1
|
Kimura S, Iwata M, Takase H, Lo EH, Arai K. Oxidative stress and chronic cerebral hypoperfusion: An overview from preclinical rodent models. J Cereb Blood Flow Metab 2025; 45:381-395. [PMID: 39663901 PMCID: PMC11635795 DOI: 10.1177/0271678x241305899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is an important clinical condition characterized by a prolonged reduction in cerebral blood flow that contributes to several neurodegenerative diseases, including vascular dementia and Alzheimer's disease. A number of rodent models of CCH have been developed that mimic the human pathological conditions of reduced cerebral perfusion. These models have been instrumental in elucidating the molecular and cellular mechanisms involved in CCH-induced brain damage. Oxidative stress is induced by perturbations in cellular pathways caused by CCH, including mitochondrial dysfunction, ion pump dysfunction, and adenosine triphosphate (ATP) depletion. The deleterious stress leads to the accumulation of reactive oxygen species (ROS) and exacerbates damage to neuronal structures, significantly impairing cognitive function. Among the various therapeutic strategies being evaluated, edaravone, a potent antioxidant, is emerging as a promising drug due to its neuroprotective properties against oxidative stress. Initially approved for use in ischemic stroke, research using rodent CCH models has shown that edaravone has significant efficacy in scavenging free radicals and ameliorating oxidative stress-induced neuronal damage under CCH conditions. This mini-review summarizes the current literature on the rodent models of CCH and then discusses the therapeutic potential of edaravone to reduce neuronal and vascular damage caused by CCH-induced oxidative stress.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Maho Iwata
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Developmental Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Foddis M, Blumenau S, Mueller S, Messerschmidt C, Rocca C, Pagnamenta AT, Winek K, Endres M, Meisel A, Tucci A, Bras J, Guerreiro R, Beule D, Dirnagl U, Sassi C. Ide Copy Number Variant Does Not Influence Stroke Severity in 2 C57BL/6J Mouse Models nor in Humans: An Exploratory Study. Stroke 2025; 56:725-736. [PMID: 39866114 PMCID: PMC7617642 DOI: 10.1161/strokeaha.124.049575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Contrary to the common belief, the most commonly used laboratory C57BL/6J mouse inbred strain presents a distinctive genetic and phenotypic variability, and for several traits, the genotype-phenotype link remains still unknown. Recently, we characterized the most important stroke survival factor such as brain collateral plasticity in 2 brain ischemia C57BL/6J mouse models (bilateral common carotid artery stenosis and middle cerebral artery occlusion) and observed a Mendelian-like fashion of inheritance of the posterior communicating artery (PcomA) patency. Interestingly, a copy number variant (CNV) spanning Ide locus was reported to segregate in an analogous Mendelian-like pattern in the C57BL/6J colonies of the Jackson Laboratory. Given IDE critical role in vascular plasticity, we hypothesized Ide CNV may have explained PcomA variability in C57BL/6J inbred mice. METHODS We applied a combination of techniques (T2-weighted magnetic resonance imaging, time-of-flight angiography, cerebral blood flow imaging, and histology) to characterize the collaterome in 77 C57BL/6J bilateral common carotid artery stenosis, middle cerebral artery occlusion, naive, and sham mice and performed on these Taqman genotyping, exome sequencing, and RNA sequencing. We then investigated the hypothesis that IDE structural variants (CNVs, gain/loss of function mutations) may have influenced the cerebrovascular phenotype in a large cohort of 454 040 cases and controls (UK Biobank, Genomics England). RESULTS We detected an Ide CNV in a bilateral common carotid artery stenosis mouse with 2 patent PcomAs (minor allele frequency, 1.3%), not segregating with the PcomA patency phenotype. In addition, 2 heterozygous IDE CNVs, resulting in loss of function were found in 1 patient with hereditary ataxia, a patient with hereditary congenital heart disease, and 2 healthy individuals (minor allele frequency 9×10-6). Moreover, we report 4 IDE loss of function point mutations (p.Leu5X, p.Met394ValfsX29, p.Pro14SerfsX26, p.Leu889X, minor allele frequency 0.02%) present also in controls or inherited from healthy parents. CONCLUSIONS Ide CNV and loss of function variants are rare, do not crucially influence PcomA variability in C57BL/6J inbred mice, and do not cause a vascular phenotype in humans.
