1
|
Özütemiz C, Hussein HM, Ikramuddin S, Clark HB, Charidimou A, Streib C. Occult Amyloid-β-Related Angiitis: Neuroimaging Findings at 1.5T, 3T, and 7T MRI. AJNR Am J Neuroradiol 2024; 45:1013-1018. [PMID: 38937114 PMCID: PMC11383424 DOI: 10.3174/ajnr.a8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 06/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a progressive neurodegenerative small vessel disease that is associated with intracranial hemorrhage and cognitive impairment in the elderly. The clinical and radiographic presentations have many overlapping features with vascular cognitive impairment, hemorrhagic stroke, and Alzheimer disease (AD). Amyloid-β-related angiitis (ABRA) is a form of primary CNS vasculitis linked to CAA, with the development of spontaneous autoimmune inflammation against amyloid in the vessel wall with resultant vasculitis. The diagnosis of ABRA and CAA is important. ABRA is often fatal if untreated and requires prompt immunosuppression. Important medical therapies such as anticoagulation and antiamyloid agents for AD are contraindicated in CAA. Here, we present a biopsy-proved case of ABRA with underlying occult CAA. Initial 1.5T and 3T MR imaging did not suggest CAA per the Boston Criteria 2.0. ABRA was not included in the differential diagnosis due to the lack of any CAA-related findings on conventional MR imaging. However, a follow-up 7T MR imaging revealed extensive cortical/subcortical cerebral microbleeds, cortical superficial siderosis, and intragyral hemorrhage in extensive detail throughout the supratentorial brain regions, which radiologically supported the diagnosis of ABRA in the setting of CAA. This case suggests an increased utility of high-field MR imaging to detect occult hemorrhagic neuroimaging findings with the potential to both diagnose more patients with CAA and diagnose them earlier.
Collapse
Affiliation(s)
- Can Özütemiz
- From the Department of Radiology (C.Ö.), University of Minnesota, Minneapolis, MN, USA
| | - Haitham M Hussein
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| | - Salman Ikramuddin
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| | - H Brent Clark
- Department of Laboratory Medicine & Pathology (H.B.C.), University of Minnesota, Minneapolis, Minnesota
| | - Andreas Charidimou
- Chobanian & Avedisian School of Medicine, Department of Neurology (A.C.), Boston University, Boston, Massachusetts
| | - Christopher Streib
- Department of Neurology (H.M.H., S.I., C.S.), University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Özütemiz C. Cerebrovascular Imaging at 7T: A New High. Semin Roentgenol 2024; 59:148-156. [PMID: 38880513 DOI: 10.1053/j.ro.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Can Özütemiz
- University of Minnesota, Department of Radiology, MMC 292, 420 Delaware St. SE Minneapolis, MN.
| |
Collapse
|
3
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
4
|
Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, Patriat R, Kulesa J, Harel N, Watanabe Y, Grant A, Genovese G, Cayci Z. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions-A Single-Center Experience. AJR Am J Roentgenol 2023; 221:788-804. [PMID: 37377363 PMCID: PMC10825876 DOI: 10.2214/ajr.23.29342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.
Collapse
Affiliation(s)
- Can Özütemiz
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
| | - Matthew White
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Wendy Elvendahl
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jeramy Kulesa
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN
| | - Andrea Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Zuzan Cayci
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
5
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, Sohrabi HR, Kozberg MG, Shirzadi Z, Terwindt GM, van Buchem MA, Smith EE, Werring DJ, Martins RN, Wermer MJH, Greenberg SM. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol 2023; 22:632-642. [PMID: 37236210 DOI: 10.1016/s1474-4422(23)00114-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 05/28/2023]
Abstract
Cerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid β, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions. This timeline of stages and the mechanistic processes that link them have substantial implications for identifying disease-modifying interventions for cerebral amyloid angiopathy and potentially for other cerebral small vessel diseases.
