1
|
Wang L, Zhu C, Shao Y, Chen R, Liang H. Sevoflurane reduces cardiomyocyte injury in a hypoxia/reoxygenation model of cardiomyocytes through the linc01278/miR-134-5pt regulatory axis. BMC Pharmacol Toxicol 2025; 26:83. [PMID: 40229902 PMCID: PMC11998206 DOI: 10.1186/s40360-025-00909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Ischemia-reperfusion leads to varying degrees of myocardial cell injury. Notably, long noncoding RNA was associated with the protective effect of sevoflurane (Sev) preconditioning against myocardial ischemic injury. Therefore, we further investigated the protective mechanism of Sev-mediated linc01278 against damaged cardiomyocytes by constructing a hypoxia/reoxygenation (HR) model of cardiomyocytes. METHODS The expression of linc01278, miR-134-5p, and apoptotic biomarkers in cardiomyocytes was detected by RT-qPCR. The proliferation was detected by CCK8; apoptosis was observed by flow cytometry; and the degree of cardiomyocyte injury and the level of oxidative stress was observed by ELISA. Dual luciferase reporter assay and RIP verified linc01278 and miR-134-5p interactions. RESULTS linc01278 was down-regulated in the HR group and up-regulated after Sev pretreatment. Sev markedly mitigated the HR-impaired cell proliferation, reduced apoptosis, and oxidative stress, and downregulated the expression of myocardial injury markers including cTnI, CK-MB, and LDH. However, this protection was noticeably reversed by the downregulation of the linc01278 expression. Mechanistically, linc01278 binds to miR-134-5p. miR-134-5p was highly expressed in cardiomyocytes of the HR, and lowly expressed in the Sev groups. The cardioprotective effect of Sev weakened by si-linc01278 was typically restored by miR-134-5p inhibitor. CONCLUSIONS Sev attenuates HR-stimulated myocardial injury through linc01278/miR-134-5p axis-mediated proliferation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Ling Wang
- Department of Cardiovascular Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, 362000, China
| | - Changhua Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yangge Shao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Rui Chen
- Department of Pain Medicine, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Zhanggong District, Ganzhou, 341000, China.
| | - Hui Liang
- Department of Anesthesiology, Ordos Maternal and Child Health Care Hospital, No. 10, Changning Street, Kangbashi District, Ordos City, Inner Mongolia, 017110, China.
| |
Collapse
|
2
|
Amancherla K, Taravella Oill AM, Bledsoe X, Williams AL, Chow N, Zhao S, Sheng Q, Bearl DW, Hoffman RD, Menachem JN, Siddiqi HK, Brinkley DM, Mee ED, Hadad N, Agrawal V, Schmeckpepper J, Rali AS, Tsai S, Farber-Eger EH, Wells QS, Freedman JE, Tucker NR, Schlendorf KH, Gamazon ER, Shah RV, Banovich N. Dynamic responses to rejection in the transplanted human heart revealed through spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640852. [PMID: 40093136 PMCID: PMC11908199 DOI: 10.1101/2025.02.28.640852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Allograft rejection following solid-organ transplantation is a major cause of graft dysfunction and mortality. Current approaches to diagnosis rely on histology, which exhibits wide diagnostic variability and lacks access to molecular phenotypes that may stratify therapeutic response. Here, we leverage image-based spatial transcriptomics at sub-cellular resolution in longitudinal human cardiac biopsies to characterize transcriptional heterogeneity in 62 adult and pediatric heart transplant (HT) recipients during and following histologically-diagnosed rejection. Across 28 cell types, we identified significant differences in abundance in CD4 + and CD8 + T cells, fibroblasts, and endothelial cells across different biological classes of rejection (cellular, mixed, antibody-mediated). We observed a broad overlap in cellular transcriptional states across histologic rejection severity and biological class and significant heterogeneity within rejection severity grades that would qualify for immunomodulatory treatment. Individuals who had resolved rejection after therapy had a distinct transcriptomic profile relative to those with persistent rejection, including 216 genes across 6 cell types along pathways of inflammation, IL6-JAK-STAT3 signaling, IFNα/IFNγ response, and TNFα signaling. Spatial transcriptomics also identified genes linked to long-term prognostic outcomes post-HT. These results underscore importance of subtyping immunologic states during rejection to stratify immune-cardiac interactions following HT that are therapeutically relevant to short- and long-term rejection-related outcomes.
