX, Hou HT, He GW, Yang Q. ER stress modulates Kv1.5 channels via PERK branch in HL-1 atrial myocytes: Relevance to atrial arrhythmogenesis and the effect of tetramethylpyrazine. Heliyon 2024; 10:e37767. [PMID: 39318794 PMCID: PMC11420496 DOI: 10.1016/j.heliyon.2024.e37767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is implicated in cardiac arrhythmia whereas the associated mechanisms remain inadequately understood. Kv1.5 channels are essential for atrial repolarization. Whether ER stress affects Kv1.5 channels is unknown. This study aimed to elucidate the response of Kv1.5 channels to ER stress by clarifying the unfolded protein response (UPR) branch responsible for the channel modulation. In addition, the effect of tetramethylpyrazine (TMP) on Kv1.5 channels was studied. Patch clamp and western-blot results revealed that exposure of HL-1 atrial myocytes to ER stress inducer tunicamycin upregulates Kv1.5 expression, increases Kv1.5 channel current (I Kur ) (14.91 ± 1.11 vs. 6.11 ± 1.31 pA/pF, P < 0.001), and shortened action potential duration (APD) (APD90: 82.79 ± 5.25 vs.121.11 ± 6.72 ms, P < 0.01), which could be reverted by ER stress inhibitors. Blockade of the PERK branch while not IRE1 and ATF6 branches of UPR downregulated Kv1.5 expression, accompanied by a decreased I Kur (9.03 ± 0.99 pA/pF) and a prolonged APD90 (113.69 ± 4.41 ms) (P < 0.01). PERK-mediated increases of Kv1.5 expression and I Kur were also observed in HL-1 cells incubated with thapsigargin. TMP suppressed the enhancement of I Kur (10.52 ± 0.97 vs. 17.52 ± 2.25 pA/pF, P < 0.05), prevented the shortening of APD (APD90: 110.16 ± 5.36 vs. 84.84 ± 4.58 ms, P < 0.05), and inhibited the upregulation of Kv1.5 triggered by ER stress. Our study suggests that ER stress induces upregulation and activation of Kv1.5 channels in atrial myocytes through the PERK branch of UPR. TMP prevents Kv1.5 upregulation/activation and the resultant APD shortening by inhibiting ER stress. These results may shed light on the mechanisms of atrial arrhythmogenesis and the antiarrhythmic effect of the traditional Chinese herb TMP.
Collapse
Affiliation(s)
- Xiang-Chong Wang
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
- Department of Pharmacology, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- School of Medicine, Nankai University, Tianjin, 300457, China
| | - Yang Zhou
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Huan-Xin Chen
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Hai-Tao Hou
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| |
Collapse
|
8
|
Burg S, Levi O, Elyagon S, Shapiro S, Murninkas M, Etzion S, Gradwohl G, Makarovsky D, Lichtenstein A, Gordon Y, Attali B, Etzion Y. The SK4 channel allosteric blocker, BA6b9, reduces atrial fibrillation substrate in rats with reduced ejection fraction. PNAS NEXUS 2024; 3:pgae192. [PMID: 38783894 PMCID: PMC11114471 DOI: 10.1093/pnasnexus/pgae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is strongly associated with several comorbidities including heart failure (HF). AF in general, and specifically in the context of HF, is progressive in nature and associated with poor clinical outcomes. Current therapies for AF are limited in number and efficacy and do not target the underlying causes of atrial remodeling such as inflammation or fibrosis. We previously identified the calcium-activated SK4 K+ channels, which are preferentially expressed in the atria relative to the ventricles in both rat and human hearts, as attractive druggable target for AF treatment. Here, we examined the ability of BA6b9, a novel allosteric inhibitor of SK4 channels that targets the specific calmodulin-PIP2 binding domain, to alter AF susceptibility and atrial remodeling in a systolic HF rat postmyocardial infarction (post-MI) model. Daily BA6b9 injection (20 mg/kg/day) for 3 weeks starting 1-week post-MI prolonged the atrial effective refractory period, reduced AF induction and duration, and dramatically prevented atrial structural remodeling. In the post-MI left atrium (LA), pronounced upregulation of the SK4 K+ channel was observed, with corresponding increases in collagen deposition, α-SMA levels, and NLRP3 inflammasome expression. Strikingly, BA6b9 treatment reversed these changes while also significantly reducing the lateralization of the atrial connexin Cx43 in the LA of post-MI rats. Our findings indicate that the blockade of SK4 K+ channels using BA6b9 not only favors rhythm control but also remarkably reduces atrial structural remodeling, a property that is highly desirable for novel AF therapies, particularly in patients with comorbid HF.
Collapse
Affiliation(s)
- Shira Burg
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Or Levi
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shir Shapiro
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sharon Etzion
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gideon Gradwohl
- Medical Engineering Unit, The Jerusalem College of Technology, Jerusalem 9116001, Israel
| | - Daria Makarovsky
- Inter-Departmental Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra Lichtenstein
- Inter-Departmental Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
9
|
Huang J, Wu B, Qin P, Cheng Y, Zhang Z, Chen Y. Research on atrial fibrillation mechanisms and prediction of therapeutic prospects: focus on the autonomic nervous system upstream pathways. Front Cardiovasc Med 2023; 10:1270452. [PMID: 38028487 PMCID: PMC10663310 DOI: 10.3389/fcvm.2023.1270452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common clinical arrhythmia disorder. It can easily lead to complications such as thromboembolism, palpitations, dizziness, angina, heart failure, and stroke. The disability and mortality rates associated with AF are extremely high, significantly affecting the quality of life and work of patients. With the deepening of research into the brain-heart connection, the link between AF and stroke has become increasingly evident. AF is now categorized as either Known Atrial Fibrillation (KAF) or Atrial Fibrillation Detected After Stroke (AFDAS), with stroke as the baseline. This article, through a literature review, briefly summarizes the current pathogenesis of KAF and AFDAS, as well as the status of their clinical pharmacological and non-pharmacological treatments. It has been found that the existing treatments for KAF and AFDAS have limited efficacy and are often associated with significant adverse reactions and a risk of recurrence. Moreover, most drugs and treatment methods tend to focus on a single mechanism pathway. For example, drugs targeting ion channels primarily modulate ion channels and have relatively limited impact on other pathways. This limitation underscores the need to break away from the "one disease, one target, one drug/measurement" dogma for the development of innovative treatments, promoting both drug and non-drug therapies and significantly improving the quality of clinical treatment. With the increasing refinement of the overall mechanisms of KAF and AFDAS, a deeper exploration of physiological pathology, and comprehensive research on the brain-heart relationship, it is imperative to shift from long-term symptom management to more precise and optimized treatment methods that are effective for almost all patients. We anticipate that drugs or non-drug therapies targeting the central nervous system and upstream pathways can guide the simultaneous treatment of multiple downstream pathways in AF, thereby becoming a new breakthrough in AF treatment research.
Collapse
Affiliation(s)
- Jingjie Huang
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Qin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziyi Zhang
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yameng Chen
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Ye Q, Chen W, Fu H, Ding Y, Jing Y, Shen J, Yuan Z, Zha K. Targeting Autophagy in Atrial Fibrillation. Rev Cardiovasc Med 2023; 24:288. [PMID: 39077569 PMCID: PMC11273128 DOI: 10.31083/j.rcm2410288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 07/31/2024] Open
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia in clinical practice, and its incidence is positively correlated with risk factors that include advanced age, hypertension, diabetes, and heart failure. Although our understanding of the mechanisms that govern the occurrence and persistence of AF has been increasing rapidly, the exact mechanism of AF is still not fully understood. Autophagy is an evolutionarily highly conserved and specific physiological process in cells that has been suggested as a potential therapeutic target for several cardiovascular diseases including the pathophysiology of AF. The present article provides an updated review of the fast-progressing field of research surrounding autophagy in AF, and how regulating autophagy might be a therapeutic target to reduce the incidence of AF.
Collapse
Affiliation(s)
- Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Wen Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Hengsong Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yanling Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yuling Jing
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Jingsong Shen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Ziyang Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Kelan Zha
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
11
|
Baena-Montes JM, Kraśny MJ, O’Halloran M, Dunne E, Quinlan LR. In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation. J Pers Med 2023; 13:1237. [PMID: 37623487 PMCID: PMC10455620 DOI: 10.3390/jpm13081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this condition through both pharmacological and non-pharmacological approaches. To test and validate any of these treatments, an appropriate preclinical model must be carefully chosen to refine and optimise the therapy features to correctly reverse this condition. A broad range of preclinical models have been developed over the years, with specific features and advantages to closely mimic the pathophysiology of atrial fibrillation. In this review, currently available models are described, from traditional animal models and in vitro cell cultures to state-of-the-art organoids and organs-on-a-chip. The advantages, applications and limitations of each model are discussed, providing the information to select the appropriate model for each research application.
