1
|
Helmlinger B, Seebacher B, Ropele S, Hechenberger S, Heschl B, Reishofer G, Jordan S, Tinauer C, Wurth S, Valsasina P, Rocca MA, Filippi M, Ehling R, Reindl M, Khalil M, Deisenhammer F, Brenneis C, Enzinger C, Pinter D. Effects of rhythmic-cued gait training on gait-like task related brain activation in people with multiple sclerosis. J Neurol Sci 2025; 471:123426. [PMID: 39965306 DOI: 10.1016/j.jns.2025.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Walking impairment is one of the most debilitating symptoms of multiple sclerosis (MS). A better understanding of brain mechanisms underlying successful gait training could help to improve development of targeted therapy. We therefore investigated changes in brain activation associated with improvements in walking function after rhythmic-cued gait training. METHODS Thirty-one people with MS (pwMS; median EDSS = 2.5, range:2.0-5.0) and 17 age- and sex-matched healthy controls (HC) completed behavioural and MRI assessments at baseline and post-intervention (four weeks after baseline). All included pwMS received a four-week actual and/or imagined gait training with rhythmic-auditory cueing, while HC received no intervention. All participants performed a bipedal ankle plantar- and dorsiflexion and a corresponding motor-imagery task during fMRI. PwMS displaying a > 5 % walking distance increase in the 2-Minute Walk Test (2MWT) from baseline to post-intervention were defined as responders. RESULTS Responders did not differ from non-responders in terms of demographics, clinical variables, and walking function at baseline. Responders, non-responders, and HC showed similar movement-related brain activation at baseline. At post-intervention, responders showed decreased brain activation within the premotor cortex, precuneus, and middle frontal gyrus during the movement task. Stronger decreases within these areas were associated with higher walking function improvements in all pwMS after controlling for potential confounders. No association was observed between walking function and motor imagery-related brain activation changes. CONCLUSION Improved walking function after rhythmic-cued gait training was associated with reduced brain activation in motor planning and attention areas. This suggests a more efficient recruitment of areas subserving motor function after successful training.
Collapse
Affiliation(s)
| | - Barbara Seebacher
- Medical University of Innsbruck, Clinical Department of Neurology, Innsbruck, Austria; Clinic for Rehabilitation Muenster, Department of Rehabilitation Science, Muenster, Austria; Karl Landsteiner Institute of Interdisciplinary Rehabilitation Research, Muenster, Austria
| | - Stefan Ropele
- Medical University of Graz, Department of Neurology, Graz, Austria
| | | | - Bettina Heschl
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Gernot Reishofer
- Medical University of Graz, Department of Radiology, Graz, Austria
| | - Sara Jordan
- Medical University of Graz, Department of Neurology, Graz, Austria
| | | | - Sebastian Wurth
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rainer Ehling
- Karl Landsteiner Institute of Interdisciplinary Rehabilitation Research, Muenster, Austria; Clinic for Rehabilitation, Department of Neurology, Muenster, Austria
| | - Markus Reindl
- Medical University of Innsbruck, Clinical Department of Neurology, Innsbruck, Austria
| | - Michael Khalil
- Medical University of Graz, Department of Neurology, Graz, Austria
| | - Florian Deisenhammer
- Medical University of Innsbruck, Clinical Department of Neurology, Innsbruck, Austria
| | - Christian Brenneis
- Karl Landsteiner Institute of Interdisciplinary Rehabilitation Research, Muenster, Austria; Clinic for Rehabilitation, Department of Neurology, Muenster, Austria
| | | | - Daniela Pinter
- Medical University of Graz, Department of Neurology, Graz, Austria.
| |
Collapse
|
2
|
Huang G, Wang H, Zhao W, Qian Y, Yao Y, Zhang L, Chen Y, Song L, Yang J, Liu Z, Su B, Sun L. Effects of the intermittent theta burst stimulation on gait, balance and lower limbs motor function in stroke: study protocol for a double-blind randomised controlled trial with multimodal neuroimaging assessments. BMJ Open 2024; 14:e082019. [PMID: 39107014 PMCID: PMC11308910 DOI: 10.1136/bmjopen-2023-082019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/03/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Approximately, 50% of stroke survivors experience impaired walking ability 6 months after conventional rehabilitation and standard care. However, compared with upper limb motor function, research on lower limbs rehabilitation through non-invasive neuromodulation like repetitive transcranial magnetic stimulation (rTMS) has received less attention. Limited evidence exists regarding the effectiveness of intermittent theta-burst stimulation (iTBS), an optimised rTMS modality, on lower limbs rehabilitation after stroke. This study aims to evaluate the effects of iTBS on gait, balance and lower limbs motor function in stroke recovery while also exploring the underlying neural mechanisms using longitudinal analysis of multimodal neuroimaging data. METHODS AND ANALYSIS In this double-blinded randomised controlled trial, a total of 46 patients who had a stroke will be randomly assigned in a 1:1 ratio to receive either 15 sessions of leg motor area iTBS consisting of 600 pulses or sham stimulation over the course of 3 weeks. Additionally, conventional rehabilitation therapy will be administered following the (sham) iTBS intervention. The primary outcome measure will be the 10 m walking test. Secondary outcomes include the Fugl-Meyer assessment of the lower extremity, Timed Up and Go Test, Functional Ambulation Category Scale, Berg Balance Scale, modified Barthel Index, Mini-Mental State Examination, montreal cognitive assessment, tecnobody balance assessment encompassing both static and dynamic stability evaluations, surface electromyography recording muscle activation of the lower limbs, three-dimensional gait analysis focusing on temporal and spatial parameters as well as ground reaction force measurements, corticomotor excitability tests including resting motor threshold, motor evoked potential and recruitment curves and multimodal functional MRI scanning. Outcome measures will be collected prior to and after the intervention period with follow-up at 3 weeks. ETHICS AND DISSEMINATION The study has received approval from the Medical Research Ethics Committee of Wuxi Mental Health Center/Wuxi Central Rehabilitation Hospital (no. WXMHCCIRB2023LLky078). Results will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER ChiCTR2300077431.
Collapse
Affiliation(s)
- Guilan Huang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Hewei Wang
- Department of Rehabilitation, Huashan Hospital Fudan University, Shanghai, China
| | - WeiWei Zhao
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Yao Qian
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Yu Yao
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Yating Chen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Lianxin Song
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Jinyu Yang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Zhichao Liu
- Department of Rehabilitation, Huashan Hospital Fudan University, Shanghai, China
| | - Bin Su
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Limin Sun
- Department of Rehabilitation, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
3
|
Guan Y, Li J, Wei Y, Shi PT, Yang C, Yun X, Quan Q, Wang WJ, Yu XG, Wei M. Brain functional connectivity alterations in patients with anterior cruciate ligament injury. Brain Res 2024; 1836:148956. [PMID: 38657888 DOI: 10.1016/j.brainres.2024.148956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Recent advancements in neuroimaging have illustrated that anterior cruciate ligament (ACL) injuries could impact the central nervous system (CNS), causing neuroplastic changes in the brain beyond the traditionally understood biomechanical consequences. While most of previous functional magnetic resonance imaging (fMRI) studies have focused on localized cortical activity changes post-injury, emerging research has suggested disruptions in functional connectivity across the brain. However, these prior investigations, albeit pioneering, have been constrained by two limitations: a reliance on small-sample participant cohorts, often limited to two to three patients, potentially limiting the generalizability of findings, and an adherence to region of interest based analysis, which may overlook broader network interactions. To address these limitations, our study employed resting-state fMRI to assess whole-brain functional connectivity in 15 ACL-injured patients, comparing them to matched controls using two distinct network analysis methods. Using Network-Based Statistics, we identified widespread reductions in connectivity that spanned across multiple brain regions. Further modular connectivity analysis showed significant decreases in inter-modular connectivity between the sensorimotor and cerebellar modules, and intra-modular connectivity within the default-mode network in ACL-injured patients. Our results thus highlight a shift from localized disruptions to network-wide dysfunctions, suggesting that ACL injuries induce widespread CNS changes. This enhanced understanding has the potential to stimulate the development of strategies aiming to restore functional connectivity and improve recovery outcomes.
Collapse
Affiliation(s)
- Yu Guan
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Ji Li
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China
| | - Yu Wei
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China
| | - Peng-Tao Shi
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Chen Yang
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xing Yun
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Quan
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Juan Wang
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China
| | - Xin-Guang Yu
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Wei
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100142, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
4
|
Choi M, Kim HC, Youn I, Lee SJ, Lee JH. Use of functional magnetic resonance imaging to identify cortical loci for lower limb movements and their efficacy for individuals after stroke. J Neuroeng Rehabil 2024; 21:58. [PMID: 38627779 PMCID: PMC11020805 DOI: 10.1186/s12984-024-01319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, obtained from healthy participants as well as individuals after stroke. METHODS We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflexion, ankle rotation, knee extension, and toe flexion) using our custom-built equipment while fMRI data were acquired. A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regression analysis using the LI and the Fugl-Meyer Assessment (FMA) scale. RESULTS The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: - 0.63 to 0.91) exhibited a higher contralateral LI than the individuals after stroke (0.07 ± 0.47; - 0.83 to 0.97). The corresponding LI scores for individuals after stroke showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion (R2 = 0.33, p = 0.025) and toe flexion (R2 = 0.37, p = 0.016). CONCLUSIONS The cortical loci associated with lower limb movements in the PCL identified in healthy participants were validated using independent groups of healthy participants and individuals after stroke. Our findings suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal activations calculated from the identified cortical loci across the paretic and non-paretic sides of the brain.
Collapse
Affiliation(s)
- Minseok Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu, South Korea
| | - Inchan Youn
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
| | - Song Joo Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea.
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Song A, Sunday K, Silfies SP, Vendemia JMC. MRI Compatible Lumbopelvic Movement Measurement System to Validate and Capture Task Performance During Neuroimaging. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1380-1385. [PMID: 38512737 PMCID: PMC11026086 DOI: 10.1109/tnsre.2024.3380057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Research suggests that structural and functional changes within the brain are associated with chronic low back pain, and these cortical alterations might contribute to impaired sensorimotor control of the trunk and hips in this population. However, linking sensorimotor brain changes with altered movement of the trunk and hips during task-based neuroimaging presents significant challenges. An MRI-safe pressure measurement system was developed to ensure proper task completion during neuroimaging by capturing movement patterns of the trunk (sensors under the lower back) and hips (sensors embedded in the foam roll under the knees). Pressure changes were measured outside of the scanner by digital differential pressure sensors to capture time-series data and analog pressure gauges for real-time determination of task performance occurring within an MRI bore during brain imaging. This study examined the concurrent validity of air pressure changes between the digital and analog sensors. The digital and analog data were compared in 23 participants during the performance of modified bilateral and unilateral right and left hip bridges. Spearman's correlations were calculated for each sensor during the three bridging tasks and showed high positive correlations, indicating that over 87% of pressure change from the analog gauge can be explained by the pressure from the digital sensor. Bland-Altman plots showed no bias and mean differences were under three mmHg. This pressure system improves the rigor of future studies by validating the digital data from the system and increasing the capabilities of capturing lumbopelvic task performance occurring inside the scanner bore.
