1
|
Kellum CE, Kelly GC, Pollock JS. Ripple Effects of Early Life Stress on Vascular Health. Hypertension 2025; 82:549-560. [PMID: 39882616 DOI: 10.1161/hypertensionaha.124.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The term early life stress encompasses traumatic events occurring before the age of 18 years, such as physical abuse, verbal abuse, household dysfunctions, sexual abuse, childhood neglect, child maltreatment, and adverse childhood experiences. Adverse psychological experiences in early life are linked to enduring effects on mental and physical health in adulthood. In this review, we first describe the effects and potential mechanisms of early life stress on the components of the vasculature. Next, we dive into the impact of early life stress on the vasculature across the lifespan through alterations of the epigenetic landscape. Finally, we consolidate the critical gaps in knowledge for focusing future research including the potential for resilience in combatting the impact of early life stress on vascular health.
Collapse
Affiliation(s)
- Cailin E Kellum
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Gillian C Kelly
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.)
| |
Collapse
|
2
|
Pernell B, Perumean-Chaney SE, Washington T, Deshane J, Epel E, Tita A, Baskin ML, Levitan EB. SCD and asthma comorbidity: the potential role of adverse childhood experiences. JOURNAL OF SICKLE CELL DISEASE 2025; 2:yoaf007. [PMID: 40235828 PMCID: PMC11999690 DOI: 10.1093/jscdis/yoaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Objectives Asthma is strongly associated with poor health amongst individuals with SCD. Adverse Childhood Experiences (ACEs) are traumatic experiences occurring before 18 years of age. ACEs occur at the individual and familial (original ACEs) levels and expand to the community level (additional ACEs). Chronic exposure to ACEs leads to toxic stress, inflammation, and risk for chronic illnesses, including asthma. This study examined the relationship between ACEs and asthma among children and adolescents with SCD. Methods Employing a cross-sectional study design, 75 children/adolescents with SCD were screened for ACEs. Prevalence ratios and logistic regressions were used to test the association and independent relationship between ACEs and asthma. Results Fifty-nine (78%) participants reported exposure to at least 1 ACE. Adolescents exposed to ≥2 original- or ≥4 expanded ACEs (original + additional) were 1.15 times as likely to have asthma compared to those with no/low ACEs (95% CI: 1.03, 1.28, P = .01; 1.07, 1.24, P ≤ .001). Through logistic regression analyses, covarying age, sex, SCD genotype, income, and disease-modifying therapy, original (OR 1.52, 95% CI: 1.031, 2.242), additional (2.43, 95% CI: 1.335, 4.421), and expanded ACEs (1.529, 95% CI: 1.149, 2.036) were all shown to be independently associated with asthma. Conclusion The findings from this research support our hypothesis that children/adolescents with SCD exposed to a higher number of ACEs have a higher prevalence of asthma compared to low-exposed subjects. This study lays the foundation for future longitudinal and interventional studies aimed to improve SCD-asthma outcomes through ACE-protective mechanisms.
Collapse
Affiliation(s)
- Brandi Pernell
- Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | | | - Teneasha Washington
- School of Public Health, University of Alabama, Birmingham, AL 35294, United States
| | - Jessy Deshane
- Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Elissa Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94107, United States
| | - Alan Tita
- Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Monica L. Baskin
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Emily B. Levitan
- School of Public Health, University of Alabama, Birmingham, AL 35294, United States
| |
Collapse
|
3
|
Allan JM, Fox BM, Kasztan M, Kelly GC, Molina PA, King MA, Colson J, Wells L, Bowman L, Blackburn M, Kutlar A, Harris RA, Pollock DM, Pollock JS. Enhanced vasoconstriction in sickle cell disease is dependent on ETA receptor activation. Clin Sci (Lond) 2024; 138:1505-1520. [PMID: 39526571 DOI: 10.1042/cs20240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Sickle cell disease (SCD) carries a significant risk for poor vascular health and vascular dysfunction. High levels of vascular reactive oxygen species (ROS) as well as elevated plasma endothelin-1 (ET-1), a potent vasoconstrictor with actions via the ETA receptor, are both common phenotypes in SCD. Alpha-1 adrenergic receptor activation is a major mediator of stress-induced vasoconstriction. However, the mechanism of the SCD enhanced vasoconstrictive response is unknown. We hypothesized that SCD induces enhanced alpha-1 adrenergic mediated vasoconstriction through the ET-1/ETA receptor pathway in arterial tissues. Utilizing humanized SCD (HbSS) and genetic control (HbAA) mice, alpha-1a, but not alpha-1b or alpha-1d, receptor expression was significantly greater in aortic tissue from HbSS mice compared to HbAA mice. Significantly enhanced vasoconstriction in aortic and carotid arterial segments were observed from HbSS mice compared with HbAA mice. Treatment with ambrisentan, a selective ETA receptor antagonist, and a ROS scavenger normalized the aortic vasoconstrictive response in HbSS mice. In a randomized translational study, patients with SCD were treated with placebo or ambrisentan for 3 months, with the treatment group showing an increase in the percent brachial arterial diameter. Taken together, these data suggest that the ETA receptor pathway interaction with the adrenergic receptor pathway contributes to enhanced aortic vasoconstriction in SCD. Findings indicate the potential of ETA antagonism as a therapeutic avenue for improving vascular health in SCD.