Collapse
Affiliation(s)
- Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | | | - Clarissa Rocca
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Katarzyna Winek
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI49503, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI49503, USA
| | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Verhaeg M, Adamzek K, van de Vijver D, Putker K, Engelbeen S, Wijnbergen D, Overzier M, Suidgeest E, van der Weerd L, Aartsma‐Rus A, van Putten M. Learning, memory and blood-brain barrier pathology in Duchenne muscular dystrophy mice lacking Dp427, or Dp427 and Dp140. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12895. [PMID: 38837620 PMCID: PMC11151035 DOI: 10.1111/gbb.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 06/07/2024]
Abstract
Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.
Collapse
Affiliation(s)
- Minou Verhaeg
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Kevin Adamzek
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Davy van de Vijver
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Kayleigh Putker
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Sarah Engelbeen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Daphne Wijnbergen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maurice Overzier
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Ernst Suidgeest
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Louise van der Weerd
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Maaike van Putten
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
4
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Fraga E, Medina V, Cuartero MI, García-Culebras A, Bravo-Ferrer I, Hernández-Jiménez M, Garcia-Segura JM, Hurtado O, Pradillo JM, Lizasoain I, Moro MÁ. Defective hippocampal neurogenesis underlies cognitive impairment by carotid stenosis-induced cerebral hypoperfusion in mice. Front Cell Neurosci 2023; 17:1219847. [PMID: 37636586 PMCID: PMC10457159 DOI: 10.3389/fncel.2023.1219847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic cerebral hypoperfusion due to carotid artery stenosis is a major cause of vascular cognitive impairment and dementia (VCID). Bilateral carotid artery stenosis (BCAS) in rodents is a well-established model of VCID where most studies have focused on white matter pathology and subsequent cognitive deficit. Therefore, our aim was to study the implication of adult hippocampal neurogenesis in hypoperfusion-induced VCID in mice, and its relationship with cognitive hippocampal deficits. Mice were subjected to BCAS; 1 and 3 months later, hippocampal memory and neurogenesis/cell death were assessed, respectively, by the novel object location (NOL) and spontaneous alternation performance (SAP) tests and by immunohistology. Hypoperfusion was assessed by arterial spin labeling-magnetic resonance imaging (ASL-MRI). Hypoperfused mice displayed spatial memory deficits with decreased NOL recognition index. Along with the cognitive deficit, a reduced number of newborn neurons and their aberrant morphology indicated a remarkable impairment of the hippocampal neurogenesis. Both increased cell death in the subgranular zone (SGZ) and reduced neuroblast proliferation rate may account for newborn neurons number reduction. Our data demonstrate quantitative and qualitative impairment of adult hippocampal neurogenesis disturbances associated with cerebral hypoperfusion-cognitive deficits in mice. These findings pave the way for novel diagnostic and therapeutic targets for VCID.