Collapse
|
6
|
Peng X, Srivastava S, Sutton F, Zhang Y, Badran BW, Kautz SA. Compensatory increase in ipsilesional supplementary motor area and premotor connectivity is associated with greater gait impairments: a personalized fMRI analysis in chronic stroke. Front Hum Neurosci 2024; 18:1340374. [PMID: 38487103 PMCID: PMC10937543 DOI: 10.3389/fnhum.2024.1340374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
Background Balance and mobility impairments are prevalent post-stroke and a large number of survivors require walking assistance at 6 months post-stroke which diminishes their overall quality of life. Personalized interventions for gait and balance rehabilitation are crucial. Recent evidence indicates that stroke lesions in primary motor pathways, such as corticoreticular pathways (CRP) and corticospinal tract (CST), may lead to reliance on alternate motor pathways as compensation, but the current evidence lacks comprehensive knowledge about the underlying neural mechanisms. Methods In this study, we investigate the functional connectivity (FC) changes within the motor network derived from an individualized cortical parcellation approach in 33 participants with chronic stroke compared to 17 healthy controls. The correlations between altered motor FC and gait deficits (i.e., walking speed and walking balance) were then estimated in the stroke population to understand the compensation mechanism of the motor network in motor function rehabilitation post-stroke. Results Our results demonstrated significant FC increases between ipsilesional medial supplementary motor area (SMA) and premotor in stroke compared to healthy controls. Furthermore, we also revealed a negative correlation between ipsilesional SMA-premotor FC and self-selected walking speed, as well as the Functional Gait Assessment (FGA) scores. Conclusion The increased FC between the ipsilesional SMA and premotor regions could be a compensatory mechanism within the motor network following a stroke when the individual can presumably no longer rely on the more precise CST modulation of movements to produce a healthy walking pattern. These findings enhance our understanding of individualized motor network FC changes and their connection to gait and walking balance impairments post-stroke, improving stroke rehabilitation interventions.
Collapse
Affiliation(s)
- Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - Shraddha Srivastava
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Falon Sutton
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - Yongkuan Zhang
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - Bashar W. Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - Steven A. Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
- Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Mayorova L, Radutnaya M, Varyukhina M, Vorobyev A, Zhdanov V, Petrova M, Grechko A. Immediate Effects of Anti-Spastic Epidural Cervical Spinal Cord Stimulation on Functional Connectivity of the Central Motor System in Patients with Stroke- and Traumatic Brain Injury-Induced Spasticity: A Pilot Resting-State Functional Magnetic Resonance Imaging Study. Biomedicines 2023; 11:2266. [PMID: 37626762 PMCID: PMC10452074 DOI: 10.3390/biomedicines11082266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is one approach to the potential improvement of patients with post-stroke or post-traumatic spasticity. However, little is known about whether and how such interventions alter supraspinal neural systems involved in the pathogenesis of spasticity. This pilot study investigated whether epidural spinal cord stimulation at the level of the C3-C5 cervical segments, aimed at reducing spasticity, alters the patterns of functional connectivity of the brain. METHODS Eight patients with spasticity in the right limbs as a result of left cerebral hemisphere damage (due to hemorrhagic and ischemic stroke or traumatic and anoxic brain injury) were assessed with fMRI immediately before and immediately after short-term (1 to 6 days) test cervical epidural SCS therapy. Eight demographically and clinically comparable patients with spasticity in the right extremities due to a left hemisphere ischemic stroke and brain injury who received conventional therapy were examined as a control group. All patients also had paresis of one or two limbs and hyperreflexia. RESULTS After the SCS therapy, there were three main findings: (1) higher functional connectivity of the brainstem to the right premotor cortex and changes in functional connectivity between cortical motor areas, (2) increased functional connectivity between the right and left lateral nodes of the sensorimotor network, and (3) a positive correlation between decreased spasticity in the right leg and increased functional connectivity within the right hemisphere sensorimotor cortex. All these changes in functional connectivity occurred with a statistically significant decrease in spasticity, as assessed using the modified Ashworth scale. The control group showed no decrease in spasticity or increase in functional connectivity in any of the seeds of interest. On the contrary, a decrease in functional connectivity of the brainstem and right postcentral gyrus was observed in this group during the observation period. CONCLUSIONS We were thus able to detect intrinsic brain connectivity rearrangements that occurred during spasticity mitigation following short epidural SCS therapy. SIGNIFICANCE The clinical results obtained confirmed the efficacy of short-term anti-spastic SCS therapy. The obtained data on functional rearrangements of the central motor system may shed light on the mechanism of antispastic action of this procedure.
Collapse
Affiliation(s)
- Larisa Mayorova
- Laboratory of Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Margarita Radutnaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Maria Varyukhina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Alexey Vorobyev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Vasiliy Zhdanov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Marina Petrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- Department of Anesthesiology and Resuscitation with Medical Rehabilitation Courses, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
- Department of Anesthesiology and Resuscitation with Medical Rehabilitation Courses, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
8
|
Abdullahi A, Wong TWL, Ng SSM. Variation in the rate of recovery in motor function between the upper and lower limbs in patients with stroke: some proposed hypotheses and their implications for research and practice. Front Neurol 2023; 14:1225924. [PMID: 37602245 PMCID: PMC10435271 DOI: 10.3389/fneur.2023.1225924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background Stroke results in impairment of motor function of both the upper and lower limbs. However, although it is debatable, motor function of the lower limb is believed to recover faster than that of the upper limb. The aim of this paper is to propose some hypotheses to explain the reasons for that, and discuss their implications for research and practice. Method We searched PubMED, Web of Science, Scopus, Embase and CENTRAL using the key words, stroke, cerebrovascular accident, upper extremity, lower extremity, and motor recovery for relevant literature. Result The search generated a total of 2,551 hits. However, out of this number, 51 duplicates were removed. Following review of the relevant literature, we proposed four hypotheses: natural instinct for walking hypothesis, bipedal locomotion hypothesis, central pattern generators (CPGs) hypothesis and role of spasticity hypothesis on the subject matter. Conclusion We opine that, what may eventually account for the difference, is the frequency of use of the affected limb or intensity of the rehabilitation intervention. This is because, from the above hypotheses, the lower limb seems to be used more frequently. When limbs are used frequently, this will result in use-dependent plasticity and eventual recovery. Thus, rehabilitation techniques that involve high repetitive tasks practice such as robotic rehabilitation, Wii gaming and constraint induced movement therapy should be used during upper limb rehabilitation.
Collapse
|
9
|
Effects of Transcranial Direct Current Stimulation of Bilateral Supplementary Motor Area on the Lower Limb Motor Function in a Stroke Patient with Severe Motor Paralysis: A Case Study. Brain Sci 2022; 12:brainsci12040452. [PMID: 35447983 PMCID: PMC9029581 DOI: 10.3390/brainsci12040452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
In patients with severe motor paralysis, increasing the excitability of the supplementary motor area (SMA) in the non-injured hemisphere contributes to the recovery of lower limb motor function. However, the contribution of transcranial direct current stimulation (tDCS) over the SMA of the non-injured hemisphere in the recovery of lower limb motor function is unclear. This study aimed to examine the effects of tDCS on bilateral hemispheric SMA combined with assisted gait training. A post-stroke patient with severe motor paralysis participated in a retrospective AB design. Assisted gait training was performed only in period A and tDCS to the SMA of the bilateral hemisphere combined with assisted gait training (bi-tDCS) was performed in period B. Additionally, three conditions were performed for 20 min each in the intervals between the two periods: (1) assisted gait training only, (2) assisted gait training combined with tDCS to the SMA of the injured hemisphere, and (3) bi-tDCS. Measurements were muscle activity and beta-band intermuscular coherence (reflecting corticospinal tract excitability) of the vastus medialis muscle. The bi-tDCS immediately and longitudinally increased muscle activity and intermuscular coherence. We consider that bi-tDCS may be effective in recovering lower limb motor function in a patient with severe motor paralysis.
Collapse
|
10
|
Seebacher B, Helmlinger B, Pinter D, Ehling R, Hegen H, Ropele S, Reishofer G, Enzinger C, Brenneis C, Deisenhammer F. Effects of actual and imagined music-cued gait training on motor functioning and brain activity in people with multiple sclerosis: protocol of a randomised parallel multicentre trial. BMJ Open 2022; 12:e056666. [PMID: 35131834 PMCID: PMC8823210 DOI: 10.1136/bmjopen-2021-056666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Motor imagery (MI) refers to the mental rehearsal of a physical action without muscular activity. Our previous studies showed that MI combined with rhythmic-auditory cues improved walking, fatigue and quality of life (QoL) in people with multiple sclerosis (pwMS). Largest improvements were seen after music and verbally cued MI. It is unclear whether actual cued gait training achieves similar effects on walking as cued MI in pwMS. Furthermore, in pwMS it is unknown whether any of these interventions leads to changes in brain activation. The purpose of this study is therefore to compare the effects of imagined and actual cued gait training and a combination thereof on walking, brain activation patterns, fatigue, cognitive and emotional functioning in pwMS. METHODS AND ANALYSIS A prospective double-blind randomised parallel multicentre trial will be conducted in 132 pwMS with mild to moderate disability. Randomised into three groups, participants will receive music, metronome and verbal cueing, plus MI of walking (1), MI combined with actual gait training (2) or actual gait training (3) for 30 min, 4× per week for 4 weeks. Supported by weekly phone calls, participants will practise at home, guided by recorded instructions. Primary endpoints will be walking speed (Timed 25-Foot Walk) and distance (2 min Walk Test). Secondary endpoints will be brain activation patterns, fatigue, QoL, MI ability, anxiety, depression, cognitive functioning, music-induced motivation-to-move, pleasure, arousal and self-efficacy. Data will be collected at baseline, postintervention and 3-month follow-up. MRI reference values will be generated using 15 matched healthy controls. ETHICS AND DISSEMINATION This study follows the Standard Protocol Items: Recommendations for Interventional Trials-PRO Extension. Ethical approval was received from the Ethics Committees of the Medical Universities of Innsbruck (1347/2020) and Graz (33-056 ex 20/21), Austria. Results will be disseminated via national and international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER DRKS00023978.
