1
|
Coulie J, Seront E, Vikkula M, Boon LM. Extracranial arteriovenous malformations: towards etiology-based therapeutic management. J Clin Invest 2025; 135:e172837. [PMID: 40091828 PMCID: PMC11910209 DOI: 10.1172/jci172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Anomalies during angiogenesis can initiate the formation of arteriovenous malformations (AVMs), characterized by aberrant connections between arteries and veins and fast lesional blood flow. These anomalies can manifest anywhere in the body, including the brain, and they typically appear at birth and evolve alongside growth of the individual. Depending on their location and size, AVMs can induce progressive deformation, chronic pain, functional impairment, and ulceration and pose life-threatening risks such as hemorrhage and organ dysfunction. The primary treatment modalities entail surgical intervention or embolization followed by surgery. However, these approaches are often challenging and seldom offer definitive resolution. In addition, inadequately performed surgery may trigger angiogenic rebound, fostering AVM recurrence. Advancements in comprehending the molecular pathways underlying AVMs have sparked interest in repurposing targeted therapies initially devised for cancer treatment. The first results are promising, giving new hope to the patients affected with these often devastating and debilitating lesions, the management of which presents major clinical challenges.
Collapse
Affiliation(s)
- Julien Coulie
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium; VASCERN VASCA European Reference Centre, Saint-Luc University Hospital, Brussels, Belgium
- Division of Plastic Surgery
- Human Molecular Genetics, de Duve Institute, and
| | - Emmanuel Seront
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium; VASCERN VASCA European Reference Centre, Saint-Luc University Hospital, Brussels, Belgium
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium; VASCERN VASCA European Reference Centre, Saint-Luc University Hospital, Brussels, Belgium
- Human Molecular Genetics, de Duve Institute, and
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Laurence M Boon
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium; VASCERN VASCA European Reference Centre, Saint-Luc University Hospital, Brussels, Belgium
- Division of Plastic Surgery
- Human Molecular Genetics, de Duve Institute, and
| |
Collapse
|
2
|
Ricciardelli AR, Genet G, Genet N, McClugage ST, Kan PT, Hirschi KK, Fish JE, Wythe JD. From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations. Angiogenesis 2025; 28:15. [PMID: 39899215 PMCID: PMC11790818 DOI: 10.1007/s10456-024-09953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025]
Abstract
Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.
Collapse
Affiliation(s)
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samuel T McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Peter T Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77598, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Joshua D Wythe
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Boccara O, Salvan D, Laurian C, Degrugillier-Chopinet C, Degardin N, Dillinger JG, Malloizel-Delaunay J, Mouton S, Munck S, Maruani A, Bisdorff-Bresson A. Diagnosis and management of superficial arteriovenous malformations: French healthcare network's recommendations. Orphanet J Rare Dis 2025; 20:45. [PMID: 39885577 PMCID: PMC11783702 DOI: 10.1186/s13023-024-03413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/13/2024] [Indexed: 02/01/2025] Open
Abstract
Superficial arteriovenous malformations are rare fast-flow lesions. They consist of arteriovenous shunts, without cellular hyperplasia or proliferation, which develop in the surrounding tissues (cutaneous, subcutaneous, muscular, bone). Although benign, they are among the most severe of superficial malformations. Their evolution can be life-threatening in exceptional cases. With the aim of optimizing diagnosis and management worldwide, this protocol offers a state of the art for the diagnosis and management of these diseases. To this end, the French healthcare network specialized in these diseases have drawn on literature data and experience. Developed from the French National Diagnosis and Care Protocol, it presents the patient journeys for initial and differential diagnoses, and personalized therapeutic strategies. This requires a multidisciplinary team, with specialized professionals in handling genetic, treatment and psychosocial issues.
Collapse
Affiliation(s)
- Olivia Boccara
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Department of Dermatology, University Hospital Necker-Enfants Malades, Paris, France
- FIMARAD Network, Paris, France
| | - Didier Salvan
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Department of Otorhinolaryngology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Claude Laurian
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Department of Vascular Surgery, Saint Joseph Hospital, Paris, France
| | - Caroline Degrugillier-Chopinet
- Department of Clinical Physiology and Echocardiography, Heart Valve Clinic, Lille University Hospital Center, CHU Lille, Lille, France
| | - Nathalie Degardin
- Department of Pediatric Plastic Surgery, Centers of Competence for Facial Clefts and Deformities (MAFACE) & Pierre Robin Syndromes and Congenital Sucking-Swallowing Disorders (SPRATON), Timone-Enfant Hospital, Marseille, France
| | - Jean-Guillaume Dillinger
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France
- Cardiology Department, Centre de Référence et d'Education aux Antithrombotiques d'Ile de France (C.R.E.A.T.I.F.), Lariboisière Hospital, APHP, Paris, France
| | | | - Stéphane Mouton
- Department of Clinical Physiology and Echocardiography, Heart Valve Clinic, Lille University Hospital Center, CHU Lille, Lille, France
| | - Stéphane Munck
- Department of Teaching and Research in General Practice, University Côte-d'Azur, Nice, France
| | - Annabel Maruani
- FIMARAD Network, Paris, France
- INSERM 1246-SPHERE, Department of Dermatology, Center of Reference for Rare Vascular Diseases MAGEC-Tours, University of Tours, Tours, France
| | - Annouk Bisdorff-Bresson
- French Coordinator Reference Center for Superficial Vascular Anomalies in Children and Adults of FAVA-Multi Network, Paris, France.
- INSERM 1246-SPHERE, Department of Dermatology, Center of Reference for Rare Vascular Diseases MAGEC-Tours, University of Tours, Tours, France.
- Department of Neuroradiology, Lariboisière Hospital, APHP, Paris, France.
| |
Collapse
|
4
|
Mehdi SJ, Zhang H, Sun RW, Richter GT, Strub GM. Mural Cells Initiate Endothelial-to-Mesenchymal Transition in Adjacent Endothelial Cells in Extracranial AVMs. Cells 2024; 13:2122. [PMID: 39768212 PMCID: PMC11727354 DOI: 10.3390/cells13242122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Extracranial arteriovenous malformations (eAVMs) are complex vascular lesions characterized by anomalous arteriovenous connections, vascular instability, and disruptions in endothelial cell (EC)-to-mural cell (MC) interactions. This study sought to determine whether eAVM-MCs could induce endothelial-to-mesenchymal transition (EndMT), a process known to disrupt vascular integrity, in the eAVM microenvironment. eAVM and paired control tissues were analyzed using RT-PCR for EC (CD31, CD34, and CDH5) and EndMT-specific markers (SNAI1, SNAI2, ACTA2/α-SMA, N-cadherin/CDH2, VIM). Immunohistochemistry (IHC) was also performed to analyze MC- (PDGFR-β and α-SMA), EC (CD31, CD34, and CDH5), and EndMT-specific markers (CDH2 and SNAI1) in sequential paraffin-embedded sections of eAVM patient biopsies and in adjacent normal tissue biopsies from the same patients. Furthermore, eAVM-MCs and MCs from normal paired tissues (NMCs) were then isolated from fresh human surgical samples using flow cytometry and co-cultured with normal human umbilical vein vascular endothelial cells (HUVECs), followed by analysis of CD31 by immunofluorescence. RT-PCR analysis did not show a significant difference in the expression of EC markers between eAVM tissues and controls, whereas expression of EndMT-specific markers was upregulated in eAVM tissues compared to controls. IHC of eAVMs and paired control tissues demonstrated regions of significant perivascular eAVM-MC expansion (PDGFR-β+, and α-SMA+) surrounding dilated, morphologically abnormal vessels. These regions contained endothelium undergoing EndMT as evidenced by loss of CD31, CD34, and CDH5 expression and upregulation of the EndMT-associated genes CDH2 and SNAI1. Isolated eAVM-MCs induced loss of CD31 in HUVECs when grown in co-culture, while NMCs did not. This study suggests that the eAVM endothelium surrounded by expanded eAVM-MCs undergoes EndMT, potentially leading to the formation of dilated and fragile vessels, and implicates the eAVM-MCs in EndMT initiation and eAVM pathology.