Collapse
Affiliation(s)
- Enrique Fraga
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Violeta Medina
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Isabel Cuartero
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Isabel Bravo-Ferrer
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Macarena Hernández-Jiménez
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan Manuel Garcia-Segura
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
- ICTS Bioimagen Complutense, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Olivia Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jesus Miguel Pradillo
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Ángeles Moro
- Neurovascular Pathophysiology Group, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
6
|
Sun M, Wu L, Chen G, Mo X, Shi C. Hemodynamic changes and neuronal damage detected by 9.4 T MRI in rats with chronic cerebral ischemia and cognitive impairment. Brain Behav 2022; 12:e2642. [PMID: 35687797 PMCID: PMC9304847 DOI: 10.1002/brb3.2642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The bilateral common carotid artery occlusion (BCCAO) rat model is an ideal animal model for simulating the pathology of chronic brain hypoperfusion in humans. However, dynamic changes in neuronal activity, cellular edema, and neuronal structural integrity in vivo after BCCAO have rarely been reported. The purpose of this study is to use a 9.4 T MRI to explore the pathophysiological mechanisms of vascular dementia. MATERIALS AND METHODS Twelve Sprague-Dawley (SD) rats were randomly divided into two groups: the sham group and the model group (n = 6 for each group). Rats were subjected to MRI using T2*WI, diffusion tensor imaging (DTI), and DWI sequences by MRI at the following six time points: presurgery and 6 h, 3 days, 7 days, 21 days, and 28 days postsurgery. Then, the T2*, fractional anisotropy (FA), and average apparent diffusion coefficient (ADC) values were measured in the bilateral cortices and hippocampi. After MRI scanning, all rats in both groups were subjected to the Y-maze test, novel object recognition test, and open-field test to assess their learning, memory, cognition, and locomotor activity. RESULTS The T2*, FA, and ADC values in the cerebral cortex and hippocampus decreased sharply at 6 h after BCCAO in the model group compared with those of the sham group. By Day 28, the T2* and ADC values gradually increased to close to those in the sham group, but the FA values changed little, and the rats in the model group had worse learning, memory, and cognition and less locomotor activity than the rats in the sham group. CONCLUSIONS The BCCAO is an ideal rat model for studying the pathophysiological mechanisms of vascular dementia.
Collapse
Affiliation(s)
- Minghua Sun
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No 613 Huangpu Dadao West, Guangzhou, People's Republic of China.,Department of Radiology, The Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, People's Republic of China.,The Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, Guangzhou, Guangdong Province, People's Republic of China
| | - Liangmiao Wu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Moderation and innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, People's Republic of China.,Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guangying Chen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Moderation and innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, People's Republic of China
| | - Xukai Mo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No 613 Huangpu Dadao West, Guangzhou, People's Republic of China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No 613 Huangpu Dadao West, Guangzhou, People's Republic of China.,The Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
7
|
Scharwächter L, Schmitt FJ, Pallast N, Fink GR, Aswendt M. Network analysis of neuroimaging in mice. Neuroimage 2022; 253:119110. [PMID: 35311664 DOI: 10.1016/j.neuroimage.2022.119110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
Graph theory allows assessing changes of neuronal connectivity and interactions of brain regions in response to local lesions, e.g., after stroke, and global perturbations, e.g., due to psychiatric dysfunctions or neurodegenerative disorders. Consequently, network analysis based on constructing graphs from structural and functional MRI connectivity matrices is increasingly used in clinical studies. In contrast, in mouse neuroimaging, the focus is mainly on basic connectivity parameters, i.e., the correlation coefficient or fiber counts, whereas more advanced network analyses remain rarely used. This review summarizes graph theoretical measures and their interpretation to describe networks derived from recent in vivo mouse brain studies. To facilitate the entry into the topic, we explain the related mathematical definitions, provide a dedicated software toolkit, and discuss practical considerations for the application to rs-fMRI and DTI. This way, we aim to foster cross-species comparisons and the application of standardized measures to classify and interpret network changes in translational brain disease studies.
Collapse
Affiliation(s)
- Leon Scharwächter
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Dept. of Neurology, Cologne, Germany
| | - Felix J Schmitt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Dept. of Neurology, Cologne, Germany; University of Cologne, Institute of Zoology, Dept. of Computational Systems Neuroscience, Cologne, Germany
| | - Niklas Pallast
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Dept. of Neurology, Cologne, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Dept. of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Markus Aswendt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Dept. of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany.
| |
Collapse
|
8
|
Hall GR, Boehm-Sturm P, Dirnagl U, Finke C, Foddis M, Harms C, Koch SP, Kuchling J, Madan CR, Mueller S, Sassi C, Sotiropoulos SN, Trueman RC, Wallis MD, Yildirim F, Farr TD. Long-Term Connectome Analysis Reveals Reshaping of Visual, Spatial Networks in a Model With Vascular Dementia Features. Stroke 2022; 53:1735-1745. [PMID: 35105183 PMCID: PMC9022688 DOI: 10.1161/strokeaha.121.036997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Connectome analysis of neuroimaging data is a rapidly expanding field that offers the potential to diagnose, characterize, and predict neurological disease. Animal models provide insight into biological mechanisms that underpin disease, but connectivity approaches are currently lagging in the rodent.