Collapse
Affiliation(s)
- Barbara Seebacher
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Karl Landsteiner Institute for Interdisciplinary Rehabilitation Research, Münster, Austria
| | - Birgit Helmlinger
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria
| | - Rainer Ehling
- Karl Landsteiner Institute for Interdisciplinary Rehabilitation Research, Münster, Austria
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology; Division of Neuroradiology; Department of Radiology, Medical University of Graz, Graz, Austria
| | - Christian Brenneis
- Karl Landsteiner Institute for Interdisciplinary Rehabilitation Research, Münster, Austria
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Florian Deisenhammer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Tavazzi E, Bergsland N, Pirastru A, Cazzoli M, Blasi V, Baglio F. MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review. Neuroimage Clin 2021; 33:102931. [PMID: 34995869 PMCID: PMC8741615 DOI: 10.1016/j.nicl.2021.102931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stroke-related disability is a major problem at individual and socio-economic levels. Neuromotor rehabilitation has a key role for its dual action on affected body segment and brain reorganization. Despite its known efficacy in clinical practice, the extent and type of effect at a brain level, mediated by neuroplasticity, are still under question. OBJECTIVE To analyze studies applying MRI markers of functional and structural connectivity in patients affected with stroke undergoing motor rehabilitation, and to evaluate the effect of rehabilitation on brain reorganization. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria were applied to select studies applying quantitative non-conventional MRI techniques on patients undergoing motor rehabilitation, both physical and virtual (virtual reality, mental imagery). Literature search was conducted using MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE from inception to 30th June 2020. RESULTS Forty-one out of 6983 papers were included in the current review. Selected studies are heterogeneous in terms of patient characteristics as well as type, duration and frequency of rehabilitative approach. Neuromotor rehabilitation promotes neuroplasticity, favoring functional recovery of the ipsilesional hemisphere and activation of anatomically and functionally related brain areas in both hemispheres, to compensate for damaged tissue. CONCLUSIONS The evidence derived from the analyzed studies supports the positive impact of rehabilitation on brain reorganization, despite the high data heterogeneity. Advanced MRI techniques provide reliable markers of structural and functional connectivity that may potentially aid in helping to implement the most appropriate rehabilitation intervention.
Collapse
Affiliation(s)
- E Tavazzi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - N Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - A Pirastru
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - M Cazzoli
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - V Blasi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - F Baglio
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
12
|
Cronin AE, Detombe SA, Duggal CA, Duggal N, Bartha R. Spinal cord compression is associated with brain plasticity in degenerative cervical myelopathy. Brain Commun 2021; 3:fcab131. [PMID: 34396102 PMCID: PMC8361426 DOI: 10.1093/braincomms/fcab131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
The impact of spinal cord compression severity on brain plasticity and prognostic determinates is not yet fully understood. We investigated the association between the severity of spinal cord compression in patients with degenerative cervical myelopathy, a progressive disease of the spine, and functional plasticity in the motor cortex and subcortical areas using functional magnetic resonance imaging. A 3.0 T MRI scanner was used to acquire functional images of the brain in 23 degenerative cervical myelopathy patients. Patients were instructed to perform a structured finger-tapping task to activate the motor cortex to assess the extent of cortical activation. T2-weighted images of the brain and spine were also acquired to quantify the severity of spinal cord compression. The observed blood oxygen level-dependent signal increase in the contralateral primary motor cortex was associated with spinal cord compression severity when patients tapped with their left hand (r = 0.49, P = 0.02) and right hand (r = 0.56, P = 0.005). The volume of activation in the contralateral primary motor cortex also increased with spinal cord compression severity when patients tapped with their left hand (r = 0.55, P = 0.006) and right hand (r = 0.45, P = 0.03). The subcortical areas (cerebellum, putamen, caudate and thalamus) also demonstrated a significant relationship with compression severity. It was concluded that degenerative cervical myelopathy patients with severe spinal cord compression recruit larger regions of the motor cortex to perform finger-tapping tasks, which suggests that this adaptation is a compensatory response to neurological injury and tissue damage in the spinal cord.
Collapse
Affiliation(s)
- Alicia E Cronin
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Sarah A Detombe
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario N6A 5A5, Canada
| | - Camille A Duggal
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Neil Duggal
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7, Canada.,Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario N6A 5A5, Canada
| | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
13
|
Cleland BT, Sisel E, Madhavan S. Motor evoked potential latency and duration from tibialis anterior in individuals with chronic stroke. Exp Brain Res 2021; 239:2251-2260. [PMID: 34059935 DOI: 10.1007/s00221-021-06144-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Ipsilateral motor pathways from the contralesional hemisphere to the paretic limbs may be upregulated to compensate for impaired function after stroke. Onset latency and duration of motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) provide insight into compensatory pathways but have been understudied in the lower limb. This study assessed MEP onset latency and duration in the lower limb after stroke, and compared ipsilateral and contralateral MEPs in the paretic and non-paretic limb. We hypothesized that: (1) onset latency would be longer for ipsilateral than contralateral MEPs and longer for the paretic than the non-paretic limb, and (2) duration would be shorter for ipsilateral than contralateral MEPs and longer for the paretic than the non-paretic limb. Data were collected as a part of a pre-test of a randomized controlled trial. TMS was applied to the ipsilateral and contralateral hemisphere of the paretic and non-paretic limb. MEP onset latency and duration were calculated from the tibialis anterior. Thirty-five participants with chronic stroke were included in the final analysis. Onset latency was longer in the paretic than the non-paretic limb (~ 6.0 ms) and longer after ipsilateral than contralateral stimulation (~ 1.8 ms). Duration was longer in the paretic than the non-paretic limb (~ 9.2 ms) and longer after contralateral than ipsilateral stimulation (~ 5.2 ms). Ipsilateral MEPs may be elicited through ipsilateral pathways with fewer fibers with a higher activation threshold and/or greater spinal branching. MEPs from the paretic limb may reflect slower central motor conduction, peripheral changes, or changes in motor pathway.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W. Taylor St., Chicago, IL, 60612, USA
| | - Emily Sisel
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W. Taylor St., Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Collett J, Fleming MK, Meester D, Al-Yahya E, Wade DT, Dennis A, Salvan P, Meaney A, Cockburn J, Dawes J, Johansen-Berg H, Dawes H. Dual-task walking and automaticity after Stroke: Insights from a secondary analysis and imaging sub-study of a randomised controlled trial. Clin Rehabil 2021; 35:1599-1610. [PMID: 34053250 PMCID: PMC8524683 DOI: 10.1177/02692155211017360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test the extent to which initial walking speed influences dual-task performance after walking intervention, hypothesising that slow walking speed affects automatic gait control, limiting executive resource availability. DESIGN A secondary analysis of a trial of dual-task (DT) and single-task (ST) walking interventions comparing those with good (walking speed ⩾0.8 m s-1, n = 21) and limited (walking speed <0.79 m s-1, n = 24) capacity at baseline. SETTING Community. SUBJECTS Adults six-months post stroke with walking impairment. INTERVENTIONS Twenty sessions of 30 minutes treadmill walking over 10 weeks with (DT) or without (ST) cognitive distraction. Good and limited groups were formed regardless of intervention received. MAIN MEASURES A two-minute walk with (DT) and without (ST) a cognitive distraction assessed walking. fNIRS measured prefrontal cortex activation during treadmill walking with (DT) and without (ST) Stroop and planning tasks and an fMRI sub-study used ankle-dorsiflexion to simulate walking. RESULTS ST walking improved in both groups (∆baseline: Good = 8.9 ± 13.4 m, limited = 5.3±8.9 m, Group × time = P < 0.151) but only the good walkers improved DT walking (∆baseline: Good = 10.4 ± 13.9 m, limited = 1.3 ± 7.7 m, Group × time = P < 0.025). fNIRS indicated increased ispilesional prefrontal cortex activation during DT walking following intervention (P = 0.021). fMRI revealed greater DT cost activation for limited walkers, and increased resting state connectivity of contralesional M1 with cortical areas associated with conscious gait control at baseline. After the intervention, resting state connectivity between ipsilesional M1 and bilateral superior parietal lobe, involved in integrating sensory and motor signals, increased in the good walkers compared with limited walkers. CONCLUSION In individual who walk slowly it may be difficult to improve dual-task walking ability.Registration: ISRCTN50586966.
Collapse
Affiliation(s)
- Johnny Collett
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, UK
| | - Melanie K Fleming
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Daan Meester
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, UK
| | - Emad Al-Yahya
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, UK.,School of Rehabilitation Science, The University of Jordan, Amman, Jordan
| | - Derick T Wade
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, UK
| | - Andrea Dennis
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Piergiorgio Salvan
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Andrew Meaney
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, UK
| | | | - Joanna Dawes
- Department of Health Sciences, Division of Physiotherapy, Brunel University, London, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Helen Dawes
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
15
|
Cleland BT, Madhavan S. Ipsilateral motor pathways to the lower limb after stroke: Insights and opportunities. J Neurosci Res 2021; 99:1565-1578. [PMID: 33665910 DOI: 10.1002/jnr.24822] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/17/2021] [Indexed: 01/04/2023]
Abstract
Stroke-related damage to the crossed lateral corticospinal tract causes motor deficits in the contralateral (paretic) limb. To restore functional movement in the paretic limb, the nervous system may increase its reliance on ipsilaterally descending motor pathways, including the uncrossed lateral corticospinal tract, the reticulospinal tract, the rubrospinal tract, and the vestibulospinal tract. Our knowledge about the role of these pathways for upper limb motor recovery is incomplete, and even less is known about the role of these pathways for lower limb motor recovery. Understanding the role of ipsilateral motor pathways to paretic lower limb movement and recovery after stroke may help improve our rehabilitative efforts and provide alternate solutions to address stroke-related impairments. These advances are important because walking and mobility impairments are major contributors to long-term disability after stroke, and improving walking is a high priority for individuals with stroke. This perspective highlights evidence regarding the contributions of ipsilateral motor pathways from the contralesional hemisphere and spinal interneuronal pathways for paretic lower limb movement and recovery. This perspective also identifies opportunities for future research to expand our knowledge about ipsilateral motor pathways and provides insights into how this information may be used to guide rehabilitation.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Lim SB, Louie DR, Peters S, Liu-Ambrose T, Boyd LA, Eng JJ. Brain activity during real-time walking and with walking interventions after stroke: a systematic review. J Neuroeng Rehabil 2021; 18:8. [PMID: 33451346 PMCID: PMC7811232 DOI: 10.1186/s12984-020-00797-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Investigations of real-time brain activations during walking have become increasingly important to aid in recovery of walking after a stroke. Individual brain activation patterns can be a valuable biomarker of neuroplasticity during the rehabilitation process and can result in improved personalized medicine for rehabilitation. The purpose of this systematic review is to explore the brain activation characteristics during walking post-stroke by determining: (1) if different components of gait (i.e., initiation/acceleration, steady-state, complex) result in different brain activations, (2) whether brain activations differ from healthy individuals. Six databases were searched resulting in 22 studies. Initiation/acceleration showed bilateral activation in frontal areas; steady-state and complex walking showed broad activations with the majority exploring and finding increases in frontal regions and some studies also showing increases in parietal activation. Asymmetrical activations were often related to performance asymmetry and were more common in studies with slower gait speed. Hyperactivations and asymmetrical activations commonly decreased with walking interventions and as walking performance improved. Hyperactivations often persisted in individuals who had experienced severe strokes. Only a third of the studies included comparisons to a healthy group: individuals post-stroke employed greater brain activation compared to young adults, while comparisons to older adults were less clear and limited. Current literature suggests some indicators of walking recovery however future studies investigating more brain regions and comparisons with healthy age-matched adults are needed to further understand the effect of stroke on walking-related brain activation.
