1
|
Chen M, Liu J, Fan M, Li B, Ren Y, Xu S. Association of alcohol consumption with hypertension or prehypertension in Chinese adolescent: A cohort study of the China Health and Nutrition Survey. J Clin Hypertens (Greenwich) 2024; 26:1228-1236. [PMID: 39226155 PMCID: PMC11555530 DOI: 10.1111/jch.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
This study was conducted to investigate the association between alcohol consumption in adolescence and the risk of hypertension or prehypertension development in early adulthood. This cohort study included adolescent participants aged 12-18 years from the 2000-2011 China Health and Nutrition Survey. Cox proportional risk regression models were used to analyze the associations of the frequency of alcohol consumption, alcohol intake, and type of alcohol with the risk of developing hypertension or prehypertension. Restricted cubic spline analysis was used to assess the dose-response relationships for alcohol intake and their hazard ratios (HRs). A total of 1556 participants were included in the final analysis. Among the overall population, 448 (30.81%) and 35 (34.31%) participants developed hypertension or prehypertension, respectively. Compared with no alcohol consumption, alcohol consumption ≥ 2 times/week and consumption of ≥2 types of alcohol were associated with an increased risk of hypertension and prehypertension, with HRs of 1.97 (95% confidence interval [CI] 1.17-3.34; p = 0.011) and 1.77 (95% CI 1.01-3.09; p = 0.046), respectively. Alcohol intake of > 96 mL/week was associated with an increased risk of hypertension and prehypertension, with HRs of 2.09 (95% CI 1.12-3.90; p = 0.020) and 2.07 (95% CI 1.11-3.84; p = 0.021), respectively. The restricted cubic spline analysis showed that the risk of developing high blood pressure or prehypertension tends to increase with increasing alcohol consumption. Heavy alcohol consumption in adolescence increased the risk of developing hypertension and prehypertension in early adulthood.
Collapse
Affiliation(s)
- Meiqi Chen
- College of MedicineWuhan University of Science and TechnologyWuhanChina
- Department of CardiologyInstitute of Cardiovascular DiseasesXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
| | - Juan Liu
- Department of CardiologyInstitute of Cardiovascular DiseasesXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
| | - Menglin Fan
- Evidence‐Based Medicine CentreOffice of Academic ResearchXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
| | - Bin Li
- Department of CardiologyInstitute of Cardiovascular DiseasesXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
| | - Yong Ren
- Department of CardiologyInstitute of Cardiovascular DiseasesXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
| | - Shaoyong Xu
- Evidence‐Based Medicine CentreOffice of Academic ResearchXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
- Department of EndocrinologyXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangHubeiChina
| |
Collapse
|
2
|
Muhammad J, Erlwanger KH, Ibrahim KG, Mokotedi L. Effects of voluntarily consumed sweetened alcohol and naringin on cardiac function in male and female Sprague-Dawley rats. Physiol Rep 2024; 12:e70030. [PMID: 39245811 PMCID: PMC11381194 DOI: 10.14814/phy2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
This study assessed the impact of sweetened alcohol and naringin on cardiac function in Sprague-Dawley rats. Male (n = 40) and female (n = 40) rats were allocated to control, sweetened alcohol (SOH), naringin (NA), and sweetened alcohol with naringin (SOH + NA) groups. SOH and SOH + NA rats received 10% alcohol + 20% fructose in gelatine; SOH + NA and NA rats received 50 mg/kg naringin in gelatine daily for 10 weeks. Echocardiography was performed to assess left ventricular (LV) function. LV cardiomyocyte diameters and collagen area fraction were determined by H&E and picrosirius-red staining, respectively. In males, sweetened alcohol and naringin did not affect cardiac function. Female SOH rats had increased LV end-diastolic posterior wall (p = 0.04), relative wall thicknesses (p = 0.01), and LV cardiomyocyte diameters (p = 0.005) compared with control. Female SOH and SOH + NA had reduced lateral e' and e'/a' and increased E/e' (p < 0.0001). Female SOH (p = 0.01) and SOH + NA (p = 0.04) rats had increased LV collagen area fraction compared with controls. In males, neither sweetened alcohol nor naringin affected cardiac geometry or diastolic function. In females, sweetened alcohol induced concentric remodelling, impaired LV relaxation, and elevated filling pressures. Naringin may have the potential to improve the sweetened alcohol-induced concentric remodelling; however, it did not ameliorate diastolic dysfunction in females.