Collapse
Affiliation(s)
- Syed J. Mehdi
- Arkansas Children’s Research Institute (ACRI), Little Rock, AR 72202, USA; (S.J.M.)
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Haihong Zhang
- Arkansas Children’s Research Institute (ACRI), Little Rock, AR 72202, USA; (S.J.M.)
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Ravi W. Sun
- Arkansas Children’s Research Institute (ACRI), Little Rock, AR 72202, USA; (S.J.M.)
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Gresham T. Richter
- Arkansas Children’s Research Institute (ACRI), Little Rock, AR 72202, USA; (S.J.M.)
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Graham M. Strub
- Arkansas Children’s Research Institute (ACRI), Little Rock, AR 72202, USA; (S.J.M.)
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
5
|
Borst A. Targeted medical therapies for vascular anomalies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:709-717. [PMID: 39644074 DOI: 10.1182/hematology.2024000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The last 2 decades of genetic discovery in the field of vascular anomalies have brought targeted medical therapies to the forefront of care patients with vascular anomalies and have broadened the role of hematologists/oncologists in this field. Many vascular anomalies have now been identified to be driven by somatic gain-of-function variants in the PI3K/AKT/ mTOR and Ras/MAPK intracellular signaling pathways. This has led to the introduction of various antiangiogenic agents that inhibit these pathways. Knowledge of the indications for and the safe administration of these agents in patients with vascular anomalies is now a crucial part of training for hematologists/oncologists.
Collapse
Affiliation(s)
- Alexandra Borst
- Comprehensive Vascular Anomalies Program, The Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
6
|
Tu T, Zhang S, Li J, Jiang C, Ren J, Zhang S, Meng X, Peng H, Xing D, Zhang H, Hong T, Yu J. Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss. Angiogenesis 2024; 28:3. [PMID: 39636449 DOI: 10.1007/s10456-024-09957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic KRAS/BRAF mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific BrafV600E mutation using the Slc1o1c1(BAC)-CreER driver line. The pathological characteristics of this model resemble human bAVMs, including dilated and hyperpermeable vessels, as well as parenchymal hemorrhage. We observed that these lesions showed a typical reduction in pericyte coverage and disruption of the pericyte-endothelial cell connection. Additionally, we found that ANGPT2 levels were significantly increased in the endothelium of bAVM lesions, which may be a critical factor in the pericyte deficits of the malformed vessels. Treatment with an ANGPT2 neutralizing antibody confirmed that blocking ANGPT2 can restore pericyte density in bAVM lesions, improve pericyte coverage around microvessels, enhance tight junction protein coverage related to endothelial cells, and normalize endothelial barrier function. In summary, our findings suggest that increased ANGPT2 expression in endothelial cells with the BrafV600E mutation is a key factor in pericyte deficiencies in bAVMs, highlighting the potential effectiveness of anti-ANGPT2 therapy in treating bAVMs.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shikun Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jingwei Li
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Chendan Jiang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Shiju Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Xiaosheng Meng
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Hao Peng
- Department of Neurosurgery in Hainan General Hospital, Hainan Medical University, Hainan, China
- Department of neurosurgery, The second people's hospital of hainan province, Hainan, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
7
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
8
|
Seront E, Hermans C, Boon LM, Vikkula M. Targeted treatments for vascular malformations: current state of the art. J Thromb Haemost 2024; 22:2961-2975. [PMID: 39097232 DOI: 10.1016/j.jtha.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Vascular malformations, which arise from anomalies in angiogenesis, encompass capillary, lymphatic, venous, arteriovenous, and mixed malformations, each affecting specific vessel types. Historically, therapeutic options such as sclerotherapy and surgery have shown limited efficacy in complicated malformations. Most vascular malformations stem from hereditary or somatic mutations akin to oncogenic alterations, activating the PI3K-AKT-mTOR, RAS-MAPK-ERK, and G-protein coupled receptor pathways. Recognizing the parallels with oncogenic mutations, we emphasize the potential of targeted molecular inhibitors in the treatment of vascular malformations by repurposing anticancer drugs. This review delves into the recent development and future use of such agents for the management of slow- and fast-flow vascular malformations, including in more specific situations, such as prenatal treatment and the management of associated coagulopathies.
Collapse
Affiliation(s)
- Emmanuel Seront
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium. https://twitter.com/emmanuelseront
| | - Cedric Hermans
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium; Institut Roi Albert II, Division of Hematology, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium. https://twitter.com/HermansCedric
| | - Laurence M Boon
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium; Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium. https://twitter.com/LaurenceBoon4
| | - Miikka Vikkula
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium; Deprtment of Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Walloon ExceLlence in Life Sciences and Biotechnology (WELBIO) and Walloon ExceLlence Research Institute (WEL Research Institute), Wavre, Belgium.
| |
Collapse
|
9
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
10
|
Mansur A, Radovanovic I. Defining the Role of Oral Pathway Inhibitors as Targeted Therapeutics in Arteriovenous Malformation Care. Biomedicines 2024; 12:1289. [PMID: 38927496 PMCID: PMC11201820 DOI: 10.3390/biomedicines12061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Arteriovenous malformations (AVMs) are vascular malformations that are prone to rupturing and can cause significant morbidity and mortality in relatively young patients. Conventional treatment options such as surgery and endovascular therapy often are insufficient for cure. There is a growing body of knowledge on the genetic and molecular underpinnings of AVM development and maintenance, making the future of precision medicine a real possibility for AVM management. Here, we review the pathophysiology of AVM development across various cell types, with a focus on current and potential druggable targets and their therapeutic potentials in both sporadic and familial AVM populations.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
11
|
Ota T. An Updated Review on the Pathogenesis of Brain Arteriovenous Malformations and Its Therapeutic Targets. JOURNAL OF NEUROENDOVASCULAR THERAPY 2024; 19:2024-0008. [PMID: 39958460 PMCID: PMC11826344 DOI: 10.5797/jnet.ra.2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 02/18/2025]
Abstract
Brain arteriovenous malformations (bAVMs) are associated with a high risk of intracerebral hemorrhage, which causes severe complications in patients. Although the genetic factors leading to hereditary bAVMs have been extensively investigated, their pathogenesis are still under study. This review examines updated data on the molecular and genetic aspects of bAVMs, the architecture of microvasculature, the roles of angiogenic factors, and signaling pathways. The compiled information may help us understand the pathogenesis of both sporadic and hereditary bAVMs and develop appropriate preemptive treatment approaches.
Collapse
Affiliation(s)
- Takahiro Ota
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| |
Collapse
|
12
|
Lin Y, Gahn J, Banerjee K, Dobreva G, Singhal M, Dubrac A, Ola R. Role of endothelial PDGFB in arterio-venous malformations pathogenesis. Angiogenesis 2024; 27:193-209. [PMID: 38070064 PMCID: PMC11021264 DOI: 10.1007/s10456-023-09900-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/05/2023] [Indexed: 04/17/2024]
Abstract
Arterial-venous malformations (AVMs) are direct connections between arteries and veins without an intervening capillary bed. Either familial inherited or sporadically occurring, localized pericytes (PCs) drop is among the AVMs' hallmarks. Whether impaired PC coverage triggers AVMs or it is a secondary event is unclear. Here we evaluated the role of the master regulator of PC recruitment, Platelet derived growth factor B (PDGFB) in AVM pathogenesis. Using tamoxifen-inducible deletion of Pdgfb in endothelial cells (ECs), we show that disruption of EC Pdgfb-mediated PC recruitment and maintenance leads to capillary enlargement and organotypic AVM-like structures. These vascular lesions contain non-proliferative hyperplastic, hypertrophic and miss-oriented capillary ECs with an altered capillary EC fate identity. Mechanistically, we propose that PDGFB maintains capillary EC size and caliber to limit hemodynamic changes, thus restricting expression of Krüppel like factor 4 and activation of Bone morphogenic protein, Transforming growth factor β and NOTCH signaling in ECs. Furthermore, our study emphasizes that inducing or activating PDGFB signaling may be a viable therapeutic approach for treating vascular malformations.