Collapse
Affiliation(s)
- Shannon B Lim
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada
| | - Dennis R Louie
- Graduate Studies in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada
| | - Sue Peters
- Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada.,Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,The Djavad Mowafaghian Centre for Brain Health, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,Centre for Hip Health and Mobility, Vancouver, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,The Djavad Mowafaghian Centre for Brain Health, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Janice J Eng
- Rehabiliation Research Program, GF Strong Rehabilitation Centre, 4255 Laurel St, Vancouver, BC, V5Z 2G9, Canada. .,Department of Physical Therapy, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
17
|
Binder E, Leimbach M, Pool EM, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Cortical reorganization after motor stroke: A pilot study on differences between the upper and lower limbs. Hum Brain Mapp 2020; 42:1013-1033. [PMID: 33165996 PMCID: PMC7856649 DOI: 10.1002/hbm.25275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 11/11/2022] Open
Abstract
Stroke patients suffering from hemiparesis may show substantial recovery in the first months poststroke due to neural reorganization. While reorganization driving improvement of upper hand motor function has been frequently investigated, much less is known about the changes underlying recovery of lower limb function. We, therefore, investigated neural network dynamics giving rise to movements of both the hands and feet in 12 well-recovered left-hemispheric chronic stroke patients and 12 healthy participants using a functional magnetic resonance imaging sparse sampling design and dynamic causal modeling (DCM). We found that the level of neural activity underlying movements of the affected right hand and foot positively correlated with residual motor impairment, in both ipsilesional and contralesional premotor as well as left primary motor (M1) regions. Furthermore, M1 representations of the affected limb showed significantly stronger increase in BOLD activity compared to healthy controls and compared to the respective other limb. DCM revealed reduced endogenous connectivity of M1 of both limbs in patients compared to controls. However, when testing for the specific effect of movement on interregional connectivity, interhemispheric inhibition of the contralesional M1 during movements of the affected hand was not detected in patients whereas no differences in condition-dependent connectivity were found for foot movements compared to controls. In contrast, both groups featured positive interhemispheric M1 coupling, that is, facilitation of neural activity, mediating movements of the affected foot. These exploratory findings help to explain why functional recovery of the upper and lower limbs often develops differently after stroke, supporting limb-specific rehabilitative strategies.
Collapse
Affiliation(s)
- Ellen Binder
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Martha Leimbach
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva-Maria Pool
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany.,Institute for Clinical Neuroscience, Heinrich-Heine-University, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
18
|
Brihmat N, Boulanouar K, Darmana R, Biganzoli A, Gasq D, Castel-Lacanal E, Marque P, Loubinoux I. Controlling for lesions, kinematics and physiological noise: impact on fMRI results of spastic post-stroke patients. MethodsX 2020; 7:101056. [PMID: 32995309 PMCID: PMC7509233 DOI: 10.1016/j.mex.2020.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/01/2020] [Indexed: 11/15/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a widely used technique for assessing brain function in both healthy and pathological populations. Some factors, such as motion, physiological noise and lesion presence, can contribute to signal change and confound the fMRI data, but fMRI data processing techniques have been developed to correct for these confounding effects. Fifteen spastic subacute stroke patients underwent fMRI while performing a highly controlled task (i.e. passive extension of their affected and unaffected wrists). We investigated the impact on activation maps of lesion masking during preprocessing and first- and second-level analyses, and of adding wrist extension amplitudes and physiological data as regressors using the Statistical Parametric Mapping toolbox (SPM12). We observed a significant decrease in sensorimotor region activation after the addition of lesion masks and movement/physiological regressors during the processing of stroke patients’ fMRI data. Our results demonstrate that:The unified segmentation routine results in good normalization accuracy when dealing with stroke lesions regardless of their size; Adding a group lesion mask during the second-level analysis seems to be a suitable option when none of the patients have lesions in target regions. Otherwise, no masking is acceptable; Movement amplitude is a significant contributor to the sensorimotor activation observed during passive wrist extension in spastic stroke patients; Movement features and physiological noise are relevant factors when interpreting for sensorimotor activation in studies of the motor system in patients with brain lesions. They can be added as nuisance covariates during large patient groups’ analyses.
Collapse
Affiliation(s)
- Nabila Brihmat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Kader Boulanouar
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Robert Darmana
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Arnauld Biganzoli
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,University Hospital of Toulouse, Department of Functional & Physiological Explorations, Toulouse, France
| | - Evelyne Castel-Lacanal
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,University Hospital of Toulouse, Department of Rehabilitation and Physical Medicine, Toulouse, France
| | - Philippe Marque
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,University Hospital of Toulouse, Department of Rehabilitation and Physical Medicine, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
19
|
Hensel L, Tscherpel C, Freytag J, Ritter S, Rehme AK, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Connectivity-Related Roles of Contralesional Brain Regions for Motor Performance Early after Stroke. Cereb Cortex 2020; 31:993-1007. [DOI: 10.1093/cercor/bhaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Stella Ritter
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Anne K Rehme
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Simon B Eickhoff
- Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Brain and Behaviour, Institute of Neuroscience and Medicine, (INM-7), Research Centre Jülich, 52428 Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Christian Grefkes
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| |
Collapse
|
20
|
Wu CW, Lin SHN, Hsu LM, Yeh SC, Guu SF, Lee SH, Chen CC. Synchrony Between Default-Mode and Sensorimotor Networks Facilitates Motor Function in Stroke Rehabilitation: A Pilot fMRI Study. Front Neurosci 2020; 14:548. [PMID: 32655349 PMCID: PMC7325875 DOI: 10.3389/fnins.2020.00548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/04/2020] [Indexed: 11/22/2022] Open
Abstract
Stroke is the most common cause of complex disability in Taiwan. After stroke onset, persistent physical practice or exercise in the rehabilitation procedure reorganizes neural assembly for reducing motor deficits, known as neuroplasticity. Neuroimaging literature showed rehabilitative effects specific to the brain networks of the sensorimotor network (SMN) and default-mode network (DMN). However, whether between-network interactions facilitate the neuroplasticity after stroke rehabilitation remains a mystery. Therefore, we conducted the longitudinal assessment protocol of stroke rehabilitation, including three types of clinical evaluations and two types of functional magnetic resonance imaging (fMRI) techniques (resting state and grasp task). Twelve chronic stroke patients completed the rehabilitation protocol for at least 24 h and finished the three-time assessments: before, after rehabilitation, and 1 month after the cessation of rehabilitation. For comparison, age-matched normal controls (NC) underwent the same fMRI evaluation once without repeated measure. Increasing scores of the Fugl–Meyer assessment (FMA) and upper extremity performance test reflected the enhanced motor performances after the stroke rehabilitation process. Analysis of covariance (ANCOVA) results showed that the connections between posterior cingulate cortex (PCC) and iM1 were persistently enhanced in contrast to the pre-rehabilitation condition. The interactions between PCC and SMN were positively associated with motor performances. The enhanced cross-network connectivity facilitates the motor recovery after stroke rehabilitation, but the cross-network interaction was low before the rehabilitation process, similar to the level of NCs. Our findings suggested that cross-network connectivity plays a facilitatory role following the stroke rehabilitation, which can serve as a neurorehabilitative biomarker for future intervention evaluations.
Collapse
Affiliation(s)
- Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, College of Humanities and Social Sciences, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shang-Hua N Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Li-Ming Hsu
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan.,Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shih-Ching Yeh
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Shiao-Fei Guu
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
| | - Si-Huei Lee
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Chun-Chuan Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Kim DH, Kang CS, Kyeong S. Robot-assisted gait training promotes brain reorganization after stroke: A randomized controlled pilot study. NeuroRehabilitation 2020; 46:483-489. [DOI: 10.3233/nre-203054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Chang Soon Kang
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Sohyun Kyeong
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| |
Collapse
|
22
|
Melo MC, Macedo DR, Soares AB. Divergent Findings in Brain Reorganization After Spinal Cord Injury: A Review. J Neuroimaging 2020; 30:410-427. [PMID: 32418286 DOI: 10.1111/jon.12711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) leads to a general lack of sensory and motor functions below the level of injury and may promote deafferentation-induced brain reorganization. Functional magnetic resonance imaging (fMRI) has been established as an essential tool in neuroscience research and can precisely map the spatiotemporal distribution of brain activity. Task-based fMRI experiments associated with the tongue, upper limbs, or lower limbs have been used as the primary paradigms to study brain reorganization following SCI. A review of the current literature on the subject shows one common trait: while most articles agree that brain networks are usually preserved after SCI, and that is not the case as some articles describe possible alterations in brain activation after the lesion. There is no consensus if those alterations indeed occur. In articles that show alterations, there is no agreement if they are transient or permanent. Besides, there is no consensus on which areas are most prone to activation changes, or on the intensity and direction (increase vs. decrease) of those possible changes. In this article, we present a critical review of the literature and trace possible reasons for those contradictory findings on brain reorganization following SCI. fMRI studies based on the ankle dorsiflexion, upper-limb, and tongue paradigms are used as case studies for the analyses.