Collapse
Affiliation(s)
- Jelani Muhammad
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kasimu G Ibrahim
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Lebogang Mokotedi
- Department of Physiology, School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
- Integrated Molecular Physiology Research Initiative (IMPRI), School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Romero-Herrera I, Nogales F, Gallego-López MDC, Díaz-Castro J, Carreras O, Ojeda ML. Selenium supplementation via modulation of selenoproteins ameliorates binge drinking-induced oxidative, energetic, metabolic, and endocrine imbalance in adolescent rats' skeletal muscle. Food Funct 2024; 15:7988-8007. [PMID: 38984595 DOI: 10.1039/d4fo01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Adolescence is characterized by increased vulnerability to addiction and ethanol (EtOH) toxicity, particularly through binge drinking (BD), a favored acute EtOH-ingestion pattern among teenagers. BD, highly pro-oxidant, induces oxidative stress (OS), affecting skeletal muscle (SKM), where selenium (Se), an antioxidant element and catalytic center of selenoproteins, is stored, among other tissues. Investigating the effects of Se supplementation on SKM after BD exposure holds therapeutic promise. For this, we randomised 32 adolescent Wistar rats into 4 groups, exposed or not to intermittent i.p. BD [BD and control (C)] (3 g EtOH per kg per day), and supplemented with selenite [BDSe and CSe] (0.4 ppm). In SKM, we examined the oxidative balance, energy status (AMPK, SIRT-1), protein turnover (IRS-1, Akt1, mTOR, IGF-1, NF-κB p65, MAFbx, ULK1, pelF2α), serum myokines (myostatin, IL-6, FGF21, irisin, BDNF, IL-15, fractalkine, FSTL-1, FABP-3), and selenoproteins (GPx1, GPx4, SelM, SelP). In the pancreas, we studied the oxidative balance and SIRT-1 expression. Selenite supplementation mitigated BD-induced OS by enhancing the expression of selenoproteins, which restored oxidative balance, notably stimulating protein synthesis and normalizing the myokine profile, leading to improved SKM mass growth and metabolism, and reduced inflammation and apoptosis (caspase-3). Selenite restoration of SelP's receptor LRP1 expression, reduced by BD, outlines the crucial role of SKM in the SelP cycle, linking Se levels to SKM development. Furthermore, Se attenuated pancreatic OS, preserving insulin secretion. Se supplementation shows potential for alleviating SKM damage from BD, with additional beneficial endocrine effects on the pancreas, adipose tissue, liver, heart and brain that position it as a broad-spectrum treatment for adolescent alcohol consumption, preventing metabolic diseases in adulthood.
Collapse
Affiliation(s)
- Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, C/Professor García González 2, 41012-Seville, Spain.
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, C/Professor García González 2, 41012-Seville, Spain.
| | - María Del Carmen Gallego-López
- Department of Physiology, Faculty of Pharmacy, University of Seville, C/Professor García González 2, 41012-Seville, Spain.
| | - Javier Díaz-Castro
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071-Armilla, Granada, Spain.
- Department of Physiology, University of Granada, Granada, Spain
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, C/Professor García González 2, 41012-Seville, Spain.
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, C/Professor García González 2, 41012-Seville, Spain.
| |
Collapse
|
4
|
Nchodu M, Efuntayo A, du Preez R, Ali H, Olateju OI. Simvastatin Significantly Reduced Alcohol-Induced Cardiac Damage in Adolescent Mice. Cardiovasc Toxicol 2024; 24:15-26. [PMID: 38261135 PMCID: PMC10838240 DOI: 10.1007/s12012-023-09821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/16/2023] [Indexed: 01/24/2024]
Abstract
Alcohol abuse by adolescents is becoming a serious health concern as they often progress to becoming alcoholics later in life which may lead to heart problems. Chronic alcohol use alters the cardiac function and structure, such as haemodynamic changes, weakening and loss of cardiomyocytes, myocardial fibrosis, and inflammation. Simvastatin is a commonly used drug for the treatment and management of various cardiovascular problems but information on its protective effects against alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation is lacking in the literature. Four-week-old male (n = 5) and female (n = 5) C57BL/6 J mice were assigned to each experimental group: (I) NT-no administration of alcohol or Simvastatin; (II) ALC-2.5 g/Kg/day of 20% alcohol via intraperitoneal injection (i.p.); (III) SIM-5 mg/Kg/day of Simvastatin via oral gavage; (iv) ALC + SIM5-5 mg/Kg/day of Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p.; and (v) ALC + SIM15-15 mg/Kg/day Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p. After the 28-day treatment period, the heart was removed and processed for H&E, Masson's trichrome, or TNF-α immunolabelling. The area and diameter of cardiomyocytes were measured on the H&E-stained sections. The distribution of collagen or TNF-α expression was quantified using the deconvolution tool of ImageJ software. The results confirmed alcohol-induced toxicity on the cardiomyocytes and Simvastatin reduced alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation in both sexes. This study demonstrated that Simvastatin, an FDA approved and easily accessible drug, may be beneficial in lowering the prevalence of alcohol-induced cardiovascular diseases (especially in adolescents) which will have a huge financial implication on health systems worldwide.
