1
|
de Paiva Silvino JP, Jannes CE, Pestana RMC, de Paiva Silvino LP, Silva IDFO, Gomes KB. New cardiovascular disease markers in patients with familial hypercholesterolemia carriers of genetic variants. J Diabetes Metab Disord 2025; 24:13. [PMID: 39697859 PMCID: PMC11649891 DOI: 10.1007/s40200-024-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 12/20/2024]
Abstract
Objectives Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease characterized by elevated levels of low-density lipoprotein cholesterol (LDLc). The early diagnosis of FH can reduce unfavorable outcomes in this population, but genetic study is not available in all populations. This study aimed to evaluate new cardiovascular plasma markers (GDF-15, CXCL16, FABP3, FABP4, LIGHT, sCD14, ucMGP), as well as Lp(a) levels, in individuals genetically characterized for FH, classified according to treatment with statins. Methods Sequencing was performed by next generation sequencing (NGS) for 17 ICs and by the Sanger method for 120 relatives. Lp(a) was measured by turbidimetry and the other cardiovascular markers by the multiplex method for Luminex®. Statistical analyses were performed using the R Platform version 4.2.2 program. Results 86 individuals carrying FH genetic variants and 51 non-carrier family members were identified. Lp(a) showed higher levels in the group with variants and was correlated to LDLc levels. FABP3 levels were higher in the group carrying variants using statins compared to the group without statins. The non-carrier group using statins showed higher levels of FABP4 compared to the carrier group using statins. The markers GDF-15, CXCL16, LGHT, sCD14 and ucMGP did not show a significant difference between groups, but GDF-15 and sCD14 were correlated to LDLc levels. Conclusions Lp(a) and the new markers FABP3 e FABP4 are associated with FH, their levels are modulated by the use of statins, and they could be potential markers to assess the disease when genetic testing is not available. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01537-w.
Collapse
Affiliation(s)
| | - Cinthia Elim Jannes
- Laboratório de Genética do Instituto do Coração (INCOR), Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Iêda de Fátima Oliveira Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha. Belo Horizonte, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Karina Braga Gomes
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerias Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha. Belo Horizonte, Belo Horizonte, Minas Gerais 31270-901 Brazil
| |
Collapse
|
2
|
Gorrai A, Farr M, O'hara P, Beaini H, Hendren N, Wrobel C, Ashley Hardin E, McGuire D, Khera A, Wang TJ, Drazner M, Garg S, Peltz M, Truby LK. Novel therapeutic agents for cardiometabolic risk mitigation in heart transplant recipients. J Heart Lung Transplant 2025; 44:477-486. [PMID: 39701434 DOI: 10.1016/j.healun.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Heart transplant (HT) recipients experience high rates of cardiometabolic disease. Novel therapies targeting hyperlipidemia, diabetes, and obesity, including proprotein convertase subtilisin/kexin inhibitors, sodium-glucose cotransporter-2 inhibitors, and glucagon-like peptide-1 agonists, are increasingly used for cardiometabolic risk mitigation in the general population. However, limited data exist to support the use of these agents in patients who have undergone heart transplantation. Herein, we describe the mechanisms of action and emerging evidence supporting the use of novel pharmacologic agents in the post-HT setting for cardiometabolic risk mitigation and review evidence supporting their ability to modulate immune pathways associated with atherogenesis, epicardial adipose tissue, and coronary allograft vasculopathy.
Collapse
Affiliation(s)
- Ananya Gorrai
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Maryjane Farr
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Patrick O'hara
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hadi Beaini
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas Hendren
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher Wrobel
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Ashley Hardin
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Darren McGuire
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amit Khera
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Thomas J Wang
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark Drazner
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Matthias Peltz
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lauren K Truby
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Li L, Xu L. Association between lipoprotein(a) and coronary heart disease risk in type 2 diabetes mellitus and evaluation of statin treatment effects. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2025; 71:e20240870. [PMID: 40105548 PMCID: PMC11918843 DOI: 10.1590/1806-9282.20240870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 03/20/2025]
Abstract
OBJECTIVE The aim of this study was to investigate the association between lipoprotein(a) and coronary heart disease risk in type 2 diabetes mellitus patients and evaluate the effectiveness of statin therapy. METHODS This retrospective analysis included 120 patients diagnosed with type 2 diabetes mellitus. Of these, 90 patients diagnosed with coronary heart disease via coronary angiography received rosuvastatin treatment for over 6 months. The remaining 30 patients exhibited no coronary heart disease or other diabetic macrovascular complications and had not received any lipid-lowering treatment. Patients with type 2 diabetes mellitus and coronary heart disease were categorized into two groups based on the severity of coronary lesions. Baseline characteristics and blood lipid data were compared among groups. Logistic regression analysis was employed to investigate the association between lipoprotein(a) and coronary heart disease risk in type 2 diabetes mellitus patients. Receiver operating characteristic curves were utilized to evaluate the diagnostic value of lipoprotein(a) for coronary heart disease. RESULTS Compared with the control group, lipoprotein(a) levers were higher in both the mild and severe groups. Logistic regression analysis demonstrated that lipoprotein(a) is independently associated with the risk of coronary heart disease in type 2 diabetes mellitus patients. The area under the receiver operating characteristic curve for lipoprotein(a) was 0.729. When lipoprotein(a) was 97.5 mg/L, the diagnosis of coronary heart disease had high sensitivity and specificity. After statin therapy, high-density lipoprotein cholesterol and apolipoprotein A levels increased, while other lipid parameters decreased. However, the lipoprotein(a) level decrease was not statistically significant. CONCLUSION Lipoprotein(a) is an independent risk factor for coronary heart disease in type 2 diabetes mellitus patients. Lipid-lowering therapy with statins alone cannot reduce lipoprotein(a) levels.
Collapse
Affiliation(s)
- Li Li
- Bengbu Medical University, School of Graduate, Bengbu, People's Republic of China
- Anhui University of Science and Technology, The First Affiliated Hospital, Department of Endocrinology - Huainan, People's Republic of China
| | - Liwu Xu
- Bengbu Medical University, School of Graduate, Bengbu, People's Republic of China
- Anhui University of Science and Technology, The First Affiliated Hospital, Department of Endocrinology - Huainan, People's Republic of China
| |
Collapse
|
4
|
Rivera FB, Cha SW, Linnaeus Louisse C, Carado GP, Magalong JV, Tang VA, Enriquez MG, Gulati M, Enkhmaa B, Pagidipati N, Shah NP. Impact of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors on Lipoprotein(a): A Meta-Analysis and Meta-Regression of Randomized Controlled Trials. JACC. ADVANCES 2025; 4:101549. [PMID: 39877671 PMCID: PMC11773245 DOI: 10.1016/j.jacadv.2024.101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Background Lipoprotein(a) [Lp(a)] has been independently associated with increased cardiovascular risk. Objectives The authors examined the effect of monoclonal antibody proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9is) on plasma Lp(a) levels across multiple trials. Methods Studies were retrieved comparing the effect of PCSK9i vs placebo on Lp(a) levels. The primary outcome was percent change in Lp(a) levels. Factors associated with the treatment effect were determined by meta-regression analysis. Subgroup analyses were done to explore potential treatment effect differences. Results PCSK9i reduced Lp(a) levels on average of -27% (95% CI: -29.8% to -24.1%, P < 0.001). Factors associated with the treatment effect included mean percent change in low-density lipoprotein cholesterol (P = 0.003, beta coefficient 0.34, 95% CI: 0.11-0.57, tau2 = 94.8, R2 = 11.82) and apolipoprotein B (P < 0.002, beta coefficient 0.4, 95% CI: 0.14-0.64, tau2 = 93.68, R2 = 11.86). Subgroup analyses revealed consistent treatment effect amongst comparators vs placebo: -27.69% (95% CI: -30.85% to -24.54%, P < 0.001), vs ezetimibe: -24.0% (95% CI: -29.95% to -18.01%, P < 0.001), type of PCSK9i, evolocumab: -29.35% (95% CI: -33.56% to -25.14%, P < 0.001) vs alirocumab: -24.50% (95% CI: -27.96% to -21.04%, P < 0.001), and presence of familial hypercholesterolemia: -25.63% (95% CI: -31.96% to -19.30%, P < 0.001 vs no familial hypercholesterolemia: -27.22%; 95% CI: -30.34% to -24.09%, P < 0.001). Varying treatment effects were noted in the duration of treatment (12 weeks or shorter: -32.43% [95% CI: -36.63% to -28.23% vs >12 weeks: -22.31%] [95% CI: -25.13% to -19.49%, P < 0.001]), P interaction < 0.01. Conclusions PCSK9is reduce Lp(a) levels by an average of 27%. Mean percent change in low-density lipoprotein cholesterol and apolipoprotein B were associated with treatment effect.
Collapse
Affiliation(s)
| | - Sung Whoy Cha
- Department of Medicine, Cebu Institute of Medicine, Cebu City, Philippines
| | | | - Genquen Philip Carado
- Department of Medicine, University of the Philippines–Philippine General Hospital, Manila, Philippines
| | | | - Vincent Anthony Tang
- Department of Medicine, University of the Philippines–Philippine General Hospital, Manila, Philippines
| | | | - Martha Gulati
- Department of Cardiology, Barbra Streisand Women’s Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, California, USA
| | - Byambaa Enkhmaa
- Division of Endocrinology, Diabetes & Metabolism, UC Davis Health, Davis, California, USA
| | - Neha Pagidipati
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Division of Cardiology, Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Nishant P. Shah
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Division of Cardiology, Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
5
|
Caklili OT, Rizzo M, Cesur M. Efficacy and Safety of Bempedoic Acid in Patients with High Cardiovascular Risk: An Update. Curr Vasc Pharmacol 2024; 22:242-250. [PMID: 38323615 DOI: 10.2174/0115701611290763240126045433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Statins play a significant role in the prevention of cardiovascular (CV) diseases (CVDs); however, non-adherence with statin treatment or statin intolerance (mainly attributed to muscleassociated side effects) is not uncommon. New agents such as bempedoic acid (BA) can provide more treatment options. BA is administered orally, once daily, at a dose of 180 mg in current clinical practice. It can decrease circulating low-density lipoprotein cholesterol (LDL-C) levels by nearly 30% as monotherapy or by 20% as an add-on to statins. CV outcome studies have shown that BA decreases major adverse CV event risk in patients with established CVD or high CV risk by 13%. When patients with high CV risk were analyzed alone, the risk reduction was 30%. Its side effects include a rise in serum uric acid levels and liver enzyme activity, whereas it does not increase diabetes risk as statins do. BA can be used as adjunctive therapy to statins in patients at high CV risk in whom lipid targets cannot be achieved or as an alternative to statins in patients with statin intolerance.