Collapse
Affiliation(s)
- Yanzhu Lin
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Gahn
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kuheli Banerjee
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Mahak Singhal
- Laboratory of AngioRhythms, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montreal, QC, H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Roxana Ola
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
13
|
Al Tabosh T, Al Tarrass M, Tourvieilhe L, Guilhem A, Dupuis-Girod S, Bailly S. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances. J Clin Invest 2024; 134:e176379. [PMID: 38357927 PMCID: PMC10866657 DOI: 10.1172/jci176379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Hereditary hemorrhagic telangiectsia (HHT) is an inherited vascular disorder with highly variable expressivity, affecting up to 1 in 5,000 individuals. This disease is characterized by small arteriovenous malformations (AVMs) in mucocutaneous areas (telangiectases) and larger visceral AVMs in the lungs, liver, and brain. HHT is caused by loss-of-function mutations in the BMP9-10/ENG/ALK1/SMAD4 signaling pathway. This Review presents up-to-date insights on this mutated signaling pathway and its crosstalk with proangiogenic pathways, in particular the VEGF pathway, that has allowed the repurposing of new drugs for HHT treatment. However, despite the substantial benefits of these new treatments in terms of alleviating symptom severity, this not-so-uncommon bleeding disorder still currently lacks any FDA- or European Medicines Agency-approved (EMA-approved) therapies.
Collapse
Affiliation(s)
- Tala Al Tabosh
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Mohammad Al Tarrass
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Laura Tourvieilhe
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Alexandre Guilhem
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
- TAI-IT Autoimmunité Unit RIGHT-UMR1098, Burgundy University, INSERM, EFS-BFC, Besancon, France
| | - Sophie Dupuis-Girod
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Sabine Bailly
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| |
Collapse
|
14
|
Seebauer CT, Wiens B, Hintschich CA, Platz Batista da Silva N, Evert K, Haubner F, Kapp FG, Wendl C, Renner K, Bohr C, Kühnel T, Vielsmeier V. Targeting the microenvironment in the treatment of arteriovenous malformations. Angiogenesis 2024; 27:91-103. [PMID: 37733132 PMCID: PMC10881762 DOI: 10.1007/s10456-023-09896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Extracranial arteriovenous malformations (AVMs) are regarded as rare diseases and are prone to complications such as pain, bleeding, relentless growth, and high volume of shunted blood. Due to the high vascular pressure endothelial cells of AVMs are exposed to mechanical stress. To control symptoms and lesion growth pharmacological treatment strategies are urgently needed in addition to surgery and interventional radiology. AVM cells were isolated from three patients and exposed to cyclic mechanical stretching for 24 h. Thalidomide and bevacizumab, both VEGF inhibitors, were tested for their ability to prevent the formation of circular networks and proliferation of CD31+ endothelial AVM cells. Furthermore, the effect of thalidomide and bevacizumab on stretched endothelial AVM cells was evaluated. In response to mechanical stress, VEGF gene and protein expression increased in patient AVM endothelial cells. Thalidomide and bevacizumab reduced endothelial AVM cell proliferation. Bevacizumab inhibited circular network formation of endothelial AVM cells and lowered VEGF gene and protein expression, even though the cells were exposed to mechanical stress. With promising in vitro results, bevacizumab was used to treat three patients with unresectable AVMs or to prevent regrowth after incomplete resection. Bevacizumab controlled bleeding, pulsation, and pain over the follow up of eight months with no patient-reported side effects. Overall, mechanical stress increases VEGF expression in the microenvironment of AVM cells. The monoclonal VEGF antibody bevacizumab alleviates this effect, prevents circular network formation and proliferation of AVM endothelial cells in vitro. The clinical application of bevacizumab in AVM treatment demonstrates effective symptom control with no side effects.
Collapse
Affiliation(s)
- Caroline T Seebauer
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Benedikt Wiens
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Constantin A Hintschich
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | - Katja Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig Maximilian University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Friedrich G Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Heiliggeiststr. 1, 79106, Freiburg im Breisgau, Germany
| | - Christina Wendl
- Institute of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Kathrin Renner
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christopher Bohr
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Thomas Kühnel
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Veronika Vielsmeier
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
15
|
Tang W, Chen Y, Ma L, Chen Y, Yang B, Li R, Li Z, Wu Y, Wang X, Guo X, Zhang W, Chen X, Lv M, Zhao Y, Guo G. Current perspectives and trends in the treatment of brain arteriovenous malformations: a review and bibliometric analysis. Front Neurol 2024; 14:1327915. [PMID: 38274874 PMCID: PMC10808838 DOI: 10.3389/fneur.2023.1327915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Currently, there is a lack of intuitive analysis regarding the development trend, main authors, and research hotspots in the field of cerebral arteriovenous malformation treatment, as well as a detailed elaboration of possible research hotspots. Methods A bibliometric analysis was conducted on data retrieved from the Web of Science core collection database between 2000 and 2022. The analysis was performed using R, VOSviewer, CiteSpace software, and an online bibliometric platform. Results A total of 1,356 articles were collected, and the number of publications has increased over time. The United States and the University of Pittsburgh are the most prolific countries and institutions in the field. The top three cited authors are Kondziolka D, Sheehan JP, and Lunsford LD. The Journal of Neurosurgery and Neurosurgery are two of the most influential journals in the field of brain arteriovenous malformation treatment research, with higher H-index, total citations, and number of publications. Furthermore, the analysis of keywords indicates that "aruba trial," "randomised trial," "microsurgery," "onyx embolization," and "Spetzler-Martin grade" may become research focal points. Additionally, this paper discusses the current research status, existing issues, and potential future research directions for the treatment of brain arteriovenous malformations. Conclusion This bibliometric study comprehensively analyses the publication trend of cerebral arteriovenous malformation treatment in the past 20 years. It covers the trend of international cooperation, publications, and research hotspots. This information provides an important reference for scholars to further study cerebral arteriovenous malformation.
Collapse
Affiliation(s)
- Weixia Tang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Li Ma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Ren Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ming Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Guo
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Wang S, Deng X, Wu Y, Wu Y, Zhou S, Yang J, Huang Y. Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation. Hum Genet 2023; 142:1633-1649. [PMID: 37768356 DOI: 10.1007/s00439-023-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Brain arteriovenous malformation (BAVM) is a rare but serious cerebrovascular disease whose pathogenesis has not been fully elucidated. Studies have found that epigenetic regulation, genetic variation and their signaling pathways, immune inflammation, may be the cause of BAVM the main reason. This review comprehensively analyzes the key pathways and inflammatory factors related to BAVMs, and explores their interplay with epigenetic regulation and genetics. Studies have found that epigenetic regulation such as DNA methylation, non-coding RNAs and m6A RNA modification can regulate endothelial cell proliferation, apoptosis, migration and damage repair of vascular malformations through different target gene pathways. Gene defects such as KRAS, ACVRL1 and EPHB4 lead to a disordered vascular environment, which may promote abnormal proliferation of blood vessels through ERK, NOTCH, mTOR, Wnt and other pathways. PDGF-B and PDGFR-β were responsible for the recruitment of vascular adventitial cells and smooth muscle cells in the extracellular matrix environment of blood vessels, and played an important role in the pathological process of BAVM. Recent single-cell sequencing data revealed the diversity of various cell types within BAVM, as well as the heterogeneous expression of vascular-associated antigens, while neutrophils, macrophages and cytokines such as IL-6, IL-1, TNF-α, and IL-17A in BAVM tissue were significantly increased. Currently, there are no specific drugs targeting BAVMs, and biomarkers for BAVM formation, bleeding, and recurrence are lacking clinically. Therefore, further studies on molecular biological mechanisms will help to gain insight into the pathogenesis of BAVM and develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
17
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
18
|
Yadav A, Su H. Potential Targets for the Treatment of Brain Arteriovenous Malformations. Transl Stroke Res 2023; 14:628-630. [PMID: 35718839 PMCID: PMC10734312 DOI: 10.1007/s12975-022-01055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Alka Yadav
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue, Box 1363, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue, Box 1363, San Francisco, CA, USA.