Collapse
Affiliation(s)
- Jara M. Baena-Montes
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
| | - Marcin J. Kraśny
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, School of Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Eoghan Dunne
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
- CÚRAM SFI Centre for Research in Medical Devices, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
12
|
He L, Liu R, Yue H, Zhang X, Pan X, Sun Y, Shi J, Zhu G, Qin C, Guo Y. Interaction between neutrophil extracellular traps and cardiomyocytes contributes to atrial fibrillation progression. Signal Transduct Target Ther 2023; 8:279. [PMID: 37491321 PMCID: PMC10368710 DOI: 10.1038/s41392-023-01497-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 02/18/2023] [Indexed: 07/27/2023] Open
Abstract
Atrial fibrillation (AF) is a frequent arrhythmia associated with cardiovascular morbidity and mortality. Neutrophil extracellular traps (NETs) are DNA fragments with cytoplasm proteins released from neutrophils, which are involved in various cardiovascular diseases. To elucidate the role of NETs in AF, we investigated the effect of NETs on AF progression and the secretion of NETs in AF. Results showed that: NETs induced the autophagic apoptosis of cardiomyocytes, and NETs also led to mitochondrial injury by promoting mitochondrial depolarization and ROS production. Ongoing tachy-pacing led to the structural loss of cardiomyocytes and provided potent stimuli to induce NETs secretion from neutrophils. In the meanwhile, increased Ang II in AF facilitated NETs formation through the upregulation of AKT phosphorylation, while it could not directly initiate NETosis as the autophagy was not induced. In vivo, DNase I was administrated to abrogate NETs formation, and AF-related fibrosis was ameliorated as expected. Correspondingly, the duration of the induced AF was reduced. Our study addresses the formation mechanism of NETs in AF and demonstrates the lethal effects of NETs on cardiomyocytes through the induction of mitochondrial injury and autophagic cell death, which comprehensively describes the positive feedback comprised of NETs and stimuli secreted by cardiomyocytes that sustains the progression of AF and AF related fibrosis.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruiqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxin Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yutao Sun
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jun Shi
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary and Critical Care Medicine and Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Kishore P, Collinet ACT, Brundel BJJM. Prevention of Atrial Fibrillation: Putting Proteostasis Derailment Back on Track. J Clin Med 2023; 12:4352. [PMID: 37445387 DOI: 10.3390/jcm12134352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the many attempts to treat atrial fibrillation (AF), the most common cardiac tachyarrhythmia in the Western world, the treatment efficacy of AF is still suboptimal. A plausible reason for the suboptimal efficacy is that the current treatments are not directed at the underlying molecular mechanisms that drive AF. Recent discoveries revealed that the derailment of specific molecular proteostasis pathways drive electrical conduction disorders, contractile dysfunction and AF. The degree of this so-called 'electropathology' corresponds to the response to anti-AF treatment. Hence, to develop effective therapies to prevent AF, understanding the molecular mechanisms is of key importance. In this review, we highlight the key modulators of proteostasis derailment and describe the mechanisms that explain how they affect electrical and contractile function in atrial cardiomyocytes and AF. The key modulators of proteostasis derailment include (1) exhaustion of cardioprotective heat shock proteins (HSPs), (2) excessive endoplasmic reticulum (ER) stress and downstream autophagic protein degradation, (3) histone deacetylase 6 (HDAC6)-induced microtubule disruption, (4) activation of DNA damage-PARP1 activation and NAD+ axis and (5) mitochondrial dysfunction. Furthermore, we discuss druggable targets within these pathways that are involved in the prevention of proteostasis derailment, as well as the targets that aid in the recovery from AF. Finally, we will elaborate on the most favorable druggable targets for (future) testing in patients with AF, as well as drugs with potential benefits for AF recovery.
Collapse
Affiliation(s)
- Preetam Kishore
- Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands
| | - Amelie C T Collinet
- Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
Sang W, Wang L, Yan X, Sun H, Han Y, Wang F, Tang B, Li Y. Establishment of Risk Model and Analysis of Immunoinfiltration Based on Mitophagy-Related Associated Genes in Atrial Fibrillation. J Inflamm Res 2023; 16:2561-2583. [PMID: 37346800 PMCID: PMC10281282 DOI: 10.2147/jir.s415410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Objective Atrial fibrillation (AF) is a common tachyarrhythmia whose pathogenesis remains elusive. In the present study, we aimed to investigate the pathological mechanism of mitophagy and immunoinfiltration in AF. Methods First, we identified differentially expressed mitophagy-related genes (DEMRGs) based on the GSE79768 and GSE115574 datasets, subjecting them to functional enrichment analysis. STRING, TRRUST, miRNet, miRwalk, and Cytoscape were used to explore the potential regulatory roles of downstream signaling pathways. Subsequently, the random forest method was used to construct the AF risk model, and the DEMRGs most correlated with AF risk were determined by combining the Gini index. ssGSEA algorithm, NMF algorithm, and unsupervised clustering were used to subdivide AF molecular types. We then studied the characteristics of mitophagy- and immune infiltration-related genes in AF. Ultimately, we detected the expression of key genes in canine atrial tissues and HL-1 cells by immunofluorescence and Western blot. Results Mitophagy and immune infiltration were significantly enriched and activated in AF samples. Thirty-seven DEMRGs were screened, of which MAPK1, VDAC1, MAPK14, and MTERF3 were most associated with AF risk. The risk model based on these could identify patients at a high risk of AF. The infiltration of immunocells such as mast cells and neutrophils was significantly different among AF types. Finally, expression verification indicated that the expression trend of four key genes in canine atrial muscle tissue and HL-1 cells was consistent. Conclusion We found that mitophagy may participate in AF progression through immune activation. In addition, the AF risk prediction model composed of VDAC1, MAPK1, MAPK14, and MTERF3 has a good AF prediction performance, which provides new ideas for the study of AF pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xiaoji Yan
- Department of Emergency, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Huaxin Sun
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yafan Han
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Feifei Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
15
|
Thomas NL, Dart C, Helassa N. Editorial: The role of calcium and calcium binding proteins in cell physiology and disease. Front Physiol 2023; 14:1228885. [PMID: 37362430 PMCID: PMC10289193 DOI: 10.3389/fphys.2023.1228885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- N. Lowri Thomas
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - C. Dart
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, North West England, United Kingdom
| | - N. Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, North West England, United Kingdom
| |
Collapse
|
16
|
Liu D, Han X, Zhang Z, Tse G, Shao Q, Liu T. Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities. Cells 2022; 12:151. [PMID: 36611952 PMCID: PMC9818491 DOI: 10.3390/cells12010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms "Heat Shock Proteins" and "Atrial Fibrillation" and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents.
Collapse
Affiliation(s)
- Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuyao Han
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China
- Kent and Medway Medical School, Canterbury CT2 7NZ, UK
| | - Qingmiao Shao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
17
|
Imbalzano E, Murdaca G, Orlando L, Gigliotti-De Fazio M, Terranova D, Tonacci A, Gangemi S. Alarmins as a Possible Target of Future Therapies for Atrial Fibrillation. Int J Mol Sci 2022; 23:15946. [PMID: 36555588 PMCID: PMC9780784 DOI: 10.3390/ijms232415946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To date, worldwide, atrial fibrillation is the most common cardiovascular disease in adults, with a prevalence of 2% to 4%. The trigger of the pathophysiological mechanism of arrhythmia includes several factors that sustain and exacerbate the disease. Ectopic electrical conductivity, associated with the resulting atrial mechanical dysfunction, atrial remodeling, and fibrosis, promotes hypo-contractility and blood stasis, involving micro endothelial damage. This causes a significant local inflammatory reaction that feeds and sustains the arrhythmia. In our literature review, we evaluate the role of HMGB1 proteins, heat shock proteins, and S100 in the pathophysiology of atrial fibrillation, offering suggestions for possible new therapeutic strategies. We selected scientific publications on the specific topics "alarmins" and "atrial fibrillation" from PubMed. The nonsystematic review confirms the pivotal role of molecules such as S100 proteins, high-mobility group box-1, and heat shock proteins in the molecular pattern of atrial fibrillation. These results could be considered for new therapeutic opportunities, including inhibition of oxidative stress, evaluation of new anticoagulant drugs with novel therapeutic targets, molecular and genetic studies, and consideration of these alarmins as predictive or prognostic biomarkers of disease onset and severity.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, University of Genova, 16132 Genova, Italy
| | - Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Marianna Gigliotti-De Fazio
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Dario Terranova
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
18
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Su W, van Wijk SW, Brundel BJJM. Desmin variants: Trigger for cardiac arrhythmias? Front Cell Dev Biol 2022; 10:986718. [PMID: 36158202 PMCID: PMC9500482 DOI: 10.3389/fcell.2022.986718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Desmin (DES) is a classical type III intermediate filament protein encoded by the DES gene. Desmin is abundantly expressed in cardiac, skeletal, and smooth muscle cells. In these cells, desmin interconnects several protein-protein complexes that cover cell-cell contact, intracellular organelles such as mitochondria and the nucleus, and the cytoskeletal network. The extra- and intracellular localization of the desmin network reveals its crucial role in maintaining the structural and mechanical integrity of cells. In the heart, desmin is present in specific structures of the cardiac conduction system including the sinoatrial node, atrioventricular node, and His-Purkinje system. Genetic variations and loss of desmin drive a variety of conditions, so-called desminopathies, which include desmin-related cardiomyopathy, conduction system-related atrial and ventricular arrhythmias, and sudden cardiac death. The severe cardiac disease outcomes emphasize the clinical need to understand the molecular and cellular role of desmin driving desminopathies. As the role of desmin in cardiomyopathies has been discussed thoroughly, the current review is focused on the role of desmin impairment as a trigger for cardiac arrhythmias. Here, the molecular and cellular mechanisms of desmin to underlie a healthy cardiac conduction system and how impaired desmin triggers cardiac arrhythmias, including atrial fibrillation, are discussed. Furthermore, an overview of available (genetic) desmin model systems for experimental cardiac arrhythmia studies is provided. Finally, potential implications for future clinical treatments of cardiac arrhythmias directed at desmin are highlighted.
Collapse
Affiliation(s)
- Wei Su
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Stan W. van Wijk
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bianca J. J. M. Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Bianca J. J. M. Brundel,
| |
Collapse
|
20
|
Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022; 13:898718. [PMID: 35814223 PMCID: PMC9263384 DOI: 10.3389/fphar.2022.898718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias are clinically prevalent with a high mortality rate. They impose a huge economic burden, thereby substantially affecting the quality of life. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) is a new type of hypoglycemic drug, which can regulate blood glucose level safely and effectively. Additionally, it reduces the occurrence and progression of heart failure and cardiovascular events significantly. Recently, studies have found that SGLT2i can alleviate the occurrence and progression of cardiac arrhythmias; however, the exact mechanism remains unclear. In this review, we aimed to discuss and summarize new literature on different modes in which SGLT2i ameliorates the occurrence and development of cardiac arrhythmias.