Collapse
|
3
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
4
|
Jiang J, Lin F, Wu W, Zhang Z, Zhang C, Qin D, Xu Z. Exosomal long non-coding RNAs in lung cancer: A review. Medicine (Baltimore) 2024; 103:e38492. [PMID: 39705424 DOI: 10.1097/md.0000000000038492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Lung cancer is one of the most threatening malignancies among the different kinds of tumors. The incidence and mortality rate are increasing especially in male. Advances in diagnosis and treatment have been achieve in recent years. However, the lung tumor cells also developing chemo- and radio-resistance. Novel approaches and new treatments are stilled needed to develop for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) original exosomes were proved different expression in lung tumor, which mediate multiple biological processes and is responsible for tumor proliferation and metastasis. In this review, we focus on the emerging roles of both lncRNAs and exosomal lncRNAs in lung cancer and their roles on angiogenesis, metastasis, diagnosis, drug resistance, and immune regulation of lung cancer. Exosome lncRNAs were proved to serve as regulatory factors for gene expression, mediating intercellular communication, and participating in the occurrence and development of various diseases. In addition, exosomes lnc RNA has advantages on the early diagnosis of lung cancer, tumor cell metastasis, drug resistance, and immune regulation. Exosome lncRNAs an provide some unique ideas on how to improve the efficiency of diagnosis and treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Jingyuan Jiang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Wang W, Liu Q, Yang Q, Fu S, Zheng D, Su Y, Xu J, Wang Y, Piao H, Liu K. 3D-printing hydrogel programmed released exosomes to restore aortic medial degeneration through inhibiting VSMC ferroptosis in aortic dissection. J Nanobiotechnology 2024; 22:600. [PMID: 39367412 PMCID: PMC11453022 DOI: 10.1186/s12951-024-02821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024] Open
Abstract
Aortic dissection (AD) is a devastating disease with a high mortality rate. Exosomes derived from mesenchymal stem cells (exo-MSCs) offer a promising strategy to restore aortic medial degeneration and combat ferroptosis in AD. However, their rapid degradation in the circulatory system and low treatment efficiency limit their clinical application. Methylacrylated gelatin (Gelma) was reported as a matrix material to achieve controlled release of exosomes. Herein, exo-MSCs-embedded in Gelma hydrogels (Gelma-exos) using ultraviolet light and three-dimensional (3D) printing technology. These Gelma-exos provide a sustained release of exo-MSCs as Gelma gradually degrades, helping to restore aortic medial degeneration and prevent ferroptosis. The sustained release of exosomes can inhibit the phenotypic switch of vascular smooth muscle cells (VSMCs) to a proliferative state, and curb their proliferation and migration. Additionally, the 3D-printed Gelma-exos demonstrated the ability to inhibit ferroptosis in vitro, in vivo and ex vivo experiments. In conclusion, our Gelma-exos, combined with 3D-printed technology, offer an alternative treatment approach for repairing aortic medial degeneration and ferroptosis in AD, potentially reducing the incidence of aortic dissection rupture.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Qing Liu
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiwei Yang
- China Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Songning Fu
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Yale Su
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Jinyu Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China.