Collapse
Affiliation(s)
- Mariana Cardoso Melo
- Biomedical Engineering Lab, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Dhainner Rocha Macedo
- Biomedical Engineering Lab, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Alcimar Barbosa Soares
- Biomedical Engineering Lab, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
23
|
Structural and functional connectivity correlates with motor impairment in chronic supratentorial stroke: a multimodal magnetic resonance imaging study. Neuroreport 2019; 30:526-531. [PMID: 30932970 DOI: 10.1097/wnr.0000000000001247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to identify differences in structural and functional brain connectivity between poststroke mild and severe motor impairment. Twenty-four chronic stroke patients who underwent resting-state functional MRI and diffusion tensor image were retrospectively included. All patients were classified into two groups (mild motor impairment: 11 patients and severe motor impairment: 13 patients) according to their Fugl-Meyer motor assessment score. Tract-based spatial statistics and group independent component analyses were applied to investigate between-group differences in structural and functional connectivity, respectively. The fractional anisotropy values of motor-related brain regions in the affected hemisphere were significantly higher in mild motor impairment than in severe motor impairment (corrected P<0.05). The internetwork functional connectivity between (i) the supplementary motor area and primary motor cortex in the affected hemisphere, (ii) the supplementary motor area and dorsolateral prefrontal cortex in the unaffected hemisphere, and (iii) the ischemic lesion and primary motor cortex in the unaffected hemisphere was significantly higher in mild motor impairment than in severe motor impairment (PFWE<0.05). Better motor recovery after stroke could be facilitated by means of treatments aimed at enhancing structural and functional connectivity among motor-related brain regions such as noninvasive brain stimulation and neurodevelopmental therapy.
Collapse
|
24
|
Gao X, Zhang X, Cui L, Chen R, Zhang C, Xue J, Zhang L, He W, Li J, Wei S, Wei M, Cui H. Ginsenoside Rb1 Promotes Motor Functional Recovery and Axonal Regeneration in Post-stroke Mice through cAMP/PKA/CREB Signaling Pathway. Brain Res Bull 2019; 154:51-60. [PMID: 31715311 DOI: 10.1016/j.brainresbull.2019.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/29/2019] [Accepted: 10/19/2019] [Indexed: 11/29/2022]
Abstract
The central nervous system (CNS) has a poor self-repairing capability after injury because of the inhibition of axonal regeneration by many myelin-associated inhibitory factors. Therefore, ischemic stroke usually leads to disability. Previous studies reported that Ginsenoside Rb1 (GRb1) plays a role in neuronal protection in acute phase after ischemic stroke, but its efficacy in post-stroke and the underlying mechanism are not clear. Recent evidences demonstrated GRb1 promotes neurotransmitter release through the cAMP-depend protein kinase A (PKA) pathway, which is related to axonal regeneration. The present study aimed to determine whether GRb1 improves long-term motor functional recovery and promotes cortical axon regeneration in post-stroke. Adult male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (dMCAO). GRb1 solution (5 mg/ml) or equal volume of normal saline was injected intraperitoneally for the first time at 24 h after surgery, and then daily injected until day 14. Day 3, 7, 14 and 28 after dMCAO were used as observation time points. Motor functional recovery was assessed with Rota-rod test and grid walking task. The expression of growth-associated protein 43 (GAP43) and biotinylated dextran amine (BDA) was measured to evaluate axonal regeneration. The levels of cyclic AMP (cAMP) and PKA were measured by Elisa, PKAc and phosphorylated cAMP response element protein (pCREB) were determined by western blot. Our results shown that GRb1 treatment improved motor function and increased the expression of GAP43 and BDA in ipsilesional and contralateral cortex. GRb1 significantly elevated cAMP and PKA, increased the protein expression of PKAc and pCREB. However, the effects of GRb1 were eliminated by H89 intervention (a PKA inhibitor). These results suggested that GRb1 improved functional recovery in post-stroke by stimulating axonal regeneration and brain repair. The underlying mechanism might be up-regulating the expression of cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China.
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Weiliang He
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Jiamin Li
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Shanshan Wei
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Mengmeng Wei
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Hemei Cui
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| |
Collapse
|
25
|
Sivaramakrishnan A, Madhavan S. Absence of a Transcranial Magnetic Stimulation-Induced Lower Limb Corticomotor Response Does Not Affect Walking Speed in Chronic Stroke Survivors. Stroke 2019; 49:2004-2007. [PMID: 29986928 DOI: 10.1161/strokeaha.118.021718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Transcranial magnetic stimulation is used to measure the functional integrity of the corticomotor system via motor evoked potentials (MEPs) in stroke. The association between corticomotor mechanisms and walking recovery is still not completely understood. This study determined the association between transcranial magnetic stimulation-induced MEPs and walking outcomes and examined the contribution of the contralesional hemisphere to walking recovery. Methods- Contralateral and ipsilateral transcranial magnetic stimulation responses from the contralesional and ipsilesional hemispheres were collected from 61 chronic stroke survivors. Clinical assessments included gait speeds, 6-minute walk distance, Timed Up and Go test, Fugl Meyer lower extremity scale, and strength measurements. Results- Stroke participants were classified based on the presence (MEP+ [n=28]) or absence (MEP- [n=33]) of MEPs in the paretic tibialis anterior and rectus femoris muscles. A between-group analyses showed no significant differences for any gait variable. MEP+ group showed significantly higher Fugl Meyer lower extremity and ankle dorsiflexor strength. Ipsilateral conductivity was not significantly different between groups. Finally, in the MEP+ group, MEP parameters did not predict gait recovery. Conclusions- Our study investigated the association between walking outcomes and neurophysiological parameters of lower limb function in a large cohort of stroke survivors. We did not find an associations between transcranial magnetic stimulation-induced tibialis anterior and rectus femoris MEPs and walking speeds. Further work is required to develop more comprehensive models in stroke for predicting walking recovery.
Collapse
Affiliation(s)
- Anjali Sivaramakrishnan
- From the Brain Plasticity Lab, Department of Physical Therapy (A.S., S.M.).,Graduate Program in Rehabilitation Sciences (A.S.), College of Applied Health Sciences, University of Illinois at Chicago
| | - Sangeetha Madhavan
- From the Brain Plasticity Lab, Department of Physical Therapy (A.S., S.M.)
| |
Collapse
|
26
|
Vinehout K, Schmit BD, Schindler-Ivens S. Lower Limb Task-Based Functional Connectivity Is Altered in Stroke. Brain Connect 2019; 9:365-377. [PMID: 30799641 DOI: 10.1089/brain.2018.0640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of this work was to examine task-dependent functional connectivity of the brain in people with stroke. The work was motivated by prior observations indicating that, during pedaling, cortical activation volume is lower in people with stroke than controls. During paretic foot tapping, activation volume tends to be higher in people with stroke than controls. This study asked whether these differences could be explained by altered network function of the brain. Functional magnetic resonance imaging was used to examine local and global network function of the brain during tapping and pedaling in 15 stroke and 8 control participants. Independent component analysis was used to identify six task regions of interest (ROIs) in the primary sensorimotor cortex (M1S1), anterior lobe of cerebellum (AlCb), and secondary sensory cortex (S2) on the lesioned and non-lesioned sides of the brain (left, right for controls). Global connectivity was calculated as the correlation between mean time series for each ROI. Local connectivity was calculated as the mean correlation between voxels within each ROI. Local efficiency, weighted sum, and clustering coefficient were also calculated. Results suggested that local and global networks of the brain were altered in stroke, but not in the same direction. Detection of both global and local network changes was task-dependent. We found that global network function of the brain was reduced in stroke participants as compared with controls. This effect was detected during pedaling and nonparetic tapping, but not during paretic tapping. Local network function of the brain was elevated in stroke participants during paretic tapping and reduced during pedaling. No between-group differences in local connectivity were seen during nonparetic tapping. Connections involving S2, M1S1, and AlCb were significantly affected. Reduced global connectivity of the brain might contribute to reduced brain activation volume during pedaling poststroke.
Collapse
Affiliation(s)
- Kaleb Vinehout
- 1 Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- 1 Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
27
|
Brain Activation During Passive and Volitional Pedaling After Stroke. Motor Control 2019; 23:52-80. [PMID: 30012052 PMCID: PMC6685765 DOI: 10.1123/mc.2017-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/06/2018] [Accepted: 02/25/2018] [Indexed: 11/18/2022]
Abstract
Background: Prior work indicates that pedaling-related brain activation is lower in people with stroke than in controls. We asked whether this observation could be explained by between-group differences in volitional motor commands and pedaling performance. Methods: Individuals with and without stroke performed passive and volitional pedaling while brain activation was recorded with functional magnetic resonance imaging. The passive condition eliminated motor commands to pedal and minimized between-group differences in pedaling performance. Volume, intensity, and laterality of brain activation were compared across conditions and groups. Results: There were no significant effects of condition and no Group × Condition interactions for any measure of brain activation. Only 53% of subjects could minimize muscle activity for passive pedaling. Conclusions: Altered motor commands and pedaling performance are unlikely to account for reduced pedaling-related brain activation poststroke. Instead, this phenomenon may be due to functional or structural brain changes. Passive pedaling can be difficult to achieve and may require inhibition of excitatory descending drive.
Collapse
|
28
|
A comment on postural stability improvement in older adults with high fall risk after anodal tDCS on primary motor cortex versus cerebellar stimulation. Brain Stimul 2018; 12:367-368. [PMID: 30503375 DOI: 10.1016/j.brs.2018.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
|
29
|
Fritz NE, Kloos AD, Kegelmeyer DA, Kaur P, Nichols-Larsen DS. Supplementary motor area connectivity and dual-task walking variability in multiple sclerosis. J Neurol Sci 2018; 396:159-164. [PMID: 30472552 DOI: 10.1016/j.jns.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/15/2018] [Accepted: 11/09/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Despite the prevalence of dual-task (e.g., walking while talking) deficits in people with multiple sclerosis (MS), no neuroimaging studies to date have examined neuronal networks used for dual-task processing or specific brain areas related to dual-task performance in this population. A better understanding of the relationship among underlying brain areas and dual-task performance may improve targeted rehabilitation programs. The objective of this study was to examine relationships between neuroimaging measures and clinical measures of dual-task performance, and reported falls in persons with MS. MATERIALS AND METHODS All participants completed measures of dual-task performance, a fall history, and neuroimaging on a 3 T MRI scanner. Spearman correlations were used to examine relationships among dual-task performance, falls and neuroimaging measures. RESULTS Eighteen females with relapsing-remitting MS [mean age = 45.5 ± 8.2 SD; mean symptom duration = 12.3 ± 6.7 years; Expanded Disability Status Scale median 2.25 (range 1.5-4)] participated in this study. Structural imaging measures of supplementary motor area (SMA) interhemispheric connectivity were significantly related to dual-task walking variability. CONCLUSIONS The SMA interhemispheric tract may play a role in dual-task performance. Structural neuroimaging may be a useful adjunct to clinical measures to predict performance and provide information about recovery patterns in MS. Functional recovery can be challenging to objectively report in MS; diffusion tensor imaging could show microstructural improvements and suggest improved connectivity.