Collapse
|
21
|
Yuan M, Gong M, He J, Xie B, Zhang Z, Meng L, Tse G, Zhao Y, Bao Q, Zhang Y, Yuan M, Liu X, Luo C, Wang F, Li G, Liu T. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling. Redox Biol 2022; 52:102289. [PMID: 35344886 PMCID: PMC8961221 DOI: 10.1016/j.redox.2022.102289] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are important mechanisms of atrial remodeling, predisposing to the development of atrial fibrillation (AF) in type 2 diabetes mellitus (T2DM). However, the molecular mechanisms underlying these processes especially their interactions have not been fully elucidated. OBJECTIVE To explore the potential role of ER stress-mitochondrial oxidative stress in atrial remodeling and AF induction in diabetes. METHODS AND RESULTS Mouse atrial cardiomyocytes (HL-1 cells) and rats with T2DM were used as study models. Significant ER stress was observed in the diabetic rat atria. After treatment with tunicamycin (TM), an ER stress agonist, mass spectrometry (MS) identified several known ER stress and calmodulin proteins, including heat shock protein family A (HSP70) member [HSPA] 5 [GRP78]) and HSPA9 (GRP75, glucose-regulated protein 75). In situ proximity ligation assay indicated that TM led to increased protein expression of the IP3R1-GRP75-VDAC1 (inositol 1,4,5-trisphosphate receptor 1-glucose-regulated protein 75-voltage-dependent anion channel 1) complex in HL-1 cells. Small interfering RNA silencing of GRP75 in HL-1 cells and GRP75 conditional knockout in a mouse model led to impaired calcium transport from the ER to the mitochondria and alleviated mitochondrial oxidative stress and calcium overload. Moreover, GRP75 deficiency attenuated atrial remodeling and AF progression in Myh6-Cre+/Hspa9flox/flox + TM mice. CONCLUSIONS The IP3R1-GRP75-VDAC1 complex mediates ER stress-mitochondrial oxidative stress and plays an important role in diabetic atrial remodeling.
Collapse
Affiliation(s)
- Ming Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China; Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinli He
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Lei Meng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, 300381, PR China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China.
| |
Collapse
|
22
|
Fang Y, Wu Y, Liu L, Wang H. The Four Key Genes Participated in and Maintained Atrial Fibrillation Process via Reprogramming Lipid Metabolism in AF Patients. Front Genet 2022; 13:821754. [PMID: 35669184 PMCID: PMC9163572 DOI: 10.3389/fgene.2022.821754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is always in high incidence in the population, which can lead to serious complications. The structural and electrical remodeling of atrial muscle induced by inflammatory reaction or oxidative stress was considered as the major mechanism of AF. The treatment effect is not ideal based on current mechanisms. Recent studies demonstrated that lipid metabolism disorder of atrial muscle played an important role in the occurrence of AF. What key genes are involved is unclear. The purpose of the present study was to explore the lipid metabolism mechanism of AF. With the GEO database and the genomics of AF patients, metabolic related pathways and the key genes were analyzed. At the same time, the rat model of cecal ligation and puncture (CLP) was used to confirm the results. GSE 31821 and GSE 41177 were used as data sources, and the merged differentially expressed genes (DEGs) analysis showed that a total of 272 DEGs were found. GO annotation, KEGG, and gene set enrichment analysis (GSEA) showed that the fatty acid metabolism and the lipid biosynthetic process were involved in AF. Cholesterol biosynthesis, arachidonic acid metabolism, and the lipid droplet pathway were obviously increased in AF. Further analysis showed that four key genes, including ITGB1, HSP90AA1, CCND1, and HSPA8 participated in pathogenesis of AF regulating lipid biosynthesis. In CLP rats, metabolic profiling in the heart showed that the pyrimidine metabolism, the biosynthesis of unsaturated fatty acid metabolism, arginine and proline metabolism, and the fatty acid biosynthesis were involved. The four key genes were confirmed increased in the heart of CLP rats (p < 0.05 or 0.01). The results suggest that the lipid metabolism disorder participates in the occurrence of AF. ITGB1, HSP90AA1, CCND1, and HSPA8 are the key genes involved in the regulation of lipid biosynthesis.
Collapse
Affiliation(s)
- Yijin Fang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Huadong Wang, ; Liangming Liu,
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Huadong Wang, ; Liangming Liu,
| |
Collapse
|
23
|
Pcsk6 Deficiency Promotes Cardiomyocyte Senescence by Modulating Ddit3-Mediated ER Stress. Genes (Basel) 2022; 13:genes13040711. [PMID: 35456517 PMCID: PMC9028967 DOI: 10.3390/genes13040711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiac aging is a critical determinant of cardiac dysfunction, which contributes to cardiovascular disease in the elderly. Proprotein convertase subtilisin/kexin 6 (PCSK6) is a proteolytic enzyme important for the maintenance of cardiac function and vascular homeostasis. To date, the involvement of PCSK6 in cardiac aging remains unknown. Here we report that PCSK6 expression decreased in the hearts of aged mice, where high levels cyclin dependent kinase inhibitor 2A (P16) and cyclin dependent kinase inhibitor 1A (P21) (senescence markers) were observed. Moreover, PCSK6 protein expression was significantly reduced in senescent rat embryonic cardiomyocytes (H9c2) induced by D-galactose. Pcsk6 knockdown in H9c2 cells increased P16 and P21 expression levels and senescence-associated beta-galactosidase activity. Pcsk6 knockdown also impaired cardiomyocyte function, as indicated by increased advanced glycation end products, reactive oxygen species level, and apoptosis. Overexpression of PCSK6 blunted the senescence phenotype and cellular dysfunction. Furthermore, RNA sequencing analysis in Pcsk6-knockdown H9c2 cells identified the up-regulated DNA-damage inducible transcript 3 (Ddit3) gene involved in endoplasmic reticulum (ER) protein processing. Additionally, DDIT3 protein levels were remarkably increased in aged mouse hearts. In the presence of tunicamycin, an ER stress inducer, DDIT3 expression increased in Pcsk6-deficient H9c2 cells but reduced in PCSK6-overexpressing cells. In conclusion, our findings indicate that PCSK6 modulates cardiomyocyte senescence possibly via DDIT3-mediated ER stress.
Collapse
|
24
|
Chen X, He XY, Dan Q, Li Y. FAM201A, a long noncoding RNA potentially associated with atrial fibrillation identified by ceRNA network analyses and WGCNA. BMC Med Genomics 2022; 15:80. [PMID: 35410298 PMCID: PMC8996407 DOI: 10.1186/s12920-022-01232-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Being the most common arrhythmia in clinic, atrial fibrillation (AF) causes various comorbidities to patients such as heart failure and stroke. LncRNAs were reported involved in pathogenesis of AF, yet, little is known about AF-associated lncRNAs. The present study aims to explore lncRNAs associated with AF susceptibility based on competing endogenous RNA (ceRNA) network analysis and weighted gene co-expression network analysis (WGCNA). Methods GSE41177 and GSE79768 datasets were obtained from the Gene Expression Omnibus (GEO) database. Competing endogenous RNA (ceRNA) network analysis was performed using GSE41177. Differentially expressed lncRNAs (DElncRNAs), mRNAs (DEmRNAs) between AF patients and patients with sinus rhythm (SR) were identified from GSE41177 using R software. Then, the ceRNA network was constructed based on DElncRNAs, the predicted target miRNAs and DEmRNAs. Weighted gene co-expression network analysis (WGCNA) was performed using GSE79768 to validate the AF-related lncRNAs identified from GSE41177. LncRNA modules and crucial lncRNAs relevant to AF and were identified. Results In summary, 18 DElncRNAs and 350 DEmRNAs were found between AF patients and SR patients. A total of 5 lncRNAs, 10 miRNAs, and 21 mRNAs were contained in the final ceRNA network. Taking into consideration both the ceRNA theory and inference scores from the comparative toxicogenomics database (CTD) database, the ceRNA axis FAM201A-miR-33a-3p-RAC3 was identified as mostly relevant to AF susceptibility. FAM201A (Gene significance, GS = − 0.62; Module membership, MM = 0.75) was also proved in the blue module, which was identified most highly relevant with AF by WGCNA. Conclusions These results demonstrated that decreased expression of FAM201A might be associated with susceptibility of AF. Working as the ceRNA to regulate RAC3 might be one function of FAM201A in AF susceptibility, which requires further exploration in future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01232-w.