Collapse
Affiliation(s)
- Makgotso Nchodu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Alice Efuntayo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Robin du Preez
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Hasiena Ali
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa.
| |
Collapse
|
5
|
Edavettal JM, Harris NR, Cohen SE, Paloczi J, Chandrasekar B, Gardner JD. Abstinence Restores Cardiac Function in Mice with Established Alcohol-Induced Cardiomyopathy. Cells 2023; 12:2783. [PMID: 38132102 PMCID: PMC10742080 DOI: 10.3390/cells12242783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Alcohol-induced cardiomyopathy (ACM) has a poor prognosis with up to a 50% chance of death within four years of diagnosis. There are limited studies investigating the potential of abstinence for promoting repair after alcohol-induced cardiac damage, particularly in a controlled preclinical study design. Here, we developed an exposure protocol that led to significant decreases in cardiac function in C57BL6/J mice within 30 days; dP/dt max decreased in the mice fed alcohol for 30 days (8054 ± 664.5 mmHg/s compared to control mice: 11,188 ± 724.2 mmHg/s, p < 0.01), and the dP/dt min decreased, as well (-7711 ± 561 mmHg/s compared to control mice: -10,147 ± 448.2 mmHg/s, p < 0.01). Quantitative PCR was used to investigate inflammatory and fibrotic biomarkers, while histology was used to depict overt changes in cardiac fibrosis. We observed a complete recovery of function after abstinence (dP/dt max increased from 8054 ± 664 mmHg/s at 30 days to 11,967 ± 449 mmHg/s after abstinence, p < 0.01); further, both inflammatory and fibrotic biomarkers decreased after abstinence. These results lay the groundwork for future investigation of the molecular mechanisms underlying recovery from alcohol-induced damage in the heart.
Collapse
Affiliation(s)
- Joshua M. Edavettal
- Department of Physiology, LSU Health Sciences Center—New Orleans, New Orleans, LA 70112, USA; (J.M.E.); (N.R.H.); (S.E.C.); (J.P.)
| | - Nicholas R. Harris
- Department of Physiology, LSU Health Sciences Center—New Orleans, New Orleans, LA 70112, USA; (J.M.E.); (N.R.H.); (S.E.C.); (J.P.)
| | - Sarah E. Cohen
- Department of Physiology, LSU Health Sciences Center—New Orleans, New Orleans, LA 70112, USA; (J.M.E.); (N.R.H.); (S.E.C.); (J.P.)
| | - Janos Paloczi
- Department of Physiology, LSU Health Sciences Center—New Orleans, New Orleans, LA 70112, USA; (J.M.E.); (N.R.H.); (S.E.C.); (J.P.)
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, and Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65212, USA
| | - Jason D. Gardner
- Department of Physiology, LSU Health Sciences Center—New Orleans, New Orleans, LA 70112, USA; (J.M.E.); (N.R.H.); (S.E.C.); (J.P.)