Collapse
Affiliation(s)
- Nora E Fritz
- Program in Physical Therapy and Department of Neurology, Wayne State University, Detroit, MI, United States; Division of Physical Therapy, The Ohio State University, Columbus, OH, United States; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States.
| | - Anne D Kloos
- Division of Physical Therapy, The Ohio State University, Columbus, OH, United States; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Deborah A Kegelmeyer
- Division of Physical Therapy, The Ohio State University, Columbus, OH, United States; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Parminder Kaur
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Deborah S Nichols-Larsen
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
30
|
Lee G, Jin SH, An J. Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network. SENSORS 2018; 18:s18092957. [PMID: 30189651 PMCID: PMC6164948 DOI: 10.3390/s18092957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022]
Abstract
In this paper, a new motion artifact correction method is proposed based on multi-channel functional near-infrared spectroscopy (fNIRS) signals. Recently, wavelet transform and hemodynamic response function-based algorithms were proposed as methods of denoising and detrending fNIRS signals. However, these techniques cannot achieve impressive performance in the experimental environment with lots of movement such as gait and rehabilitation tasks because hemodynamic responses have features similar to those of motion artifacts. Moreover, it is difficult to correct motion artifacts in multi-measured fNIRS systems, which have multiple channels and different noise features in each channel. Thus, a new motion artifact correction method for multi-measured fNIRS is proposed in this study, which includes a decision algorithm to determine the most contaminated fNIRS channel based on entropy and a reconstruction algorithm to correct motion artifacts by using a wavelet-decomposed back-propagation neural network. The experimental data was achieved from six subjects and the results were analyzed in comparing conventional algorithms such as HRF smoothing, wavelet denoising, and wavelet MDL. The performance of the proposed method was proven experimentally using the graphical results of the corrected fNIRS signal, CNR that is a performance evaluation index, and the brain activation map.
Collapse
Affiliation(s)
- Gihyoun Lee
- Convergence Research Center for Wellness, DGIST, Daegu 42988, Korea.
| | - Sang Hyeon Jin
- Convergence Research Center for Wellness, DGIST, Daegu 42988, Korea.
| | - Jinung An
- Convergence Research Center for Wellness, DGIST, Daegu 42988, Korea.
| |
Collapse
|
31
|
Hilderley AJ, Taylor MJ, Fehlings D, Chen JL, Wright FV. Optimization of fMRI methods to determine laterality of cortical activation during ankle movements of children with unilateral cerebral palsy. Int J Dev Neurosci 2018; 66:54-62. [PMID: 29413879 DOI: 10.1016/j.ijdevneu.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022] Open
Abstract
Measurement of laterality of motor cortical activations may provide valuable information about lower limb control in children with unilateral cerebral palsy (UCP). Evidence from upper limb research suggests that increased contralateral activity may accompany functional gains. However, lower limb areas of activation and associated changes have been underexplored due to challenges with imaging motor cortical leg representations. In this study, methods for a task-based functional magnetic resonance imaging (fMRI) ankle dorsiflexion paradigm were refined with three pilot groups of participants: (i) adults (n = 5); (ii) typically developing (TD) children (n = 5) and; (iii) children with UCP (n = 4). Parameters of experimental design, task resistance, reproducibility, and pre-scan procedures were tested/refined using a staged development approach with additions or changes introduced if image quality did not meet pre-defined standards. When image quality was acceptable for two consecutive participants, the next participant group was recruited to test/refine the next parameter. The final paradigm involved an event-related design of a single dorsiflexion movement against individualized resistance, with two runs per leg. It included a pre-scan session to increase child comfort and determine task resistance. This paradigm produced valid data for laterality index (LI) calculations to determine the ratio of activity in each hemisphere. Ventricle and lesion masks were used in non-linear image registration, and individual thresholds were used for extent-based LI calculations. LI of dominant ankle movements were contralateral (LI ≥ +0.2) for TD children (mean LI = +0.89, std = 0.27) and children with UCP (mean LI = +0.86, std = 0.26). For the affected ankle of children with UCP, LI values indicated ipsilateral and/or contralateral activation (mean LI = +0.02, std = 0.71, range -0.92 to +1.00). This fMRI paradigm will support investigations of cortical activation and mechanisms of skill improvement following lower limb interventions.
Collapse
Affiliation(s)
- A J Hilderley
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| | - M J Taylor
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada; Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, M5T 1W7, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, M5S 3G3, Canada.
| | - D Fehlings
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Department of Developmental Paediatrics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - J L Chen
- Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Hurvitz Brain Sciences Program, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, M4N 3M5, Canada; Department of Physical Therapy, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| | - F V Wright
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Department of Physical Therapy, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| |
Collapse
|
32
|
Functional Activation-Informed Structural Changes during Stroke Recovery: A Longitudinal MRI Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4345205. [PMID: 29204440 PMCID: PMC5674725 DOI: 10.1155/2017/4345205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/09/2017] [Accepted: 09/12/2017] [Indexed: 01/21/2023]
Abstract
Objective Neuroimaging studies revealed the functional reorganization or the structural changes during stroke recovery. However, previous studies did not combine the functional and structural information and the results might be affected by heterogeneous lesion. This study aimed to investigate functional activation-informed structural changes during stroke recovery. Methods MRI data of twelve stroke patients were collected at four consecutive time points during the first 3 months after stroke onset. Functional activation during finger-tapping task was used to inform the analysis of structural changes of activated brain regions. Correlation between structural changes in motor-related activated brain regions and motor function recovery was estimated. Results The averaged gray matter volume (aGMV) of contralesional activated brain regions and laterality index of gray matter volume (LIGMV) increased during stroke recovery, and LIGMV was positively correlated with Fugl-Meyer Index (FMI) at initial stage after stroke. The aGMV of bilateral activated brain regions was negatively correlated with FMI during the stroke recovery. Conclusion This study demonstrated that combining the stroke-induced functional reorganization and structural change provided new insights into the underlying innate plasticity process during stroke recovery. Significance This study proposed a new approach to integrate functional and structural information for investigating the innate plasticity after stroke.
Collapse
|
33
|
Arya KN, Pandian S, Kumar V. Effect of activity-based mirror therapy on lower limb motor-recovery and gait in stroke: A randomised controlled trial. Neuropsychol Rehabil 2017; 29:1193-1210. [DOI: 10.1080/09602011.2017.1377087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kamal Narayan Arya
- Pandit Deendayal Upadhayaya National Institute for Persons with Physical Disabilities, New Delhi, India
| | - Shanta Pandian
- Pandit Deendayal Upadhayaya National Institute for Persons with Physical Disabilities, New Delhi, India
| | - Vikas Kumar
- Pandit Deendayal Upadhayaya National Institute for Persons with Physical Disabilities, New Delhi, India
| |
Collapse
|
34
|
Tan AQ, Dhaher YY. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb. Front Neurol 2017; 8:373. [PMID: 28824530 PMCID: PMC5545591 DOI: 10.3389/fneur.2017.00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The neural constraints underlying hemiparetic gait dysfunction are associated with abnormal kinetic outflow and altered muscle synergy structure. Recent evidence from our lab implicates the lesioned hemisphere in mediating the expression of abnormally coupled hip adduction and knee extension synergy, suggesting a role of cortical networks in the regulation of lower limb motor outflow poststroke. The potential contribution of contralesional hemisphere (CON-H) in regulating paretic leg kinetics is unknown. The purpose of this study is to characterize the effect of CON-H activation on aberrant across-joint kinetic coupling of the ipsilateral lower-extremity muscles poststroke. METHODS Amplitude-matched adductor longus motor-evoked potentials were elicited using single pulse transcranial magnetic stimulation (TMS) of the lesioned (L-H) and CON-Hs during an isometric adductor torque matching task from 11 stroke participants. For 10 control participants, TMS of the contralateral and ipsilateral hemisphere were given during the same task. TMS-induced torques were characterized at the hip and knee joints to determine the differential regulation of abnormal kinetic synergies by each motor cortices. The TMS-induced ratio of knee extension/hip adduction torques was quantified during 40 and 20% of maximum adduction torque. FINDINGS For both the 40 and 20% target adduction tasks, we find that contralesional stimulation significantly reduced but did not eliminate the TMS-induced ratio of knee extension/hip adduction torques for the stroke group (p = 0.0468, p = 0.0396). In contrast, the controls did not present a significantly different TMS-evoked torque following stimulation (p = 0.923) of the hemisphere ipsilateral to the test leg. INTERPRETATION The reduced expression of abnormal across-joint kinetic coupling suggests that the CON-H may contribute an adaptive role in lower limb control poststroke. Future study of neuromodulation paradigms that leverage adaptive CON-H activation may yield clinically relevant gains in lower limb motor function poststroke.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Yasin Y. Dhaher
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
35
|
Bürki CN, Bridenbaugh SA, Reinhardt J, Stippich C, Kressig RW, Blatow M. Imaging gait analysis: An fMRI dual task study. Brain Behav 2017; 7:e00724. [PMID: 28828204 PMCID: PMC5561304 DOI: 10.1002/brb3.724] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. METHODS We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite© electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. RESULTS Behavioral results showed that the parameters of both gait analyses, GAITRite© and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. CONCLUSION We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite© gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.