Collapse
Affiliation(s)
- Xi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-Yu He
- Department of Ophthalmology, The 958th Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Dan
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China
| | - Yang Li
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China.
| |
Collapse
|
25
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
Collapse
Affiliation(s)
- Bianca J J M Brundel
- Department of Physiology, Amsterdam University Medical Centers, VU Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Myrthe F Kuipers
- AFIPonline.org, Atrial Fibrillation Innovation Platform, Amsterdam, Netherlands
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
26
|
Versaci F, Valenti V, Forte M, Cammisotto V, Nocella C, Bartimoccia S, Schirone L, Schiavon S, Vecchio D, D’Ambrosio L, Spinosa G, D’Amico A, Chimenti I, Violi F, Frati G, Pignatelli P, Sciarretta S, Pastori D, Carnevale R. Aging-Related Decline of Autophagy in Patients with Atrial Fibrillation-A Post Hoc Analysis of the ATHERO-AF Study. Antioxidants (Basel) 2022; 11:antiox11040698. [PMID: 35453383 PMCID: PMC9030744 DOI: 10.3390/antiox11040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 01/02/2023] Open
Abstract
Background: Aging is an independent risk factor for cardiovascular diseases. The autophagy process may play a role in delaying aging and improving cardiovascular function in aging. Data regarding autophagy in atrial fibrillation (AF) patients are lacking. Methods: A post hoc analysis of the prospective ATHERO-AF cohort study, including 150 AF patients and 150 sex- and age-matched control subjects (CS), was performed. For the analysis, the population was divided into three age groups: <50−60, 61−70, and >70 years. Oxidative stress (Nox2 activity and hydrogen peroxide, H2O2), platelet activation (PA) by sP-selectin and CD40L, endothelial dysfunction (nitric oxide, NO), and autophagy parameters (P62 and ATG5 levels) were assessed. Results: Nox2 activity and H2O2 production were higher in the AF patients than in the CS; conversely, antioxidant capacity was decreased in the AF patients compared to the CS, as was NO production. Moreover, sP-selectin and CD40L were higher in the AF patients than in the CS. The autophagy process was also significantly impaired in the AF patients. We found a significant difference in oxidative stress, PA, NO production, and autophagy across the age groups. Autophagy markers correlated with oxidative stress, PA, and endothelial dysfunction in both groups. Conclusions: This study provides evidence that the autophagy process may represent a mechanism for increased cardiovascular risk in the AF population.
Collapse
Affiliation(s)
- Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy; (F.V.); (V.V.)
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy; (F.V.); (V.V.)
| | - Maurizio Forte
- IRCCS Neuromed, 86077 Pozzilli, Italy; (M.F.); (G.F.); (S.S.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
| | - Simona Bartimoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Luca D’Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Giulia Spinosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Isotta Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | | | - Giacomo Frati
- IRCCS Neuromed, 86077 Pozzilli, Italy; (M.F.); (G.F.); (S.S.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy;
| | - Sebastiano Sciarretta
- IRCCS Neuromed, 86077 Pozzilli, Italy; (M.F.); (G.F.); (S.S.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
- Correspondence: (D.P.); (R.C.); Tel.: +39-0649970941 (D.P.); +39-07731757245 (R.C.); Fax: +39-0649972309 (D.P.); +39-07731757245 (R.C.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
- Mediterranea Cardiocentro, 80122 Naples, Italy;
- Correspondence: (D.P.); (R.C.); Tel.: +39-0649970941 (D.P.); +39-07731757245 (R.C.); Fax: +39-0649972309 (D.P.); +39-07731757245 (R.C.)
| |
Collapse
|
27
|
L-Carnitine reduces reactive oxygen species/endoplasmic reticulum stress and maintains mitochondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Sci Rep 2022; 12:4673. [PMID: 35304586 PMCID: PMC8933466 DOI: 10.1038/s41598-022-08771-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
We previously reported that perfluorooctanesulfonate (PFOS) causes autophagy-induced apoptosis in renal tubular cells (RTCs) through a mechanism dependent on reactive oxygen species (ROS)/extracellular signal-regulated kinase. This study extended our findings and determined the therapeutic potency of l-Carnitine in PFOS-treated RTCs. l-Carnitine (10 mM) reversed the effects of PFOS (100 µM) on autophagy induction and impaired autophagy flux. Furthermore, it downregulated the protein level of p47Phox, which is partly related to PFOS-induced increased cytosolic ROS in RTCs. Moreover, l-Carnitine reduced ROS production in mitochondria and restored PFOS-impeded mitochondrial function, leading to sustained normal adenosine triphosphate synthesis and oxygen consumption and reduced proton leakage in a Seahorse XF stress test. The increased inositol-requiring enzyme 1α expression by PFOS, which indicated endoplasmic reticulum (ER) stress activation, was associated with PFOS-mediated autophagy activation that could be attenuated through 4-phenylbutyrate (5 mM, an ER stress inhibitor) and l-Carnitine pretreatment. Therefore, by reducing the level of IRE1α, l-Carnitine reduced the levels of Beclin and LC3BII, consequently reducing the level of apoptotic biomarkers including Bax and cleaving PARP and caspase 3. Collectively, these results indicate that through the elimination of oxidative stress, extracellular signal–regulated kinase activation, and ER stress, l-Carnitine reduced cell autophagy/apoptosis and concomitantly increased cell viability in RTCs. This study clarified the potential mechanism of PFOS-mediated RTC apoptosis and provided a new strategy for using l-Carnitine to prevent and treat PFOS-induced RTC apoptosis.
Collapse
|
28
|
Hamilton S, Terentyeva R, Bogdanov V, Kim TY, Perger F, Yan J, Ai X, Carnes CA, Belevych AE, George CH, Davis JP, Gyorke S, Choi BR, Terentyev D. Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia. Circ Res 2022; 130:711-724. [PMID: 35086342 PMCID: PMC8893133 DOI: 10.1161/circresaha.121.320531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidative stress in cardiac disease promotes proarrhythmic disturbances in Ca2+ homeostasis, impairing luminal Ca2+ regulation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the RyR2 (ryanodine receptor), and increasing channel activity. However, exact mechanisms underlying redox-mediated increase of RyR2 function in cardiac disease remain elusive. We tested whether the oxidoreductase family of proteins that dynamically regulate the oxidative environment within the SR are involved in this process. METHODS A rat model of hypertrophy induced by thoracic aortic banding (TAB) was used for ex vivo whole heart optical mapping and for Ca2+ and reactive oxygen species imaging in isolated ventricular myocytes (VMs). RESULTS The SR-targeted reactive oxygen species biosensor ERroGFP showed increased intra-SR oxidation in TAB VMs that was associated with increased expression of Ero1α (endoplasmic reticulum oxidoreductase 1 alpha). Pharmacological (EN460) or genetic Ero1α inhibition normalized SR redox state, increased Ca2+ transient amplitude and SR Ca2+ content, and reduced proarrhythmic spontaneous Ca2+ waves in TAB VMs under β-adrenergic stimulation (isoproterenol). Ero1α overexpression in Sham VMs had opposite effects. Ero1α inhibition attenuated Ca2+-dependent ventricular tachyarrhythmias in TAB hearts challenged with isoproterenol. Experiments in TAB VMs and human embryonic kidney 293 cells expressing human RyR2 revealed that an Ero1α-mediated increase in SR Ca2+-channel activity involves dissociation of intraluminal protein ERp44 (endoplasmic reticulum protein 44) from the RyR2 complex. Site-directed mutagenesis and molecular dynamics simulations demonstrated a novel redox-sensitive association of ERp44 with RyR2 mediated by intraluminal cysteine 4806. ERp44-RyR2 association in TAB VMs was restored by Ero1α inhibition, but not by reducing agent dithiothreitol, as hypo-oxidation precludes formation of covalent bond between RyR2 and ERp44. CONCLUSIONS A novel axis of intraluminal interaction between RyR2, ERp44, and Ero1α has been identified. Ero1α inhibition exhibits promising therapeutic potential by stabilizing RyR2-ERp44 complex, thereby reducing spontaneous Ca2+ release and Ca2+-dependent tachyarrhythmias in hypertrophic hearts, without causing hypo-oxidative stress in the SR.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Tae Yun Kim
- Cardiovascular Research Center, Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI (T.Y.K., B.-R.C.)
| | - Fruzsina Perger
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Jiajie Yan
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Xun Ai
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Cynthia A. Carnes
- College of Pharmacy (C.A.C.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Andriy E. Belevych
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | | | - Jonathan P. Davis
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Sandor Gyorke
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| | - Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI (T.Y.K., B.-R.C.)
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology (S.H., R.T., V.B., F.P., J.Y., X.A., A.E.B., J.P.D., S.G., D.T.), The Ohio State University.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus (S.H., R.T., V.B., F.P., J.Y., X.A., C.A.C., A.E.B., J.P.D., S.G., D.T.)
| |
Collapse
|
29
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Tu T, Li B, Li X, Zhang B, Xiao Y, Li J, Qin F, Liu N, Sun C, Liu Q, Zhou S. Dietary ω-3 fatty acids reduced atrial fibrillation vulnerability via attenuating myocardial endoplasmic reticulum stress and inflammation in a canine model of atrial fibrillation. J Cardiol 2022; 79:194-201. [PMID: 34702603 DOI: 10.1016/j.jjcc.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Dietary consumption of ω-3 fatty acids is correlated with a reduced incidence of cardiovascular events. Here, we investigated the effect of dietary ω-3 fatty acids on atrial fibrillation (AF) vulnerability in a canine model of AF and explored the related mechanisms. METHODS Twenty four male beagle dogs (weight, 8-10 kg) were randomly divided into four groups: (a) sham-operated group (normal chow); (b) AF+FO [AF and normal chow supplemented with fish oil (FO): 0.6 g n-3 polyunsaturated fatty acids (ω-3 PUFA) /kg/day]; (c) AF group (normal chow); (d) sham-operated FO group (chow supplemented with FO: 0.6 g ω-3 PUFA/kg/day). AF was induced by rapid atrial pacing (RAP: 400 bpm for 4 weeks). Daily oral administration of FO was initiated 1 week before surgery and continued for 4 weeks post operation. RESULTS Atrial electric remodeling was significantly attenuated and AF vulnerability were significantly reduced in AF+FO group compared to AF group. Endoplasmic reticulum (ER) stress-related protein expression levels of glucose-regulated protein78, C/EBP homologous protein, cleaved-Caspase12, and phosphorylation of protein kinase R-like ER kinase as well as inflammatory cytokines interleukin-1β, interleukin-6, tumor necrosis factor-α in left atrium (LA) were significantly downregulated in AF+FO group than in AF group (all p<0.05). In addition, Masson staining revealed lower extent of LA interstitial fibrosis in AF+FO group than in AF group (p<0.01). Myocardial apoptosis was also significantly reduced in AF+FO group than in AF group (p<0.05). CONCLUSIONS Dietary ω-3 fatty acids could significantly reduce RAP-induced AF vulnerability, possibly via attenuating myocardial ER stress, inflammation, and apoptosis in this canine model of AF.