| |
Collapse
|
19
|
Nakisli S, Lagares A, Nielsen CM, Cuervo H. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations. Front Physiol 2023; 14:1210563. [PMID: 37601628 PMCID: PMC10437819 DOI: 10.3389/fphys.2023.1210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Previously considered passive support cells, mural cells-pericytes and vascular smooth muscle cells-have started to garner more attention in disease research, as more subclassifications, based on morphology, gene expression, and function, have been discovered. Central nervous system (CNS) arteriovenous malformations (AVMs) represent a neurovascular disorder in which mural cells have been shown to be affected, both in animal models and in human patients. To study consequences to mural cells in the context of AVMs, various animal models have been developed to mimic and predict human AVM pathologies. A key takeaway from recently published work is that AVMs and mural cells are heterogeneous in their molecular, cellular, and functional characteristics. In this review, we summarize the observed perturbations to mural cells in human CNS AVM samples and CNS AVM animal models, and we discuss various potential mechanisms relating mural cell pathologies to AVMs.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Alfonso Lagares
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Imas12, Madrid, Spain
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid, Spain
| |
Collapse
|
20
|
Cheng J, Jiang J, He B, Lin WJ, Li Y, Duan J, Li H, Huang X, Cai J, Xie J, Zhang Z, Yang Y, Xu Y, Hu X, Wu M, Zhuo X, Liu Q, Shi Z, Yu P, Rong X, Ye X, Saw PE, Wu LJ, Simone CB, Chua MLK, Mai HQ, Tang Y. A phase 2 study of thalidomide for the treatment of radiation-induced blood-brain barrier injury. Sci Transl Med 2023; 15:eabm6543. [PMID: 36812346 DOI: 10.1126/scitranslmed.abm6543] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Radiation-induced brain injury (RIBI) is a debilitating sequela after radiotherapy to treat head and neck cancer, and 20 to 30% of patients with RIBI fail to respond to or have contraindications to the first-line treatments of bevacizumab and corticosteroids. Here, we reported a Simon's minmax two-stage, single-arm, phase 2 clinical trial (NCT03208413) to assess the efficacy of thalidomide in patients with RIBI who were unresponsive to or had contraindications to bevacizumab and corticosteroid therapies. The trial met its primary endpoint, with 27 of 58 patients enrolled showing ≥25% reduction in the volume of cerebral edema on fluid-attenuated inversion recovery-magnetic resonance imaging (FLAIR-MRI) after treatment (overall response rate, 46.6%; 95% CI, 33.3 to 60.1%). Twenty-five (43.1%) patients demonstrated a clinical improvement based on the Late Effects Normal Tissues-Subjective, Objective, Management, Analytic (LENT/SOMA) scale, and 36 (62.1%) experienced cognitive improvement based on the Montreal Cognitive Assessment (MoCA) scores. In a mouse model of RIBI, thalidomide restored the blood-brain barrier and cerebral perfusion, which were attributed to the functional rescue of pericytes secondary to elevation of platelet-derived growth factor receptor β (PDGFRβ) expression by thalidomide. Our data thus demonstrate the therapeutic potential of thalidomide for the treatment of radiation-induced cerebral vasculature impairment.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolong Huang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhan Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xia Hu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Minyi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaohuang Zhuo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA
| | - Melvin L K Chua
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore.,Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
21
|
Quintin S, Figg JW, Mehkri Y, Hanna CO, Woolridge MG, Lucke-Wold B. Arteriovenous Malformations: An Update on Models and Therapeutic Targets. JOURNAL OF NEUROSCIENCE AND NEUROLOGICAL SURGERY 2023; 13:250. [PMID: 36846724 PMCID: PMC9956274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Arteriovenous malformations (AVMs) are an anomaly of the vascular system where feeding arteries are directly connected to the venous drainage network. While AVMs can arise anywhere in the body and have been described in most tissues, brain AVMs are of significant concern because of the risk of hemorrhage which carries significant morbidity and mortality. The prevalence of AVM's and the mechanisms underlying their formation are not well understood. For this reason, patients who undergo treatment for symptomatic AVM's remain at increased risk of subsequent bleeds and adverse outcomes. The cerebrovascular network is delicate and novel animal models continue to provide insight into its dynamics in the context of AVM's. As the molecular players in the formation of familial and sporadic AVM's are better understood, novel therapeutic approaches have been developed to mitigate their associated risks. Here we discuss the current literature surrounding AVM's including the development of models and therapeutic targets which are currently being investigated.
Collapse
Affiliation(s)
- Stephan Quintin
- College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - John W Figg
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Chadwin O Hanna
- College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
22
|
Nguyen HL, Boon LM, Vikkula M. Trametinib as a promising therapeutic option in alleviating vascular defects in an endothelial KRAS-induced mouse model. Hum Mol Genet 2023; 32:276-289. [PMID: 35972810 DOI: 10.1093/hmg/ddac169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Somatic activating Kirsten rat sarcoma viral oncogene homologue (KRAS) mutations have been reported in patients with arteriovenous malformations. By producing LSL-Kras (G12D); Cdh5 (PAC)-CreERT2 [iEC-Kras (G12D*)] mice, we hoped to activate KRAS within vascular endothelial cells (ECs) to generate an arteriovenous malformation mouse model. Neonatal mice were treated daily with tamoxifen from postnatal (PN) days 1-3. Mortality and phenotypes varied amongst iEC-Kras (G12D*) pups, with only 31.5% surviving at PN14. Phenotypes (focal lesions, vessel dilations) developed in a consistent manner, although with unpredictable severity within multiple soft tissues (such as the brain, liver, heart and brain). Overall, iEC-Kras (G12D*) pups developed significantly larger vascular lumen areas compared with control littermates, beginning at PN8. We subsequently tested whether the MEK inhibitor trametinib could effectively alleviate lesion progression. At PN16, iEC-Kras (G12D*) pup survival improved to 76.9%, and average vessel sizes were closer to controls than in untreated and vehicle-treated mutants. In addition, trametinib treatment helped normalize iEC-Kras (G12D*) vessel morphology in PN14 brains. Thus, trametinib could act as an effective therapy for KRAS-induced vascular malformations in patients.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, 1200 Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, 1200 Brussels, Belgium
| |
Collapse
|
23
|
Drapé E, Anquetil T, Larrivée B, Dubrac A. Brain arteriovenous malformation in hereditary hemorrhagic telangiectasia: Recent advances in cellular and molecular mechanisms. Front Hum Neurosci 2022; 16:1006115. [PMID: 36504622 PMCID: PMC9729275 DOI: 10.3389/fnhum.2022.1006115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by vessel dilatation, such as telangiectasia in skin and mucosa and arteriovenous malformations (AVM) in internal organs such as the gastrointestinal tract, lungs, and brain. AVMs are fragile and tortuous vascular anomalies that directly connect arteries and veins, bypassing healthy capillaries. Mutations in transforming growth factor β (TGFβ) signaling pathway components, such as ENG (ENDOGLIN), ACVRL1 (ALK1), and SMAD4 (SMAD4) genes, account for most of HHT cases. 10-20% of HHT patients develop brain AVMs (bAVMs), which can lead to vessel wall rupture and intracranial hemorrhages. Though the main mutations are known, mechanisms leading to AVM formation are unclear, partially due to lack of animal models. Recent mouse models allowed significant advances in our understanding of AVMs. Endothelial-specific deletion of either Acvrl1, Eng or Smad4 is sufficient to induce AVMs, identifying endothelial cells (ECs) as primary targets of BMP signaling to promote vascular integrity. Loss of ALK1/ENG/SMAD4 signaling is associated with NOTCH signaling defects and abnormal arteriovenous EC differentiation. Moreover, cumulative evidence suggests that AVMs originate from venous ECs with defective flow-migration coupling and excessive proliferation. Mutant ECs show an increase of PI3K/AKT signaling and inhibitors of this signaling pathway rescue AVMs in HHT mouse models, revealing new therapeutic avenues. In this review, we will summarize recent advances and current knowledge of mechanisms controlling the pathogenesis of bAVMs, and discuss unresolved questions.