Collapse
Affiliation(s)
- Céline N Bürki
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland.,Felix Platter-Hospital University Center for Medicine of Aging and University of Basel Basel Switzerland
| | - Stephanie A Bridenbaugh
- Felix Platter-Hospital University Center for Medicine of Aging and University of Basel Basel Switzerland
| | - Julia Reinhardt
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland
| | - Christoph Stippich
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland
| | - Reto W Kressig
- Felix Platter-Hospital University Center for Medicine of Aging and University of Basel Basel Switzerland
| | - Maria Blatow
- Division of Diagnostic and Interventional Neuroradiology Department of Radiology University of Basel Hospital and University of Basel Basel Switzerland
| |
Collapse
|
36
|
Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study. Behav Neurol 2017; 2017:6261479. [PMID: 28720981 PMCID: PMC5506482 DOI: 10.1155/2017/6261479] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) is a promising method for quantifying brain recovery and investigating the intervention-induced changes in corticomotor excitability after stroke. This study aimed to evaluate cortical reorganization subsequent to virtual reality-enhanced treadmill (VRET) training in subacute stroke survivors. Methods Eight participants with ischemic stroke underwent VRET for 5 sections per week and for 3 weeks. fMRI was conducted to quantify the activity of selected brain regions when the subject performed ankle dorsiflexion. Gait speed and clinical scales were also measured before and after intervention. Results Increased activation in the primary sensorimotor cortex of the lesioned hemisphere and supplementary motor areas of both sides for the paretic foot (p < 0.01) was observed postintervention. Statistically significant improvements were observed in gait velocity (p < 0.05). The change in voxel counts in the primary sensorimotor cortex of the lesioned hemisphere is significantly correlated with improvement of 10 m walk time after VRET (r = −0.719). Conclusions We observed improved walking and increased activation in cortical regions of stroke survivors after VRET training. Moreover, the cortical recruitment was associated with better walking function. Our study suggests that cortical networks could be a site of plasticity, and their recruitment may be one mechanism of training-induced recovery of gait function in stroke. This trial is registered with ChiCTR-IOC-15006064.
Collapse
|
37
|
Yang HE, Kyeong S, Lee SH, Lee WJ, Ha SW, Kim SM, Kang H, Lee WM, Kang CS, Kim DH. Structural and functional improvements due to robot-assisted gait training in the stroke-injured brain. Neurosci Lett 2016; 637:114-119. [PMID: 27884739 DOI: 10.1016/j.neulet.2016.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 12/18/2022]
Abstract
Robot-assisted gait training (RAGT) can improve walking ability after stroke. Because the underlying mechanisms are still unknown, we analyzed changes in post-stroke injured brains after RAGT. Ten non-ambulatory patients receiving inpatient rehabilitation were examined within 3 months of stroke onset. RAGT consisted of 45min of training, 3days per week. We acquired diffusion tensor imaging (DTI) data before and after 20 sessions of RAGT. Fractional anisotropy (FA) maps were then used to determine neural changes after RAGT. Fugl-Meyer motor assessment of the lower extremity, motricity index of the lower extremity, functional ambulation category, and trunk control tests were also conducted before training, after 10 and 20 RAGT sessions, and at the 1-month follow-up. After RAGT, the supplementary motor area of the unaffected hemisphere showed increased FA, but the internal capsule, substantia nigra, and pedunculopontine nucleus of the affected hemisphere showed decreased FA. All clinical outcome measures improved after 20 sessions of RAGT. Our findings indicate that RAGT can facilitate plasticity in the intact supplementary motor area, but not the injured motor-related areas, in the affected hemisphere.
Collapse
Affiliation(s)
- Hea Eun Yang
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Sunghyon Kyeong
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hwa Lee
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Won-Jae Lee
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Sang Won Ha
- Department of Neurology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Seung Min Kim
- Department of Neurology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Hyunkoo Kang
- Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Won Min Lee
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Chang Soon Kang
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea.
| |
Collapse
|
38
|
Aranyi C, Opposits G, Nagy M, Berényi E, Vér C, Csiba L, Katona P, Spisák T, Emri M. Population-Level Correction of Systematic Motion Artifacts in fMRI in Patients with Ischemic Stroke. J Neuroimaging 2016; 27:397-408. [DOI: 10.1111/jon.12408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- Csaba Aranyi
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Gábor Opposits
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Marianna Nagy
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Ervin Berényi
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Csilla Vér
- Department of Neurology; University of Debrecen; Hungary
| | - László Csiba
- Department of Neurology; University of Debrecen; Hungary
| | - Péter Katona
- Department of Diagnostic Radiology; Kenézy Gyula County Hospital; Debrecen Hungary
| | - Tamás Spisák
- Preclinical Imaging and Biomarker Center; Gedeon Richter Plc.; Budapest Hungary
| | - Miklós Emri
- Department of Medical Imaging; University of Debrecen; Hungary
| |
Collapse
|
39
|
Sharp KG, Gramer R, Page SJ, Cramer SC. Increased Brain Sensorimotor Network Activation after Incomplete Spinal Cord Injury. J Neurotrauma 2016; 34:623-631. [PMID: 27528274 DOI: 10.1089/neu.2016.4503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
After complete spinal cord injury (SCI), activation during attempted movement of paralyzed limbs is sharply reduced, but after incomplete SCI-the more common form of human injury-it is unknown how attempts to move voluntarily are accompanied by activation of brain motor and sensory networks. Here, we assessed brain activation during ankle movement in subjects with incomplete SCI, among whom voluntary motor function is partially preserved. Adults with incomplete SCI (n = 20) and healthy controls (n = 15) underwent functional magnetic resonance imaging that alternated rest with 0.3-Hz right ankle dorsiflexion. In both subject groups, ankle movement was associated with bilateral activation of primary and secondary sensory and motor areas, with significantly (p < 0.001) greater activation in subjects with SCI within right hemisphere areas, including primary sensorimotor cortex and pre-motor cortex. This result was further evaluated using linear regression analysis with respect to core clinical variables. Poorer locomotor function correlated with larger activation within several right hemisphere areas, including pre- and post-central gyri, possibly reflecting increased movement complexity and effort, whereas longer time post-SCI was associated with larger activation in left post-central gyrus and bilateral supplementary motor area, which may reflect behaviorally useful adaptations. The results indicate that brain adaptations after incomplete SCI differ sharply from complete SCI, are related to functional behavioral status, and evolve with increasing time post-SCI. The results suggest measures that might be useful for understanding and treating incomplete SCI in human subjects.
Collapse
Affiliation(s)
- Kelli G Sharp
- 1 Reeve-Irvine Research Center, University of California , Irvine, Irvine, California.,2 Department of Dance, University of California , Irvine, Irvine, California
| | - Robert Gramer
- 3 Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California , Irvine, Irvine, California
| | - Stephen J Page
- 4 Division of Occupational Therapy, The Ohio State University Medical Center , Columbus, Ohio
| | - Steven C Cramer
- 1 Reeve-Irvine Research Center, University of California , Irvine, Irvine, California.,3 Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California , Irvine, Irvine, California.,5 The Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, Irvine, California
| |
Collapse
|
40
|
Mak MKY, Cheung V, Ma S, Lu ZL, Wang D, Lou W, Shi L, Mok VCT, Chu WCW, Hallett M. Increased Cognitive Control During Execution of Finger Tap Movement in People with Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2016; 6:639-50. [PMID: 27372216 DOI: 10.3233/jpd-160849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies employed demanding and complex hand tasks to study the brain activation in people with Parkinson's Disease (PD). There is inconsistent finding about the cerebellar activity during movement execution of this patient population. OBJECTIVES This study aimed to examine the brain activation patterns of PD individuals in the on-state and healthy control subjects in a simple finger tapping task. METHODS Twenty-seven patients with PD and 22 age-matched healthy subjects were recruited for the study. Subjects were instructed to perform simple finger tapping tasks under self- and cue-initiated conditions in separate runs while their brain activations were captured using fMRI. RESULTS Healthy subjects had higher brain activity in contralateral precentral gyrus during the self-initiated task, and higher brain activity in the ipsilateral middle occipital gyrus during the cue-initiated task. PD patients had higher brain activity in the cerebellum Crus I (bilateral) and lobules VI (ipsilateral) during the self-initiated task and higher brain activity in the contralateral middle frontal gyrus during the cue-initiated task. When compared with healthy controls, PD patients had lower brain activity in the contralateral inferior parietal lobule during the self-initiated task, and lower brain activity in the ipsilateral cerebellum lobule VIII, lobule VIIB and vermis VIII, and thalamus during the cue-initiated task. Conjunction analysis indicated that both groups had activation in bilateral cerebellum and SMA and ipsilateral precentral gyrus and postcentral gyrus during both self- and cue-initiated movement. Individuals with PD exhibited higher brain activity in the executive zone (cerebellum Crus I and II) during self-initiated movement, and lower brain activity in the sensorimotor zone (i.e. lobule VIIb and VIII of the cerebellum) during cue-initiated movement. DISCUSSIONS The findings suggest that individuals with PD may use more executive control when performing simple movements.
Collapse
Affiliation(s)
- Margaret K Y Mak
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Vinci Cheung
- Department of Counselling & Psychology, Shue Yan University, Hong Kong
| | - Shuangye Ma
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Zhong L Lu
- Center for Cognitive and Behavioral Brain Imaging, Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Wutao Lou
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Wu JF, Wang HJ, Wu Y, Li F, Bai YL, Zhang PY, Chan CCH. Efficacy of transcranial alternating current stimulation over bilateral mastoids (tACS bm) on enhancing recovery of subacute post-stroke patients. Top Stroke Rehabil 2016; 23:420-429. [PMID: 27145292 DOI: 10.1080/10749357.2016.1175218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Transcranial alternating current stimulation (tACS) offers another method of non-invasive brain stimulation in post-stroke rehabilitation. Because it is not known if tACS over bilateral mastoids (tACSbm) can promote the functional recovery in subacute post-stroke patients, we wish to learn the effect of tACSbm on improving neurological function and intracranial hemodynamics of subacute post-stroke patients. METHODS Sixty subacute post-stroke patients (mean age: 65.4 ± 9.8 years), 15 to 60 days after the onset, were randomly assigned to receiving 15 sessions of usual rehabilitation program without (n = 30) or with tACSbm (20 Hz and < 400 μA for 30-min; n = 30). The outcome measures included the NIH Stroke Scale (NIHSS) and measures of intracranial hemodynamics before and after treatment. RESULTS At the fifteenth session, when compared with the baseline, the mean NIHSS scores of the patients in the tACSbm group had significantly a larger decrease [18.3 ± 2.6 vs. 10.8 ± 2.7; p < 0.001] than that of the control group [19.1 ± 2.7 vs. 13.0 ± 2.4] [F(1,54) = 4.29, p = 0.043]. After both the first and fifteenth sessions, compared with the control group, the mean blood flow velocity (MFVs) of the tACSbm group had significantly larger increase in the MCA, ACA, and PCA (p < 0.001), the Gosling pulsatility index (PI) of the tACSbm group had also significantly larger decline in the MCA, ACA, and PCA than that of the control group (p < 0.001). The best predictor of the changes in the NIHSS scores was the decline in the pulsatility index in the vascular territory of both lesional and non-lesional MCA measured by the end of the last treatment session. CONCLUSIONS tACSbm appeared to be effective for enhancing patients' functional recovery and cerebral hemodynamics in the subacute phase. The extent of recovery seems to be associated with the decline of the resistance in vascular bed of the main cerebral arteries. The mechanisms behind this effect should be explored further through research.