Collapse
Affiliation(s)
- Gerard R Hall
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.)
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.).,German Center for Neurodegenerative Diseases, Berlin Site, Germany (U.D.)
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Germany. (C.F., J.K.).,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany (C.F.)
| | - Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Stefan Paul Koch
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin (J.K.).,Department of Neurology, Charité-Universitätsmedizin Berlin, Germany. (C.F., J.K.)
| | | | - Susanne Mueller
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom (S.N.S.).,Centre for Functional MRI of the Brain, University of Oxford, United Kingdom (S.N.S.)
| | - Rebecca C Trueman
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.)
| | - Marcus D Wallis
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.)
| | - Ferah Yildirim
- corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.).,NeuroCure Cluster of Excellence and Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Germany. (F.Y.)
| | - Tracy D Farr
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.).,Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| |
Collapse
|
9
|
Gong L, Wang H, Dong Q, Zhu X, Zheng X, Gu Y, Cai W, Zhao Y, Liu X. Intracranial Atherosclerotic Stenosis is Related to Post-stroke Cognitive Impairment: A Cross-sectional Study of Minor Stroke. Curr Alzheimer Res 2021; 17:177-184. [PMID: 32124696 DOI: 10.2174/1567205017666200303141920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/30/2020] [Accepted: 03/01/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intracranial Atherosclerotic Stenosis (ICAS) is an important risk factor for cognitive impairment. However, it is unclear whether patients with ICAS are more likely to develop cognitive impairment after an acute, non-disabling ischemic stroke (minor stroke). OBJECTIVE We aimed to investigate the association between ICAS and post-stroke cognitive impairment. METHODS In this cross-sectional study, patients with acute, non-disabling ischemic stroke underwent two cognitive tests and imaging evaluation for ICAS, within two weeks after the stroke. To determine the association between ICAS and post-stroke cognitive impairment, we performed a multivariate logistic regression analysis adjusted for several demographic and vascular risk factors. RESULTS Of the 164 patients with minor stroke in this study, 98 (59.76%) were diagnosed with poststroke cognitive impairment (Montreal Cognitive Assessment score<26). After adjusting for potential confounders, we found that patients with ICAS were more likely to develop cognitive impairment after an acute, non-disabling ischemic stroke, compared to patients without ICAS (Odds Ratio: 2.13; 95% Confidence Interval: 1.07-4.26), and underperformed in the tests of visuospatial and executive function. CONCLUSION In this cross-sectional study of a population that has experienced a minor stroke, our findings demonstrated a positive association between ICAS and post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Li Gong
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Haichao Wang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Qiong Dong
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xiaoping Zhu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xiaoran Zheng
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Yongzhe Gu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Wangli Cai
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, 301# Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
10
|
Chen Z, Wang X, Liao H, Sheng T, Chen P, Zhou H, Pan Y, Liu W, Yao H. Glycine attenuates cerebrovascular remodeling via glycine receptor alpha 2 and vascular endothelial growth factor receptor 2 after stroke. Am J Transl Res 2020; 12:6895-6907. [PMID: 33194080 PMCID: PMC7653569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
As a dual-acting neurotransmitter, glycine plays critical roles in cerebral ischemia by activating both glycine receptors (GlyRs) and N-methyl-D-aspartate acid receptors (NMDARs). However, the involvement of glycine receptor alpha 2 (GlyRa2) in cerebral ischemia has not been explored. The objective of this study was to determine the mechanism of action of GlyRa2 in cerebrovascular remodeling. After induction of rat tMCAO, levels of the GLRA2 gene and GlyRa2 protein were examined using q-PCR, western blot, and immunohistochemical analyses. Blood-brain barrier permeability, and the presence of hemorrhage and arteriosclerosis were also analyzed. The underlying mechanism of vascular remodeling was examined using immunohistochemical and immunofluorescence analyses. Both the GLRA2 gene and GlyRa2 protein were altered sharply after stroke. GlyRa2 of vascular origin appears to play a protective role after glycine treatment for ischemia. Blockade of GlyRa2 by the addition of cyclothiazide was found to abolish previous improvements in cerebrovascular survival after glycine treatment for tMCAO in rats. GlyRa2-dependent neurovascular remodeling was found to be correlated with the vascular endothelial growth factor receptor 2 (VEGFR2) pathways. These results suggest that vascular-derived GlyRa2 protects against post-ischemic injury. Vascular protection via GlyRa2 is due to VEGFR2/pSTAT3 signaling.