Collapse
Affiliation(s)
- Ozge Telci Caklili
- Department of Endocrinology and Metabolism, Kocaeli City Hospital, Kocaeli, Türkiye
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
- College of Medicine, Mohammed Bin Rashid University (MBRU), Dubai, UAE
| | - Mustafa Cesur
- Department of Endocrinology and Metabolism, Ankara Guven Hospital, Ankara, Türkiye
| |
Collapse
|
6
|
Fogacci F, Yerlitaş Sİ, Giovannini M, Zararsız G, Lido P, Borghi C, Cicero AFG. Sex X Time Interactions in Lp(a) and LDL-C Response to Evolocumab. Biomedicines 2023; 11:3271. [PMID: 38137492 PMCID: PMC10741148 DOI: 10.3390/biomedicines11123271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to evaluate whether there were significant sex x time interactions in lipoprotein(a) (Lp(a)) and low-density lipoprotein cholesterol (LDL-C) response to treatment with the Proprotein Convertase Subtilisin/Kexin type 9 inhibitor (PCSK9i) Evolocumab, in a real-life clinical setting. For this purpose, we pooled data from 176 outpatients (Men: 93; Women: 83) clinically evaluated at baseline and every six months after starting Evolocumab. Individuals who had been on PCSK9i for less than 30 months and nonadherent patients were excluded from the analysis. Over time, absolute values of Lp(a) plasma concentrations significantly decreased in the entire cohort (p-value < 0.001) and by sex (p-value < 0.001 in men and p-value = 0.002 in and women). However, there were no sex-related significant differences. Absolute plasma concentrations of LDL-C significantly decreased over time in the entire cohort and by sex (p-value < 0.001 always), with greater improvements in men compared to women. The sex x time interaction was statistically significant in LDL-C (all p-values < 0.05), while absolute changes in Lp(a) were not influenced by either sex or time (all p-value > 0.05). Our data partially reinforce the presence of differences in response to treatment to PCSK9i between men and women and are essential to gain a better understanding of the relationship between LDL-C and Lp(a) lowering in response to PCSK9i. Further research will clarify whether these sex-related significant differences translate into a meaningful difference in the long-term risk of ASCVD.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (F.F.); (M.G.); (C.B.)
| | - Serra İlayda Yerlitaş
- Department of Biostatistics, Erciyes University School of Medicine, 38039 Kayseri, Turkey; (S.İ.Y.); (G.Z.)
- Drug Application and Research Center (ERFARMA), Erciyes University, 38280 Kayseri, Turkey
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (F.F.); (M.G.); (C.B.)
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University School of Medicine, 38039 Kayseri, Turkey; (S.İ.Y.); (G.Z.)
- Drug Application and Research Center (ERFARMA), Erciyes University, 38280 Kayseri, Turkey
| | - Paolo Lido
- Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Claudio Borghi
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (F.F.); (M.G.); (C.B.)
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40100 Bologna, Italy
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (F.F.); (M.G.); (C.B.)
- Unit of Cardiovascular Internal Medicine, Department of Cardiac, Thoracic, Vascular Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40100 Bologna, Italy
| |
Collapse
|
7
|
Wang Z, Li J. Lipoprotein(a) in patients with breast cancer after chemotherapy: exploring potential strategies for cardioprotection. Lipids Health Dis 2023; 22:157. [PMID: 37736722 PMCID: PMC10515253 DOI: 10.1186/s12944-023-01926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Developments in neoadjuvant and adjuvant chemotherapy (CHT) have led to an increase in the number of breast cancer survivors. The determination of an appropriate follow-up for these patients is of increasing importance. Deaths due to cardiovascular disease (CVD) are an important part of mortality in patients with breast cancer.This review suggests that chemotherapeutic agents may influence lipoprotein(a) (Lp(a)) concentrations in breast cancer survivors after CHT based on many convincing evidence from epidemiologic and observational researches. Usually, the higher the Lp(a) concentration, the higher the median risk of developing CVD. However, more clinical trial results are needed in the future to provide clear evidence of a possible causal relationship. This review also discuss the existing and emerging therapies for lowering Lp(a) concentrations in the clinical setting. Hormone replacement therapy, statins, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, Antisense oligonucleotides, small interfering RNA, etc. may reduce circulating Lp(a) or decrease the incidence of CVD.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No.1677 Wutai Mountain Road, Qingdao, 266000, China
| | - Jian Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No.1677 Wutai Mountain Road, Qingdao, 266000, China.
| |
Collapse
|
8
|
Kosmas CE, Bousvarou MD, Papakonstantinou EJ, Tsamoulis D, Koulopoulos A, Echavarria Uceta R, Guzman E, Rallidis LS. Novel Pharmacological Therapies for the Management of Hyperlipoproteinemia(a). Int J Mol Sci 2023; 24:13622. [PMID: 37686428 PMCID: PMC10487774 DOI: 10.3390/ijms241713622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lipoprotein(a) [Lp(a)] is a well-established risk factor for cardiovascular disease, predisposing to major cardiovascular events, including coronary heart disease, stroke, aortic valve calcification and abdominal aortic aneurysm. Lp(a) is differentiated from other lipoprotein molecules through apolipoprotein(a), which possesses atherogenic and antithrombolytic properties attributed to its structure. Lp(a) levels are mostly genetically predetermined and influenced by the size of LPA gene variants, with smaller isoforms resulting in a greater synthesis rate of apo(a) and, ultimately, elevated Lp(a) levels. As a result, serum Lp(a) levels may highly vary from extremely low to extremely high. Hyperlipoproteinemia(a) is defined as Lp(a) levels > 30 mg/dL in the US and >50 mg/dL in Europe. Because of its association with CVD, Lp(a) levels should be measured at least once a lifetime in adults. The ultimate goal is to identify individuals with increased risk of CVD and intervene accordingly. Traditional pharmacological interventions like niacin, statins, ezetimibe, aspirin, PCSK-9 inhibitors, mipomersen, estrogens and CETP inhibitors have not yet yielded satisfactory results. The mean Lp(a) reduction, if any, is barely 50% for all agents, with statins increasing Lp(a) levels, whereas a reduction of 80-90% appears to be required to achieve a significant decrease in major cardiovascular events. Novel RNA-interfering agents that specifically target hepatocytes are aimed in this direction. Pelacarsen is an antisense oligonucleotide, while olpasiran, LY3819469 and SLN360 are small interfering RNAs, all conjugated with a N-acetylgalactosamine molecule. Their ultimate objective is to genetically silence LPA, reduce apo(a) production and lower serum Lp(a) levels. Evidence thus so far demonstrates that monthly subcutaneous administration of a single dose yields optimal results with persisting substantial reductions in Lp(a) levels, potentially enhancing CVD risk reduction. The Lp(a) reduction achieved with novel RNA agents may exceed 95%. The results of ongoing and future clinical trials are eagerly anticipated, and it is hoped that guidelines for the tailored management of Lp(a) levels with these novel agents may not be far off.
Collapse
Affiliation(s)
- Constantine E. Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY 10033, USA;
| | - Maria D. Bousvarou
- School of Medicine, University of Crete, 710 03 Heraklion, Greece; (M.D.B.); (A.K.)
| | | | - Donatos Tsamoulis
- First Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Athens, Greece;
| | - Andreas Koulopoulos
- School of Medicine, University of Crete, 710 03 Heraklion, Greece; (M.D.B.); (A.K.)
| | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY 10033, USA;
| | - Loukianos S. Rallidis
- 2nd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital ATTIKON, 124 62 Athens, Greece;
| |
Collapse
|
9
|
Rikhi R, Shapiro MD. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition: The Big Step Forward in Lipid Control. Eur Cardiol 2023; 18:e45. [PMID: 37456766 PMCID: PMC10345936 DOI: 10.15420/ecr.2023.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 07/18/2023] Open
Abstract
The breakthrough discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) 20 years ago revolutionised the current understanding of cholesterol homeostasis. Genetic studies have shown that gain-of-function mutations in PCSK9 lead to elevated LDL cholesterol and increased risk of atherosclerotic cardiovascular disease, while loss-of-function mutations in PCSK9 result in lifelong low levels of circulating LDL cholesterol and dramatic reduction in atherosclerotic cardiovascular disease. Therapies inhibiting PCSK9 lead to a higher density of LDL receptor on the surface of hepatocytes, resulting in greater ability to clear circulating LDL. Thus far, randomised controlled trials have shown that subcutaneous fully human monoclonal antibodies targeting PCSK9, evolocumab and alirocumab, and PCSK9 silencing with inclisiran result in drastic reductions in LDL cholesterol. Additionally, several novel strategies to target PCSK9 are in development, including oral antibody, gene silencing, DNA base editing and vaccine therapies. This review highlights the efficacy, safety and clinical use of these various approaches in PCSK9 inhibition.