Collapse
Affiliation(s)
- Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Biao Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Rd, Futian District, Shenzhen, Guangdong Province, China
| | - Xuping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Baojian Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cardiology, the Affiliated Chinese Medicine Hospital of Xinjiang Medical University, Urumqi City, Xinjiang, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiayi Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fen Qin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chao Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
31
|
van Wijk SW, Su W, Wijdeveld LFJM, Ramos KS, Brundel BJJM. Cytoskeletal Protein Variants Driving Atrial Fibrillation: Potential Mechanisms of Action. Cells 2022; 11:416. [PMID: 35159226 PMCID: PMC8834312 DOI: 10.3390/cells11030416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The most common clinical tachyarrhythmia, atrial fibrillation (AF), is present in 1-2% of the population. Although common risk factors, including hypertension, diabetes, and obesity, frequently underlie AF onset, it has been recognized that in 15% of the AF population, AF is familial. In these families, genome and exome sequencing techniques identified variants in the non-coding genome (i.e., variant regulatory elements), genes encoding ion channels, as well as genes encoding cytoskeletal (-associated) proteins. Cytoskeletal protein variants include variants in desmin, lamin A/C, titin, myosin heavy and light chain, junctophilin, nucleoporin, nesprin, and filamin C. These cytoskeletal protein variants have a strong association with the development of cardiomyopathy. Interestingly, AF onset is often represented as the initial manifestation of cardiac disease, sometimes even preceding cardiomyopathy by several years. Although emerging research findings reveal cytoskeletal protein variants to disrupt the cardiomyocyte structure and trigger DNA damage, exploration of the pathophysiological mechanisms of genetic AF is still in its infancy. In this review, we provide an overview of cytoskeletal (-associated) gene variants that relate to genetic AF and highlight potential pathophysiological pathways that drive this arrhythmia.
Collapse
Affiliation(s)
| | | | | | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.W.v.W.); (W.S.); (L.F.J.M.W.); (K.S.R.)
| |
Collapse
|
32
|
Sirish P, Diloretto DA, Thai PN, Chiamvimonvat N. The Critical Roles of Proteostasis and Endoplasmic Reticulum Stress in Atrial Fibrillation. Front Physiol 2022; 12:793171. [PMID: 35058801 PMCID: PMC8764384 DOI: 10.3389/fphys.2021.793171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) remains the most common arrhythmia seen clinically. The incidence of AF is increasing due to the aging population. AF is associated with a significant increase in morbidity and mortality, yet current treatment paradigms have proven largely inadequate. Therefore, there is an urgent need to develop new effective therapeutic strategies for AF. The endoplasmic reticulum (ER) in the heart plays critical roles in the regulation of excitation-contraction coupling and cardiac function. Perturbation in the ER homeostasis due to intrinsic and extrinsic factors, such as inflammation, oxidative stress, and ischemia, leads to ER stress that has been linked to multiple conditions including diabetes mellitus, neurodegeneration, cancer, heart disease, and cardiac arrhythmias. Recent studies have documented the critical roles of ER stress in the pathophysiological basis of AF. Using an animal model of chronic pressure overload, we demonstrate a significant increase in ER stress in atrial tissues. Moreover, we demonstrate that treatment with a small molecule inhibitor to inhibit the soluble epoxide hydrolase enzyme in the arachidonic acid metabolism significantly reduces ER stress as well as atrial electrical and structural remodeling. The current review article will attempt to provide a perspective on our recent understandings and current knowledge gaps on the critical roles of proteostasis and ER stress in AF progression.
Collapse
Affiliation(s)
- Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Daphne A Diloretto
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States.,Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Mehdi SF, Pusapati S, Khenhrani RR, Farooqi MS, Sarwar S, Alnasarat A, Mathur N, Metz CN, LeRoith D, Tracey KJ, Yang H, Brownstein MJ, Roth J. Oxytocin and Related Peptide Hormones: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 2022; 13:864007. [PMID: 35572539 PMCID: PMC9102389 DOI: 10.3389/fimmu.2022.864007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a potentially life-threatening systemic inflammatory syndrome characterized by dysregulated host immunological responses to infection. Uncontrolled immune cell activation and exponential elevation in circulating cytokines can lead to sepsis, septic shock, multiple organ dysfunction syndrome, and death. Sepsis is associated with high re-hospitalization and recovery may be incomplete, with long term sequelae including post-sepsis syndrome. Consequently, sepsis continues to be a leading cause of morbidity and mortality across the world. In our recent review of human chorionic gonadotropin (hCG), we noted that its major properties including promotion of fertility, parturition, and lactation were described over a century ago. By contrast, the anti-inflammatory properties of this hormone have been recognized only more recently. Vasopressin, a hormone best known for its anti-diuretic effect, also has anti-inflammatory actions. Surprisingly, vasopressin's close cousin, oxytocin, has broader and more potent anti-inflammatory effects than vasopressin and a larger number of pre-clinical studies supporting its potential role in limiting sepsis-associated organ damage. This review explores possible links between oxytocin and related octapeptide hormones and sepsis-related modulation of pro-inflammatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Raja Ram Khenhrani
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Farooqi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Sobia Sarwar
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Ahmad Alnasarat
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Nimisha Mathur
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Christine Noel Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
- *Correspondence: Jesse Roth,
| |
Collapse
|
34
|
Hu HJ, Wang XH, Liu Y, Zhang TQ, Chen ZR, Zhang C, Tang ZH, Qu SL, Tang HF, Jiang ZS. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:690371. [PMID: 34950023 PMCID: PMC8689064 DOI: 10.3389/fphar.2021.690371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-β-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China
| | - Xiu-Heng Wang
- Department of Nuclear Medicine Lab, First Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Liu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Tian-Qing Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zheng-Rong Chen
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China.,Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
35
|
Zhou J, Dong Y, Cai X, Yang H, Guo T. Identification and Validation of Autophagy-Related Genes as Potential Biomarkers and Therapeutic Targets in Atrial Fibrillation. Int J Gen Med 2021; 14:7783-7796. [PMID: 34785936 PMCID: PMC8580288 DOI: 10.2147/ijgm.s337855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy is an evolutionary conserved important process for the turnover of intracellular substances in eukaryotes and is closely related to the development of atrial fibrillation (AF). The aim of this study is to identify and validate potential autophagy-related genes (ARGs) of AF through bioinformatics analysis and experimental validation. Methods We downloaded two data sets from the Gene Expression Omnibus (GEO) database, GSE14975 and GSE31821. After merging the data of the two microarrays, adjusting the batch effect, and integrating the differentially expressed genes (DEGs) with ARGs to obtain differentially expressed autophagy-related genes (DEARGs). Functional and pathway enrichment analyses were carried out based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Use the STRING database to construct a protein–protein interaction (PPI) network. Finally, mRNA expression levels of DEARGs were validated in right atrial tissue samples from AF patients and non-AF controls by qRT-PCR. Results Through bioinformatics analysis, we finally identified 11 DEARGs (CDKN1A, CXCR4, DIRAS3, HSP90AB1, ITGA3, PRKCD, TP53INP2, DAPK2, IFNG, PTK6, and TNFSF10) in AF using [log2 (fold change)] > 0.5 and P < 0.05. In the pathway enrichment analysis, the most significantly enriched pathway was the autophagy pathway. The results of validation showed that the expression levels of CXCR4, DAPK2, and TNFSF10 corroborating with our computational findings, and the results were statistically significant (P<0.05). Conclusion Our study demonstrates that these 11 potential crucial ARGs, especially CXCR4, DAPK2, and TNFSF10, may be potential biomarkers and therapeutic targets in AF, which will help the personalized treatment of AF patients.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Cardiology, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.,Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, People's Republic of China
| | - Yunlong Dong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Xiang Cai
- Department of Cardiology, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.,Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, People's Republic of China
| | - Hongbo Yang
- Department of Cardiology, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.,Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, People's Republic of China
| | - Tao Guo
- Department of Cardiology, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.,Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
36
|
Molecular Signatures of Human Chronic Atrial Fibrillation in Primary Mitral Regurgitation. Cardiovasc Ther 2021; 2021:5516185. [PMID: 34737791 PMCID: PMC8538404 DOI: 10.1155/2021/5516185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/11/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives Transcriptomics of atrial fibrillation (AFib) in the setting of chronic primary mitral regurgitation (MR) remains to be characterized. We aimed to compare the gene expression profiles of patients with degenerative MR in AFib and sinus rhythm (SR) for a clearer picture of AFib pathophysiology. Methods After transcriptomic analysis and bioinformatics (n = 59), differentially expressed genes were defined using 1.5-fold change as the threshold. Additionally, independent datasets from GEO were included as meta-analyses. Results QRT-PCR analysis confirmed that AFib persistence was associated with increased expression molecular changes underlying a transition to heart failure (NPPB, P = 0.002; ANGPTL2, P = 0.002; IGFBP2, P = 0.010), structural remodeling including changes in the extracellular matrix and cellular stress response (COLQ, P = 0.003; COMP, P = 0.028; DHRS9, P = 0.038; CHGB, P = 0.038), and cellular stress response (DNAJA4, P = 0.038). Furthermore, AFib persistence was associated with decreased expression of the targets of structural remodeling (BMP7, P = 0.021) and electrical remodeling (CACNB2, P = 0.035; MCOLN3, P = 0.035) in both left and right atrial samples. The transmission electron microscopic analysis confirmed ultrastructural atrial remodeling and autophagy in human AFib atrial samples. Conclusions Atrial cardiomyocyte remodeling in persistent AFib is closely linked to alterations in gene expression profiles compared to SR in patients with primary MR. Study findings may lead to novel therapeutic targets. This trial is registered with ClinicalTrials.gov identifier: NCT00970034.