Collapse
Affiliation(s)
- Zheng Chen
- Schools of Medicine, Huzhou University, Huzhou Central HospitalHuzhou, PR China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central HospitalHuzhou, PR China
- Division of Vascular Surgery, East Hospital, Tongji University School of MedicineShanghai, 200120, PR China
| | - Xiang Wang
- Division of Vascular Surgery, East Hospital, Tongji University School of MedicineShanghai, 200120, PR China
| | - Haikang Liao
- Institute of Life Sciences and Institute of Neuroscience, Wenzhou UniversityWenzhou, PR China
| | - Tao Sheng
- Schools of Medicine, Huzhou University, Huzhou Central HospitalHuzhou, PR China
| | - Panhong Chen
- Schools of Medicine, Huzhou University, Huzhou Central HospitalHuzhou, PR China
| | - Hongchang Zhou
- Schools of Medicine, Huzhou University, Huzhou Central HospitalHuzhou, PR China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central HospitalHuzhou, PR China
| | - Yongliang Pan
- Schools of Medicine, Huzhou University, Huzhou Central HospitalHuzhou, PR China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central HospitalHuzhou, PR China
| | - Weiqin Liu
- The Affiliated Ganzhou Hospital of Nanchang UniversityGanzhou, PR China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, PR China
- Institute of Life Sciences and Institute of Neuroscience, Wenzhou UniversityWenzhou, PR China
| |
Collapse
|
11
|
Heterogeneous Disease Progression in a Mouse Model of Vascular Cognitive Impairment. Int J Mol Sci 2020; 21:ijms21082820. [PMID: 32316637 PMCID: PMC7215687 DOI: 10.3390/ijms21082820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022] Open
Abstract
Recently, an asymmetric vascular compromise approach that replicates many aspects of human vascular cognitive impairment (VCI) has been reported. The present study aimed to first investigate on the reproducibility in the disease progression of this newly reported VCI model using wild-type C57BL6/J mice. The second aim was to assess how this approach will affect the disease progression of transgenic Alzheimer’s disease (AD) 5XFAD mice subjected to VCI. C57BL6/J and 5XFAD mice were subjected to VCI by placing an ameroid constrictor on the right CCA and a microcoil on the left CCA. Infarcts and hippocampal neuronal loss did not appear predominantly in the right (ameroid side) as expected but randomly in both hemispheres. The mortality rate of C57BL6/J mice was unexpectedly high. Inducing VCI reduced amyloid burden in the hippocampi of 5XFAD mice. Since VCI is known to be complex and complicated, the heterogeneous disease progression observed from this current study shares close resemblance to the clinical manifestation of VCI. This heterogeneity, however, makes it challenging to test novel treatment options using this model. Further study is warranted to tackle the heterogeneous nature of VCI.