Collapse
Affiliation(s)
- Elise Drapé
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département de Pharmacologie et de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Typhaine Anquetil
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Centre De Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada,*Correspondence: Bruno Larrivée,
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada,Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Alexandre Dubrac,
| |
Collapse
|
24
|
Eisa-Beygi S, Burrows PE, Link BA. Endothelial cilia dysfunction in pathogenesis of hereditary hemorrhagic telangiectasia. Front Cell Dev Biol 2022; 10:1037453. [PMID: 36438574 PMCID: PMC9686338 DOI: 10.3389/fcell.2022.1037453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 09/09/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is associated with defective capillary network, leading to dilated superficial vessels and arteriovenous malformations (AVMs) in which arteries connect directly to the veins. Loss or haploinsufficiency of components of TGF-β signaling, ALK1, ENG, SMAD4, and BMP9, have been implicated in the pathogenesis AVMs. Emerging evidence suggests that the inability of endothelial cells to detect, transduce and respond to blood flow, during early development, is an underpinning of AVM pathogenesis. Therefore, components of endothelial flow detection may be instrumental in potentiating TGF-β signaling in perfused blood vessels. Here, we argue that endothelial cilium, a microtubule-based and flow-sensitive organelle, serves as a signaling hub by coupling early flow detection with potentiation of the canonical TGF-β signaling in nascent endothelial cells. Emerging evidence from animal models suggest a role for primary cilia in mediating vascular development. We reason, on recent observations, that endothelial cilia are crucial for vascular development and that embryonic loss of endothelial cilia will curtail TGF-β signaling, leading to associated defects in arteriovenous development and impaired vascular stability. Loss or dysfunction of endothelial primary cilia may be implicated in the genesis of AVMs due, in part, to inhibition of ALK1/SMAD4 signaling. We speculate that AVMs constitute part of the increasing spectrum of ciliopathy-associated vascular defects.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Patricia E. Burrows
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
25
|
Van Trigt WK, Kelly KM, Hughes CCW. GNAQ mutations drive port wine birthmark-associated Sturge-Weber syndrome: A review of pathobiology, therapies, and current models. Front Hum Neurosci 2022; 16:1006027. [PMID: 36405075 PMCID: PMC9670321 DOI: 10.3389/fnhum.2022.1006027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Port-wine birthmarks (PWBs) are caused by somatic, mosaic mutations in the G protein guanine nucleotide binding protein alpha subunit q (GNAQ) and are characterized by the formation of dilated, dysfunctional blood vessels in the dermis, eyes, and/or brain. Cutaneous PWBs can be treated by current dermatologic therapy, like laser intervention, to lighten the lesions and diminish nodules that occur in the lesion. Involvement of the eyes and/or brain can result in serious complications and this variation is termed Sturge-Weber syndrome (SWS). Some of the biggest hurdles preventing development of new therapeutics are unanswered questions regarding disease biology and lack of models for drug screening. In this review, we discuss the current understanding of GNAQ signaling, the standard of care for patients, overlap with other GNAQ-associated or phenotypically similar diseases, as well as deficiencies in current in vivo and in vitro vascular malformation models.
Collapse
Affiliation(s)
- William K. Van Trigt
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Kristen M. Kelly
- Department of Dermatology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
26
|
The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012199. [PMID: 36293054 PMCID: PMC9603778 DOI: 10.3390/ijms232012199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular anomalies (VAs) are morphogenesis defects of the vascular system (arteries, capillaries, veins, lymphatic vessels) singularly or in complex combinations, sometimes with a severe impact on the quality of life. The progress made in recent years with the identification of the key molecular pathways (PI3K/AKT/mTOR and RAS/BRAF/MAPK/ERK) and the gene mutations that lead to the appearance of VAs has allowed the deciphering of their complex genetic architecture. Understanding these mechanisms is critical both for the correct definition of the phenotype and classification of VAs, as well as for the initiation of an optimal therapy and the development of new targeted therapies. The purpose of this review is to present in synthesis the current data related to the genetic factors involved in the etiology of VAs, as well as the possible directions for future research. We analyzed the data from the literature related to VAs, using databases (Google Scholar, PubMed, MEDLINE, OMIM, MedGen, Orphanet) and ClinicalTrials.gov. The obtained results revealed that the phenotypic variability of VAs is correlated with genetic heterogeneity. The identification of new genetic factors and the molecular mechanisms in which they intervene, will allow the development of modern therapies that act targeted as a personalized therapy. We emphasize the importance of the geneticist in the diagnosis and treatment of VAs, as part of a multidisciplinary team involved in the management of VAs.
Collapse
|
27
|
Vetiska S, Wälchli T, Radovanovic I, Berhouma M. Molecular and genetic mechanisms in brain arteriovenous malformations: new insights and future perspectives. Neurosurg Rev 2022; 45:3573-3593. [PMID: 36219361 DOI: 10.1007/s10143-022-01883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are rare vascular lesions made of shunts between cerebral arteries and veins without the interposition of a capillary bed. The majority of bAVMs are asymptomatic, but some may be revealed by seizures and potentially life-threatening brain hemorrhage. The management of unruptured bAVMs remains a matter of debate. Significant progress in the understanding of their pathogenesis has been made during the last decade, particularly using genome sequencing and biomolecular analysis. Herein, we comprehensively review the recent molecular and genetic advances in the study of bAVMs that not only allow a better understanding of the genesis and growth of bAVMs, but also open new insights in medical treatment perspectives.
Collapse
Affiliation(s)
- Sandra Vetiska
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Thomas Wälchli
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France. .,CREATIS Lab, CNRS UMR 5220, INSERM U1294, Lyon 1, University, Lyon, France.
| |
Collapse
|
28
|
Berthiaume AA, Schmid F, Stamenkovic S, Coelho-Santos V, Nielson CD, Weber B, Majesky MW, Shih AY. Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure. Nat Commun 2022; 13:5912. [PMID: 36207315 PMCID: PMC9547063 DOI: 10.1038/s41467-022-33464-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Abstract
Deterioration of brain capillary flow and architecture is a hallmark of aging and dementia. It remains unclear how loss of brain pericytes in these conditions contributes to capillary dysfunction. Here, we conduct cause-and-effect studies by optically ablating pericytes in adult and aged mice in vivo. Focal pericyte loss induces capillary dilation without blood-brain barrier disruption. These abnormal dilations are exacerbated in the aged brain, and result in increased flow heterogeneity in capillary networks. A subset of affected capillaries experience reduced perfusion due to flow steal. Some capillaries stall in flow and regress, leading to loss of capillary connectivity. Remodeling of neighboring pericytes restores endothelial coverage and vascular tone within days. Pericyte remodeling is slower in the aged brain, resulting in regions of persistent capillary dilation. These findings link pericyte loss to disruption of capillary flow and structure. They also identify pericyte remodeling as a therapeutic target to preserve capillary flow dynamics.