Collapse
|
37
|
Zhang T, Wu Y, Hu Z, Xing W, Kun LV, Wang D, Hu N. Small-Molecule Integrated Stress Response Inhibitor Reduces Susceptibility to Postinfarct Atrial Fibrillation in Rats via the Inhibition of Integrated Stress Responses. J Pharmacol Exp Ther 2021; 378:197-206. [PMID: 34215702 DOI: 10.1124/jpet.121.000491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of the eukaryotic translation initiation factor 2 α-subunit, which subsequently upregulates activating transcription factor 4 (ATF4), is the core event in the integrated stress response (ISR) pathway. Previous studies indicate phosphorylation of eukaryotic translation initiation factor 2 ɑ-subunit in atrial tissue in response to atrial fibrillation (AF). This study investigated the role of ISR pathway in experimental AF by using a small-molecule ISR inhibitor (ISRIB). Accordingly, rats were subjected to coronary artery occlusion to induce myocardial infarction (MI), or sham operation, and received either trans-ISRIB (2 mg/kg/d, i.p.) or vehicle for seven days. Thereafter, animals were subjected to the AF inducibility test by transesophageal rapid burst pacing followed by procurement of left atrium (LA) for assessment of atrial fibrosis, inflammatory indices, autophagy-related proteins, ISR activation, ion channel, and connexin 43 expression. Results showed a significant increase in the AF vulnerability and the activation of ISR in LA as evidenced by enhanced eukaryotic translation initiation factor 2 ɑ-subunit phosphorylation. ISRIB treatment suppressed upregulation of ATF4, fibrosis as indexed by determination of α-smooth muscle actin and collagen levels, inflammatory macrophage infiltration (i.e., CD68 and inducible nitric oxide synthase/CD68-positive macrophage), and autophagy as determined by expression of light chain 3. Further, ISRIB treatment reversed the expression of relevant ion channel (i.e., the voltage-gated sodium channel 1.5 , L-type voltage-dependent calcium channel 1.2, and voltage-activated A-type potassium ion channel 4.3) and connexin 43 remodeling. Collectively, the results suggest that the ISR is a key pathway in pathogenesis of AF, post-MI, and represents a novel target for treatment of AF. SIGNIFICANCE STATEMENT: The activation of integrated stress response (ISR) pathway as evidenced by enhanced eukaryotic translation initiation factor 2 ɑ-subunit phosphorylation in left atrium plays a key role in atrial fibrillation (AF). ISR inhibitor (ISRIB) reduces AF occurrence and atrial proarrhythmogenic substrate. The beneficial action of ISRIB may be mediated by suppressing ISR pathway-related cardiac fibrosis, inflammatory macrophage infiltration, autophagy, and restoring the expression of ion channel and connexin 43. This study suggests a key dysfunctional role for ISR in pathogenesis of AF with implications for novel treatment.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Yong Wu
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Zhengtao Hu
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Wen Xing
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - L V Kun
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Deguo Wang
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Nengwei Hu
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| |
Collapse
|
38
|
Papathanasiou KA, Giotaki SG, Vrachatis DA, Siasos G, Lambadiari V, Iliodromitis KE, Kossyvakis C, Kaoukis A, Raisakis K, Deftereos G, Papaioannou TG, Giannopoulos G, Avramides D, Deftereos SG. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11091584. [PMID: 34573926 PMCID: PMC8470040 DOI: 10.3390/diagnostics11091584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of atrial fibrillation (AF) is bound to increase globally in the following years, affecting the quality of life of millions of people, increasing mortality and morbidity, and beleaguering health care systems. Increasingly effective therapeutic options against AF are the constantly evolving electroanatomic substrate mapping systems of the left atrium (LA) and ablation catheter technologies. Yet, a prerequisite for better long-term success rates is the understanding of AF pathogenesis and maintenance. LA electrical and anatomical remodeling remains in the epicenter of current research for novel diagnostic and treatment modalities. On a molecular level, electrical remodeling lies on impaired calcium handling, enhanced inwardly rectifying potassium currents, and gap junction perturbations. In addition, a wide array of profibrotic stimuli activates fibroblast to an increased extracellular matrix turnover via various intermediaries. Concomitant dysregulation of the autonomic nervous system and the humoral function of increased epicardial adipose tissue (EAT) are established mediators in the pathophysiology of AF. Local atrial lymphomononuclear cells infiltrate and increased inflammasome activity accelerate and perpetuate arrhythmia substrate. Finally, impaired intracellular protein metabolism, excessive oxidative stress, and mitochondrial dysfunction deplete atrial cardiomyocyte ATP and promote arrhythmogenesis. These overlapping cellular and molecular alterations hinder us from distinguishing the cause from the effect in AF pathogenesis. Yet, a plethora of therapeutic modalities target these molecular perturbations and hold promise in combating the AF burden. Namely, atrial selective ion channel inhibitors, AF gene therapy, anti-fibrotic agents, AF drug repurposing, immunomodulators, and indirect cardiac neuromodulation are discussed here.
Collapse
Affiliation(s)
- Konstantinos A. Papathanasiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Sotiria G. Giotaki
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Dimitrios A. Vrachatis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Vaia Lambadiari
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Charalampos Kossyvakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Andreas Kaoukis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Konstantinos Raisakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Gerasimos Deftereos
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Theodore G. Papaioannou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Dimitrios Avramides
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Spyridon G. Deftereos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
- Correspondence: ; Tel.: +30-21-0583-2355
| |
Collapse
|
39
|
Liu P, Sun H, Zhou X, Wang Q, Gao F, Fu Y, Li T, Wang Y, Li Y, Fan B, Li X, Jiang T, Qin X, Zheng Q. CXCL12/CXCR4 axis as a key mediator in atrial fibrillation via bioinformatics analysis and functional identification. Cell Death Dis 2021; 12:813. [PMID: 34453039 PMCID: PMC8397768 DOI: 10.1038/s41419-021-04109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation (AF) is an increasingly prevalent arrhythmia with significant health and socioeconomic impact. The underlying mechanism of AF is still not well understood. In this study, we sought to identify hub genes involved in AF, and explored their functions and underlying mechanisms based on bioinformatics analysis. Five microarray datasets in GEO were used to identify the differentially expressed genes (DEGs) by Robust Rank Aggregation (RRA), and hub genes were screened out using protein-protein interaction (PPI) network. AF model was established using a mixture of acetylcholine and calcium chloride (Ach-CaCl2) by tail vein injection. We totally got 35 robust DEGs that mainly involve in extracellular matrix formation, leukocyte transendothelial migration, and chemokine signaling pathway. Among these DEGs, we identified three hub genes involved in AF, of which CXCL12/CXCR4 axis significantly upregulated in AF patients stands out as one of the most potent targets for AF prevention, and its effect on AF pathogenesis and underlying mechanisms were investigated in vivo subsequently with the specific CXCR4 antagonist AMD3100 (6 mg/kg). Our results demonstrated an elevated transcription and translation of CXCL12/CXCR4 axis in AF patients and mice, accompanied with the anabatic atrial inflammation and fibrosis, thereby providing the substrate for AF maintenance. Blocking its signaling via AMD3100 administration in AF model mice reduced AF inducibility and duration, partly ascribed to decreased atrial inflammation and structural remodeling. Mechanistically, these effects were achieved by reducing the recruitment of CD3+ T lymphocytes and F4/80+ macrophages, and suppressing the hyperactivation of ERK1/2 and AKT/mTOR signaling in atria of AF model mice. In conclusion, this study provides new evidence that antagonizing CXCR4 prevents the development of AF, and suggests that CXCL12/CXCR4 axis may be a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongke Sun
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhou
- Department of Cardiology, The First Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuping Fu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingqi Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boyuan Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiannan Jiang
- Department of Internal Medicine, Health Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
40
|
Yarmohammadi F, Hayes AW, Karimi G. Possible protective effect of resolvin D1 on inflammation in atrial fibrillation: involvement of ER stress mediated the NLRP3 inflammasome pathway. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1613-1619. [PMID: 34216224 DOI: 10.1007/s00210-021-02115-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Atrial fibrillation (AF) is the most common type of cardiac rhythm disturbance. At the cellular level, excessive ROS generation during AF is associated with ER stress, which induces an inflammatory response by activating the unfolded protein response (UPR) pathway and the nuclear factor-kappa B (NF-kB) signaling pathway. Activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome has been linked to the pathogenesis of AF through NF-kB activation and inflammatory cytokine secretion. It has been shown that NLRP3 inflammasome activation by endoplasmic reticulum (ER) stress is dependent on NF-kB activation. The anti-inflammatory role of resolvin D1 (RvD1), a pro-resolving mediator derived from omega-3 fatty acids, has demonstrated that the NF-κB/NLRP3 inflammasome pathway in different tissues is attenuated after treatment with RvD1. However, the mechanism of the anti-inflammatory activity of RvD1 in AF has not been clarified. This review suggests that RvD1 may inhibit ER stress-induced NLRP3 inflammasome through suppressing NF-κB in cardiac tissue and, thus ameliorate AF.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
van Marion DMS, Ramos KS, Lanters EAH, Bulte LBT, Bogers AJJC, de Groot NMS, Brundel BJJM. Atrial heat shock protein levels are associated with early postoperative and persistence of atrial fibrillation. Heart Rhythm 2021; 18:1790-1798. [PMID: 34186247 DOI: 10.1016/j.hrthm.2021.06.1194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Early detection and staging of atrial fibrillation (AF) is of importance for clinical management. Serum (bio)markers, such as heat shock proteins (HSP), may enable AF staging and identify patients at risk for AF recurrence and postoperative AF (PoAF). OBJECTIVE This study evaluates the relation between serum and atrial tissue HSP levels, stages of AF, AF recurrence after treatment, and PoAF from patients undergoing cardiothoracic surgery. METHODS Patients without (control) and with paroxysmal, persistent (PerAF), or longstanding persistent (LSPerAF) AF were included. HSPB1, HSPA1, HSPB7, and HSPD1 levels were measured in serum obtained prior to and post intervention. HSPB1, HSPA1, HSPA5, HSPD1, HSPB5, and pHSF1 levels were measured in left and/or right atrial appendages (respectively, LAA and RAA). RESULTS In RAA, HSPA5 levels were significantly lower in LSPerAF and HSPD1 levels significantly higher in PerAF patients compared to controls. In RAA of controls who developed PoAF, HSPA1 and HSPA5 levels were significantly higher compared to those without PoAF. Also, HSPB1 RAA levels were lower and HSPA5 LAA levels higher in patients undergoing arrhythmia surgery who developed AF recurrence within 1 week after surgery compared to patients who did not. CONCLUSION HSPA5 RAA and HSPD1 RAA and LAA levels are altered in persistent stages of AF. RAA HSPA1 and HSPA5 levels associate with development of PoAF. Additionally, HSPB1 RAA and HSPA5 LAA levels can predict AF recurrence in patients who underwent arrhythmia surgery. Nevertheless, HSP levels in serum cannot discriminate AF stages from controls, nor predict PoAF or AF recurrence after treatment.