Collapse
|
12
|
Foddis M, Winek K, Bentele K, Mueller S, Blumenau S, Reichhart N N, Crespo-Garcia S, Harnett D, Ivanov A, Meisel A, Joussen A, Strauss O, Beule D, Dirnagl U, Sassi C. An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models. J Cereb Blood Flow Metab 2020; 40:276-287. [PMID: 31549895 PMCID: PMC7370619 DOI: 10.1177/0271678x19827251] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60-min transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery (PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and recovery in MCAO, whereas the promptness of external carotid artery retrograde flow recruitment together with PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally, different ischemic gradients shape microcollateral density and size.
Collapse
Affiliation(s)
- Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katarzyna Winek
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kajetan Bentele
- Berlin Institute of Health, BIH, Unit Bioinformatics, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nadine Reichhart N
- Department of Ophthalmology, Experimental Ophthalmology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sergio Crespo-Garcia
- Department of Ophthalmology, Experimental Ophthalmology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dermot Harnett
- Berlin Institute of Health, BIH, Unit Bioinformatics, Berlin, Germany
| | - Andranik Ivanov
- Berlin Institute of Health, BIH, Unit Bioinformatics, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antonia Joussen
- Department of Ophthalmology, Experimental Ophthalmology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Strauss
- Department of Ophthalmology, Experimental Ophthalmology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health, BIH, Unit Bioinformatics, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
13
|
Balbi M, Vanni MP, Vega MJ, Silasi G, Sekino Y, Boyd JD, LeDue JM, Murphy TH. Longitudinal monitoring of mesoscopic cortical activity in a mouse model of microinfarcts reveals dissociations with behavioral and motor function. J Cereb Blood Flow Metab 2019; 39:1486-1500. [PMID: 29521138 PMCID: PMC6681536 DOI: 10.1177/0271678x18763428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Small vessel disease is characterized by sporadic obstruction of small vessels leading to neuronal cell death. These microinfarcts often escape detection by conventional magnetic resonance imaging and are identified only upon postmortem examination. Our work explores a brain-wide microinfarct model in awake head-fixed mice, where occlusions of small penetrating arterioles are reproduced by endovascular injection of fluorescent microspheres. Mesoscopic functional connectivity was mapped longitudinally in awake GCaMP6 mice using genetically encoded calcium indicators for transcranial wide-field calcium imaging. Microsphere occlusions were quantified and changes in cerebral blood flow were measured with laser speckle imaging. The neurodeficit score in microinfarct mice was significantly higher than in sham, indicating impairment in motor function. The novel object recognition test showed a reduction in the discrimination index in microinfarct mice compared to sham. Graph-theoretic analysis of functional connectivity did not reveal significant differences in functional connectivity between sham and microinfarct mice. While behavioral tasks revealed impairments following microinfarct induction, the absence of measurable functional alterations in cortical activity has a less straightforward interpretation. The behavioral alterations produced by this model are consistent with alterations observed in human patients suffering from microinfarcts and support the validity of microsphere injection as a microinfarct model.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Matthieu P Vanni
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Max J Vega
- Department of Psychology, Motivated
Cognition Lab, University of British Columbia, Vancouver, British Columbia,
Canada
| | - Gergely Silasi
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Yuki Sekino
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Jamie D Boyd
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
- Djavad Mowafaghian Center for Brain
Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen
Laboratory of Neurological Research, University of British Columbia, Vancouver,
British Columbia, Canada
- Djavad Mowafaghian Center for Brain
Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Ramalho LS, Silveira LAMD, Fonseca BC, Félix JER, Morais LJ, Soares MH, Ferraz MLF, Teixeira VDPA, Pereira SAL. Width of sulcus and thickness of gyrus in patients with cerebral atherosclerosis: a new tool for the prevention of vascular cognitive impairment. ACTA ACUST UNITED AC 2019; 64:684-691. [PMID: 30673038 DOI: 10.1590/1806-9282.64.08.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/24/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral atherosclerosis is the main cause of lesions that contribute to vascular cognitive impairment and vascular dementia, followed by arteriosclerosis of small vessels and cerebral amyloid angiopathy. The purpose of this study was to compare the post-mortem radiological alterations of autopsied adults with the macroscopic alterations in the posterior region of these brains in order to establish a relationship between the two forms of analysis and to discuss the relevance of the prevention of vascular cognitive impairment in patients with encephalic atherosclerosis. MATERIALS AND METHODS Thirteen brains were analysed macroscopically to assess the degree of atherosclerosis of the basilar and the posterior cerebral arteries. The patients were autopsied in the Subject of General Pathology at General Hospital of Triângulo Mineiro Federal University in Uberaba, state of Minas Gerais, Brazil. The qualitative analysis of atherosclerosis was performed with classification into mild, moderate or severe. In the posterior region of the brains, width of sulcus and thickness of gyrus were measured by macroscopic analysis and by tomographic analysis. RESULTS AND CONCLUSIONS There was a decrease in calcarine sulcus width and an increase in medial temporal occipital gyrus thickness in patients with a higher degree of atherosclerosis, macroscopically and in tomography, respectively. Low oxygenation caused by atherosclerosis probably leads to an encephalic parenchyma inflammation that causes microglial cells hypertrophy provoking increase in the gyrus thickness and decrease in the sulcus width, as observed in the present study.