Collapse
Affiliation(s)
- John Miller Allan
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Brandon M Fox
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Malgorzata Kasztan
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Gillian C Kelly
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Patrick A Molina
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - McKenzi A King
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Jackson Colson
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Leigh Wells
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Latanya Bowman
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Marsha Blackburn
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Abdullah Kutlar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Ryan A Harris
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - David M Pollock
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Jennifer S Pollock
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| |
Collapse
|
4
|
Chen L, Xu J, Liu J, Jiang Y. Pathophysiological dynamics of acute myocardial infarction rats under chronic psychological stress at different time points. Sci Rep 2024; 14:23062. [PMID: 39367049 PMCID: PMC11452557 DOI: 10.1038/s41598-024-73590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
There is a lack of in-depth research on the impacts and changes in chronic psychological stress (CPS) on the cardiovascular system after acute myocardial infarction (AMI). This study aims to explore the comorbid mechanism and dynamic evolution of AMI exposed to CPS. 120 Wistar rats were randomly divided into Sham Operation group, Sham Operation + Chronic Unpredictable Mild Stress (CUMS) group, AMI group and AMI + CUMS group, with each group further divided into subgroups at days 7, 14, and 28. The AMI model was created by ligating the left anterior descending coronary artery, and CUMS model was used to induce CPS in rats. Behavioral changes were assessed through open field tests and sucrose preference tests. Cardiac function and structure were evaluated via echocardiography. The serum levels of TNFα, IL-6, NO, ET, CK-MB, cTNT, and ANP were measured using assay kits. Pathological changes in cardiac and brain tissues were observed under an optical microscope. Comparative analysis across different models revealed that CUMS significantly reduced behavioral activities in rats, with an interaction between CUMS and AMI affecting total distance (P < 0.05). Both CUMS and AMI significantly reduced cardiac function indicators, with their interaction effects on LVEF, LVFS, and CO (P < 0.05). AMI significantly altered cardiac structural parameters, particularly on day 28 (P < 0.05); while the impact of CUMS on cardiac structure was not significant, except for a notable reduction in LVAW/s on day 7 in AMI + CUMS group (P < 0.05). AMI caused significant changes in the serum biomarkers, while CUMS only significantly increased cTnT on day 7, ANP, TNFα, and IL-6 on day 14, and CK-MB on day 28, with their interaction effects on the three myocardial injury markers and TNFα (P < 0.05). Comparative analysis across different time points demonstrated that behavioral activity, cardiac function, CK-MB, cTnT, ANP, TNFα, and ET levels decreased significantly over time in the AMI model rats, while the left ventricular mass increased significantly (P < 0.05). Pathologically, compared with stress or AMI alone, the AMI + CUMS group exhibited more severe myocardia cellular degeneration and inflammatory infiltration, causing larger infract areas in myocardial tissue, as well as cell number decreases and morphological changes in hippocampal tissue. AMI with CPS exacerbates myocardial injury through sustained inflammation and endothelial dysfunction, leading to heart-brain pathology manifestations characterized by decreased cardiac function and hippocampal tissue damage.
Collapse
Affiliation(s)
- Luying Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiawei Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xi'an Children's Hospital, Xi'an, China
| | - Jiangang Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuerong Jiang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Tan H, Zhou H, Chen J, Ren H, Guo Y, Jiang X. Association of early life adversity with cardiovascular disease and its potential mechanisms: a narrative review. Front Public Health 2024; 12:1341266. [PMID: 38362223 PMCID: PMC10867864 DOI: 10.3389/fpubh.2024.1341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Strong epidemiological evidence has shown that early life adversity (ELA) has a profound negative impact on health in adulthood, including an increased risk of cardiovascular disease, the leading cause of death worldwide. Here, we review cohort studies on the effects of ELA on cardiovascular outcomes and the possible underlying mechanisms. In addition, we summarize relevant studies in rodent models of ELA. This review reveals that the prevalence of ELA varies between regions, time periods, and sexes. ELA increases cardiovascular health risk behaviors, susceptibility to mental illnesses, and neuroendocrine and immune system dysfunction in humans. Rodent models of ELA have been developed and show similar cardiovascular outcomes to those in humans but cannot fully replicate all ELA subtypes. Therefore, combining cohort and rodent studies to further investigate the mechanisms underlying the association between ELA and cardiovascular diseases may be a feasible future research strategy.