| |
Collapse
|
6
|
Romero-Herrera I, Nogales F, Gallego-López MDC, Díaz-Castro J, Moreno-Fernandez J, Ochoa JJ, Carreras O, Ojeda ML. Adipose tissue homeostasis orchestrates the oxidative, energetic, metabolic and endocrine disruption induced by binge drinking in adolescent rats. J Physiol 2023; 601:5617-5633. [PMID: 37994192 DOI: 10.1113/jp285362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
Binge drinking (BD) is the most common alcohol consumption model for adolescents, and has recently been related to the generation of high oxidation and insulin resistance (IR). White adipose tissue (WAT) is a target organ for insulin action that regulates whole-body metabolism by secreting adipokines. The present study aimed to analyse the oxidative, inflammatory, energetic and endocrine profile in the WAT of BD-exposed adolescent rats, to obtain an integrative view of insulin secretion and WAT in IR progression. Two groups of male adolescent rats were used: control (n = 8) and BD (n = 8). An intermittent i.p. BD model (20% v/v) was used during 3 consecutive weeks. BD exposure led to a pancreatic oxidative imbalance, which was joint to high insulin secretion by augmenting deacetylase sirtuin-1 (SIRT-1) pancreatic expression and serum adipsin levels. However, BD rats had hyperglycaemia and high homeostasis model assessment of insulin resistance value (HOMA-IR). BD exposure in WAT increased lipid oxidation, as well as decreased insulin receptor substrate 1 (IRS-1) and AKT expression, sterol regulatory element-binding protein 1 (SREBP1), forkhead box O3A (FOXO3a) and peroxisome proliferator-activated receptor γ (PPARγ), and adipocyte size. BD also affected the expression of proteins related to energy balance, such as SIRT-1 and AMP activated protein kinase (AMPK), affecting the adipokine secretion profile (increasing resistin/adiponectin ratio). BD altered the entire serum lipid profile, increasing the concentration of free fatty acids. In conclusion, BD led to an oxidative imbalance and IR process in WAT, which modified the energy balance in this tissue, decreasing the WAT lipogenic/lipolytic ratio, affecting adipokine secretion and the systemic lipid profile, and contributing to the progression of IR. Therefore, WAT is key in the generation of metabolic and endocrine disruption after BD exposure during adolescence in rats. KEY POINTS: Adolescent rat binge drinking (BD) exposure leads to hepatic and systemic oxidative stress (OS) via reactive oxygen species generation, causing hepatic insulin resistance (IR) and altered energy metabolism. In the present study, BD exposure in adolescent rats induces OS in the pancreas, with increased insulin secretion despite hyperglycaemia, indicating a role for IR in white adipose tissue (WAT) homeostasis. In WAT, BD produces IR and an oxidative and energetic imbalance, triggering an intense lipolysis where the serum lipid profile is altered and free fatty acids are increased, consistent with liver lipid accumulation and steatosis. BD exposure heightens inflammation in WAT, elevating pro-inflammatory and reducing anti-inflammatory adipokines, favouring cardiovascular damage. This research provides a comprehensive view of how adolescent BD in rats impacts liver, WAT and pancreas homeostasis, posing a risk for future cardiometabolic complications in adulthood.
Collapse
Affiliation(s)
- Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| | | | - Javier Díaz-Castro
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Jorge Moreno-Fernandez
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Julio José Ochoa
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| | - Mª Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, Seville, Spain
| |
Collapse
|
7
|
Romero-Herrera I, Nogales F, Diaz-Castro J, Moreno-Fernandez J, Gallego-Lopez MDC, Ochoa JJ, Carreras O, Ojeda ML. Binge drinking leads to an oxidative and metabolic imbalance in skeletal muscle during adolescence in rats: endocrine repercussion. J Physiol Biochem 2023; 79:799-810. [PMID: 37676577 PMCID: PMC10635949 DOI: 10.1007/s13105-023-00983-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant model of alcohol consumption, mainly used by adolescents. It has recently been related to the hepatic IR-process. Skeletal muscle is known to be involved in insulin action and modulation through myokine secretion. However, there is no information on muscle metabolism and myokine secretion after BD exposure in adolescents. Two experimental groups of adolescent rats have been used: control and BD-exposed one. Oxidative balance, energy status and lipid, and protein metabolism have been analyzed in muscle, together with myokine serum levels (IL-6, myostatin, LIF, IL-5, fractalkine, FGF21, irisin, BDNF, FSTL1, apelin, FABP3, osteocrin, osteonectin (SPARC), and oncostatin). In muscle, BD affects the antioxidant enzyme balance leading to lipid and protein oxidation. Besides, it also increases the activation of AMPK and thus contributes to decrease SREBP1 and pmTOR and to increase FOXO3a expressions, promoting lipid and protein degradation. These alterations deeply affect the myokine secretion pattern. This is the first study to examine a general myokine response after exposure to BD. BD not only caused a detrimental imbalance in myokines related to muscle turnover, decreased those contributing to increase IR-process, decreased FST-1 and apelin and their cardioprotective function but also reduced the neuroprotective BDNF. Consequently, BD leads to an important metabolic and energetic disequilibrium in skeletal muscle, which contributes to exacerbate a general IR-process.