Collapse
Affiliation(s)
- Luciana Santos Ramalho
- . PhD in Pathology, Student of Postgraduate Course Health Sciences, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| | - Luciano Alves Matias da Silveira
- . MS in Pathology, Anesthesiologist, Professor of Anesthesiology, Department of Surgery, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| | - Bárbara Cecílio Fonseca
- . Medical Student at UFTM, Scientific Initiation Grant from UFTM (BIC/Fapemig), Uberaba (MG), Brasil
| | - José Eduardo Reis Félix
- . Department of Radiology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| | - Lourimar José Morais
- . MS in Pathology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| | - Maria Helena Soares
- . MS in Pathology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| | - Mara Lúcia Fonseca Ferraz
- . PhD in Pathology, Professor of Postgraduate Course Health Sciences, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| | - Vicente de Paula Antunes Teixeira
- . Pathologist, Professor of General Pathology, Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| | - Sanívia Aparecida Lima Pereira
- . PhD in Pathology, Professor of Postgraduate Course Health Sciences, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba (MG), Brasil
| |
Collapse
|
15
|
Zhang X, Su J, Gao C, Ni W, Gao X, Li Y, Zhang J, Lei Y, Gu Y. Progression in Vascular Cognitive Impairment: Pathogenesis, Neuroimaging Evaluation, and Treatment. Cell Transplant 2019; 28:18-25. [PMID: 30488737 PMCID: PMC6322135 DOI: 10.1177/0963689718815820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular cognitive impairment (VCI) defines an entire spectrum of neurologic disorders from mild cognitive impairment to dementia caused by cerebral vascular disease. The pathogenesis of VCI includes ischemic factors (e.g., large vessel occlusion and small vessel dysfunction); hemorrhagic factors (e.g., intracerebral hemorrhage and subarachnoid hemorrhage); and other factors (combined with Alzheimer's disease). Clinical evaluations of VCI mainly refer to neuropsychological testing and imaging assessments, including structural and functional neuroimaging, with different advantages. At present, the main treatment for VCI focuses on neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as pharmacological treatment, revascularization, and cognitive training. In this review, we discuss the pathogenesis, neuroimaging evaluation, and treatment of VCI.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Yu Lei and Yuxiang Gu, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, No. 12 Middle Wulumuqi Road, Shanghai 200040, China. Emails: ;
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Yu Lei and Yuxiang Gu, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, No. 12 Middle Wulumuqi Road, Shanghai 200040, China. Emails: ;
| |
Collapse
|
16
|
Khalil AA, Mueller S, Foddis M, Mosch L, Lips J, Przesdzing I, Temme S, Flögel U, Dirnagl U, Boehm-Sturm P. Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:105-114. [DOI: 10.1007/s10334-018-0712-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/14/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
|
17
|
Horsburgh K, Wardlaw JM, van Agtmael T, Allan SM, Ashford MLJ, Bath PM, Brown R, Berwick J, Cader MZ, Carare RO, Davis JB, Duncombe J, Farr TD, Fowler JH, Goense J, Granata A, Hall CN, Hainsworth AH, Harvey A, Hawkes CA, Joutel A, Kalaria RN, Kehoe PG, Lawrence CB, Lockhart A, Love S, Macleod MR, Macrae IM, Markus HS, McCabe C, McColl BW, Meakin PJ, Miller A, Nedergaard M, O'Sullivan M, Quinn TJ, Rajani R, Saksida LM, Smith C, Smith KJ, Touyz RM, Trueman RC, Wang T, Williams A, Williams SCR, Work LM. Small vessels, dementia and chronic diseases - molecular mechanisms and pathophysiology. Clin Sci (Lond) 2018; 132:851-868. [PMID: 29712883 PMCID: PMC6700732 DOI: 10.1042/cs20171620] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022]
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.