Collapse
Affiliation(s)
- Emma A Koemans
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jasmeer P Chhatwal
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mariel G Kozberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Gisela M Terwindt
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Ralph N Martins
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Marieke J H Wermer
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Steven M Greenberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Grangeon L, Charbonnier C, Zarea A, Rousseau S, Rovelet-Lecrux A, Bendetowicz D, Lemaitre M, Malrain C, Quillard-Muraine M, Cassinari K, Maltete D, Pariente J, Moreaud O, Magnin E, Cretin B, Mackowiak MA, Sillaire AR, Vercelletto M, Dionet E, Felician O, Rod-Olivieri P, Thomas-Antérion C, Godeneche G, Sauvée M, Cartz-Piver L, Le Ber I, Chauvire V, Jonveaux T, Balageas AC, Laquerriere A, Duyckaerts C, Vital A, de Paula AM, Meyronet D, Guyant-Marechal L, Hannequin D, Tournier-Lasserve E, Campion D, Nicolas G, Wallon D. Phenotype and imaging features associated with APP duplications. Alzheimers Res Ther 2023; 15:93. [PMID: 37170141 PMCID: PMC10173644 DOI: 10.1186/s13195-023-01172-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/18/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND APP duplication is a rare genetic cause of Alzheimer disease and cerebral amyloid angiopathy (CAA). We aimed to evaluate the phenotypes of APP duplications carriers. METHODS Clinical, radiological, and neuropathological features of 43 APP duplication carriers from 24 French families were retrospectively analyzed, and MRI features and cerebrospinal fluid (CSF) biomarkers were compared to 40 APP-negative CAA controls. RESULTS Major neurocognitive disorders were found in 90.2% symptomatic APP duplication carriers, with prominent behavioral impairment in 9.7%. Symptomatic intracerebral hemorrhages were reported in 29.2% and seizures in 51.2%. CSF Aβ42 levels were abnormal in 18/19 patients and 14/19 patients fulfilled MRI radiological criteria for CAA, while only 5 displayed no hemorrhagic features. We found no correlation between CAA radiological signs and duplication size. Compared to CAA controls, APP duplication carriers showed less disseminated cortical superficial siderosis (0% vs 37.5%, p = 0.004 adjusted for the delay between symptoms onset and MRI). Deep microbleeds were found in two APP duplication carriers. In addition to neurofibrillary tangles and senile plaques, CAA was diffuse and severe with thickening of leptomeningeal vessels in all 9 autopsies. Lewy bodies were found in substantia nigra, locus coeruleus, and cortical structures of 2/9 patients, and one presented vascular amyloid deposits in basal ganglia. DISCUSSION Phenotypes associated with APP duplications were heterogeneous with different clinical presentations including dementia, hemorrhage, and seizure and different radiological presentations, even within families. No apparent correlation with duplication size was found. Amyloid burden was severe and widely extended to cerebral vessels as suggested by hemorrhagic features on MRI and neuropathological data, making APP duplication an interesting model of CAA.
Collapse
Affiliation(s)
- Lou Grangeon
- Department of Neurology and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France.
- Department of Neurology, Rouen University Hospital, Rouen Cedex, 76031, France.
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - Aline Zarea
- Department of Neurology and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - Stephane Rousseau
- Department of Genetics and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - Anne Rovelet-Lecrux
- Department of Genetics and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - David Bendetowicz
- Neurology Department, Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS and APHP, Hôpital de la Pitié-Salpétrière APHP, Paris, France
| | - Marion Lemaitre
- Geriatric department, Seclin-Carvin Hospital, Seclin, France
| | - Cécile Malrain
- Department of Neurology, Rennes Hospital, Rennes, France
| | | | - Kevin Cassinari
- Department of Genetics and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - David Maltete
- Department of Neurology and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - Jeremie Pariente
- Neurology Department, Toulouse University Hospital and Toulouse NeuroImaging Center (ToNIC) INSERM-Univeristy of Toulouse Paul Sabatier, Toulouse, France
| | - Olivier Moreaud
- Department of Neurology, Grenoble Hospital, Grenoble, France
| | - Eloi Magnin
- Department of Neurology, Besancon Hospital, Besancon, France
| | - Benjamin Cretin
- Department of Neurology, Hautepierre Hospital, Strasbourg, France
| | | | | | | | - Elsa Dionet
- Department of Neurology, Clermont-Ferrand Hospital, Clermont-Ferrand, France
| | - Olivier Felician
- APHM, Service de Neurologie et Neuropsychologie, CHU Timone, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | | | - Gaelle Godeneche
- Department of Neurology, La Rochelle Hospital, La Rochelle, France
| | - Mathilde Sauvée
- Department of Neurology, Grenoble Hospital, Grenoble, France
| | - Leslie Cartz-Piver
- Centre Mémoire Ressources et Recherche (CMRR), Limoges University Hospital, Limoges, France
| | - Isabelle Le Ber
- Neurology Department, Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS and APHP, Hôpital de la Pitié-Salpétrière APHP, Paris, France
| | - Valérie Chauvire
- Department of Neurology, Angers University Hospital, Angers, France
| | - Therèse Jonveaux
- Department of Neurology, Nancy University Hospital, Nancy, France
| | | | - Annie Laquerriere
- Department of Neuropathology, F 76000, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Charles Duyckaerts
- Sorbonne Unviersité, INSERM, CNRS U1127, ICM and Laboratoire de Neuropathologie R. Escourolle, Hospital Pitie-Salpêtrière, Paris, France
| | - Anne Vital
- Department of Pathology, University Hospital, Bordeaux, France
| | | | - David Meyronet
- Department of Pathology, Hopital Civil University Hospital, Lyon, France
| | - Lucie Guyant-Marechal
- Department of Genetics and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - Didier Hannequin
- Department of Neurology and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - Elisabeth Tournier-Lasserve
- AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Génétique Moléculaire Neurovasculaire, INSERM UMR 1141, NeuroDiderot, Université de Paris, Paris, France
| | - Dominique Campion
- Department of Genetics and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| | - David Wallon
- Department of Neurology and CNR-MAJ, Univ Rouen Normandie, U1245 and CHU Rouen, 76000, Rouen, France
| |
Collapse
|
8
|
Goeldlin M, Stewart C, Radojewski P, Wiest R, Seiffge D, Werring DJ. Clinical neuroimaging in intracerebral haemorrhage related to cerebral small vessel disease: contemporary practice and emerging concepts. Expert Rev Neurother 2022; 22:579-594. [PMID: 35850578 DOI: 10.1080/14737175.2022.2104157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION About 80% of all non-traumatic intracerebral haemorrhage (ICH) are caused by the sporadic cerebral small vessel diseases deep perforator arteriopathy (DPA, also termed hypertensive arteriopathy or arteriolosclerosis) and cerebral amyloid angiopathy (CAA), though these frequently co-exist in older people. Contemporary neuroimaging (MRI and CT) detects an increasing spectrum of haemorrhagic and non-haemorrhagic imaging biomarkers of small vessel disease which may identify the underlying arteriopathies. AREAS COVERED We discuss biomarkers for cerebral small vessel disease subtypes in ICH, and explore their implications for clinical practice and research. EXPERT OPINION ICH is not a single disease, but results from a defined range of vascular pathologies with important implications for prognosis and treatment. The terms "primary" and "hypertensive" ICH are poorly defined and should be avoided, as they encourage incomplete investigation and classification. Imaging-based criteria for CAA will show improved diagnostic accuracy, but specific imaging biomarkers of DPA are needed. Ultra-high-field 7T-MRI using structural and quantitative MRI may provide further insights into mechanisms and pathophysiology of small vessel disease. We expect neuroimaging biomarkers and classifications to allow personalized treatments (e.g. antithrombotic drugs) in clinical practice and to improve patient selection and monitoring in trials of targeted therapies directed at the underlying arteriopathies.
Collapse
Affiliation(s)
- Martina Goeldlin
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Catriona Stewart
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Piotr Radojewski
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - David Seiffge
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland
| | - David J Werring
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
9
|
Rasing I, Voigt S, Koemans EA, van Zwet E, de Kruijff PC, van Harten TW, van Etten ES, van Rooden S, van der Weerd L, van Buchem MA, van Osch MJP, Greenberg SM, van Walderveen MAA, Terwindt GM, Wermer MJH. Occipital Cortical Calcifications in Cerebral Amyloid Angiopathy. Stroke 2021; 52:1851-1855. [PMID: 33813865 DOI: 10.1161/strokeaha.120.033286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ingeborg Rasing
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Emma A Koemans
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Erik van Zwet
- Biomedical Data Sciences (E.v.Z.), Leiden University Medical Center, the Netherlands
| | - Paul C de Kruijff
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Thijs W van Harten
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Ellis S van Etten
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Sanneke van Rooden
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Louise van der Weerd
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.,Human Genetics (L.v.d.W.), Leiden University Medical Center, the Netherlands
| | - Mark A van Buchem
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Matthias J P van Osch
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Marianne A A van Walderveen
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Gisela M Terwindt
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Marieke J H Wermer
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
10
|
Koemans EA, Voigt S, Rasing I, Jolink W, van Harten TW, van der Grond J, van Rooden S, Schreuder F, Freeze WM, van Buchem MA, van Zwet EW, van Veluw SJ, Terwindt GM, van Osch M, Klijn C, van Walderveen M, Wermer M. Striped occipital cortex and intragyral hemorrhage: Novel magnetic resonance imaging markers for cerebral amyloid angiopathy. Int J Stroke 2021; 16:1031-1038. [PMID: 33535905 PMCID: PMC8669214 DOI: 10.1177/1747493021991961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and aim To investigate whether a striped occipital cortex and intragyral hemorrhage, two markers recently detected on ultra-high-field 7-tesla-magnetic resonance imaging in hereditary cerebral amyloid angiopathy (CAA), also occur in sporadic CAA (sCAA) or non-sCAA intracerebral hemorrhage (ICH). Methods We performed 7-tesla-magnetic resonance imaging in patients with probable sCAA and patients with non-sCAA-ICH. Striped occipital cortex (linear hypointense stripes perpendicular to the cortex) and intragyral hemorrhage (hemorrhage restricted to the juxtacortical white matter of one gyrus) were scored on T2*-weighted magnetic resonance imaging. We assessed the association between the markers, other CAA-magnetic resonance imaging markers and clinical features. Results We included 33 patients with sCAA (median age 70 years) and 29 patients with non-sCAA-ICH (median age 58 years). Striped occipital cortex was detected in one (3%) patient with severe sCAA. Five intragyral hemorrhages were found in four (12%) sCAA patients. The markers were absent in the non-sCAA-ICH group. Patients with intragyral hemorrhages had more lobar ICHs (median count 6.5 vs. 1.0), lobar microbleeds (median count >50 vs. 15), and lower median cognitive scores (Mini Mental State Exam: 20 vs. 28, Montreal Cognitive Assessment: 18 vs. 24) compared with patients with sCAA without intragyral hemorrhage. In 12 (36%) patients, sCAA diagnosis was changed to mixed-type small vessel disease due to deep bleeds previously unobserved on lower field-magnetic resonance imaging. Conclusion Whereas a striped occipital cortex is rare in sCAA, 12% of patients with sCAA have intragyral hemorrhages. Intragyral hemorrhages seem to be related to advanced disease and their absence in patients with non-sCAA-ICH could suggest specificity for CAA.