Collapse
Affiliation(s)
- Huiying Tan
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Huiting Zhou
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Jingmei Chen
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Huixia Ren
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yi Guo
- Department of Neurology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xin Jiang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Mouchtouri ET, Konstantinou T, Lekkas P, Lianopoulou A, Kotsaridou Z, Mourouzis I, Pantos C, Kolettis TM. Endothelin Modulates Rhythm Disturbances and Autonomic Responses to Acute Emotional Stress in Rats. BIOLOGY 2023; 12:1401. [PMID: 37998000 PMCID: PMC10669295 DOI: 10.3390/biology12111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The ubiquitous peptide endothelin is currently under investigation as a modulatory factor of autonomic responses to acute emotional stress. Baseline plasma levels of endothelin alter blood pressure responses, but it remains unclear whether autonomic activity and arrhythmogenesis (i.e., brady- or tachyarrhythmias) are affected. We recorded sympathetic and vagal indices (derived from heart rate variability analysis), rhythm disturbances, voluntary motion, and systolic blood pressure after acute emotional stress in conscious rats with implanted telemetry devices. Two strains were compared, namely wild-type and ETB-deficient rats, the latter displaying elevated plasma endothelin. No differences in heart rate or blood pressure were evident, but sympathetic responses were blunted in ETB-deficient rats, contrasting prompt activation in wild-type rats. Vagal withdrawal was observed in both strains at the onset of stress, but vagal activity was subsequently restored in ETB-deficient rats, accompanied by low voluntary motion during recovery. Reflecting such distinct autonomic patterns, frequent premature ventricular contractions were recorded in wild-type rats, as opposed to sinus pauses in ETB-deficient rats. Thus, chronically elevated plasma endothelin levels blunt autonomic responses to acute emotional stress, resulting in vagal dominance and bradyarrhythmias. Our study provides further insights into the pathophysiology of stress-induced tachyarrhythmias and syncope.
Collapse
Affiliation(s)
- Eleni-Taxiarchia Mouchtouri
- Department of Cardiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (E.-T.M.); (T.K.)
- Cardiovascular Research Institute, 45500 Ioannina, Greece;
| | - Thomas Konstantinou
- Department of Cardiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (E.-T.M.); (T.K.)
- Cardiovascular Research Institute, 45500 Ioannina, Greece;
| | | | - Alexandra Lianopoulou
- School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece; (A.L.); (Z.K.)
| | - Zoi Kotsaridou
- School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece; (A.L.); (Z.K.)
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.M.); (C.P.)
| | - Constantinos Pantos
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.M.); (C.P.)
| | - Theofilos M. Kolettis
- Department of Cardiology, Medical School, University of Ioannina, 45500 Ioannina, Greece; (E.-T.M.); (T.K.)
- Cardiovascular Research Institute, 45500 Ioannina, Greece;
| |
Collapse
|
7
|
Rogers EM, Banks NF, Tomko PM, Sciarrillo CM, Emerson SR, Thomas EBK, Taylor A, Teague TK, Jenkins NDM. Progressive exercise training improves cardiovascular psychophysiological outcomes in young adult women with a history of adverse childhood experiences. J Appl Physiol (1985) 2023; 134:742-752. [PMID: 36727632 PMCID: PMC10027078 DOI: 10.1152/japplphysiol.00524.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Adverse childhood experiences (ACEs) are early-life psychosocial stressors that are associated with poorer mental health and increased cardiovascular disease (CVD) risk in a dose-dependent manner. We examined the feasibility of an 8-wk combined aerobic and resistance exercise training program to improve systolic (SBP) and diastolic blood pressure (DBP), serum endothelin-1 (ET-1), resilience, hope agency, and hope pathways in young women with ACEs. Forty-two healthy women (21 ± 3 yr) with ≥4 (ACE+; n = 28) or 0 ACEs (ACE-; n = 14) participated in this study. Women with ACEs were randomly assigned to an exercise (ACE+EXT; n = 14) or nonexercise control (ACE+CON; n = 14) group, whereas all ACE- participants were assigned to a nonexercise control (n = 14) group. Hope agency and DBP did not change in any group (P ≥ 0.43), but hope pathways improved only in ACE+EXT (means ± SE change; +1.6 ± 0.74 au, P = 0.032, Hedges' g = 0.53). ET-1 decreased in ACE+EXT only (-0.31 ± 0.15 pg/mL, P = 0.043, g = 0.46). Although the interactions for resilience and SBP did not reach significance (P = 0.05-0.06), forced post hoc analyses indicated that resilience improved (+4.9 ± 1.9 au, P = 0.012, g = 0.64) and SBP tended to improve (-4.0 ± 2.0 mmHg, P = 0.053, g = 0.51) in ACE+EXT only. There were significant associations between changes in hope pathways and SBP (ρ = -0.43, P = 0.023) and ET-1 (ρ = -0.53, P = 0.005), and between changes in SBP and ET-1 (ρ = 0.49; P = 0.012) in the ACE+ group. In summary, structured exercise training reduces serum ET-1 levels, improves positive psychological coping, and may improve SBP in young women with ACEs. The relationships among the changes in hope pathways, SBP, and ET-1 suggest a cardiovascular psychophysiological relationship in young women with ACEs.NEW & NOTEWORTHY This randomized controlled pilot trial shows, for the first time, that 8 wk of structured, progressive exercise training lowers serum endothelin-1 (ET-1) and improves positive psychological coping in young women with significant early-life psychosocial stress. Furthermore, the observed associations among changes in psychological attributes, ET-1, and systolic blood pressure signify a potential interplay between positive psychology and cardiovascular disease risk among women with adverse childhood experiences.