Collapse
Affiliation(s)
- Rishi Rikhi
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, NC, US
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, NC, US
| |
Collapse
|
10
|
Al Hageh C, Chacar S, Ghassibe-Sabbagh M, Platt DE, Henschel A, Hamdan H, Gauguier D, El Murr Y, Alefishat E, Chammas E, O’Sullivan S, Abchee A, Nader M, Zalloua PA. Elevated Lp(a) Levels Correlate with Severe and Multiple Coronary Artery Stenotic Lesions. Vasc Health Risk Manag 2023; 19:31-41. [PMID: 36703868 PMCID: PMC9871050 DOI: 10.2147/vhrm.s394134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Backgrounds and Aims The role of Lipoprotein(a) (Lp(a)) in increasing the risk of cardiovascular diseases is reported in several populations. The aim of this study is to investigate the correlation of high Lp(a) levels with the degree of coronary artery stenosis. Methods Two hundred and sixty-eight patients were enrolled for this study. Patients who underwent coronary artery angiography and who had Lp(a) measurements available were included in this study. Binomial logistic regressions were applied to investigate the association between Lp(a) and stenosis in the four major coronary arteries. The effect of LDL and HDL Cholesterol on modulating the association of Lp(a) with coronary artery disease (CAD) was also evaluated. Multinomial regression analysis was applied to assess the association of Lp(a) with the different degrees of stenosis in the four major coronary arteries. Results Our analyses showed that Lp(a) is a risk factor for CAD and this risk is significantly apparent in patients with HDL-cholesterol ≥35 mg/dL and in non-obese patients. A large proportion of the study patients with elevated Lp(a) levels had CAD even when exhibiting high HDL serum levels. Increased HDL with low Lp(a) serum levels were the least correlated with stenosis. A significantly higher levels of Lp(a) were found in patients with >50% stenosis in at least two major coronary vessels arguing for pronounced and multiple stenotic lesions. Finally, the derived variant (rs1084651) of the LPA gene was significantly associated with CAD. Conclusion Our study highlights the importance of Lp(a) levels as an independent biological marker of severe and multiple coronary artery stenosis.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Daniel E Platt
- Computational Biology Center, IBM TJ Watson Research Centre, Yorktown Hgts, NY, USA
| | - Andreas Henschel
- Department of Electrical Engineering and Computer, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dominique Gauguier
- Université Paris Cité, INSERM UMR 1124, Paris, 75006, France,McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Yara El Murr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Elie Chammas
- School of Medicine, Lebanese University, Beirut, Lebanon
| | - Siobhán O’Sullivan
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Antoine Abchee
- Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Pierre A Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates,Harvard T.H. Chan School of Public Health, Boston, MA, USA,Correspondence: Pierre A Zalloua; Moni Nader, College of Medicine and Health Sciences, Khalifa University for Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates, Email ;
| |
Collapse
|
11
|
Patnaik S, Pollevick ME, Lara-Breitinger KM, Stone NJ, Patnaik S, Pollevick ME, Lara-Breitinger KM, Stone NJ. Inter-Individual Variability in Lipid Response: A Narrative Review. Am J Med 2022; 135:1427-1433.e7. [PMID: 35878687 DOI: 10.1016/j.amjmed.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
Abstract
Lipid-lowering guidelines emphasize shared decision-making between clinicians and patients, resulting in patients anticipating the degree of response from diet or drug therapy. Challenging for physicians is understanding the sources of variability complicating their management decisions, which include non-adherence, genetic considerations, additional lipid parameters including lipoprotein (a) levels, and rare systemic responses limiting benefits that result in non-responsiveness to monoclonal antibody injection. In this narrative review, we focus on the variability of low-density lipoprotein cholesterol (LDL-C) response to guideline-directed interventions such as statins, ezetimibe, bile acid sequestrants, fibrates, proprotein/convertase subtilisin-kexin type 9 inhibitors, and LDL-C-lowering diets. We hypothesize that the variability in individual lipid responses is multifactorial. We provide an illustrative model with a check list that can be used to identify factors that may be present in the individual patient.
Collapse
Affiliation(s)
- Swagata Patnaik
- Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | | | - Neil J Stone
- Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Medicine (Cardiology) and Preventive Medicine, Vascular Center of the Bluhm Cardiovascular Institute of Northwestern Memorial Hospital, Chicago, Ill.
| | - Swagata Patnaik
- Northwestern University Feinberg School of Medicine, Chicago IL
| | | | | | - Neil J Stone
- Northwestern University Feinberg School of Medicine, Chicago IL; Department of Medicine (Cardiology) and Preventive Medicine, Vascular Center of the Bluhm Cardiovascular Institute of Northwestern Memorial Hospital, Chicago, Illinois.
| |
Collapse
|
12
|
Papazoglou AS, Koliastasis L, Milkas A. Proprotein convertase subtilisin/kexin type 9 inhibitors on the horns of a dilemma: which lipoprotein we should primarily target - low-density lipoprotein or lipoprotein(a)? J Cardiovasc Med (Hagerstown) 2022; 23:635-636. [PMID: 35994711 DOI: 10.2459/jcm.0000000000001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Ayoub C, Azar Y, Maddah D, Ghaleb Y, Elbitar S, Abou-Khalil Y, Jambart S, Varret M, Boileau C, El Khoury P, Abifadel M. Low circulating PCSK9 levels in LPL homozygous children with chylomicronemia syndrome in a syrian refugee family in Lebanon. Front Genet 2022; 13:961028. [PMID: 36061186 PMCID: PMC9437297 DOI: 10.3389/fgene.2022.961028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Familial chylomicronemia syndrome is a rare autosomal recessive disorder of lipoprotein metabolism characterized by the presence of chylomicrons in fasting plasma and an important increase in plasma triglycerides (TG) levels that can exceed 22.58 mmol/l. The disease is associated with recurrent episodes of abdominal pain and pancreatitis, eruptive cutaneous xanthomatosis, lipemia retinalis, and hepatosplenomegaly. A consanguineous Syrian family who migrated to Lebanon was referred to our laboratory after perceiving familial chylomicronemia syndrome in two children. The LPL and PCSK9 genes were sequenced and plasma PCSK9 levels were measured. Sanger sequencing of the LPL gene revealed the presence of the p.(Val227Phe) pathogenic variant in exon 5 at the homozygous state in the two affected children, and at the heterozygous state in the other recruited family members. Interestingly, PCSK9 levels in homozygous carriers of the p.(Val227Phe) were ≈50% lower than those in heterozygous carriers of the variant (p-value = 0.13) and ranged between the 5th and the 7.5th percentile of PCSK9 levels in a sample of Lebanese children of approximately the same age group. Moreover, this is the first reported case of individuals carrying simultaneously an LPL pathogenic variant and PCSK9 variants, the L10 and L11 leucine insertion, which can lower and raise low-density lipoprotein cholesterol (LDL-C) levels respectively. TG levels fluctuated concomitantly between the two children, were especially high following the migration from a country to another, and were reduced under a low-fat diet. This case is crucial to raise public awareness on the risks of consanguineous marriages to decrease the emergence of inherited autosomal recessive diseases. It also highlights the importance of the early diagnosis and management of these diseases to prevent serious complications, such as recurrent pancreatitis in the case of familial hyperchylomicronemia.
Collapse
Affiliation(s)
- Carine Ayoub
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Yara Azar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Dina Maddah
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Youmna Ghaleb
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Sandy Elbitar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Yara Abou-Khalil
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Selim Jambart
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
- Genetic Department, AP-HP, Hôpital Bichat, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
- *Correspondence: Marianne Abifadel,
| |
Collapse
|
14
|
Mueller PA, Yerkes E, Bergstrom P, Rosario S, Hay J, Pamir N. A method for lipoprotein (a) Isolation from a small volume of plasma with applications for clinical research. Sci Rep 2022; 12:9138. [PMID: 35650291 PMCID: PMC9160242 DOI: 10.1038/s41598-022-13040-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
High levels of circulating Lipoprotein (a) [Lp(a)] are an independent risk factor for CVD. One of the major limitations to investigating Lp(a) biology is the need for large volumes of plasma (4-10 mL) for its isolation. We developed an isolation technique requiring only 0.4 mL of plasma yielding an enriched Lp(a) fraction suitable for compositional and functional studies. We collected plasma from patients (n = 9) in EDTA presenting to our Center for Preventive Cardiology for CVD risk management and with circulating Lp(a) > 66 mg/dL. 0.4 mL of plasma was added to 90 µL of potassium bromide (1.33 g/mL) and subjected to our two-step density-gradient ultracentrifugation method. The first step separates VLDL and LDL from the Lp(a) and HDL fractions and the second step further separates VLDL from LDL and Lp(a) from HDL. Lp(a) is then dialyzed for up to 24 h in potassium phosphate buffer. We performed cholesterol gel electrophoresis, immunoblotting and LC-MS/MS proteomics on isolated lipoprotein fractions to confirm fraction enrichment. Functional studies including Lp(a)-dependent induction of macrophage gene expression and cholesterol efflux inhibition were performed on isolated Lp(a) to confirm its preserved bioactivity. Lp(a) yields (264 ± 82.3 µg/mL on average) correlated with Lp(a) plasma concentrations (r2 = 0.75; p < 0.01) and represented the relative distribution of circulating apo(a) isoforms. Proteomic analyses confirm lipoprotein fraction separation. Functional integrity was confirmed by the findings that isolated Lp(a) inhibited plasminogen-dependent cholesterol efflux in HEK293T cells expressing ABCA1 and increased expressions of Il1b, Nos2 and Ccl2. We developed a small-volume isolation technique for Lp(a) suited for a range of applications used in biomedical research. The use of this technique circumvents volume-dependent limitations and expands our ability to investigate the mysteries of this deleterious lipoprotein.
Collapse
Affiliation(s)
- Paul A Mueller
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Elisabeth Yerkes
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Paige Bergstrom
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Sara Rosario
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Joshua Hay
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Nathalie Pamir
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Collapse
|
16
|
Deconinck A, Morra S, Glassée N, van de Borne P. Value of repeated measurements of lipoprotein (a) to assess cardiovascular risk: a retrospective study. Acta Cardiol 2022:1-7. [PMID: 35144517 DOI: 10.1080/00015385.2022.2031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Background: High plasma concentrations of lipoprotein (a) [Lp(a)] are associated with an increased cardiovascular risk. Current guidelines recommend measurement of only a single Lp(a) in an individual's lifetime under specific circumstances to improve cardiovascular risk prediction. Accordingly, the question raised is the number of false positives and negatives missed through only a single measurement.Methods: All Lp(a) measurements between 2004 and March 2021 were retrieved from the laboratory database of the Erasme hospital. Only patients with repeated measurement were included. The first and subsequent Lp(a) measurement were compared. Two different cohorts were studied as a result of a change in Lp(a) determination methodology (n = 2049 and n = 309, respectively). The effects of a third Lp(a) measurement were assessed through binary analyses (n = 678). The 180 mg/dl (430 nmol/L) threshold recommended in the ESC guidelines was assessed first. Analysis was repeated for 100, 70 and 50 mg/dl thresholds of raised Lp(a) levels.Results: A low rate of false negatives (0.8%-1%) and false positives (0.6-0.3%) were revealed with two Lp(a) measurements. There was no difference in regards to the divergent Lp(a) thresholds nor the measurement of Lp(a) on two or three occasions.Conclusion: The present study showed Lp(a) determination to be reproducible. A single measurement is sufficient to assess if a patient exceeds various cut-off values of elevated Lp(a) levels.