| |
Collapse
|
6
|
Li X, Zhao X, Yin R, Yuan M, Zhang Y, Li X. TGF-β2-induced alterations of m6A methylation in hTERT RPE-1 cells. Exp Eye Res 2024; 241:109839. [PMID: 38395214 DOI: 10.1016/j.exer.2024.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
N6-methyladenosine (m6A) is a major type of RNA modification implicated in various pathophysiological processes. Transforming growth factor β2 (TGF-β2) induces epithelial-mesenchymal transition (EMT) in retinal pigmental epithelial (RPE) cells and promotes the progression of proliferative vitreoretinopathy (PVR). However, the role of m6A methylation in the EMT of human telomerase reverse transcriptase (hTERT) retinal pigmental epithelium (RPE)-1 cells has not been clarified. Here, we extracted RNA from RPE cells subjected to 0 or 20 ng/mL TGF-β2 for 72 h and identified differentially methylated genes (DMGs) by m6A-Seq and differentially expressed genes (DEGs) by RNA-Seq. We selected the genes related to EMT by conjoint m6A-Seq/RNA-Seq analysis and verified them by qRT-PCR. We then confirmed the function of m6A methylation in the EMT of RPE cells by knocking down the methyltransferase METTL3 and the m6A reading protein YTHDF1. Sequencing yielded 5814 DMGs and 1607 DEGs. Conjoint analysis selected 467 genes altered at the m6A and RNA levels that are closely associated with the EMT-related TGF-β, AGE-RAGE, PI3K-Akt, P53, and Wnt signaling pathways. We also identified ten core EMT genes ACTG2, BMP6, CDH2, LOXL2, SNAIL1, SPARC, BMP4, EMP3, FOXM1, and MYC. Their RNA levels were evaluated by qRT-PCR and were consistent with the sequencing results. We observed that METTL3 knockdown enhanced RPE cell migration and significantly upregulated the EMT markers N-cadherin (encoded by CDH2), fibronectin (FN), Snail family transcription repressor (SLUG), and vimentin. However, YTHDF1 knockdown had the opposite effects and decreased both cell migration and the N-cadherin, FN, and SLUG expression levels. The present study clarified TGF-β2-induced m6A- and RNA-level differences in RPE cells, indicated that m6A methylation might regulate EMT marker expression, and showed that m6A could regulate TGF-β2-induced EMT.
Collapse
Affiliation(s)
- Xue Li
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Xueru Zhao
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Ruijie Yin
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Min Yuan
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China
| | - Yongya Zhang
- Henan Provincial People's Hospital, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, China; Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China; People's Hospital of Zhengzhou University, Zhengzhou, China; People's Hospital of Henan University, Zhengzhou, China; Henan Academy of Innovations in Medical Science, Eye Institute, Zhengzhou, China.
| |
Collapse
|
7
|
Nappi F, Alzamil A, Avtaar Singh SS, Spadaccio C, Bonnet N. Current Knowledge on the Interaction of Human Cytomegalovirus Infection, Encoded miRNAs, and Acute Aortic Syndrome. Viruses 2023; 15:2027. [PMID: 37896804 PMCID: PMC10611417 DOI: 10.3390/v15102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Aortic dissection is a clinicopathological entity caused by rupture of the intima, leading to a high mortality if not treated. Over time, diagnostic and investigative methods, antihypertensive therapy, and early referrals have resulted in improved outcomes according to registry data. Some data have also emerged from recent studies suggesting a link between Human Cytomegalovirus (HCMV) infection and aortic dissection. Furthermore, the use of microRNAs has also become increasingly widespread in the literature. These have been noted to play a role in aortic dissections with elevated levels noted in studies as early as 2017. This review aims to provide a broad and holistic overview of the role of miRNAs, while studying the role of HCMV infection in the context of aortic dissections. The roles of long non-coding RNAs, circular RNAs, and microRNAs are explored to identify changes in expression during aortic dissections. The use of such biomarkers may one day be translated into clinical practice to allow early detection and prognostication of outcomes and drive preventative and therapeutic options in the future.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | | | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Mayo Clinic, Rochester, Rochester, MN 55905, USA;
| | - Nicolas Bonnet
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| |
Collapse
|
8
|