Collapse
Affiliation(s)
- Jun-Fa Wu
- a Department of Rehabilitation Medicine, Huashan Hospital , Fudan University , Shanghai , China
| | - Hai-Jue Wang
- a Department of Rehabilitation Medicine, Huashan Hospital , Fudan University , Shanghai , China
| | - Yi Wu
- a Department of Rehabilitation Medicine, Huashan Hospital , Fudan University , Shanghai , China.,b State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai , China
| | - Fang Li
- a Department of Rehabilitation Medicine, Huashan Hospital , Fudan University , Shanghai , China
| | - Yu-Long Bai
- a Department of Rehabilitation Medicine, Huashan Hospital , Fudan University , Shanghai , China
| | - Peng-Yu Zhang
- a Department of Rehabilitation Medicine, Huashan Hospital , Fudan University , Shanghai , China
| | - Chetwyn C H Chan
- c Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences , The Hong Kong Polytechnic University , Hong Kong , China
| |
Collapse
|
42
|
Xu Y, Hou QH, Russell SD, Bennett BC, Sellers AJ, Lin Q, Huang DF. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation. Neural Regen Res 2016; 10:2072-80. [PMID: 26889202 PMCID: PMC4730838 DOI: 10.4103/1673-5374.172329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gait disorders drastically affect the quality of life of stroke survivors, making post-stroke rehabilitation an important research focus. Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment. However, a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized. We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery, and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery. While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity, it evolves over time, is idiosyncratic, and may develop maladaptive elements. Furthermore, noninvasive brain stimulation has limited reach capability and is facilitative-only in nature. Therefore, we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques. Additionally, when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors, stimulation montages should be customized according to the specific types of neuroplasticity found in each individual. This could be done using multiple mapping techniques.
Collapse
Affiliation(s)
- Yi Xu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, Guangzhou, Guangdong Province, China; Motion Analysis and Motor Performance Laboratory, Department of Orthopedics and Mechanical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Qing-Hua Hou
- Department of Neurology, Guangdong No.2 Provincial People's Hospital, Guangzhou, Guangdong Province, China
| | - Shawn D Russell
- Motion Analysis and Motor Performance Laboratory, Department of Orthopedics and Mechanical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bradford C Bennett
- H.C Sweere Center for Clinical Biomechanics and Applied Ergonomics, Northwestern Health Science University, Bloomington, MN, USA
| | - Andrew J Sellers
- Department of Radiology, Naval Medical Center Portsmouth, Portsmouth, VA, USA
| | - Qiang Lin
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, Guangzhou, Guangdong Province, China
| | - Dong-Feng Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, Guangzhou, Guangdong Province, China
| |
Collapse
|
43
|
Landsmann B, Pinter D, Pirker E, Pichler G, Schippinger W, Weiss EM, Mathie G, Gattringer T, Fazekas F, Enzinger C. An exploratory intervention study suggests clinical benefits of training in chronic stroke to be paralleled by changes in brain activity using repeated fMRI. Clin Interv Aging 2016; 11:97-103. [PMID: 26869779 PMCID: PMC4734728 DOI: 10.2147/cia.s95632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Previous studies demonstrated changes in sensorimotor network activation over time after stroke that have been interpreted as partly compensatory. Locomotor and balance trainings may improve both mobility and cognition even in chronic stroke and thereby impact on cerebral activation patterns. We here aimed at testing these assumptions in an exploratory study to inform subsequent larger intervention studies. Patients and methods Eight patients (73.3±4.4 years) with a chronic lacunar stroke (mean interval 3.7 years after the acute event with a range from 2 to 4 years) and residual leg paresis leading to gait disturbance received a guided 5-week training focusing on mobility, endurance, and coordination. Before and afterward, they underwent clinical, neuropsychological, and gait assessments and brain MRI at 3 T including a functional ankle movement paradigm. Sixteen healthy controls (HCs; 68.8±5.4 years) followed the same protocol without intervention. Results After training, patients had improved in mobility, memory, and delayed recall of memory. While cerebral activations in HC remained completely unaltered, patients showed increased activations in the right precentral gyrus, the right and left superior frontal gyri, and the right frontal lobe, with bipedal ankle movements after training. Conclusion In this exploratory study of chronic stroke, we found not only significant effects of physical training on mobility but also distinct aspects of cognition already with a small number of highly selected patients. These improvements were paralleled by alterations in cerebral activity possibly reflecting neuronal plasticity. Larger studies including randomization are needed.
Collapse
Affiliation(s)
- Barbara Landsmann
- Institute of Psychology, University of Graz, Graz, Austria; Department of Neurology, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Eva Pirker
- Institute of Psychology, University of Graz, Graz, Austria; Department of Neurology, Medical University of Graz, Graz, Austria
| | | | | | | | - Gabriel Mathie
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria; Division of Neuroradiology, Department of Radiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
44
|
Physical Exercise as a Diagnostic, Rehabilitation, and Preventive Tool: Influence on Neuroplasticity and Motor Recovery after Stroke. Neural Plast 2015; 2015:608581. [PMID: 26682073 PMCID: PMC4670869 DOI: 10.1155/2015/608581] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023] Open
Abstract
Stroke remains a leading cause of adult motor disabilities in the world and accounts for the greatest number of hospitalizations for neurological disease. Stroke treatments/therapies need to promote neuroplasticity to improve motor function. Physical exercise is considered as a major candidate for ultimately promoting neural plasticity and could be used for different purposes in human and animal experiments. First, acute exercise could be used as a diagnostic tool to understand new neural mechanisms underlying stroke physiopathology. Indeed, better knowledge of stroke mechanisms that affect movements is crucial for enhancing treatment/rehabilitation effectiveness. Secondly, it is well established that physical exercise training is advised as an effective rehabilitation tool. Indeed, it reduces inflammatory processes and apoptotic marker expression, promotes brain angiogenesis and expression of some growth factors, and improves the activation of affected muscles during exercise. Nevertheless, exercise training might also aggravate sensorimotor deficits and brain injury depending on the chosen exercise parameters. For the last few years, physical training has been combined with pharmacological treatments to accentuate and/or accelerate beneficial neural and motor effects. Finally, physical exercise might also be considered as a major nonpharmacological preventive strategy that provides neuroprotective effects reducing adverse effects of brain ischemia. Therefore, prestroke regular physical activity may also decrease the motor outcome severity of stroke.
Collapse
|
45
|
Promjunyakul NO, Schmit BD, Schindler-Ivens SM. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke. Front Hum Neurosci 2015; 9:324. [PMID: 26089789 PMCID: PMC4454878 DOI: 10.3389/fnhum.2015.00324] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/20/2015] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann's area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of -0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum - but not cortex - was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities.
Collapse
Affiliation(s)
- Nutta-On Promjunyakul
- Department of Physical Therapy, Marquette University Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA ; Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin Milwaukee, WI, USA
| | - Sheila M Schindler-Ivens
- Department of Physical Therapy, Marquette University Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA ; Clinical and Translational Science Institute of Southeastern Wisconsin, Medical College of Wisconsin Milwaukee, WI, USA
| |
Collapse
|
46
|
Chieffo R, Comi G, Leocani L. Noninvasive Neuromodulation in Poststroke Gait Disorders. Neurorehabil Neural Repair 2015; 30:71-82. [DOI: 10.1177/1545968315586464] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Walking rehabilitation is one of the primary goals in stroke survivors because of its great potential for recovery and its functional relevance in daily living activities. Although 70% to 80% of people in the chronic poststroke phases are able to walk, impairment of gait often persists, involving speed, endurance, and stability. Walking involves several brain regions, such as the sensorimotor cortex, supplementary motor area, cerebellum, and brainstem, which are approachable by the application of noninvasive brain stimulation (NIBS). NIBS techniques, such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation, have been reported to modulate neural activity beyond the period of stimulation, facilitating neuroplasticity. NIBS methods have been largely applied for improving paretic hand motor function and stroke-associated cognitive deficits. Recent studies suggest a possible effectiveness of these techniques also in the recovery of poststroke gait disturbance. This article is a selective review about functional investigations addressing the mechanisms of lower-limb motor system reorganization after stroke and the application of NIBS for neurorehabilitation.
Collapse
Affiliation(s)
- Raffaella Chieffo
- Scientific Institute Vita-Salute University San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Scientific Institute Vita-Salute University San Raffaele, Milan, Italy
| | - Letizia Leocani
- Scientific Institute Vita-Salute University San Raffaele, Milan, Italy
| |
Collapse
|
47
|
Charalambous CC, Bowden MG, Adkins DL. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding. Neurorehabil Neural Repair 2015; 30:94-102. [PMID: 25878201 DOI: 10.1177/1545968315581418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Mark G Bowden
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - DeAnna L Adkins
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
48
|
Chu VW, Hornby TG, Schmit BD. Perception of lower extremity loads in stroke survivors. Clin Neurophysiol 2015; 126:372-81. [DOI: 10.1016/j.clinph.2014.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
49
|
Wiest R, Abela E, Missimer J, Schroth G, Hess CW, Sturzenegger M, Wang DJJ, Weder B, Federspiel A. Interhemispheric cerebral blood flow balance during recovery of motor hand function after ischemic stroke--a longitudinal MRI study using arterial spin labeling perfusion. PLoS One 2014; 9:e106327. [PMID: 25191858 PMCID: PMC4156327 DOI: 10.1371/journal.pone.0106327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process. OBJECTIVE To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery. METHODS Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network. RESULTS Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere. CONCLUSIONS Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information.
Collapse
Affiliation(s)
- Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- * E-mail:
| | - Eugenio Abela
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - John Missimer
- Paul Scherrer Institute, Laboratory of Biomolecular Research, Villigen, Switzerland
| | - Gerhard Schroth
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Christian W. Hess
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Matthias Sturzenegger
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Danny J. J. Wang
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bruno Weder
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Neurology, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Jang SH, Kwon HG. Change of the anterior corticospinal tract on the normal side of the brain in chronic stroke patients: Diffusion tensor imaging study. Somatosens Mot Res 2014; 32:25-30. [PMID: 25166214 DOI: 10.3109/08990220.2014.949006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated change of the anterior corticospinal tract (CST) on the normal side of the brain in stroke patients, using diffusion tensor tractography (DTT). We recruited 32 stroke patients and 24 control subjects. Motricity Index and DTT for the whole and anterior CSTs were evaluated. According to findings, the fiber number of the anterior CST on the normal side of the brain of stroke patients was related to poor motor function of the affected extremities.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University , Daegu , Republic of Korea
| | | |
Collapse
|