Collapse
Affiliation(s)
- Axelle Deconinck
- Department of Cardiology, Erasme University Hospital, Brussels, Belgium
| | - Sofia Morra
- Department of Cardiology, Erasme University Hospital, Brussels, Belgium
| | - Nina Glassée
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | | |
Collapse
|
17
|
Korneva VA, Kuznetsova TY, Julius U. Modern Approaches to Lower Lipoprotein(a) Concentrations and Consequences for Cardiovascular Diseases. Biomedicines 2021; 9:biomedicines9091271. [PMID: 34572458 PMCID: PMC8469722 DOI: 10.3390/biomedicines9091271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low density lipoprotein particle that is associated with poor cardiovascular prognosis due to pro-atherogenic, pro-thrombotic, pro-inflammatory and pro-oxidative properties. Traditional lipid-lowering therapy does not provide a sufficient Lp(a) reduction. For PCSK9 inhibitors a small reduction of Lp(a) levels could be shown, which was associated with a reduction in cardiovascular events, independently of the effect on LDL cholesterol. Another option is inclisiran, for which no outcome data are available yet. Lipoprotein apheresis acutely and in the long run decreases Lp(a) levels and effectively improves cardiovascular prognosis in high-risk patients who cannot be satisfactorily treated with drugs. New drugs inhibiting the synthesis of apolipoprotein(a) (an antisense oligonucleotide (Pelacarsen) and two siRNA drugs) are studied. Unlike LDL-cholesterol, for Lp(a) no target value has been defined up to now. This overview presents data of modern capabilities of cardiovascular risk reduction by lowering Lp(a) level.
Collapse
Affiliation(s)
- Victoria A. Korneva
- Department of Faculty Therapy, Petrozavodsk State University, Lenin Ave. 33, 185000 Petrozavodsk, Russia;
- Correspondence:
| | | | - Ulrich Julius
- Lipidology and Lipoprotein Apheresis Center, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| |
Collapse
|
18
|
Handhle A, Viljoen A, Wierzbicki AS. Elevated Lipoprotein(a): Background, Current Insights and Future Potential Therapies. Vasc Health Risk Manag 2021; 17:527-542. [PMID: 34526771 PMCID: PMC8436116 DOI: 10.2147/vhrm.s266244] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Lipoprotein(a) forms a subfraction of the lipid profile and is characterized by the addition of apolipprotein(a) (apo(a)) to apoB100 derived particles. Its levels are mostly genetically determined inversely related to the number of protein domain (kringle) repeats in apo(a). In epidemiological studies, it shows consistent association with cardiovascular disease (CVD) and most recently with extent of aortic stenosis. Issues with standardizing the measurement of Lp(a) are being resolved and consensus statements favor its measurement in patients at high risk of, or with family histories of CVD events. Major lipid-lowering therapies such as statin, fibrates, and ezetimibe have little effect on Lp(a) levels. Therapies such as niacin or cholesterol ester transfer protein (CETP) inhibitors lower Lp(a) as well as reducing other lipid-related risk factors but have failed to clearly reduce CVD events. Proprotein convertase subtilisin kexin-9 (PCSK9) inhibitors reduce cholesterol and Lp(a) as well as reducing CVD events. New antisense therapies specifically targeting apo(a) and hence Lp(a) have greater and more specific effects and will help clarify the extent to which intervention in Lp(a) levels will reduce CVD events.
Collapse
Affiliation(s)
- Ahmed Handhle
- Department of Metabolic Medicine/Chemical Pathology, Addenbrookes Hospital, Cambridge, UK
| | - Adie Viljoen
- Department of Metabolic Medicine/Chemical Pathology, North & East Hertfordshire Hospitals Trust, Lister Hospital, Hertfordshire, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas', Hospitals, London, SE1 7EH, UK
| |
Collapse
|
19
|
Liu Y, Han B. Efficacy evaluation of PCSK9 monoclonal antibody (Evolocumab) in combination with Rosuvastatin and Ezetimibe on cholesterol levels in patients with coronary heart disease (CHD): A retrospective analysis from a single center in China. Transpl Immunol 2021; 71:101444. [PMID: 34375677 DOI: 10.1016/j.trim.2021.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Proprotein convertase subtilisin-kexin type 9(PCSK9) monoclonal antibody (Mab; Evolocumab) has been reported to inhibit low-density lipoprotein cholesterol (LDL-C) and Lipoprotein(a) [LP(a)] in coronary heart diseases (CHD) patients in America, Europe and Japan. However, little is known about the effect of Evolocumab in Chinese population. This retrospective study in Chinese CHD patients compared the efficacy without or with Evolocumab therapy added to the conventional treatment with a statin (Rosuvastatin) and a gut cholesterol absorption inhibitor (Ezetimibe). METHODS CHD patients from our hospital were divided into three therapeutic groups, A) the statin monotherapy group (10 mg Rosuvastatin every night); B) the statin/cholesterol absorption inhibitor group (10 mg Rosuvastatin and 10 mg Ezetimibe daily); and C) the triple therapy with PCSK9 Mab group (10 mg Rosuvastatin daily, 10 mg Ezetimibe daily, and 140 mg Evolocumab once 2 weeks). The plasma lipid data were collected at 0, 4, 12, and 24 Week(s). The Graphpad Prism 7 program was used to perform all the statistical analysis. RESULTS Out of 103 patients 91 were eligible for further evaluation with 31 in group A, 31 in group B, and 29 in group C. The plasma LDL-C levels were reduced only by 33.82% in the Rosuvastatin monotherapy group, 52.13% in the Rosuvastatin/Ezetimibe group, and 73.59% in the Evolocumab/Rosuvastatin/Ezetimibe group (P < 0.0001) at 24 weeks compared to the prior therapy levels. Neither the statin therapy alone (5.95%; P = 0.6), nor the double therapy (5.27%; P = 0.7) affected LP(a) levels. In contrast, addition of Evolocumab to the double therapy significantly decreased LP(a) level by 37.2% (P < 0.0001). CONCLUSION Addition of Evolocumab to the standard double therapy in Chinese CHD patients improved the efficacy in LDL-C reduction when compared to Rosuvastatin alone or in Rosuvastatin/Ezetimibe double therapy. Furthermore, the addition of Evolocumab lowered LP(a) level in Chinese CHD patients.
Collapse
Affiliation(s)
- Yi Liu
- MM, Cardiac Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou City, Jiangsu Province, China
| | - Bing Han
- MM, Cardiac Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
20
|
Blanchard V, Chemello K, Hollstein T, Hong-Fong CC, Schumann F, Grenkowitz T, Nativel B, Coassin S, Croyal M, Kassner U, Lamina C, Steinhagen-Thiessen E, Lambert G. The size of apolipoprotein (a) is an independent determinant of the reduction in lipoprotein (a) induced by PCSK9 inhibitors. Cardiovasc Res 2021; 118:2103-2111. [PMID: 34314498 DOI: 10.1093/cvr/cvab247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Lipoprotein (a) [Lp(a)] is a lipoprotein species causatively associated with atherosclerosis. Unlike statins, PCSK9 inhibitors (PCSK9i) reduce Lp(a), but this reduction is highly variable. Levels of Lp(a) are chiefly governed by the size of its signature protein, apolipoprotein (a) [apo(a)]. Whether this parameter determines some of the reduction in Lp(a) induced by PCSK9i remains unknown. We aimed to investigate if the Lp(a) lowering efficacy of PCSK9i is modulated by the size of apo(a), which is genetically determined by the variable number of KIV domains present on that protein. METHODS AND RESULTS The levels of Lp(a) and the size of apo(a) were assessed in plasma samples from 268 patients before and after treatment with PCSK9i. Patients were recruited at the Outpatient Lipid Clinic of the Charité Hospital (Berlin) between 2015 and 2020. They were hypercholesterolemic at very high CVD risk with LDL-cholesterol levels above therapeutic targets despite maximally tolerated lipid-lowering therapy. Patients received either Alirocumab (75 or 150 mg) or Evolocumab (140 mg) every 2 weeks. Apo(a), apoB100, and apoE concentrations as well as apoE major isoforms were determined by liquid chromatography high-resolution mass spectrometry. Apo(a) isoforms sizes were determined by Western Blot. PCSK9i sharply reduced LDL-cholesterol (-57%), apoB100 (-47%) and Lp(a) (-36%). There was a positive correlation between the size of apo(a) and the relative reduction in Lp(a) induced by PCSK9i (r = 0.363, p = 0.0001). The strength of this association remained unaltered after adjustment for baseline Lp(a) levels and all other potential confounding factors. In patients with two detectable apo(a) isoforms, there was also a positive correlation between the size of apo(a) and the reduction in Lp(a), separately for the smaller (r = 0.350, p = 0.0001) and larger (r = 0.324, p = 0.0003) isoforms. The relative contribution of the larger isoform to the total concentration of apo(a) was reduced from 29% to 15% (p < 0.0001). CONCLUSIONS The size of apo(a) is an independent determinant of the response to PCSK9i. Each additional kringle domain is associated with a 3% additional reduction in Lp(a). This explains in part the variable efficacy of PCSK9i and allows to identify patients who will benefit most from these therapies in terms of Lp(a) lowering. TRANSLATIONAL PERSPECTIVE Unlike statins, PCSK9 inhibitors reduce the circulating levels of the highly atherogenic Lipoprotein (a). The underlying mechanism remains a matter of considerable debate. The size of apo(a), the signature protein of Lp(a), is extremely variable (300 to more than 800 kDa) and depends on its number of kringle domains. We now show that each increase in apo(a) size by one kringle domain is associated with a 3% additional reduction in Lp(a) following PCSK9i treatment and that apo(a) size polymorphism is an independent predictor of the reduction in Lp(a) induced by these drugs. In an era of personalized medicine, this allows to identify patients who will benefit most from PCSK9i in terms of Lp(a) lowering.
Collapse
Affiliation(s)
- Valentin Blanchard
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France.,Centre for Heart & Lung Innovation, St. Paul's Hospital, Vancouver, Canada; Department of Medicine, UBC, Vancouver, Canada
| | - Kévin Chemello
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Tim Hollstein
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany.,Division of Endocrinology, Diabetology and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, Kiel, Germany
| | | | - Friederike Schumann
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Grenkowitz
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Brice Nativel
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbrück, Innsbrück, Austria
| | - Mikaël Croyal
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France
| | - Ursula Kassner
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbrück, Innsbrück, Austria
| | | | - Gilles Lambert
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| |
Collapse
|
21
|
Voutyritsa E, Damaskos C, Farmaki P, Kyriakos G, Diamantis E, Quiles-SÁnchez LV, Garmpi A, Garmpis N, Patsouras A, Stelianidi A, Savvanis S. PCSK9 Antibody-based Treatment Strategies for Patients With Statin Intolerance. In Vivo 2021; 35:61-68. [PMID: 33402450 DOI: 10.21873/invivo.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Statin intolerance refers to the inability of a patient to tolerate statin therapy, presenting muscle aches, pains, weakness and muscle inflammation. Thus, numerous patients are not treated with suitable statin-based therapy or take only very low doses. As a result, the desired decrease in low-density lipoprotein cholesterol (LDL-C) is not achieved, resulting in patients at a high risk for cardiovascular events, requiring an alternative lipid-lowering treatment. Common treatments manage to reduce the LDL-C level by up to 20%. Recently, new alternative treatment options have been proved to lower the LDL-C level by up to 70%. These treatment strategies are based on human monoclonal antibodies against protein convertase subtilisin/kexin 9 (PCSK9). MATERIALS AND METHODS Herein, we review the efficiency of anti-PCSK9 in treatment of hypercholesterolemic patients with statin intolerance. We focused on the use of PCSK9 inhibitors in statin-intolerant patients and we estimated the clinical results concerning the reduction of the mean LDL-C concentration and the side effects that were observed. RESULTS In the majority of cases, treatment strategy based on PCSK9 was successful and achieved the end-points. CONCLUSION PCSK9 inhibition can be considered as a treatment of option for lipid-lowering in statin-intolerant patients.