Collapse
Affiliation(s)
- Denise M S van Marion
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kennedy S Ramos
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eva A H Lanters
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Luciënne Baks-Te Bulte
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Diteepeng T, Del Monte F, Luciani M. The long and winding road to target protein misfolding in cardiovascular diseases. Eur J Clin Invest 2021; 51:e13504. [PMID: 33527342 DOI: 10.1111/eci.13504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the last decades, cardiovascular diseases (CVD) have remained the first leading cause of mortality and morbidity in the world. Although several therapeutic approaches have been introduced in the past, the development of novel treatments remains an important research goal, which is hampered by the lack of understanding of key mechanisms and targets. Emerging evidences in recent years indicate the involvement of misfolded proteins aggregation and the derailment of protein quality control in the pathogenesis of cardiovascular diseases. Several potential interventions targeting protein quality control have been translated from the bench to the bedside to effectively employ the misfolded proteins as promising therapeutic targets for cardiac diseases, but with trivial results. DESIGN In this review, we describe the recent progresses in preclinical and clinical studies of protein misfolding and compromised protein quality control by selecting and reporting studies focusing on cardiovascular diseases including cardiomyopathies, cardiac amyloidosis, atherosclerosis, atrial fibrillation and thrombosis. RESULTS In preclinical models, modulators of several molecular targets (eg heat shock proteins, unfolded protein response, ubiquitin protein system, autophagy and histone deacetylases) have been tested in various conditions with promising results although lacking an adequate transition towards clinical setting. CONCLUSIONS At present, no therapeutic strategies have been reported to attenuate proteotoxicity in patients with CVD due to a lack of specific biomarkers for pinpointing upstream events in protein folding defects at a subclinical stage of the diseases requiring an intensive collaboration between basic scientists and clinicians.
Collapse
Affiliation(s)
- Thamonwan Diteepeng
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater, Bologna, Italy
| | - Marco Luciani
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
43
|
Lee DI, Murninkas M, Elyagon S, Etzion Y, Anderson HD. Cannabinoid Receptor Agonist Inhibits Atrial Electrical Remodeling in a Tachypaced Ex Vivo Rat Model. Front Pharmacol 2021; 12:642398. [PMID: 33967775 PMCID: PMC8100753 DOI: 10.3389/fphar.2021.642398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Atrial fibrillation (AF) leads to rate-dependent atrial changes collectively defined as atrial remodelling (AR). Shortening of the atrial effective refractory period (AERP) and decreased conduction velocity are among the hallmarks of AR. Pharmacological strategies to inhibit AR, thereby reducing the self-perpetual nature of AF, are of great clinical value. Cannabinoid receptor (CBR) ligands may exert cardioprotective effects; CB13, a dual CBR agonist with limited brain penetration, protects cardiomyocytes from mitochondrial dysfunction induced by endothelin-1. Here, we examined the effects of CB13 on normal physiology of the rat heart and development of tachypacing-induced AR. Methods: Rat hearts were perfused in a Langendorff set-up with CB13 (1 µM) or vehicle. Hemodynamic properties of non-paced hearts were examined conventionally. In a different set of hearts, programmed stimulation protocol was performed before and after atrial tachypacing for 90 min using a mini-hook platinum quadrupole electrode inserted on the right atrium. Atrial samples were further assessed by western blot analysis. Results: CB13 had no effects on basal hemodynamic properties. However, the compound inhibited tachypacing-induced shortening of the AERP. Protein expression of PGC1α was significantly increased by CB13 compared to vehicle in paced and non-paced hearts. Phosphorylation of AMPKα at residue threonine 172 was increased suggesting upregulation of mitochondrial biogenesis. Connexin43 was downregulated by tachypacing. This effect was diminished in the presence of CB13. Conclusion: Our findings support the notion that peripheral activation of CBR may be a new treatment strategy to prevent AR in patients suffering from AF, and therefore warrants further study.
Collapse
Affiliation(s)
- Danielle I Lee
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hope D Anderson
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
| |
Collapse
|
44
|
Wüst RCI, Coolen BF, Held NM, Daal MRR, Alizadeh Tazehkandi V, Baks-te Bulte L, Wiersma M, Kuster DWD, Brundel BJJM, van Weeghel M, Strijkers GJ, Houtkooper RH. The Antibiotic Doxycycline Impairs Cardiac Mitochondrial and Contractile Function. Int J Mol Sci 2021; 22:4100. [PMID: 33921053 PMCID: PMC8071362 DOI: 10.3390/ijms22084100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tetracycline antibiotics act by inhibiting bacterial protein translation. Given the bacterial ancestry of mitochondria, we tested the hypothesis that doxycycline-which belongs to the tetracycline class-reduces mitochondrial function, and results in cardiac contractile dysfunction in cultured H9C2 cardiomyoblasts, adult rat cardiomyocytes, in Drosophila and in mice. Ampicillin and carbenicillin were used as control antibiotics since these do not interfere with mitochondrial translation. In line with its specific inhibitory effect on mitochondrial translation, doxycycline caused a mitonuclear protein imbalance in doxycycline-treated H9C2 cells, reduced maximal mitochondrial respiration, particularly with complex I substrates, and mitochondria appeared fragmented. Flux measurements using stable isotope tracers showed a shift away from OXPHOS towards glycolysis after doxycycline exposure. Cardiac contractility measurements in adult cardiomyocytes and Drosophila melanogaster hearts showed an increased diastolic calcium concentration, and a higher arrhythmicity index. Systolic and diastolic dysfunction were observed after exposure to doxycycline. Mice treated with doxycycline showed mitochondrial complex I dysfunction, reduced OXPHOS capacity and impaired diastolic function. Doxycycline exacerbated diastolic dysfunction and reduced ejection fraction in a diabetes mouse model vulnerable for metabolic derangements. We therefore conclude that doxycycline impairs mitochondrial function and causes cardiac dysfunction.
Collapse
Affiliation(s)
- Rob C. I. Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Bram F. Coolen
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Ntsiki M. Held
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Mariah R. R. Daal
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Vida Alizadeh Tazehkandi
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Luciënne Baks-te Bulte
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Marit Wiersma
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Diederik W. D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| |
Collapse
|
45
|
Lin Y, Chen C, Shih J, Cheng B, Chang C, Lin M, Ho C, Chen Z, Fisch S, Chang W. Dapagliflozin Improves Cardiac Hemodynamics and Mitigates Arrhythmogenesis in Mitral Regurgitation-Induced Myocardial Dysfunction. J Am Heart Assoc 2021; 10:e019274. [PMID: 33749310 PMCID: PMC8174384 DOI: 10.1161/jaha.120.019274] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Mitral regurgitation (MR) is a major contributor for heart failure (HF) and atrial fibrillation. Despite the advancement of MR surgeries, an effective medical therapy to mitigate MR progression is lacking. Sodium glucose cotransporter 2 inhibitors, a new class of antidiabetic drugs, has shown measurable benefits in reduction of HF hospitalization and cardiovascular mortality but the mechanism is unclear. We hypothesized that dapagliflozin (DAPA), a sodium glucose cotransporter 2 inhibitor, can improve cardiac hemodynamics in MR‐induced HF. Methods and Results Using a novel, mini‐invasive technique, we established a MR model in rats, in which MR induced left heart dilatation and functional decline. Half of the rats were randomized to be administered with DAPA at 10 mg/kg per day for 6 weeks. After evaluation of electrocardiography and echocardiography, hemodynamic studies were performed, followed by postmortem tissue analyses. Results showed that DAPA partially rescued MR‐induced impairment including partial restoration of left ventricular ejection fraction and end‐systolic pressure volume relationship. Despite no significant changes in electrocardiography at rest, rats treated with DAPA exhibited lower inducibility and decreased duration of pacing‐induced atrial fibrillation. DAPA also significantly attenuated cardiac fibrosis, cardiac expression of apoptosis, and endoplasmic reticulum stress‐associated proteins. Conclusions DAPA was able to suppress cardiac fibrosis and endoplasmic reticulum stress and improve hemodynamics in an MR‐induced HF rat model. The demonstrated DAPA effect on the heart and its association with key molecular contributors in eliciting its cardio‐protective function, provides a plausible point of DAPA as a potential strategy for MR‐induced HF.