Collapse
Affiliation(s)
- Emily M Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Nile F Banks
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Patrick M Tomko
- School of Health Sciences, Kent State University, Kent, Ohio, United States
| | | | - Sam R Emerson
- Laboratory of Applied Nutrition and Exercise Science, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Emily B K Thomas
- Department of Psychology and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Ashlee Taylor
- Integrative Immunology Center, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma, United States
| | - T Kent Teague
- Integrative Immunology Center, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma, United States
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma, United States
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma, United States
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Science, Tulsa, Oklahoma, United States
| | - Nathaniel D M Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, Iowa, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
8
|
Felli E, Nulan Y, Selicean S, Wang C, Gracia-Sancho J, Bosch J. Emerging Therapeutic Targets for Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2023; 22:51-66. [PMID: 36908849 PMCID: PMC9988810 DOI: 10.1007/s11901-023-00598-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/13/2023]
Abstract
Purpose of Review Portal hypertension is responsible of the main complications of cirrhosis, which carries a high mortality. Recent treatments have improved prognosis, but this is still far from ideal. This paper reviews new potential therapeutic targets unveiled by advances of key pathophysiologic processes. Recent Findings Recent research highlighted the importance of suppressing etiologic factors and a safe lifestyle and outlined new mechanisms modulating portal pressure. These include intrahepatic abnormalities linked to inflammation, fibrogenesis, vascular occlusion, parenchymal extinction, and angiogenesis; impaired regeneration; increased hepatic vascular tone due to sinusoidal endothelial dysfunction with insufficient NO availability; and paracrine liver cell crosstalk. Moreover, pathways such as the gut-liver axis modulate splanchnic vasodilatation and systemic inflammation, exacerbate liver fibrosis, and are being targeted by therapy. We have summarized studies of new agents addressing these targets. Summary New agents, alone or in combination, allow acting in complementary mechanisms offering a more profound effect on portal hypertension while simultaneously limiting disease progression and favoring regression of fibrosis and of cirrhosis. Major changes in treatment paradigms are anticipated.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Yelidousi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
- Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, 08036 Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
9
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
10
|
Endothelin System and Ischemia-Induced Ventricular Tachyarrhythmias. Life (Basel) 2022; 12:life12101627. [PMID: 36295062 PMCID: PMC9605000 DOI: 10.3390/life12101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the contemporary treatment of acute coronary syndromes, arrhythmic complications occurring prior to medical attendance remain significant, mandating in-depth understanding of the underlying mechanisms. Sympathetic activation has long been known to play a key role in the pathophysiology of ischemia-induced arrhythmias, but the regulating factors remain under investigation. Several lines of evidence implicate the endothelin system (a family of three isopeptides and two specific receptors) as an important modulator of sympathetic activation in the setting of acute coronary syndromes. Such interaction is present in the heart and in the adrenal medulla, whereas less is known on the effects of the endothelin system on the central autonomic network. This article summarizes the current state-of-the-art, placing emphasis on early-phase arrhythmogenesis, and highlights potential areas of future research.