Collapse
Affiliation(s)
- Errika Voutyritsa
- NS Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Farmaki
- First Department of Pediatrics, Agia Sofia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kyriakos
- Sección de Endocrinología y Nutrición, Hospital General Universitario Santa Lucia, Cartagena, Spain;
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, Athens, Greece
| | | | - Anna Garmpi
- Internal Medicine Department, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzaneio General Hospital of Piraeus, Piraeus, Greece
| | - Athanasia Stelianidi
- First Department of Pediatrics, Agia Sofia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Savvanis
- Department of Internal Medicine, Elpis General Hospital of Athens, Athens, Greece
| |
Collapse
|
22
|
Xia S, Qiu W, Cai A, Kong B, Xu L, Wu Z, Li L. The association of lipoprotein(a) and intraplaque neovascularization in patients with carotid stenosis: a retrospective study. BMC Cardiovasc Disord 2021; 21:285. [PMID: 34107870 PMCID: PMC8190836 DOI: 10.1186/s12872-021-02038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background Lipoprotein(a) is genetically determined and increasingly recognized as a major risk factor for arteriosclerotic cardiovascular disease. We examined whether plasma lipoprotein(a) concentrations were associated with intraplaque neovascularization (IPN) grade in patients with carotid stenosis and in terms of increasing plaque susceptibility to haemorrhage and rupture. Methods We included 85 patients diagnosed with carotid stenosis as confirmed using carotid ultrasound who were treated at Guangdong General Hospital. Baseline data, including demographics, comorbid conditions and carotid ultrasonography, were recorded. The IPN grade was determined using contrast-enhanced ultrasound through the movement of the microbubbles. Univariate and multivariate binary logistic regression analyses were used to evaluate the association between lipoprotein(a) and IPN grade, with stepwise adjustment for covariates including age, sex, comorbid conditions and statin therapy (model 1), total cholesterol, triglyceride, low-density lipoprotein cholesterol calculated by Friedwald's formula, high-density lipoprotein cholesterol, apolipoprotein A and apolipoprotein B (model 2), maximum plaque thickness and total carotid maximum plaque thickness, degree of carotid stenosis and internal carotid artery (ICA) occlusion (model 3). Results Lipoprotein(a) was a significant predictor of higher IPN grade in binary logistic regression before adjusting for other risk factors (odds ratio [OR] 1.238, 95% confidence interval [CI] (1.020, 1.503), P = 0.031). After adjusting for other risk factors, lipoprotein(a) still remained statistically significant in predicting IPN grade in all model. (Model 1: OR 1.333, 95% CI 1.074, 1.655, P = 0.009; Model 2: OR 1.321, 95% CI 1.059, 1.648, P = 0.014; Model 3: OR 1.305, 95% CI 1.045, 1.628, P = 0.019). Lp(a) ≥ 300 mg/L is also significantly related to IPN compare to < 300 mg/L (OR 2.828, 95% CI 1.055, 7.580, P = 0.039) as well as in model 1, while in model 2 and model 3 there are not significant difference. Conclusions Plasma lipoprotein(a) concentrations were found to be independently associated with higher IPN grade in patients with carotid stenosis. Lowering plasma lipoprotein(a) levels may result in plaque stabilization by avoiding IPN formation.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Weida Qiu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Anping Cai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Bo Kong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Lan Xu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Zejia Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China
| | - Liwen Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 of Zhongshan 2nd Road, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
23
|
Chakraborty A, Pang J, Chan DC, Barnett W, Woodward AM, Vorster M, Watts GF. Effectiveness of proprotein convertase subtilisin/kexin-9 monoclonal antibody treatment on plasma lipoprotein(a) concentrations in patients with elevated lipoprotein(a) attending a clinic. Clin Cardiol 2021; 44:805-813. [PMID: 33955565 PMCID: PMC8207967 DOI: 10.1002/clc.23607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lipoprotein(a) (Lp[a]) is a causal risk factor for atherosclerotic cardiovascular disease (ASCVD). Proprotein convertase subtilisin/kexin-9 monoclonal antibodies (PCSK9mAbs) can lower Lp(a) levels in clinical trials, but their effects in patients with elevated Lp(a) in clinical practice remain unclear. AIMS To investigate the effectiveness and safety of PCSK9mAbs in lowering plasma Lp(a) in patients with elevated Lp(a) concentrations in a lipid clinic. METHODS This was an open-label study of 53 adult patients with elevated Lp(a) concentration (≥0.5 g/L). Clinical, biochemical, and safety data were collected before and on treatment with evolocumab or alirocumab over a mean period of 11 months. RESULTS Treatment with a PCSK9mAb resulted in a significant reduction of 0.29 g/L (-22%) in plasma Lp(a) concentration (p<.001). There were also significant reductions in low-density lipoprotein-cholesterol (LDL-C) (-53%), remnant-cholesterol (-12%) and apolipoprotein B (-43%) concentrations. The change in Lp(a) concentration was significantly different from a comparable group of 35 patients with elevated Lp(a) who were not treated with a PCSK9mAb (-22% vs. -2%, p<.001). The reduction in Lp(a) concentration was not associated with the corresponding changes in LDL-C, remnant-cholesterol, and apolipoprotein B (p>.05 in all). 7.5% and 47% of the patients attained a target concentration of Lp(a) <0.5 g/L and LDL-C <1.8 mmol/L, respectively. PCSK9mAbs were well tolerated, the common adverse effects being pharyngitis (9.4%), nasal congestion (7.6%), myalgia (9.4%), diarrhoea (7.6%), arthralgia (9.4%) and injection site reactions (11%). CONCLUSION PCSK9mAbs can effectively and safely lower plasma Lp(a) concentrations in patients with elevated Lp(a) in clinical practice; the impact of the fall in Lp(a) on ASCVD outcomes requires further investigation.
Collapse
Affiliation(s)
- Anindita Chakraborty
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Dick C. Chan
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Wendy Barnett
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Ann Marie Woodward
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Mary Vorster
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Gerald F. Watts
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| |
Collapse
|
24
|
ANGPLT3 in cardio-metabolic disorders. Mol Biol Rep 2021; 48:2729-2739. [PMID: 33677817 DOI: 10.1007/s11033-021-06248-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023]
Abstract
Dyslipidemia is associated with numerous health problems that include the combination of insulin resistance, hypertension and obesity, which is always grouped together asmetabolic syndrome. Given that metabolic syndrome leads to a high mortality and poses serious risks to human health worldwide, it is vital to explore the mechanisms whereby dyslipidemia modulates the risk and the severity of cardio-metabolic disorders. Recently, a specific secretory protein family, named angiopoietin-like protein (ANGPTL), is considered as one of the significant biomarkers which facilitate the development of angiogenesis. Among the eight proteins of ANGPTL family, ANGPTL3 has been demonstrated as an essential modulator of lipid catabolism within circulation by inhibiting the activity of lipoprotein lipase (LPL) and endothelial lipase (EL). Consistent with these notions, mice with ANGPTL3 gene-deficiency presented reduced circulating levels of low density lipoprotein cholesterol (LDL-C) and lower risk of atherosclerosis. On the other hand, participants carrying homozygous loss-of function (LOF) mutation in ANGPTL3 gene also displayed lower circulating LDL-C levels and atherosclerotic risk. In the current review, we summarized the recent understanding of ANGPTL3 in controlling the risk and the development of dyslipidemia and its related cardio-metabolic disorders. Moreover, we also provided the perspectives which potentially suggested that ANGPTL3 could be considered as a promising target in treating metabolic syndrome.
Collapse
|
25
|
Xu J, Shapiro MD. Current Evidence and Future Directions of PCSK9 Inhibition. US CARDIOLOGY REVIEW 2021; 15:e01. [PMID: 39720497 PMCID: PMC11664773 DOI: 10.15420/usc.2020.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/10/2020] [Indexed: 11/04/2022] Open
Abstract
Recent scientific and therapeutic advances in proprotein convertase subtilisin kexin type 9 (PCSK9) inhibition have opened a chapter in the management of hypercholesterolemia, especially in patients who are inadequately controlled on or intolerant to statins. The two PCSK9 monoclonal antibodies, evolocumab and alirocumab, reduce LDL cholesterol by 60% and improve cardiovascular outcomes when taken in addition to statin therapy. More recently, inclisiran, a silencing RNA (siRNA) that inhibits translation of PCSK9 mRNA, demonstrated LDL cholesterol reduction by 45-50% with the advantage of dramatically reduced dose frequency. Other modes of PCSK9 inhibition include small molecule antagonists, vaccines, CRISPR gene editing, and antagonism at various steps of translation, and post-translational processing.