Liu F, Wang Y, Huang X, Liu D, Ding W, Lai H, Wang C, Ji Q. LINC02015 modulates the cell proliferation and apoptosis of aortic vascular smooth muscle cells by transcriptional regulation and protein interaction network. Cell Death Discov 2023; 9:301. [PMID: 37596272 PMCID: PMC10439127 DOI: 10.1038/s41420-023-01601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Long intergenic nonprotein coding RNA 2015 (LINC02015) is a long non-coding RNA that has been found elevated in various cell proliferation-related diseases. However, the functions and interactive mechanism of LINC02015 remain unknown. This study aimed to explore the role of LINC02015 in the cell proliferation and apoptosis of vascular smooth muscle cells (VSMCs) to explain the pathogenesis of aortic diseases. Ascending aorta samples and angiotensin-II (AT-II) treated primary human aortic VSMCs (HAVSMCs) were used to evaluate the LINC02015 expression. RNA sequencing, chromatin isolation by RNA purification sequencing, RNA pull-down, and mass spectrometry (MS) were applied to explore the potential interacting mechanisms. LINC02015 expression was found elevated in aortic dissection and AT-II-treated HAVSMCs. Cell proliferation and cell cycle were activated in HAVSMCs with LINC02015 knockdown. The cyclins family and caspase family were found to participate in regulating the cell cycle and apoptosis via the NF-κB signaling pathway. RXRA was discovered as a possible hub gene for LINC02015 transcriptional regulating networks. Besides, the protein interaction network of LINC02015 was revealed with candidate regulating molecules. It was concluded that the knockdown of LINC02015 could promote cell proliferation and inhibit the apoptosis of HAVSMCs through an RXRA-related transcriptional regulation network, which could provide a potential therapeutic target for aortic diseases.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China
| | - Yulin Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xitong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingqian Liu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjun Ding
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Municipal Institute for Cardiovascular Diseases, Shanghai, 200032, China.
| | - Qiang Ji
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Barreiro K, Lay AC, Leparc G, Tran VDT, Rosler M, Dayalan L, Burdet F, Ibberson M, Coward RJM, Huber TB, Krämer BK, Delic D, Holthofer H. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. J Extracell Vesicles 2023; 12:e12304. [PMID: 36785873 PMCID: PMC9925963 DOI: 10.1002/jev2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
| | - Abigail C. Lay
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Van Du T. Tran
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Marcel Rosler
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Lusyan Dayalan
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Frederic Burdet
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mark Ibberson
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Richard J. M. Coward
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
10
|
Noncoding RNA in the Regulation of Acute Aortic Dissection: From Profile to Mechanism. Cardiovasc Ther 2022; 2022:2371401. [PMID: 36474715 PMCID: PMC9699736 DOI: 10.1155/2022/2371401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Aortic dissection is a life-threatening condition caused by a tear in the intimal layer of the aorta or bleeding within the aortic wall, resulting in the separation of the layers of the aortic wall. As Nienaber reported, aortic dissection is most common in people 65-75 years old and has an incidence of 35 cases per 100,000 people per year in this population. Many pathogenic factors are involved in aortic dissection, including hypertension, dyslipidemia, and abnormality of the aortic intima caused by genetic variation. However, with the development of gene sequencing and transgenic technology, genetic methods are being used for the diagnosis and treatment of diseases, including acute aortic dissection. Genetic research on acute aortic dissection began around 2006. Recently, research on acute aortic dissection has mainly focused on microRNA (miRNA). Studies have found that miRNA plays a critical regulatory role in the occurrence and development of acute aortic dissection. By regulating miRNA expression, acute aortic dissection can be prevented and treated.
Collapse
|
11
|
Emerging Role of Non-Coding RNAs in Aortic Dissection. Biomolecules 2022; 12:biom12101336. [PMID: 36291545 PMCID: PMC9599213 DOI: 10.3390/biom12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular acute disease with high incidence and mortality, and it seriously threatens patients’ lives and health. The pathogenesis of AD mainly includes vascular inflammation, extracellular matrix degradation, and phenotypic conversion as well as apoptosis of vascular smooth muscle cells (VSMCs); however, its detailed mechanisms are still not fully elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are an emerging class of RNA molecules without protein-coding ability, and they play crucial roles in the progression of many diseases, including AD. A growing number of studies have shown that the dysregulation of ncRNAs contributes to the occurrence and development of AD by modulating the expression of specific target genes or the activity of related proteins. In addition, some ncRNAs exhibit great potential as promising biomarkers and therapeutic targets in AD treatment. In this review, we systematically summarize the recent findings on the underlying mechanism of ncRNA involved in AD regulation and highlight their clinical application as biomarkers and therapeutic targets in AD treatment. The information reviewed here will be of great benefit to the development of ncRNA-based therapeutic strategies for AD patients.