Collapse
|
11
|
Derella CC, Blanks AM, Wang X, Tucker MA, Horsager C, Jeong JH, Rodriguez-Miguelez P, Looney J, Thomas J, Pollock DM, Harris RA. Endothelin receptor blockade blunts the pressor response to acute stress in men and women with obesity. J Appl Physiol (1985) 2022; 132:73-83. [PMID: 34762528 PMCID: PMC8742738 DOI: 10.1152/japplphysiol.00156.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Obesity is associated with dysregulation of the endothelin system. In individuals with obesity, an exaggerated pressor response to acute stress is accompanied by increased circulating endothelin-1 (ET-1). The impact of combined endothelin A/B receptor (ETA/B) antagonism on the stress-induced pressor response in overweight/obese (OB) individuals is unknown. The objective of this study is to test the hypothesis that treatment with an ETA/B antagonist (bosentan) would reduce the stress-induced pressor response and arterial stiffness in overweight/obese compared with normal weight (NW) individuals. Forty participants [normal weight (NW): n = 20, body mass index (BMI): 21.7 ± 2.4 kg/m2 and overweight/obese (OB): n = 20, BMI: 33.8 ± 8.2 kg/m2] were randomized to placebo or 125 mg of bosentan twice a day (250 mg total) for 3 days. Hemodynamics were assessed before, during, and after a cold pressor test (CPT). Endothelin-1 was assessed at baseline and immediately after CPT. Following a washout period, the same protocol was repeated with the opposite treatment. The change from baseline in mean arterial pressure (MAP) during CPT following bosentan was significantly lower (P = 0.039) in the OB group than in the NW group (OB: 28 ± 12 vs. NW: 34 ± 15 mmHg). These results suggest that ETA/B antagonism favorably blunts the pressor response to acute stress in overweight/obese individuals.NEW & NOTEWORTHY Findings from our current translational investigation demonstrate that dual endothelin A/B receptor antagonism blunts the pressor response to acute stress in overweight/obese individuals. These results suggest that modulation of the endothelin system may represent a novel therapeutic target to reduce cardiovascular disease (CVD) risk by blunting the stress response in overweight/obese individuals.
Collapse
Affiliation(s)
- Cassandra C. Derella
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Anson M. Blanks
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Xiaoling Wang
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Matthew A. Tucker
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Chase Horsager
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Jin Hee Jeong
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Paula Rodriguez-Miguelez
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia,2Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Jacob Looney
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - Jeffrey Thomas
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia
| | - David M. Pollock
- 3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ryan A. Harris
- 1Department of Medicine, Georgia Prevention Institute, Augusta University, Augusta, Georgia,4Sport and Exercise Science Research Institute, Ulster University, Jordanstown, United Kingdom
| |
Collapse
|
12
|
Hinterdobler J, Schunkert H, Kessler T, Sager HB. Impact of Acute and Chronic Psychosocial Stress on Vascular Inflammation. Antioxid Redox Signal 2021; 35:1531-1550. [PMID: 34293932 PMCID: PMC8713271 DOI: 10.1089/ars.2021.0153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Significance: Atherosclerosis and its complications, such as acute coronary syndromes, are the leading causes of death worldwide. A wide range of inflammatory processes substantially contribute to the initiation and progression of cardiovascular disease (CVD). In addition, epidemiological studies strongly associate both chronic stress and acute psychosocial stress with the occurrence of CVDs. Recent Advances: Extensive research during recent decades has not only identified major pathways in cardiovascular inflammation but also revealed a link between psychosocial factors and the immune system in the context of atherosclerosis. Both chronic and acute psychosocial stress drive systemic inflammation via neuroimmune interactions and promote atherosclerosis progression. Critical Issues: The associations human epidemiological studies found between psychosocial stress and cardiovascular inflammation have been substantiated by additional experimental studies in mice and humans. However, we do not yet fully understand the mechanisms through which psychosocial stress drives cardiovascular inflammation; consequently, specific treatment, although urgently needed, is lacking. Future Directions: Psychosocial factors are increasingly acknowledged as risk factors for CVD and are currently treated via behavioral interventions. Additional mechanistic insights might provide novel pharmacological treatment options to reduce stress-related morbidity and mortality. Antioxid. Redox Signal. 35, 1531-1550.
Collapse
Affiliation(s)
- Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
13
|
Sfera A, Osorio C, Rahman L, Zapata-Martín del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021; 15:770387. [PMID: 34776871 PMCID: PMC8586713 DOI: 10.3389/fncel.2021.770387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 virus, the etiologic agent of COVID-19, has affected almost every aspect of human life, precipitating stress-related pathology in vulnerable individuals. As the prevalence rate of posttraumatic stress disorder in pandemic survivors exceeds that of the general and special populations, the virus may predispose to this disorder by directly interfering with the stress-processing pathways. The SARS-CoV-2 interactome has identified several antigens that may disrupt the blood-brain-barrier by inducing premature senescence in many cell types, including the cerebral endothelial cells. This enables the stress molecules, including angiotensin II, endothelin-1 and plasminogen activator inhibitor 1, to aberrantly activate the amygdala, hippocampus, and medial prefrontal cortex, increasing the vulnerability to stress related disorders. This is supported by observing the beneficial effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in both posttraumatic stress disorder and SARS-CoV-2 critical illness. In this narrative review, we take a closer look at the virus-host dialog and its impact on the renin-angiotensin system, mitochondrial fitness, and brain-derived neurotrophic factor. We discuss the role of furin cleaving site, the fibrinolytic system, and Sigma-1 receptor in the pathogenesis of psychological trauma. In other words, learning from the virus, clarify the molecular underpinnings of stress related disorders, and design better therapies for these conditions. In this context, we emphasize new potential treatments, including furin and bromodomains inhibitors.