Collapse
Affiliation(s)
- Jiaqian Xu
- Center for the Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University Baptist Medical Center Winston Salem, NC
| | - Michael D Shapiro
- Center for the Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University Baptist Medical Center Winston Salem, NC
| |
Collapse
|
26
|
Kruschitz R, Wakolbinger M, Schindler K, Prager G, Hoppichler F, Marculescu R, Ludvik B. Effect of one-anastomosis gastric bypass on cardiovascular risk factors in patients with vitamin D deficiency and morbid obesity: A secondary analysis. Nutr Metab Cardiovasc Dis 2020; 30:2379-2388. [PMID: 32981799 DOI: 10.1016/j.numecd.2020.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Bariatric patients often suffer from vitamin D (VD) deficiency, and both, morbid obesity and VD deficiency, are related to an adverse effect on cardiovascular disease (CVD) risk. Therefore, we assessed the change of known CVD risk factors and its associations during the first 12 months following one-anastomosis gastric bypass (OAGB). METHODS AND RESULTS In this secondary analysis, CVD risk factors, medical history and anthropometric data were assessed in fifty VD deficient (25-hydroxy-vitamin D (25(OH)D) <75 nmol/l) patients, recruited for a randomized controlled trial of VD supplementation. Based on previous results regarding bone-mass loss and the association between VD and CVD risk, the study population was divided into patients with 25(OH)D ≥50 nmol/l (adequate VD group; AVD) and into those <50 nmol/l (inadequate VD group; IVD) at 6 and 12 months (T6/12) postoperatively. In the whole cohort, substantial remission rates for hypertension (38%), diabetes (30%), and dyslipidaemia (41%) and a significant reduction in CVD risk factors were observed at T12. Changes of insulin resistance markers were associated with changes of total body fat mass (TBF%), 25(OH)D, and ferritin. Moreover, significant differences in insulin resistance markers between AVD and IVD became evident at T12. CONCLUSION These findings show that OAGB leads to a significant reduction in CVD risk factors and amelioration of insulin resistance markers, which might be connected to reduced TBF%, change in 25(OH)D and ferritin levels, as an indicator for subclinical inflammation, and an adequate VD status. REGISTERED AT CLINICALTRIALS.GOV: (Identifier: NCT02092376) and EudraCT (Identifier: 2013-003546-16).
Collapse
Affiliation(s)
- Renate Kruschitz
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria; Division of Internal Medicine, General Public Hospital of the Order of Saint Elisabeth, Klagenfurt, Austria
| | - Maria Wakolbinger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria; Department of Social and Preventive Medicine, Centre for Public Health, Medical University of Vienna, Austria.
| | - Karin Schindler
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Gerhard Prager
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Austria
| | - Friedrich Hoppichler
- Special Institute for Preventive Cardiology and Nutrition - SIPCAN, Salzburg, Austria; Division of Internal Medicine, General Public Hospital of the Brothers of Saint John of God Salzburg, Austria
| | - Rodrig Marculescu
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Bernhard Ludvik
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria; Department of Medicine 1, Karl Landsteiner Institute for Obesity and Metabolic Disorders, Rudolfstiftung Hospital, Vienna, Austria
| |
Collapse
|
27
|
Andreadou I, Tsoumani M, Vilahur G, Ikonomidis I, Badimon L, Varga ZV, Ferdinandy P, Schulz R. PCSK9 in Myocardial Infarction and Cardioprotection: Importance of Lipid Metabolism and Inflammation. Front Physiol 2020; 11:602497. [PMID: 33262707 PMCID: PMC7688516 DOI: 10.3389/fphys.2020.602497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extensive evidence from epidemiologic, genetic, and clinical intervention studies has indisputably shown that elevated low-density lipoprotein cholesterol (LDL-C) concentrations play a central role in the pathophysiology of atherosclerotic cardiovascular disease. Apart from LDL-C, also triglycerides independently modulate cardiovascular risk. Reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for reducing plasma LDL-C, but it is also associated with a reduction in triglyceride levels potentially through modulation of the expression of free fatty acid transporters. Preclinical data indicate that PCSK9 is up-regulated in the ischaemic heart and decreasing PCSK9 expression impacts on infarct size, post infarct inflammation and remodeling as well as cardiac dysfunction following ischaemia/reperfusion. Clinical data support that notion in that PCSK9 inhibition is associated with reductions in the incidence of myocardial infarction, stroke, and coronary revascularization and an improvement of endothelial function in subjects with increased cardiovascular risk. The aim of the current review is to summarize the current knowledge on the importance of free fatty acid metabolism on myocardial ischaemia/reperfusion injury and to provide an update on recent evidence on the role of hyperlipidemia and PCSK9 in myocardial infarction and cardioprotection.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), Barcelona Spain
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Zanetti D, Gustafsson S, Assimes TL, Ingelsson E. Comprehensive Investigation of Circulating Biomarkers and Their Causal Role in Atherosclerosis-Related Risk Factors and Clinical Events. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002996. [PMID: 33125266 DOI: 10.1161/circgen.120.002996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Circulating biomarkers have been previously associated with atherosclerosis-related risk factors, but the nature of these associations is incompletely understood. METHODS We performed multivariable-adjusted regressions and 2-sample Mendelian randomization analyses to assess observational and causal associations of 27 circulating biomarkers with 7 cardiovascular traits in up to 451 933 participants of the UK Biobank. RESULTS After multiple-testing correction (alpha=1.3×10-4), we found a total of 15, 9, 21, 22, 26, 24, and 26 biomarkers strongly associated with coronary artery disease, ischemic stroke, atrial fibrillation, type 2 diabetes, systolic blood pressure, body mass index, and waist-to-hip ratio; respectively. The Mendelian randomization analyses confirmed strong evidence of previously suggested causal associations for several glucose- and lipid-related biomarkers with type 2 diabetes and coronary artery disease. Particularly interesting findings included a protective role of IGF-1 (insulin-like growth factor 1) in systolic blood pressure, and the strong causal association of lipoprotein(a) in coronary artery disease development (β, -0.13; per SD change in exposure and outcome and odds ratio, 1.28; P=2.6×10-4 and P=7.4×10-35, respectively). In addition, our results indicated a causal role of increased ALT (alanine aminotransferase) in the development of type 2 diabetes and hypertension (odds ratio, 1.59 and β, 0.06, per SD change in exposure and outcome; P=4.8×10-11 and P=6.0×10-5). Our results suggest that it is unlikely that CRP (C-reactive protein) and vitamin D play causal roles of any meaningful magnitude in development of cardiometabolic disease. CONCLUSIONS We confirmed and extended known associations and reported several novel causal associations providing important insights about the cause of these diseases, which can help accelerate new prevention strategies.
Collapse
Affiliation(s)
- Daniela Zanetti
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A., E.I.)
- Stanford Cardiovascular Institute (D.Z., T.L.A., E.I.), Stanford University, CA
- Stanford Diabetes Research Center (D.Z., E.I.), Stanford University, CA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Sweden (S.G.)
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A., E.I.)
- Stanford Cardiovascular Institute (D.Z., T.L.A., E.I.), Stanford University, CA
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A., E.I.)
- Stanford Cardiovascular Institute (D.Z., T.L.A., E.I.), Stanford University, CA
- Stanford Diabetes Research Center (D.Z., E.I.), Stanford University, CA
| |
Collapse
|
29
|
Cho KH, Hong YJ. Proprotein convertase subtilisin/kexin type 9 inhibition in cardiovascular disease: current status and future perspectives. Korean J Intern Med 2020; 35:1045-1058. [PMID: 32921006 PMCID: PMC7487297 DOI: 10.3904/kjim.2020.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/20/2020] [Indexed: 01/14/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) targets the degradation of low-density lipoprotein (LDL) receptors; it has been proved that its inhibition improves cardiovascular outcomes in patients with established atherosclerotic cardiovascular disease (ASCVD). Herein, we review the current status of PCSK9 inhibitors in clinical practice and the future scope of PCSK9 inhibition. The results of two recent large clinical trials reveal that two PCSK9 monoclonal antibodies evolocumab and alirocumab reduce the risk of a cardiovascular event on top of background statin therapy in patients with stable ASCVD and those with recent acute coronary syndrome, respectively. However, there are several ongoing concerns regarding the efficacy in reducing mortality, cost-effectiveness, and long-term safety of extremely low LDL cholesterol levels with PCSK9 inhibition. The results of ongoing cardiovascular outcomes trials with PCSK9 monoclonal antibodies for primary prevention and with small interfering RNA to PCSK9 for secondary prevention may help to shape the use of this new therapeutic class.
Collapse
Affiliation(s)
- Kyung Hoon Cho
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Young Joon Hong, M.D. Division of Cardiology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-5778 Fax: +82-62-223-3105 E-mail:
| |
Collapse
|
30
|
Lipoprotein(a) and Atherosclerotic Cardiovascular Disease: Current Understanding and Future Perspectives. Cardiovasc Drugs Ther 2020; 33:739-748. [PMID: 31655942 DOI: 10.1007/s10557-019-06906-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To review current knowledge of elevated lipoprotein(a) [Lp(a)] levels in relation to atherosclerotic cardiovascular disease (ASCVD) and discuss their potential use as biomarkers and therapeutic approaches in clinical practice. METHODS We summarized the current understanding and recent advances in the structure, metabolism, atherogenic mechanisms, standardized laboratory measurement, recommended screening populations, and prognostic value of Lp(a), with a special focus on the current potential treatment approaches for hyperlipoprotein(a)emia in patients with ASCVD. RESULTS Lp(a) is composed of LDL-like particle and characteristic apolipoprotein(a) [apo(a)] connected by a disulfide bond. Substantial evidence shows that elevated plasma Lp(a) level is a heritable, independent, and possibly causal risk factor for ASCVD through its proatherogenic, proinflammatory, and potentially prothrombotic properties. Current guidelines recommend Lp(a) measurement for patients with an intermediate-high risk of ASCVD, familial hypercholesterolemia, a family history of early ASCVD or elevated Lp(a), and progressive ASCVD despite receiving optimal therapy. Traditional Lp(a)-lowering approaches such as niacin, PCSK9 inhibitors, mipomersen, lomitapide, and lipoprotein apheresis were associated with a non-specific and limited reduction of Lp(a), intolerable side effects, invasive procedure, and high expense. The phase 2 randomized controlled trial of antisense oligonucleotide against the apo(a) encoding gene LPA mRNA showed that IONIS-APO(a)-LRX could specifically reduce the level of Lp(a) by 90% with good tolerance, which may become a promising candidate for the prevention and treatment of ASCVD in the future. CONCLUSIONS It is reasonable to measure Lp(a) levels to reclassify ASCVD risk and manage individuals with elevated Lp(a) to further reduce the residual risk of ASCVD, especially with IONIS-APO(a)-LRX.