Collapse
|
12
|
Lu BH, Liu HB, Guo SX, Zhang J, Li DX, Chen ZG, Lin F, Zhao GA. Long non-coding RNAs: Modulators of phenotypic transformation in vascular smooth muscle cells. Front Cardiovasc Med 2022; 9:959955. [PMID: 36093159 PMCID: PMC9458932 DOI: 10.3389/fcvm.2022.959955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Long non-coding RNA (lncRNAs) are longer than 200 nucleotides and cannot encode proteins but can regulate the expression of genes through epigenetic, transcriptional, and post-transcriptional modifications. The pathophysiology of smooth muscle cells can lead to many vascular diseases, and studies have shown that lncRNAs can regulate the phenotypic conversion of smooth muscle cells so that smooth muscle cells proliferate, migrate, and undergo apoptosis, thereby affecting the development and prognosis of vascular diseases. This review discusses the molecular mechanisms of lncRNA as a signal, bait, stent, guide, and other functions to regulate the phenotypic conversion of vascular smooth muscle cells, and summarizes the role of lncRNAs in regulating vascular smooth muscle cells in atherosclerosis, hypertension, aortic dissection, vascular restenosis, and aneurysms, providing new ideas for the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Bing-Han Lu
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui-Bing Liu
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
- Henan Normal University, Xinxiang, China
| | - Shu-Xun Guo
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Dong-Xu Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhi-Gang Chen
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Guo-An Zhao
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| |
Collapse
|
13
|
Hu YY, Cheng XM, Wu N, Tao Y, Wang XN. Non-coding RNAs Regulate the Pathogenesis of Aortic Dissection. Front Cardiovasc Med 2022; 9:890607. [PMID: 35498004 PMCID: PMC9051029 DOI: 10.3389/fcvm.2022.890607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular disease. It is caused by a rupture of the aortic intima or bleeding of the aortic wall that leads to the separation of different aortic wall layers. Patients with untreated AD have a mortality rate of 1–2% per hour after symptom onset. Therefore, effective biomarkers and therapeutic targets are needed to reduce AD-associated mortality. With the development of molecular technology, researchers have begun to explore the pathogenesis of AD at gene and protein levels, and have made some progress, but the pathogenesis of AD remains unclear. Non-coding RNAs, such as microRNAs, lncRNAs, and circRNAs, have been identified as basic regulators of gene expression and are found to play a key role in the pathogenesis of AD. Thus, providing a theoretical basis for developing these non-coding RNAs as clinical biomarkers and new therapeutic targets for AD in the future. Previous studies on the pathogenesis of AD focused on miRNAs, but recently, there have been an increasing number of studies that explore the role of lncRNAs, and circRNAs in AD. This review summarizes the existing knowledge on the roles of various non-coding RNAs in the pathogenesis of AD, discusses their potential role as clinical biomarkers and therapeutic targets, states the limitations of existing evidence, and recommends future avenues of research on the pathogenesis of AD.