Collapse
Affiliation(s)
- Andrée-Anne Berthiaume
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Stefan Stamenkovic
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cara D Nielson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
DeMaio A, New C, Bergmann S. Medical Treatment of Vascular Anomalies. Dermatol Clin 2022; 40:461-471. [DOI: 10.1016/j.det.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Arthur HM, Roman BL. An update on preclinical models of hereditary haemorrhagic telangiectasia: Insights into disease mechanisms. Front Med (Lausanne) 2022; 9:973964. [PMID: 36250069 PMCID: PMC9556665 DOI: 10.3389/fmed.2022.973964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Endoglin (ENG) is expressed on the surface of endothelial cells (ECs) where it efficiently binds circulating BMP9 and BMP10 ligands to initiate activin A receptor like type 1 (ALK1) protein signalling to protect the vascular architecture. Patients heterozygous for ENG or ALK1 mutations develop the vascular disorder known as hereditary haemorrhagic telangiectasia (HHT). Many patients with this disorder suffer from anaemia, and are also at increased risk of stroke and high output heart failure. Recent work using animal models of HHT has revealed new insights into cellular and molecular mechanisms causing this disease. Loss of the ENG (HHT1) or ALK1 (HHT2) gene in ECs leads to aberrant arteriovenous connections or malformations (AVMs) in developing blood vessels. Similar phenotypes develop following combined EC specific loss of SMAD1 and 5, or EC loss of SMAD4. Taken together these data point to the essential role of the BMP9/10-ENG-ALK1-SMAD1/5-SMAD4 pathway in protecting the vasculature from AVMs. Altered directional migration of ECs in response to shear stress and increased EC proliferation are now recognised as critical factors driving AVM formation. Disruption of the ENG/ALK1 signalling pathway also affects EC responses to vascular endothelial growth factor (VEGF) and crosstalk between ECs and vascular smooth muscle cells. It is striking that the vascular lesions in HHT are both localised and tissue specific. Increasing evidence points to the importance of a second genetic hit to generate biallelic mutations, and the sporadic nature of such somatic mutations would explain the localised formation of vascular lesions. In addition, different pro-angiogenic drivers of AVM formation are likely to be at play during the patient’s life course. For example, inflammation is a key driver of vessel remodelling in postnatal life, and may turn out to be an important driver of HHT disease. The current wealth of preclinical models of HHT has led to increased understanding of AVM development and revealed new therapeutic approaches to treat AVMs, and form the topic of this review.
Collapse
Affiliation(s)
- Helen M. Arthur
- Biosciences Institute, Centre for Life, University of Newcastle, Newcastle, United Kingdom
- *Correspondence: Helen M. Arthur,
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Shabani Z, Schuerger J, Su H. Cellular loci involved in the development of brain arteriovenous malformations. Front Hum Neurosci 2022; 16:968369. [PMID: 36211120 PMCID: PMC9532630 DOI: 10.3389/fnhum.2022.968369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vessels that are prone to rupture, causing life-threatening intracranial bleeding. The mechanism of bAVM formation is poorly understood. Nevertheless, animal studies revealed that gene mutation in endothelial cells (ECs) and angiogenic stimulation are necessary for bAVM initiation. Evidence collected through analyzing bAVM specimens of human and mouse models indicate that cells other than ECs also are involved in bAVM pathogenesis. Both human and mouse bAVMs vessels showed lower mural cell-coverage, suggesting a role of pericytes and vascular smooth muscle cells (vSMCs) in bAVM pathogenesis. Perivascular astrocytes also are important in maintaining cerebral vascular function and take part in bAVM development. Furthermore, higher inflammatory cytokines in bAVM tissue and blood demonstrate the contribution of inflammatory cells in bAVM progression, and rupture. The goal of this paper is to provide our current understanding of the roles of different cellular loci in bAVM pathogenesis.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Hua Su, ; orcid.org/0000-0003-1566-9877
| |
Collapse
|
32
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
33
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
34
|
Boon LM, Dekeuleneer V, Coulie J, Marot L, Bataille AC, Hammer F, Clapuyt P, Jeanjean A, Dompmartin A, Vikkula M. Case report study of thalidomide therapy in 18 patients with severe arteriovenous malformations. NATURE CARDIOVASCULAR RESEARCH 2022; 1:562-567. [PMID: 39195866 DOI: 10.1038/s44161-022-00080-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/05/2022] [Indexed: 08/29/2024]
Abstract
Arteriovenous malformations (AVMs) are fast-flow lesions that may be destructive and are the most difficult-to-treat vascular anomalies. Embolization followed by surgical resection is commonly used; however, complete resection is rarely possible and partial resection often leads to dramatic worsening. Accumulating data implicate abnormal angiogenic activity in the development of AVMs. Thalidomide has been reported as an inhibitor of vascular proliferation. Here, we report a prospective experimental observational study testing the effects of the angiogenesis inhibitor thalidomide on 18 patients with a severely symptomatic AVM that is refractory to conventional therapies. All patients experienced a rapid reduction in pain, cessation of bleeding, and ulcer healing. Cardiac failure resolved in all three affected patients. Reduced vascularity on arteriography was observed in two patients. One AVM appeared to be cured after 19 months of thalidomide and an 8-year follow-up. Eight AVMs were stable after a mean thalidomide cessation of 58 months, and four lesions recurred after 11.5 months. Combined treatment with embolization permitted dose reduction in five patients with clinical improvement. Grade 3 side effects were dose dependent, including asthenia (n = 2) and erythroderma (n = 2). The results suggest that thalidomide is efficacious in the management of chronic pain, bleeding and ulceration of extensive AVMs that are refractory to conventional therapy. Further clinical study is needed to confirm the safety and efficacy of thalidomide treatment in AVM.
Collapse
Affiliation(s)
- Laurence M Boon
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium.
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium.
| | - Valérie Dekeuleneer
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Julien Coulie
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Liliane Marot
- Division of Dermatology, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Anne-Christine Bataille
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Division of Dermatology, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Frank Hammer
- Division of Vascular and Interventional Radiology, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Philippe Clapuyt
- Division of Pediatric Radiology, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Anne Jeanjean
- Department of Neurology, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Anne Dompmartin
- Department of Dermatology, Université de Caen Basse Normandie, CHU Caen, Caen, France
| | - Miikka Vikkula
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques universitaires Saint-Luc, UCLouvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
35
|
Zhang R, Yong VW, Xue M. Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation. Front Immunol 2022; 13:844163. [PMID: 35401553 PMCID: PMC8993500 DOI: 10.3389/fimmu.2022.844163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/24/2022] [Indexed: 01/31/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an important subtype of stroke with an unsatisfactory prognosis of high mortality and disability. Although many pre-clinical studies and clinical trials have been performed in the past decades, effective therapy that meaningfully improve prognosis and outcomes of ICH patients is still lacking. An active area of research is towards alleviating secondary brain injury after ICH through neuroprotective pharmaceuticals and in which minocycline is a promising candidate. Here, we will first discuss new insights into the protective mechanisms of minocycline for ICH including reducing iron-related toxicity, maintenance of blood-brain barrier, and alleviating different types of cell death from preclinical data, then consider its shortcomings. Finally, we will review clinical trial perspectives for minocycline in ICH. We hope that this summary and discussion about updated information on minocycline as a viable treatment for ICH can facilitate further investigations.