Collapse
|
31
|
Watts GF, Chan DC, Pang J, Ma L, Ying Q, Aggarwal S, Marcovina SM, Barrett PHR. PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a). Metabolism 2020; 107:154221. [PMID: 32240727 DOI: 10.1016/j.metabol.2020.154221] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) particle containing apolipoprotein(a) (apo(a)) covalently linked to apolipoprotein B-100 (apoB). Statin-treated patients with elevated Lp(a) have an increased risk of atherosclerotic cardiovascular disease (ASCVD). Recent trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition decreases Lp(a) and cardiovascular events, particularly in high risk patients with elevated Lp(a). We investigated the kinetic mechanism whereby alirocumab, a PCSK9 inhibitor, lowers Lp(a) in statin-treated patients with high Lp(a) and ASCVD. METHODS The effects of 12-week alirocumab treatment (150 mg every 2 weeks) on apo(a) kinetics were studied in 21 patients with elevated Lp(a) concentration (>0.5 g/L). Apo(a) fractional catabolic rate (FCR) and production rate (PR) were determined using intravenous D3-leucine administration, mass spectrometry and compartmental modelling. All patients were on long-term statin treatment. RESULTS Alirocumab significantly decreased plasma concentrations of total cholesterol (-39%), LDL-cholesterol (-67%), apoB (-56%), apo(a) (-25%) and Lp(a) (-22%) (P< 0.001 for all). Alirocumab also significantly lowered plasma apo(a) pool size (-26%, P <0.001) and increased the FCR of apo(a) (+28%, P< 0.001), but did not alter apo(a) PR, which remained significantly higher relative to a reference group of patients on statins with normal Lp(a) (P< 0.001). CONCLUSIONS In statin-treated patients, alirocumab lowers elevated plasma Lp(a) concentrations by accelerating the catabolism of Lp(a) particles. This may be consequent on marked upregulation of hepatic receptors (principally for LDL) and/or reduced competition between Lp(a) and LDL particles for these receptors; the mechanism could contribute to the benefit of PCSK9 inhibition with alirocumab on cardiovascular outcomes.
Collapse
Affiliation(s)
- Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia; School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.
| | - Dick C Chan
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Louis Ma
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Qidi Ying
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | | | - Santica M Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Seattle, USA; Department of Medicine, University of Washington, Seattle, USA
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| |
Collapse
|
32
|
Tada H, Usui S, Sakata K, Takamura M, Kawashiri MA. Low-Density Lipoprotein Cholesterol Level cannot be too Low: Considerations from Clinical Trials, Human Genetics, and Biology. J Atheroscler Thromb 2020; 27:489-498. [PMID: 32350167 PMCID: PMC7355098 DOI: 10.5551/jat.rv17040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
LDL cholesterol is by far the best established "causal" cardiovascular risk. It is distributed normally, and the mean value ranges around 100~120 mg/dl. In terms of preventive cardiology, we now know very well that the lower the LDL cholesterol, the better. Clinical usefulness of aggressive LDL-lowering therapies using statin, ezetimibe, and proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors have been shown in primary and in secondary prevention settings. Additionally, the idea, based on recent randomized controlled trials (RCT), that the lower LDL cholesterol the better appears to be true for LDL as low as ~ 30 mg/dl. According to those data, recent guidelines in Europe and in Japan suggest the lowering of LDL cholesterol level <70 mg/dl for high-risk patients. However, the attainment rates of such "strict" goals seem to be quite low, probably because most cardiologists still have a sense of anxiety of "low" LDL cholesterol level. But "low" indicates no more than "lower" than the "average" range, which is not always implying the optimal range. Additionally, Mendelian randomization studies focusing on individuals exhibiting "low" LDL cholesterol suggest that "normal" LDL cholesterol levels might be too much for us. Moreover, LDL cholesterol levels of other primates are substantially lower than those in humans. In this review article, based on a series of evidence from clinical trials, human genetics, and biology, we provide the idea that we need to rethink what is the optimal range of LDL cholesterol level, instead of "normal" or "average" range.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masa-aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
33
|
Liberopoulos E. Lipoprotein(a) reduction with proprotein convertase subtilisin/kexin type 9 inhibitors: An unsolved mystery. Eur J Prev Cardiol 2020; 28:813-815. [PMID: 33611488 DOI: 10.1177/2047487320926777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Unusual responses to PCSK9 inhibitors in a clinical cohort utilizing a structured follow-up protocol. Am J Prev Cardiol 2020; 1:100012. [PMID: 34327453 PMCID: PMC8315390 DOI: 10.1016/j.ajpc.2020.100012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/02/2022] Open
Abstract
Objective To characterize unusual responses to PCSK9 inhibitor (PCSK9i) therapy in a real-world setting, given their extremely low prevalence in clinical trials. Methods A retrospective study of patients seen in a structured academic PCSK9i clinic who had LDL-C measurements before and after initiation of PCSK9i (up to 12 months). Unusual response was defined as: (1) no response: no changes in LDL-C level at all time points; (2) delayed response: <30% LDL-C reduction by the third dose, but achieving this threshold at a later time; (3) reduced response: <30% LDL-C reduction at all time points; and (4) lost response: ≥30% LDL-C reduction by the third dose, but displaying <30% reduction at a later time. Results Of the 411 patients meeting inclusion criteria, 54 were initially classified as unusual responders. After excluding those not adherent to prescribed interventions, 31 patients (7.5%) were classified as true unusual responders. These included: 2 with no response, 12 with delayed response, 3 with reduced response, 6 with delayed or reduced response, 4 with lost response, and 4 with delayed and lost response. Response to PCSK9i therapy at all time points revealed higher on-treatment LDL-C values (94–100 vs. 47–51 mg/dL, p < 0.001) and lower degree of percent reduction in LDL-C (23.3–34% vs. 61.1–64.5%, p < 0.001) in the unusual versus usual responders. Lipoprotein (a) (Lp[a]) values were consistently higher in the unusual responders (81–92.5 vs. 28.5–52 mg/dL, p < 0.01). Fold change in post-versus pre-treatment PCSK9 plasma results was similar between the two cohorts (p > 0.05), suggesting that unusual responses were not due to insufficient plasma PCSK9 blockade. Multiple logistic regression analysis identified clinical FH (OR 2.9, 95% CI 1.27-7.24) and no ezetimibe therapy (OR 0.334, 95% CI 0.150-0.728) as factors related to true unusual response. Conclusions Unusual responses to PCSK9i in a clinical cohort are more common than reported in clinical trials. Of the suspected unusual responders, nearly half were the result of adherence issues, and thus careful medication reconciliation should be the first step in diagnosing an unusual response.
Collapse
|
35
|
Maranhão RC, Pala D, Freitas FR. Lipoprotein removal mechanisms and aging: implications for the cardiovascular health of the elderly. Curr Opin Endocrinol Diabetes Obes 2020; 27:104-109. [PMID: 32011347 DOI: 10.1097/med.0000000000000529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The speed of removal from the plasma of apolipoprotein B-containing lipoproteins, for example, chylomicrons, VLDL and LDL is determinant of the plasma concentration of these lipoproteins, is influenced by genetic features and ambient factors, and has implications in atherogenesis. As aging increases the clinical complications of atherosclerosis, it is important to appraise the status of the removal mechanisms in elderly individuals. RECENT FINDINGS Removal of triglyceride-rich lipoproteins remnants is delayed but the triglyceride breakdown is unchanged in elderly individuals. The discovery of PCSK9, enzyme that degrades LDL receptors, and the recent observation that PCSK9 is elevated in the elderly raises another hypothesis to account for the increased LDL-cholesterol levels in the elderly. The removal of cholesterol from cells by HDL, the first step of cholesterol reverse transport is also less efficient in the elderly, which may compromise the body cholesterol homeostasis. SUMMARY Aging determines reduction of the efficiency of lipoprotein plasma removal mechanisms, which is implicated in increased incidence of cardia complications. Moreover, aging is frequently accompanied by physical activity reduction, weight gain, and metabolic disturbances that can further decrease the efficacy of the removal mechanisms. This knowledge is important for promoting cardiovascular health in the elderly and prolonging survival.
Collapse
Affiliation(s)
- Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
- Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Pala
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| | - Fatima R Freitas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| |
Collapse
|
36
|
Tang Y, Li SL, Hu JH, Sun KJ, Liu LL, Xu DY. Research progress on alternative non-classical mechanisms of PCSK9 in atherosclerosis in patients with and without diabetes. Cardiovasc Diabetol 2020; 19:33. [PMID: 32169071 PMCID: PMC7071562 DOI: 10.1186/s12933-020-01009-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) acts via a canonical pathway to regulate circulating low-density lipoprotein-cholesterol (LDL-C) via degradation of the LDL receptor (LDLR) on the liver cell surface. Published research has shown that PCSK9 is involved in atherosclerosis via a variety of non-classical mechanisms that involve lysosomal, inflammatory, apoptotic, mitochondrial, and immune pathways. In this review paper, we summarized these additional mechanisms and described how anti-PCSK9 therapy exerts effects through these mechanisms. These additional pathways further illustrate the regulatory role of PCSK9 in atherosclerosis and offer an in-depth interpretation of how the PCSK9 inhibitor exerts effects on the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ying Tang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Sheng-Lan Li
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Jia-Hui Hu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Kai-Jun Sun
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Lei-Ling Liu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
37
|
Shapiro MD, Minnier J, Tavori H, Kassahun H, Flower A, Somaratne R, Fazio S. Relationship Between Low-Density Lipoprotein Cholesterol and Lipoprotein(a) Lowering in Response to PCSK9 Inhibition With Evolocumab. J Am Heart Assoc 2020; 8:e010932. [PMID: 30755061 PMCID: PMC6405654 DOI: 10.1161/jaha.118.010932] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Beyond their potent LDL (low‐density lipoprotein) cholesterol (LDL‐C)–lowering efficacy (50–60%), PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors also reduce Lp(a) (lipoprotein[a]) levels by 25% to 30%, suggesting a 2:1 response ratio. We aimed to characterize the relationship between LDL‐C and Lp(a) lowering by evolocumab, a PCSK9 inhibitor, in a large clinical trial population and to determine the prevalence of concordant/discordant LDL‐C and Lp(a) responses to PCSK9 inhibition. Methods and Results Data were analyzed from 4 randomized, 12‐week, multicenter, phase 3 evolocumab trials. Patients with familial hypercholesterolemia, nonfamilial hypercholesterolemia, or statin intolerance participated in the trials. The main measure was the degree of concordance or discordance of LDL‐C and Lp(a) in response to PCSK9 inhibition; concordant response was defined as LDL‐C reduction >35% and Lp(a) reduction >10%. The study cohort comprised 895 patients (438 female; median age: 59.0 years [interquartile range: 51–66 years]). Baseline mean level of LDL‐C was 133.6 mg/dL (SE: 1.7) and median Lp(a) level was 46.4 mg/dL (interquartile range: 18.4–82.4 mg/dL). A discordant response was observed in 165 (19.7%) patients. With these cutoffs, the prevalence of discordance was higher when considering baseline Lp(a) concentrations >30 mg/dL (26.5%) or >50 mg/dL (28.6%). Conclusions We demonstrate high prevalence of discordance in LDL‐C and Lp(a) reduction in response to evolocumab, particularly when considering higher baseline Lp(a) concentrations, indicating the possibility of alternative pathways beyond LDLR (LDL receptor)–mediated clearance involved in Lp(a) reduction by evolocumab. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01763827, NCT01763866, NCT01763905, NCT01763918. See Editorial by Nestel
Collapse
Affiliation(s)
- Michael D. Shapiro
- Knight Cardiovascular InstituteCenter for Preventive CardiologyOregon Health & Science UniversityPortlandOR
| | - Jessica Minnier
- Knight Cardiovascular InstituteCenter for Preventive CardiologyOregon Health & Science UniversityPortlandOR
- OHSU‐PSU School of Public HealthOregon Health & Science UniversityPortlandOR
| | - Hagai Tavori
- Knight Cardiovascular InstituteCenter for Preventive CardiologyOregon Health & Science UniversityPortlandOR
| | | | | | | | - Sergio Fazio
- Knight Cardiovascular InstituteCenter for Preventive CardiologyOregon Health & Science UniversityPortlandOR
| |
Collapse
|
38
|
Lorenzatti AJ, Toth PP. New Perspectives on Atherogenic Dyslipidaemia and Cardiovascular Disease. Eur Cardiol 2020; 15:1-9. [PMID: 32180834 PMCID: PMC7066832 DOI: 10.15420/ecr.2019.06] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, atherogenic dyslipidaemia has become one of the most common phenotypic presentations of lipid abnormalities, being strongly and unequivocally associated with an increased risk of cardiovascular (CV) disease. Despite the excellent results achieved from statin and non-statin management of LDL cholesterol and CV events prevention, there still remains a significant residual risk, associated with the prevalence of non-LDL cholesterol lipid patterns characterised by elevated triglyceride levels, low HDL cholesterol, a preponderance of small and dense LDL particles, accumulation of remnant lipoproteins and postprandial hyperlipidaemia. These qualitative and quantitative lipid modifications are largely associated with insulin resistance, type 2 diabetes and obesity, the prevalence of which has grown to epidemic proportions throughout the world. In this review, we analyse the pathophysiology of this particular dyslipidaemia, its relationship with the development of atherosclerotic CV disease and, finally, briefly describe the therapeutic approaches, including changes in lifestyle and current pharmacological interventions to manage these lipid alterations aimed at preventing CV events.