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rahman
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Jose Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
14
|
Pati P, Valcin JA, Zhang D, Neder TH, Millender-Swain T, Allan JM, Sedaka R, Jin C, Becker BK, Pollock DM, Bailey SM, Pollock JS. Liver circadian clock disruption alters perivascular adipose tissue gene expression and aortic function in mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R960-R971. [PMID: 33881363 PMCID: PMC8285618 DOI: 10.1152/ajpregu.00128.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The liver plays a central role that influences cardiovascular disease outcomes through regulation of glucose and lipid metabolism. It is recognized that the local liver molecular clock regulates some liver-derived metabolites. However, it is unknown whether the liver clock may impact cardiovascular function. Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue surrounding blood vessels. Importantly, cross talk between the endothelium and PVAT via vasoactive factors is critical for vascular function. Therefore, we designed studies to test the hypothesis that cardiovascular function, including PVAT function, is impaired in mice with liver-specific circadian clock disruption. Bmal1 is a core circadian clock gene, thus studies were undertaken in male hepatocyte-specific Bmal1 knockout (HBK) mice and littermate controls (i.e., flox mice). HBK mice showed significantly elevated plasma levels of β-hydroxybutyrate, nonesterified fatty acids/free fatty acids, triglycerides, and insulin-like growth factor 1 compared with flox mice. Thoracic aorta PVAT in HBK mice had increased mRNA expression of several key regulatory and metabolic genes, Ppargc1a, Pparg, Adipoq, Lpl, and Ucp1, suggesting altered PVAT energy metabolism and thermogenesis. Sensitivity to acetylcholine-induced vasorelaxation was significantly decreased in the aortae of HBK mice with PVAT attached compared with aortae of HBK mice with PVAT removed, however, aortic vasorelaxation in flox mice showed no differences with or without attached PVAT. HBK mice had a significantly lower systolic blood pressure during the inactive period of the day. These new findings establish a novel role of the liver circadian clock in regulating PVAT metabolic gene expression and PVAT-mediated aortic vascular function.
Collapse
Affiliation(s)
- Paramita Pati
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dingguo Zhang
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas H Neder
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Telisha Millender-Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - John Miller Allan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee Sedaka
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Jenkins HN, Rivera-Gonzalez O, Gibert Y, Speed JS. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes Rev 2020; 21:e13086. [PMID: 32627269 PMCID: PMC7669671 DOI: 10.1111/obr.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 12/29/2022]
Abstract
The association between plasma endothelin-1 (ET-1) and obesity has been documented for decades, yet the contribution of ET-1 to risk factors associated with obesity is not fully understood. In 1994, one of first papers to document this association also noted a positive correlation between plasma insulin and ET-1, suggesting a potential contribution of ET-1 to the development of insulin resistance. Both endogenous receptors for ET-1, ETA and ETB are present in all insulin-sensitive tissues including adipose, liver and muscle, and ET-1 actions within these tissues suggest that ET-1 may be playing a role in the pathogenesis of insulin resistance. Further, antagonists for ET-1 receptors are clinically approved making these sites attractive therapeutic targets. This review focuses on known mechanisms through which ET-1 affects plasma lipid profiles and insulin signalling in these metabolically important tissues and also identifies gaps in our understanding of ET-1 in obesity-related pathophysiology.
Collapse
Affiliation(s)
- Haley N. Jenkins
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39047
| | - Osvaldo Rivera-Gonzalez
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39047
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39047
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39047
| |
Collapse
|
16
|
Sher LD, Geddie H, Olivier L, Cairns M, Truter N, Beselaar L, Essop MF. Chronic stress and endothelial dysfunction: mechanisms, experimental challenges, and the way ahead. Am J Physiol Heart Circ Physiol 2020; 319:H488-H506. [PMID: 32618516 DOI: 10.1152/ajpheart.00244.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although chronic stress is an important risk factor for cardiovascular diseases (CVD) onset, the underlying mechanisms driving such pathophysiological complications remain relatively unknown. Here, dysregulation of innate stress response systems and the effects of downstream mediators are strongly implicated, with the vascular endothelium emerging as a primary target of excessive glucocorticoid and catecholamine action. Therefore, this review article explores the development of stress-related endothelial dysfunction by focusing on the following: 1) assessing the phenomenon of stress and complexities surrounding this notion, 2) discussing mechanistic links between chronic stress and endothelial dysfunction, and 3) evaluating the utility of various preclinical models currently employed to study mechanisms underlying the onset of stress-mediated complications such as endothelial dysfunction. The data reveal that preclinical models play an important role in our efforts to gain an increased understanding of mechanisms underlying stress-mediated endothelial dysfunction. It is our understanding that this provides a good foundation going forward, and we propose that further efforts should be made to 1) more clearly define the concept of stress and 2) standardize protocols of animal models with specific guidelines to better indicate the mental complications that are simulated.