Collapse
Affiliation(s)
- Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Tom van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, U.K
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, U.K
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, U.K
| | - John B Davis
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, U.K
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Tracy D Farr
- School of Life Sciences, Nottingham University, Nottingham, U.K
| | - Jill H Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jozien Goense
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Alessandra Granata
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | | | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London, U.K
| | - Adam Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Cheryl A Hawkes
- Faculty of Science, Technology, Engineering & Mathematics, Open University, Milton Keynes, U.K
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Seth Love
- Clinical Neurosciences, University of Bristol, Bristol, U.K
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - I Mhairi Macrae
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | - Chris McCabe
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Barry W McColl
- The Roslin Institute & R(D)SVS, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Paul J Meakin
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, U.K
| | - Alyson Miller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Maiken Nedergaard
- University of Rochester Medical Center, Rochester, NY, USA and University of Copenhagen's Center of Basic and Translational Neuroscience, Copenhagen, Denmark
| | - Michael O'Sullivan
- Mater Centre for Neuroscience and Queensland Brain Institute, Brisbane, Australia
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rikesh Rajani
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Lisa M Saksida
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | | | - Tao Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, U.K
| | | | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
18
|
Emmrich JV, Neher JJ, Boehm-Sturm P, Endres M, Dirnagl U, Harms C. Stage 1 Registered Report: Effect of deficient phagocytosis on neuronal survival and neurological outcome after temporary middle cerebral artery occlusion (tMCAo). F1000Res 2017; 6:1827. [PMID: 29152223 PMCID: PMC5664978 DOI: 10.12688/f1000research.12537.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 01/29/2023] Open
Abstract
Stroke is a major cause of death and disability worldwide. In addition to neuronal death resulting directly from energy depletion due to lack of blood supply, inflammation and microglial activation following ischemic brain injury has been increasingly recognized to be a key contributor to the pathophysiology of cerebrovascular disease. However, our understanding of the cross talk between the ischemic brain and the immune system is limited. Recently, we demonstrated that following focal ischemia, death of mature viable neurons can be executed through phagocytosis by microglial cells or recruited macrophages, i.e. through phagoptosis. It was shown that inhibition of phagocytic signaling pathways following endothelin-1 induced focal cerebral ischemia leads to increased neuronal survival and neurological recovery. This suggests that inhibition of specific phagocytic pathways may prevent neuronal death during cerebral ischemia. To further explore this potential therapeutic target, we propose to assess the role of phagocytosis in an established model of temporary (45min) middle cerebral artery occlusion (tMCAo), and to evaluate neuronal survival and neurological recovery in mice with deficient phagocytosis. The primary outcome of this study will be forelimb function assessed with the staircase test. Secondary outcomes constitute Rotarod performance, stroke volume (quantified on MR imaging or brain sections, respectively), diffusion tensor imaging (DTI) connectome mapping, and histological analyses to measure neuronal and microglial densities, and phagocytic activity. Male mice aged 10-12 weeks will be used for experiments.
Collapse
Affiliation(s)
- Julius V Emmrich
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
19
|
Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131:2451-2468. [PMID: 28963120 DOI: 10.1042/cs20160727] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.
Collapse
|