Collapse
Affiliation(s)
- Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain.
| | - Javier Diaz-Castro
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Jorge Moreno-Fernandez
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | | | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Avenida del Conocimiento s/n, 18071, Armilla, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, n° 2, 41012, Seville, Spain
| |
Collapse
|
8
|
Ojeda ML, Nogales F, Del Carmen Gallego-López M, Carreras O. Binge drinking during the adolescence period causes oxidative damage-induced cardiometabolic disorders: A possible ameliorative approach with selenium supplementation. Life Sci 2022; 301:120618. [PMID: 35533761 DOI: 10.1016/j.lfs.2022.120618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| |
Collapse
|
9
|
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism 2021; 125:154909. [PMID: 34627873 DOI: 10.1016/j.metabol.2021.154909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Alcohol consumption prompts detrimental psychological, pathophysiological and health issues, representing one of the major causes of death worldwide. Alcohol use disorder (AUD), which is characterized by compulsive alcohol intake and loss of control over alcohol usage, arises from a complex interplay between genetic and environmental factors. More importantly, long-term abuse of alcohol is often tied with unfavorable cardiac remodeling and contractile alterations, a cadre of cardiac responses collectively known as alcoholic cardiomyopathy (ACM). Recent evidence has denoted a pivotal role for ethanol-triggered epigenetic modifications, the interface between genome and environmental cues, in the organismal and cellular responses to ethanol exposure. To-date, three major epigenetic mechanisms (DNA methylation, histone modifications, and RNA-based mechanisms) have been identified for the onset and development of AUD and ACM. Importantly, these epigenetic changes induced by alcohol may be detectable in the blood, thus offering diagnostic, therapeutic, and prognostic promises of epigenetic markers for AUD and alcoholic complications. In addition, several epigenetic drugs have shown efficacies in the management of alcohol abuse, loss of control for alcohol usage, relapse, drinking-related anxiety and behavior in withdrawal. In this context, medications targeting epigenetic modifications may hold promises for pharmaceutical management of AUD and ACM.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Ai L, Perez E, Asimes A, Kampaengsri T, Heroux M, Zlobin A, Hiske MA, Chung CS, Pak TR, Kirk JA. Binge Alcohol Exposure in Adolescence Impairs Normal Heart Growth. J Am Heart Assoc 2020; 9:e015611. [PMID: 32319345 PMCID: PMC7428579 DOI: 10.1161/jaha.119.015611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Approximately 1 in 6 adolescents report regular binge alcohol consumption, and we hypothesize it affects heart growth during this period. Methods and Results Adolescent, genetically diverse, male Wistar rats were gavaged with water or ethanol once per day for 6 days. In vivo structure and function were assessed before and after exposure. Binge alcohol exposure in adolescence significantly impaired normal cardiac growth but did not affect whole‐body growth during adolescence, therefore this pathology was specific to the heart. Binge rats also exhibited signs of accelerated pathological growth (concentric cellular hypertrophy and thickening of the myocardial wall), suggesting a global reorientation from physiologic to pathologic growth. Binge rats compensated for their smaller filling volumes by increasing systolic function and sympathetic stimulation. Consequently, binge alcohol exposure increased PKA (protein kinase A) phosphorylation of troponin I, inducing myofilament calcium desensitization. Binge alcohol also impaired in vivo relaxation and increased titin‐based cellular stiffness due to titin phosphorylation by PKCα (protein kinase C α). Mechanistically, alcohol inhibited extracellular signal‐related kinase activity, a nodal signaling kinase activating physiology hypertrophy. Thus, binge alcohol exposure depressed genes involved in growth. These cardiac structural alterations from binge alcohol exposure persisted through adolescence even after cessation of ethanol exposure. Conclusions Alcohol negatively impacts function in the adult heart, but the adolescent heart is substantially more sensitive to its effects. This difference is likely because adolescent binge alcohol impedes the normal rapid physiological growth and reorients it towards pathological hypertrophy. Many adolescents regularly binge alcohol, and here we report a novel pathological consequence as well as mechanisms involved.
Collapse
Affiliation(s)
- Lizhuo Ai
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Edith Perez
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - AnnaDorothea Asimes
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Theerachat Kampaengsri
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Maxime Heroux
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Andrei Zlobin
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Mark A Hiske
- Department of Physiology Wayne State University Detroit MI
| | | | - Toni R Pak
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology Loyola University Chicago Stritch School of Medicine Maywood IL
| |
Collapse
|