Collapse
Affiliation(s)
- Ruiyi Zhang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Genetics and Emerging Therapies for Brain Arteriovenous Malformations. World Neurosurg 2022; 159:327-337. [PMID: 35255632 DOI: 10.1016/j.wneu.2021.10.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Brain arteriovenous malformations (AVMs) are characterized by a high-pressure, low-resistance vascular nidus created by direct shunting of blood from feeding arteries into arterialized veins, bypassing intervening capillaries. AVMs pose a risk of spontaneous rupture because the vessel walls are continuously exposed to increased shear stress and abnormal flow phenomena, which lead to vessel wall inflammation and distinct morphologic changes. The annual rupture rate is estimated at 2%, and once an AVM ruptures, the risk of rerupture increases 5-fold. The ability of AVMs to grow, regress, recur, and undergo remodeling shows their dynamic nature. Identifying the underlying cellular and molecular pathways of AVMs not only helps us understand their natural physiology but also allows us to directly block vital pathways, thus preventing AVM development and progression. Management of AVMs is challenging and often necessitates a multidisciplinary approach, including neurosurgical, endovascular, and radiosurgical expertise. Because many of these procedures are invasive, carry a risk of inciting hemorrhage, or are controversial, the demand for pharmacologic treatment options is increasing. In this review, we introduce novel findings of cellular and molecular AVM physiology and highlight key signaling mediators that are potential targets for AVM treatment. Furthermore, we give an overview of syndromes associated with hereditary and nonhereditary AVM formation and discuss causative genetic alterations.
Collapse
|
37
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, Su H. Review of treatment and therapeutic targets in brain arteriovenous malformation. J Cereb Blood Flow Metab 2021; 41:3141-3156. [PMID: 34162280 PMCID: PMC8669284 DOI: 10.1177/0271678x211026771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase (MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, USA
| | - Ethan Winkler
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Adib Abla
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| |
Collapse
|
39
|
Abstract
Brain arteriovenous malformation (bAVM) is the most common cause of intracranial hemorrhage (ICH), particularly in young patients. However, the exact cause of bAVM bleeding and rupture is not yet fully understood. In bAVMs, blood bypasses the entire capillary bed and directly flows from arteries to veins. The vessel walls in bAVMs have structural defects, which impair vascular integrity. Mural cells are essential structural and functional components of blood vessels and play a critical role in maintaining vascular integrity. Changes in mural cell number and coverage have been implicated in bAVMs. In this review, we discussed the roles of mural cells in bAVM pathogenesis. We focused on 1) the recent advances in human and animal studies of bAVMs; 2) the importance of mural cells in vascular integrity; 3) the regulatory signaling pathways that regulate mural cell function. More specifically, the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-β (PDGFR-β), EphrinB2/EphB4, and angiopoietins/tie2 signaling pathways that regulate mural cell-recruitment during vascular remodeling were discussed in detail.
Collapse
|
40
|
Rivera R, Cruz JP, Merino-Osorio C, Rouchaud A, Mounayer C. Brain arteriovenous malformations: A scoping review of experimental models. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Abstract
Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.
Collapse
Affiliation(s)
- Angela Queisser
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.)
| | - Emmanuel Seront
- Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,University of Louvain, Brussels, Belgium (M.V.).,University of Louvain, Brussels, Belgium (M.V.).,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium (M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| |
Collapse
|
42
|
Recent progress understanding pathophysiology and genesis of brain AVM-a narrative review. Neurosurg Rev 2021; 44:3165-3175. [PMID: 33837504 PMCID: PMC8592945 DOI: 10.1007/s10143-021-01526-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Considerable progress has been made over the past years to better understand the genetic nature and pathophysiology of brain AVM. For the actual review, a PubMed search was carried out regarding the embryology, inflammation, advanced imaging, and fluid dynamical modeling of brain AVM. Whole-genome sequencing clarified the genetic origin of sporadic and familial AVM to a large degree, although some open questions remain. Advanced MRI and DSA techniques allow for better segmentation of feeding arteries, nidus, and draining veins, as well as the deduction of hemodynamic parameters such as flow and pressure in the individual AVM compartments. Nonetheless, complete modeling of the intranidal flow structure by computed fluid dynamics (CFD) is not possible so far. Substantial progress has been made towards understanding the embryology of brain AVM. In contrast to arterial aneurysms, complete modeling of the intranidal flow and a thorough understanding of the mechanical properties of the AVM nidus are still lacking at the present time.
Collapse
|
43
|
Muster R, Ko N, Smith W, Su H, Dickey MA, Nelson J, McCulloch CE, Sneed PK, Clarke JL, Saloner DA, Eisenmenger L, Kim H, Cooke DL. Proof-of-concept single-arm trial of bevacizumab therapy for brain arteriovenous malformation. BMJ Neurol Open 2021; 3:e000114. [PMID: 34189463 PMCID: PMC8204171 DOI: 10.1136/bmjno-2020-000114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are relatively rare, although their potential for secondary intracranial haemorrhage (ICH) makes their diagnosis and management essential to the community. Currently, invasive therapies (surgical resection, stereotactic radiosurgery and endovascular embolisation) are the only interventions that offer a reduction in ICH risk. There is no designated medical therapy for bAVM, although there is growing animal and human evidence supporting a role for bevacizumab to reduce the size of AVMs. In this single-arm pilot study, two patients with large bAVMs (deemed unresectable by an interdisciplinary team) received bevacizumab 5 mg/kg every 2 weeks for 12 weeks. Due to limitations of external funding, the intended sample size of 10 participants was not reached. Primary outcome measure was change in bAVM volume from baseline at 26 and 52 weeks. No change in bAVM volume was observed 26 or 52 weeks after bevacizumab treatment. No clinically important adverse events were observed during the 52-week study period. There were no observed instances of ICH. Sera vascular endothelial growth factor levels were reduced at 26 weeks and returned to baseline at 52 weeks. This pilot study is the first to test bevacizumab for patients with bAVMs. Bevacizumab therapy was well tolerated in both subjects. No radiographic changes were observed over the 52-week study period. Subsequent larger clinical trials are in order to assess for dose-dependent efficacy and rarer adverse drug effects. Trial registration number: NCT02314377.
Collapse
Affiliation(s)
- Rachel Muster
- School of Medicine, UCSF, San Francisco, California, USA
| | - Nerissa Ko
- Neurology, UCSF, San Francisco, California, USA
| | - Wade Smith
- Neurology, UCSF, San Francisco, California, USA
| | - Hua Su
- Anesthesia and Perioperative Care, UCSF, San Francisco, California, USA
| | - Melissa A Dickey
- Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Jeffrey Nelson
- Anesthesia and Perioperative Care, UCSF, San Francisco, California, USA
| | | | | | | | - David A Saloner
- Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | | | - Helen Kim
- Anesthesia and Perioperative Care, UCSF, San Francisco, California, USA
| | - Daniel L Cooke
- Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| |
Collapse
|
44
|
Raper DMS, Winkler EA, Rutledge WC, Cooke DL, Abla AA. An Update on Medications for Brain Arteriovenous Malformations. Neurosurgery 2021; 87:871-878. [PMID: 32433738 DOI: 10.1093/neuros/nyaa192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a variety of treatment options for brain arteriovenous malformations (bAVMs), many lesions remain challenging to treat and present significant ongoing risk for hemorrhage. In Vitro investigations have recently led to a greater understanding of the formation, growth, and rupture of bAVMs. This has, in turn, led to the development of therapeutic targets for medications for bAVMs, some of which have begun testing in clinical trials in humans. These include bevacizumab, targeting the vascular endothelial growth factor driven angiogenic pathway; thalidomide or lenalidomide, targeting blood-brain barrier impairment; and doxycycline, targeting matrix metalloproteinase overexpression. A variety of other medications appear promising but either requires adaptation from other disease states or development from early bench studies into the clinical realm. This review aims to provide an overview of the current state of development of medications targeting bAVMs and to highlight their likely applications in the future.