Collapse
Affiliation(s)
- E A Koemans
- Department of Neurology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - S Voigt
- Department of Neurology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - I Rasing
- Department of Neurology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - Wmt Jolink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - T W van Harten
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - J van der Grond
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - S van Rooden
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - Fhbm Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - W M Freeze
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - M A van Buchem
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - E W van Zwet
- Department of Biomedical Data Sciences, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - S J van Veluw
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - G M Terwindt
- Department of Neurology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - Mjp van Osch
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - Cjm Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maa van Walderveen
- Department of Radiology, 4501Leiden University Medical Center, Leiden, the Netherlands
| | - Mjh Wermer
- Department of Neurology, 4501Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
|
12
|
Gurol ME, Biessels GJ, Polimeni JR. Advanced Neuroimaging to Unravel Mechanisms of Cerebral Small Vessel Diseases. Stroke 2019; 51:29-37. [PMID: 31752614 DOI: 10.1161/strokeaha.119.024149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- M Edip Gurol
- From the Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (M.E.G.)
| | - Geert J Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands (G.J.B.)
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown (J.R.P.).,Department of Radiology, Harvard Medical School, Boston, MA (J.R.P.).,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (J.P.R.)
| |
Collapse
|
13
|
Grand Moursel L, van der Graaf LM, Bulk M, van Roon‐Mom WM, van der Weerd L. Osteopontin and phospho-SMAD2/3 are associated with calcification of vessels in D-CAA, an hereditary cerebral amyloid angiopathy. Brain Pathol 2019; 29:793-802. [PMID: 30868685 PMCID: PMC6850614 DOI: 10.1111/bpa.12721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
In severe forms of cerebral amyloid angiopathy (CAA) pathology, vascular calcification has been observed in the cerebral cortex, both in vivo on MRI and CT, and post-mortem using histopathology. However, the pathomechanisms leading to calcification of CAA-laden arteries are unknown. Therefore, we investigated the correlation between calcification of cortical arterioles and several potential modulators of vascular calcification using immunohistochemistry in a unique collection of brain material of patients with a hereditary form of CAA, namely hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D or D-CAA). We show a topographical association of osteopontin (OPN) and TGFβ signaling factor phospho-SMAD2/3 (pSMAD2/3) in calcified CAA vessel walls. OPN and pSMAD2/3 gradually accumulate in vessels prior to calcification. Moreover, we found that the vascular accumulation of Collagen 1 (Col1), OPN and pSMAD2/3 immunomarkers correlated with the CAA severity. This was independently of the vessel size, including capillaries in the most severe cases. We propose that calcification of CAA vessels in the observed HCHWA-D cases may be induced by extracellular OPN trapped in the fibrotic Col1 vessel wall, independently of the presence of vascular amyloid.
Collapse
Affiliation(s)
- Laure Grand Moursel
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Linda M. van der Graaf
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Marjolein Bulk
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Louise van der Weerd
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
14
|
Bulk M, Moursel LG, van der Graaf LM, van Veluw SJ, Greenberg SM, van Duinen SG, van Buchem MA, van Rooden S, van der Weerd L. Cerebral Amyloid Angiopathy With Vascular Iron Accumulation and Calcification. Stroke 2018; 49:2081-2087. [DOI: 10.1161/strokeaha.118.021872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marjolein Bulk
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| | - Laure Grand Moursel
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| | - Linda M. van der Graaf
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| | - Susanne J. van Veluw
- Leiden University Medical Center, the Netherlands; and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (S.J.v.V., S.M.G.)
| | - Steven M. Greenberg
- Leiden University Medical Center, the Netherlands; and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (S.J.v.V., S.M.G.)
| | | | - Mark A. van Buchem
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
| | - Sanneke van Rooden
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
| | - Louise van der Weerd
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| |
Collapse
|