Collapse
Affiliation(s)
- Yu‐Wen Lin
- Division of CardiologyDepartment of Internal MedicineChi‐Mei Medical CenterTainanTaiwan
| | - Chin‐Yu Chen
- Department of RadiologyChi‐Mei Medical CenterTainanTaiwan
| | - Jhih‐Yuan Shih
- Division of CardiologyDepartment of Internal MedicineChi‐Mei Medical CenterTainanTaiwan
| | - Bor‐Chih Cheng
- Division of Cardiovascular SurgeryChi‐Mei Medical CenterTainanTaiwan
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - Ching‐Ping Chang
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Mao‐Tsun Lin
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Chung‐Han Ho
- Department of Hospital and Health Care AdministrationChi‐Mei Medical CenterTainanTaiwan
| | - Zhih‐Cherng Chen
- Division of CardiologyDepartment of Internal MedicineChi‐Mei Medical CenterTainanTaiwan
| | - Sudeshna Fisch
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA
| | - Wei‐Ting Chang
- Division of CardiologyDepartment of Internal MedicineChi‐Mei Medical CenterTainanTaiwan
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
- Institute of Clinical MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
46
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
47
|
Pedret A, Catalán Ú, Rubió L, Baiges I, Herrero P, Piñol C, Rodríguez-Calvo R, Canela N, Fernández-Castillejo S, Motilva MJ, Solà R. Phosphoproteomic Analysis and Protein-Protein Interaction of Rat Aorta GJA1 and Rat Heart FKBP1A after Secoiridoid Consumption from Virgin Olive Oil: A Functional Proteomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1536-1554. [PMID: 33502189 DOI: 10.1021/acs.jafc.0c07164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein functional interactions could explain the biological response of secoiridoids (SECs), main phenolic compounds in virgin olive oil (VOO). The aim was to assess protein-protein interactions (PPIs) of the aorta gap junction alpha-1 (GJA1) and the heart peptidyl-prolyl cis-trans isomerase (FKBP1A), plus the phosphorylated heart proteome, to describe new molecular pathways in the cardiovascular system in rats using nanoliquid chromatography coupled with mass spectrometry. PPIs modified by SECs and associated with GJA1 in aorta rat tissue were calpain, TUBA1A, and HSPB1. Those associated with FKBP1A in rat heart tissue included SUCLG1, HSPE1, and TNNI3. In the heart, SECs modulated the phosphoproteome through the main canonical pathways PI3K/mTOR signaling (AKT1S1 and GAB2) and gap junction signaling (GAB2 and GJA1). PPIs associated with GJA1 and with FKBP1A, the phosphorylation of GAB2, and the dephosphorylation of GJA1 and AKT1S1 in rat tissues are promising protein targets promoting cardiovascular protection to explain the health benefits of VOO.
Collapse
Affiliation(s)
- Anna Pedret
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
| | - Laura Rubió
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, Lleida 25198, Spain
| | - Isabel Baiges
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Carme Piñol
- Department of Medicine, Universitat de Lleida, Lleida 25008, Catalonia, Spain
- Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré-IRBLLeida, Lleida 25198, Spain
| | - Ricardo Rodríguez-Calvo
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
- Research Unit on Lipids and Atherosclerosis, Vascular Medicine and Metabolism Unit, Universitat Rovira i Virgili, Reus 43204, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid 28029, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Sara Fernández-Castillejo
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño 26006, Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| |
Collapse
|
48
|
Ni H, Pan W, Jin Q, Xie Y, Zhang N, Chen K, Lin T, Lin C, Xie Y, Wu J, Ni P, Wu L. Label-free proteomic analysis of serum exosomes from paroxysmal atrial fibrillation patients. Clin Proteomics 2021; 18:1. [PMID: 33407078 PMCID: PMC7789314 DOI: 10.1186/s12014-020-09304-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Atrial fibrillation (AF) is the most common cardiac heterogeneous rhythm disorder. It represents a major cause of mortality and morbidity, mainly related to embolic events and heart failure. Mechanisms of AF are complex and remain incompletely understood. Recent evidence suggests exosomes are membrane-coated objects released by many cell-types. Their presence in body fluids and the variable surface composition and content render them attractive as a mechanism for potential biomarkers. However, the content of serum exosomes of AF patients has not been fully delineated. Methods In this work, the serum exosomes from AF patients and healthy donors were used to compare changes in the exosome protein content. Exosomes were isolated from serum of AF patients and healthy donors and their purity was confirmed by Western blotting assays and transmission electron microscopy (TEM). Label-free LC–MS/MS quantitative proteomic analysis was applied to analyze protein content of serum exosomes. Results A total of 440 exosomal protein groups were identified, differentially expressed proteins were filtrated with fold change ≥ 2.0 (AF/controls protein abundance ratio ≥ 2 or ≤ 0.5) and p value less than 0.05 (p < 0.05), significantly changed in abundance group contains 39 elevated proteins and 18 reduced proteins, while consistent presence/absence expression profile group contains 40 elevated proteins and 75 reduced proteins. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the anticoagulation, complement system and protein folding. Parallel-Reaction Monitoring Relative Quantitative Analysis (PRM) further suggested that AF related to complement system and protein folding. Conclusions These results revealed the composition and potential function of AF serum exosomes, thus providing a new perspective on the complement system and protein folding to AF.
Collapse
Affiliation(s)
- Hanwen Ni
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Wenqi Pan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Qi Jin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Yucai Xie
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Ning Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Kang Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Tianyou Lin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Changjian Lin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Yun Xie
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Jiemin Wu
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China
| | - Peihua Ni
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China.
| | - Liqun Wu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Rd, Huangpu District, Shanghai, 200025, China.
| |
Collapse
|
49
|
van Wijk SW, Ramos KS, Brundel BJJM. Cardioprotective Role of Heat Shock Proteins in Atrial Fibrillation: From Mechanism of Action to Therapeutic and Diagnostic Target. Int J Mol Sci 2021; 22:ijms22010442. [PMID: 33466228 PMCID: PMC7795054 DOI: 10.3390/ijms22010442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common age-related cardiac arrhythmia worldwide and is associated with ischemic stroke, heart failure, and substantial morbidity and mortality. Unfortunately, current AF therapy is only moderately effective and does not prevent AF progression from recurrent intermittent episodes (paroxysmal) to persistent and finally permanent AF. It has been recognized that AF persistence is related to the presence of electropathology. Electropathology is defined as structural damage, including degradation of sarcomere structures, in the atrial tissue which, in turn, impairs electrical conduction and subsequently the contractile function of atrial cardiomyocytes. Recent research findings indicate that derailed proteostasis underlies structural damage and, consequently, electrical conduction impairment. A healthy proteostasis is of vital importance for proper function of cells, including cardiomyocytes. Cells respond to a loss of proteostatic control by inducing a heat shock response (HSR), which results in heat shock protein (HSP) expression. Emerging clinical evidence indicates that AF-induced proteostasis derailment is rooted in exhaustion of HSPs. Cardiomyocytes lose defense against structural damage-inducing pathways, which drives progression of AF and induction of HSP expression. In particular, small HSPB1 conserves sarcomere structures by preventing their degradation by proteases, and overexpression of HSPB1 accelerates recovery from structural damage in experimental AF model systems. In this review, we provide an overview of the mechanisms of action of HSPs in preventing AF and discuss the therapeutic potential of HSP-inducing compounds in clinical AF, as well as the potential of HSPs as biomarkers to discriminate between the various stages of AF and recurrence of AF after treatment.
Collapse
Affiliation(s)
- Stan W. van Wijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.S.R.); (B.J.J.M.B.)
- Correspondence:
| | - Kennedy S. Ramos
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.S.R.); (B.J.J.M.B.)
- Erasmus Medical Center, Department of Cardiology, 3015 GD Rotterdam, The Netherlands
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.S.R.); (B.J.J.M.B.)
| |
Collapse
|
50
|
Kumar VK, Lackey A, Snyder J, Karhadkar S, Rao AD, DiCarlo A, Sato PY. Mitochondrial Membrane Intracellular Communication in Healthy and Diseased Myocardium. Front Cell Dev Biol 2020; 8:609241. [PMID: 33425917 PMCID: PMC7786191 DOI: 10.3389/fcell.2020.609241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research efforts in the twenty-first century have been paramount to the discovery and development of novel pharmacological treatments in a variety of diseases resulting in improved life expectancy. Yet, cardiac disease remains a leading cause of morbidity and mortality worldwide. Over time, there has been an expansion in conditions such as atrial fibrillation (AF) and heart failure (HF). Although past research has elucidated specific pathways that participate in the development of distinct cardiac pathologies, the exact mechanisms of action leading to disease remain to be fully characterized. Protein turnover and cellular bioenergetics are integral components of cardiac diseases, highlighting the importance of mitochondria and endoplasmic reticulum (ER) in driving cellular homeostasis. More specifically, the interactions between mitochondria and ER are crucial to calcium signaling, apoptosis induction, autophagy, and lipid biosynthesis. Here, we summarize mitochondrial and ER functions and physical interactions in healthy physiological states. We then transition to perturbations that occur in response to pathophysiological challenges and how this alters mitochondrial–ER and other intracellular organelle interactions. Finally, we discuss lifestyle interventions and innovative therapeutic targets that may be used to restore beneficial mitochondrial and ER interactions, thereby improving cardiac function.
Collapse
Affiliation(s)
- Vishnu K Kumar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Atreju Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sunil Karhadkar
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ajay D Rao
- Section of Endocrinology, Diabetes and Metabolism, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Antonio DiCarlo
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|