Collapse
Affiliation(s)
- Lucien Derek Sher
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Hannah Geddie
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lukas Olivier
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nina Truter
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Leandrie Beselaar
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Greaney JL, Surachman A, Saunders EFH, Alexander LM, Almeida DM. Greater Daily Psychosocial Stress Exposure is Associated With Increased Norepinephrine-Induced Vasoconstriction in Young Adults. J Am Heart Assoc 2020; 9:e015697. [PMID: 32340506 PMCID: PMC7428556 DOI: 10.1161/jaha.119.015697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Epidemiological data suggest a link between psychological stress and increased cardiovascular disease risk; however, the underlying mechanisms remain incompletely understood. The purpose of this investigation was to directly examine the influence of daily psychosocial stress on microvascular adrenergic vasoconstrictor responsiveness in healthy adults. We hypothesized increased daily psychosocial stress would be positively related to increased norepinephrine-induced vasoconstriction. Methods and Results Eighteen healthy adults (19-36 years; 10 women) completed a daily psychosocial experiences telephone interview for 8 consecutive evenings in order to document their exposure and emotional responsiveness to common stressors (eg, arguments, work stress) over the preceding 24 hrs. On the last interview day, red cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of norepinephrine (10-12 to 10-2 mol/L) and expressed as a percentage of baseline vascular conductance. Exogenous norepinephrine elicited progressive and robust vasoconstriction in all individuals (maximal vasoconstriction: 71±4%base; cumulative vasoconstriction [area under the curve]: 118±102 arbitrary units). Participants experienced a stressor on 51±5% of days and a total of 5.2±0.9 stressors over the 8-day time frame. Increased daily frequency of stressor exposure was positively related to both maximal (R2=0.26; P=0.03) and cumulative (R2=0.31; P=0.02) vasoconstrictor responsiveness. Likewise, the total number of stressors was associated with increased maximal (R2=0.40; P<0.01) and cumulative (R2=0.27; P=0.03) norepinephrine-induced vasoconstriction. Neither stressor severity nor stress-related emotions were related to vasoconstrictor responsiveness. Conclusions Collectively, these data suggest that daily psychosocial stressor exposure by itself is sufficient to adversely influence microvascular vasoconstrictor function, regardless of the perceived severity or emotional consequences of the stressor exposure.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory Department of Kinesiology The Pennsylvania State University University Park PA.,Department of Kinesiology The University of Texas at Arlington Arlington TX
| | - Agus Surachman
- Department of Human Development and Family Studies The Pennsylvania State University University Park PA.,Center for Healthy Aging The Pennsylvania State University University Park PA
| | | | - Lacy M Alexander
- Noll Laboratory Department of Kinesiology The Pennsylvania State University University Park PA.,Center for Healthy Aging The Pennsylvania State University University Park PA
| | - David M Almeida
- Department of Human Development and Family Studies The Pennsylvania State University University Park PA.,Center for Healthy Aging The Pennsylvania State University University Park PA
| |
Collapse
|
18
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
19
|
Jenkins HN, Williams LJ, Dungey A, Vick KD, Grayson BE, Speed JS. Elevated plasma endothelin-1 is associated with reduced weight loss post vertical sleeve gastrectomy. Surg Obes Relat Dis 2019; 15:1044-1050. [PMID: 31147283 DOI: 10.1016/j.soard.2019.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity and insulin resistance are positively correlated with plasma endothelin-1 (ET-1) levels; however, the mechanisms leading to increased ET-1 are not understood. Similarly, the full physiological complexity of ET-1 has yet to be described, especially in obesity. To date, one of the best treatments available for morbid obesity is bariatric surgery to quickly reduce body fat and the factors associated with obesity-related disease; however, the effects of vertical sleeve gastrectomy (SG) on plasma ET-1 have not been described. OBJECTIVES To determine if SG will reduce plasma ET-1 levels and to determine if plasma ET-1 concentration is associated with weight loss after surgery. SETTING The studies were undertaken at a University Hospital. METHODS This was tested by measuring plasma ET-1 levels from 12 obese patients before and after SG. All data were collected from clinic visits before SG, 6 weeks after SG, and 6 months after surgery. RESULTS At 6 weeks after SG, plasma ET-1 levels increased by 24%; however, after 6 months, there was a 27% decrease compared with presurgery. Average weight loss in this cohort was 11.3% ± 2.4% body weight after 6 weeks and 21.4% ± 5.7% body weight after 6 months. Interestingly, we observed an inverse relationship between baseline plasma ET-1 and percent body weight loss (R2 = .49, P = .01) and change in body mass index 6 months (R2 = .45, P = .011) post bariatric surgery. CONCLUSIONS Our results indicate that SG reduces plasma ET-1 levels, a possible mechanism for improved metabolic risk in these patients. These data also suggest that ET-1 may serve as a predictor of weight loss after bariatric surgery.