Collapse
Affiliation(s)
- Alberto J Lorenzatti
- DAMIC Medical Institute, Rusculleda Foundation for Research, Cordoba, Argentina.,Department of Cardiology, Cordoba Hospital, Cordoba, Argentina
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, US.,Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, US
| |
Collapse
|
39
|
Gencer B, Mach F. Potential of Lipoprotein(a)-Lowering Strategies in Treating Coronary Artery Disease. Drugs 2020; 80:229-239. [DOI: 10.1007/s40265-019-01243-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Boffa MB, Koschinsky ML. Proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein(a)-mediated risk of atherosclerotic cardiovascular disease: more than meets the eye? Curr Opin Lipidol 2019; 30:428-437. [PMID: 31577611 DOI: 10.1097/mol.0000000000000641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Evidence continues to mount for elevated lipoprotein(a) [Lp(a)] as a prevalent, independent, and causal risk factor for atherosclerotic cardiovascular disease. However, the effects of existing lipid-lowering therapies on Lp(a) are comparatively modest and are not specific to Lp(a). Consequently, evidence that Lp(a)-lowering confers a cardiovascular benefit is lacking. Large-scale cardiovascular outcome trials (CVOTs) of inhibitory mAbs targeting proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) may address this issue. RECENT FINDINGS Although the ability of PCSK9i to lower Lp(a) by 15-30% is now clear, the mechanisms involved continue to be debated, with in-vitro and in-vivo studies showing effects on Lp(a) clearance (through the LDL receptor or other receptors) and Lp(a)/apolipoprotein(a) biosynthesis in hepatocytes. The FOURIER CVOT showed that patients with higher baseline levels of Lp(a) derived greater benefit from evolocumab and those with the lowest combined achieved Lp(a) and LDL-cholesterol (LDL-C) had the lowest event rate. Meta-analysis of ten phase 3 trials of alirocumab came to qualitatively similar conclusions concerning achieved Lp(a) levels, although an effect independent of LDL-C lowering could not be demonstrated. SUMMARY Although it is not possible to conclude that PCSK9i specifically lower Lp(a)-attributable risk, patients with elevated Lp(a) could derive incremental benefit from PCSK9i therapy.
Collapse
Affiliation(s)
| | - Marlys L Koschinsky
- Department of Physiology & Pharmacology
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
41
|
Abstract
See Article by Shapiro et al
Collapse
Affiliation(s)
- Paul Nestel
- 1 Baker Heart & Diabetes Institute Melbourne Australia
| |
Collapse
|
42
|
Warden BA, Minnier J, Watts GF, Fazio S, Shapiro MD. Impact of PCSK9 inhibitors on plasma lipoprotein(a) concentrations with or without a background of niacin therapy. J Clin Lipidol 2019; 13:580-585. [DOI: 10.1016/j.jacl.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/24/2022]
|
43
|
Abstract
PURPOSE OF REVIEW The use of therapeutic monoclonal antibodies to target proprotein convertase subtilisin/kexin type 9 (PCSK9) represents a novel approach to the management of hypercholesteremia and prevention of atherosclerotic cardiovascular disease. We review the most recent literature relevant to PCSK9 inhibition with emphasis on how recent results and ongoing trials have and will continue to shape the use of this new therapeutic class in preventive cardiology. RECENT FINDINGS PCSK9 inhibitors reduce plasma lipoprotein(a) concentrations but a mechanistic understanding remains elusive. Evaluation of evolocumab for use in patients without prior myocardial infarction or stroke is underway (NCT03872401). Concerns regarding the cost-effectiveness of PCSK9 inhibitors have continued to thwart access to these drugs, though innovative models of care delivery and price reductions have improved this situation. Inclisiran, a small interfering ribonucleic acid (siRNA), reduces translation of PCSK9 and demonstrates more durable reductions in low-density lipoprotein-cholesterol (LDL-C). It is currently evaluated in the context of a phase III cardiovascular outcome trial in patients with established vascular disease (NCT03705234). SUMMARY The current scope of PCSK9 inhibitor therapy in preventive cardiology is limited to patients with familial hypercholesterolemia and/or established atherosclerotic cardiovascular disease. Future cardiovascular outcome trial results with PCSK9 blocking antibodies in primary prevention and with siRNA to PCSK9 in secondary prevention, improved understanding of the drivers of lipoprotein(a) reduction with PCSK9 inhibition, and cost-effectiveness will determine the future role of this therapeutic class.
Collapse
|
44
|
Del Pinto R, Grassi D, Properzi G, Desideri G, Ferri C. Low Density Lipoprotein (LDL) Cholesterol as a Causal Role for Atherosclerotic Disease: Potential Role of PCSK9 Inhibitors. High Blood Press Cardiovasc Prev 2019; 26:199-207. [PMID: 31236902 DOI: 10.1007/s40292-019-00323-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9)-related discoveries of the turn of the century have translated into substantial novelty in dyslipidemia treatment in the last 5 years. With chronic preventable atherosclerotic cardiovascular diseases (ASCVD) representing an epidemic of morbidity and mortality worldwide, low-density lipoprotein cholesterol (LDL-c) reduction represents a public health priority. By overcoming two major statin-related issues, namely intolerance and ineffectiveness, PCSK9 inhibitors have offered a safe and effective option in selected clinical settings where LDL-c reduction is required. Herein, we recapitulate recent findings, clinical applications, and ASCVD prevention potential of PCSK9 inhibition, with focus on anti-PCSK9 monoclonal antibodies, evolocumab and alirocumab.
Collapse
Affiliation(s)
- Rita Del Pinto
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy.
| | - Davide Grassi
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| | - Giuliana Properzi
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| | - Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, San Salvatore Hospital, University of L'Aquila, Building Delta 6, L'Aquila, Italy
| |
Collapse
|
45
|
Gragnano F, Fimiani F, Di Maio M, Cesaro A, Limongelli G, Cattano D, Calabrò P. Impact of lipoprotein(a) levels on recurrent cardiovascular events in patients with premature coronary artery disease. Intern Emerg Med 2019; 14:621-625. [PMID: 30929131 DOI: 10.1007/s11739-019-02082-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Felice Gragnano
- Division of Cardiology, A.O.R.N. Sant'Anna e San Sebastiano, F. Palasciano, 81100, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", L. Bianchi 1, 80131, Naples, Italy
| | - Fabio Fimiani
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", L. Bianchi 1, 80131, Naples, Italy
| | - Marco Di Maio
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", L. Bianchi 1, 80131, Naples, Italy
| | - Arturo Cesaro
- Division of Cardiology, A.O.R.N. Sant'Anna e San Sebastiano, F. Palasciano, 81100, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", L. Bianchi 1, 80131, Naples, Italy
| | - Giuseppe Limongelli
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", L. Bianchi 1, 80131, Naples, Italy
| | - Davide Cattano
- McGovern Medical School, UTHealth at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Paolo Calabrò
- Division of Cardiology, A.O.R.N. Sant'Anna e San Sebastiano, F. Palasciano, 81100, Caserta, Italy.
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", L. Bianchi 1, 80131, Naples, Italy.
| |
Collapse
|
46
|
The PCSK9 revolution: Current status, controversies, and future directions. Trends Cardiovasc Med 2019; 30:179-185. [PMID: 31151804 DOI: 10.1016/j.tcm.2019.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) has revolutionized our understanding of cholesterol homeostasis and added to our arsenal against atherosclerotic cardiovascular disease (ASCVD). In a span of approximately 15 years, PCSK9 has morphed from an esoteric and rare cause of familial hypercholesterolemia (FH) into the most efficient cholesterol-lowering target ever known, with the completion of two large scale cardiovascular outcome trials showing positive results. Current Food and Drug Administration (FDA) approved modalities to inhibit PCSK9 are in the form of monoclonal antibodies which display an unparalleled degree of low-density lipoprotein cholesterol (LDL-C) lowering and expand upon the notion that lower LDL-C is better for ASCVD risk reduction. However, the accelerated pace of discovery and therapeutic development has left large gaps in our knowledge regarding the physiology and function of PCSK9. The aim of this review is to provide context to the discovery, history, treatment and current status of PCSK9 and its therapeutic inhibitors and highlight areas of controversy and future directions.
Collapse
|