Collapse
|
14
|
Zhang K, Qi Y, Wang M, Chen Q. Long non-coding RNA HIF1A-AS2 modulates the proliferation, migration, and phenotypic switch of aortic smooth muscle cells in aortic dissection via sponging microRNA-33b. Bioengineered 2022; 13:6383-6395. [PMID: 35212609 PMCID: PMC8974049 DOI: 10.1080/21655979.2022.2041868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aortic dissection (AD), also known as aortic dissecting aneurysm, is one of the most common and dangerous cardiovascular diseases with high morbidity and mortality. This study was aimed to investigate the functional role of long non-coding RNA Hypoxia-inducible factor 1 alpha-antisense RNA 2 (lncRNA HIF1A-AS2) in AD. An in vitro model of AD was established by platelet-derived growth factor-BB (PDGF-BB)-mediated human aortic Smooth Muscle Cells (SMCs). HIF1A-AS2 expression in human AD tissues was determined by quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH) assays, followed by investigation of biological roles of HIF1A-AS2 in AD development by Cell Counting Kit-8 (CCK-8), immunofluorescence, and transwell assays. Additionally, the correlation between HIF1A-AS2, miR-33b, and high mobility group AT-hook2 (HMGA2) were identified by RNA immunoprecipitation (RIP), RNA pull-down and luciferase reporter assays. Results showed that HIF1A-AS2 was obviously increased, while the contractile-phenotype markers of vascular SMCs were significantly decreased in human AD tissues, when compared to normal tissues. Inhibition of HIF1A-AS2 attenuated SMCs proliferation and migration, whereas enhanced the phenotypic switch under the stimulation of PDGF-BB. Results from RIP, RNA pull-down and luciferase reporter assays demonstrated that miR-33b directly bound with HIF1A-AS2, and HIF1A-AS2 silencing suppressed the expression of HMGA2, which was induced by miR-33b inhibitor. In conclusion, knockdown of HIF1A-AS2 suppressed the proliferation and migration, while promoted the phenotypic switching of SMCs through miR-33b/HMGA2 axis, which laid a theoretical foundation for understanding the development of AD and shed light on a potential target for AD treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China.,Department of Cardiac ICU, Tianjin Chest HospitalTianjin, China , Tianjin China
| | - Yujuan Qi
- Department of Cardiac ICU, Tianjin Chest Hospital, Tianjin, China
| | - Meng Wang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qingliang Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China.,Department of Cardiac ICU, Tianjin Chest HospitalTianjin, China , Tianjin China
| |
Collapse
|
15
|
Wang W, Liu Q, Wang Y, Piao H, Zhu Z, Li D, Wang T, Liu K. LINC01278 Sponges miR-500b-5p to Regulate the Expression of ACTG2 to Control Phenotypic Switching in Human Vascular Smooth Muscle Cells During Aortic Dissection. J Am Heart Assoc 2021; 10:e018062. [PMID: 33910387 PMCID: PMC8200748 DOI: 10.1161/jaha.120.018062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Phenotypic switching in vascular smooth muscle cells (VSMCs) is involved in the pathogenesis of aortic dissection (AD). This study aims to explore the potential mechanisms of linc01278 during VSMC phenotypic switching. Methods and Results Twelve samples (6 AD and 6 control) were used for lncRNA, microRNA, and mRNA microarray analysis. We integrated the mRNA microarray data set with GSE52093 to determine the differentially expressed genes. Bioinformatic analysis, including Gene Expression Omnibus 2R, Venn diagram analysis, gene ontology, pathway enrichment, and protein-protein interaction networks were used to identify the target lncRNA, microRNA, and mRNA involved in AD. Subsequently, we validated the bioinformatics data using techniques in molecular biology in human tissues and VSMCs. Linc01278, microRNA-500b-5p, and ACTG2 played an important role in the vascular smooth muscle contraction pathway. Linc01278 and ACTG2 were downregulated and miR-500b-5p was upregulated in AD tissues. Molecular markers of VSMC phenotypic switching, including SM22α, SMA, calponin, and MYH11, were downregulated in AD tissues. Plasmid-based overexpression and RNA interference-mediated downregulation of linc01278 weakened and enhanced VSMC proliferation and phenotypic switching, respectively. Dual-luciferase reporter assays confirmed that linc01278 regulated miR-500b-5p that directly targeted ACTG2 in HEK293T cells. Conclusions These data demonstrate that linc01278 regulates ACTG2 to control the phenotypic switch in VSMCs by sponging miR-500b-5p. This linc01278-miR-500b-5p-ACTG2 axis has a potential role in developing diagnostic markers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Qing Liu
- Graduate School of Medicine and Faculty of Medicine of the University of Tokyo Tokyo Japan
| | - Yong Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Hulin Piao
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Dan Li
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Tiance Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| | - Kexiang Liu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China
| |
Collapse
|