Collapse
Affiliation(s)
- Haley N Jenkins
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - London J Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Dungey
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kenneth D Vick
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
20
|
Hong XY, Hong X, Gu WW, Lin J, Yin WT. Cardioprotection and improvement in endothelial-dependent vasodilation during late-phase of whole body hypoxic preconditioning in spontaneously hypertensive rats via VEGF and endothelin-1. Eur J Pharmacol 2018; 842:79-88. [PMID: 30401629 DOI: 10.1016/j.ejphar.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The present study was designed to investigate the effect of late phase of whole body hypoxic preconditioning on endothelial-dependent vasorelaxation and cardioprotection from ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Hypoxic preconditioning was performed by subjecting rats to four episodes of alternate exposure to low O2 (8%) and normal air O2 of 10 min each. After 24 h, the mesenteric arteries and hearts were isolated to determine the vascular function and cardioprotection from ischemia-reperfusion (I/R) injury on the Langendorff apparatus. There was a significant impairment in acetylcholine-induced relaxation in norepinephrine precontracted arteries (endothelium-dependent function) and increase in I/R-induced myocardial injury in SHR in comparison to Wistar Kyoto rats (WKY). However, hypoxic preconditioning significantly restored endothelium-dependent relaxation in SHR and attenuated I/R injury in both SHR and WKY. Hypoxic preconditioning also led to an increase in the levels of endothelin-1 (not endothelin-2 or -3), vascular endothelial growth factor-A (VEGF-A) and HIF-1α levels. Pretreatment with bevacizumab (anti-VEGF-A) and bosentan (endothelin receptor blocker) significantly attenuated hypoxic preconditioning-induced restoration of endothelium-dependent relaxation and cardioprotection from I/R injury. These interventions also attenuated the levels of VEGF-A and HIF-1α without modulating the endothelin-1 levels. It may be concluded that an increase in the endothelin-1 levels with a subsequent increase in HIF-1α and VEGF expression may possibly contribute in improving endothelium-dependent vasorelaxation and protecting hearts from I/R injury in SHR during late phase of whole body hypoxic preconditioning.
Collapse
Affiliation(s)
- Xing-Yu Hong
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Xin Hong
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Wei-Wei Gu
- Department of Hepatopancreatobility Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Jie Lin
- Department of Vascular Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| | - Wei-Tian Yin
- Department of Hand Surgery, China-Japan Union Hospital of JiLin University, ChangChun 130031, China.
| |
Collapse
|
21
|
Zhang M, Gu WW, Hong XY. Involvement of Endothelin 1 in Remote Preconditioning-Induced Cardioprotection through connexin 43 and Akt/GSK-3β Signaling Pathway. Sci Rep 2018; 8:10941. [PMID: 30026513 PMCID: PMC6053397 DOI: 10.1038/s41598-018-29196-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
The present study was aimed to explore the role of endothelins in remote preconditioning (RP)-induced myocardial protection in ischemia-reperfusion (IR) injury. RP stimulus was given by subjecting hind limb to four cycles of ischemia and reperfuion (5 minutes each) using blood pressure cuff in male rats. Following RP, hearts were isolated and subjected to 30 minutes of ischemia and 120 minutes of reperfusion on Langendorff apparatus. The extent of myocardial injury was determined by measuring the levels of LDH-1, CK-MB and cardiac troponin T (cTnT) in coronary effluent; caspase-3 activity and Bcl 2 expression in heart (apoptosis); infarct size by triphenyl tetrazolium chloride and contractility parameters including left ventricular developed pressure, dp/dtmax dp/dtmin and heart rate. RP reduced ischemia reperfusion-induced myocardial injury, increased the levels of endothelin 1 (in blood), Akt-P, GSK-3β-P and P-connexin 43 (in hearts). Pretreatment with ETA receptor antagonist, BQ 123 (1 and 2 mg/kg), ETB receptor antagonist, BQ 788 (1 and 3 mg/kg) and dual inhibitor of ETA and ETB receptor, bonsentan (25 and 50 mg/kg) abolished these effects of RP. However, the effects of bonsentan were more pronounced in comparison to BQ 123 and BQ 788. It is concluded that RP stimulus may release endothelin 1 in the blood, which may activate myocardial ETA and ETB receptors to trigger cardioprotection through connexin 43 and Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Min Zhang
- Hepatobiliary pancreatic surgery, China-Japan Union Hospital of Jilin University, 126 XianTaiStreet, Changchun, 130033, China
| | - Wei Wei Gu
- Hepatobiliary pancreatic surgery, China-Japan Union Hospital of Jilin University, 126 XianTaiStreet, Changchun, 130033, China
| | - Xing Yu Hong
- Vascular surgery, China-Japan Union Hospital of Jilin University, 126 XianTai Street, Changchun, 130033, China.
| |
Collapse
|