Collapse
Affiliation(s)
- Daniel M S Raper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Daniel L Cooke
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, San Francisco, California
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
45
|
Snodgrass RO, Chico TJA, Arthur HM. Hereditary Haemorrhagic Telangiectasia, an Inherited Vascular Disorder in Need of Improved Evidence-Based Pharmaceutical Interventions. Genes (Basel) 2021; 12:174. [PMID: 33513792 PMCID: PMC7911152 DOI: 10.3390/genes12020174] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is characterised by arteriovenous malformations (AVMs). These vascular abnormalities form when arteries and veins directly connect, bypassing the local capillary system. Large AVMs may occur in the lungs, liver and brain, increasing the risk of morbidity and mortality. Smaller AVMs, known as telangiectases, are prevalent on the skin and mucosal lining of the nose, mouth and gastrointestinal tract and are prone to haemorrhage. HHT is primarily associated with a reduction in endoglin (ENG) or ACVRL1 activity due to loss-of-function mutations. ENG and ACVRL1 transmembrane receptors are expressed on endothelial cells (ECs) and bind to circulating ligands BMP9 and BMP10 with high affinity. Ligand binding to the receptor complex leads to activation of the SMAD1/5/8 signalling pathway to regulate downstream gene expression. Various genetic animal models demonstrate that disruption of this pathway in ECs results in AVMs. The vascular abnormalities underlying AVM formation result from abnormal EC responses to angiogenic and haemodynamic cues, and include increased proliferation, reduced migration against the direction of blood flow and an increased EC footprint. There is growing evidence that targeting VEGF signalling has beneficial outcomes in HHT patients and in animal models of this disease. The anti-VEGF inhibitor bevacizumab reduces epistaxis and has a normalising effect on high cardiac output in HHT patients with hepatic AVMs. Blocking VEGF signalling also reduces vascular malformations in mouse models of HHT1 and HHT2. However, VEGF signalling is complex and drives numerous downstream pathways, and it is not yet clear which pathway (or combination of pathways) is critical to target. This review will consider the recent evidence gained from HHT clinical and preclinical studies that are increasing our understanding of HHT pathobiology and informing therapeutic strategies.
Collapse
Affiliation(s)
- Ryan O. Snodgrass
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK; (R.O.S.); (T.J.A.C.)
| | - Timothy J. A. Chico
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK; (R.O.S.); (T.J.A.C.)
| | - Helen M. Arthur
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| |
Collapse
|
46
|
Abstract
The complex development of the brain vascular system can be broken down by embryonic stages and anatomic locations, which are tightly regulated by different factors and pathways in time and spatially. The adult brain is relatively quiescent in angiogenesis. However, under disease conditions, such as trauma, stroke, or tumor, angiogenesis can be activated in the adult brain. Disruption of any of the factors or pathways may lead to malformed vessel development. In this chapter, we will discuss factors and pathways involved in normal brain vasculogenesis and vascular maturation, and the pathogenesis of several brain vascular malformations.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Sonali S Shaligram
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
47
|
Krithika S, Sumi S. Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations. J Cell Physiol 2020; 236:4841-4856. [PMID: 33345330 DOI: 10.1002/jcp.30226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Brain arteriovenous malformations (bAVM) arise as congenital or sporadic focal lesions with a significant risk for intracerebral hemorrhage (ICH). A wide range of interindividual differences is present in the onset, progression, and severity of bAVM. A growing body of gene expression and polymorphism-based research studies support the involvement of localized inflammation in bAVM disease progression and rupture. In this review article, we analyze the altered responses of neural, vascular, and immune cell types that contribute to the inflammatory process, which exacerbates the pathophysiological progression of vascular dysmorphogenesis in bAVM lesions. The cumulative effect of inflammation in bAVM development is orchestrated by various genetic moderators and inflammatory mediators. We also discuss the potential therapies for the treatment of brain AVM by targeting the inflammatory processes and mediators. Elucidating the precise role of inflammation in the bAVM growth and hemorrhage would open novel avenues for noninvasive and effectual causal therapy that may complement the current therapeutic strategies.
Collapse
Affiliation(s)
- S Krithika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
48
|
Nadeem T, Bogue W, Bigit B, Cuervo H. Deficiency of Notch signaling in pericytes results in arteriovenous malformations. JCI Insight 2020; 5:125940. [PMID: 33148887 PMCID: PMC7710269 DOI: 10.1172/jci.insight.125940] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Arteriovenous malformations (AVMs) are high-flow lesions directly connecting arteries and veins. In the brain, AVM rupture can cause seizures, stroke, and death. Patients with AVMs exhibit reduced coverage of the vessels by pericytes, the mural cells of microvascular capillaries; however, the mechanism underlying this pericyte reduction and its association with AVM pathogenesis remains unknown. Notch signaling has been proposed to regulate critical pericyte functions. We hypothesized that Notch signaling in pericytes is crucial to maintain pericyte homeostasis and prevent AVM formation. We inhibited Notch signaling specifically in perivascular cells and analyzed the vasculature of these mice. The retinal vessels of mice with deficient perivascular Notch signaling developed severe AVMs, together with a significant reduction in pericytes and vascular smooth muscle cells (vSMC) in the arteries, while vSMCs were increased in the veins. Vascular malformations and pericyte loss were also observed in the forebrain of embryonic mice deficient for perivascular Notch signaling. Moreover, the loss of Notch signaling in pericytes downregulated Pdgfrb levels and increased pericyte apoptosis, pointing to a critical role for Notch in pericyte survival. Overall, our findings reveal a mechanism of AVM formation and highlight the Notch signaling pathway as an essential mediator in this process.
Collapse
|
49
|
Gariballa N, Ali BR. Endoplasmic Reticulum Associated Protein Degradation (ERAD) in the Pathology of Diseases Related to TGFβ Signaling Pathway: Future Therapeutic Perspectives. Front Mol Biosci 2020; 7:575608. [PMID: 33195419 PMCID: PMC7658374 DOI: 10.3389/fmolb.2020.575608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
The transforming growth factor signaling pathway (TGFβ) controls a wide range of cellular activities in adulthood as well as during embryogenesis including cell growth, differentiation, apoptosis, immunological responses and other cellular functions. Therefore, germline mutations in components of the pathway have given rise to a heterogeneous spectrum of hereditary diseases with variable phenotypes associated with malformations in the cardiovascular, muscular and skeletal systems. Our extensive literature and database searches revealed 47 monogenic diseases associated with germline mutations in 24 out of 41 gene variant encoding for TGFβ components. Most of the TGFβ components are membrane or secretory proteins and they are therefore expected to pass through the endoplasmic reticulum (ER), where fidelity of proteins folding is stringently monitored via the ER quality control machineries. Elucidation of the molecular mechanisms of mutant proteins' folding and trafficking showed the implication of ER associated protein degradation (ERAD) in the pathogenesis of some of the diseases. For example, hereditary hemorrhagic telangiectasia types 1 and 2 (HHT1 and HHT2) and familial pulmonary arterial hypertension (FPAH) associated with mutations in Endoglin, ALK1 and BMPR2 components of the signaling pathway, respectively, have all exhibited loss of function phenotype as a result of ER retention of some of their disease-causing variants. In some cases, this has led to premature protein degradation through the proteasomal pathway. We anticipate that ERAD will be involved in the mechanisms of other TGFβ signaling components and therefore warrants further research. In this review, we highlight advances in ER quality control mechanisms and their modulation as a potential therapeutic target in general with particular focus on prospect of their implementation in the treatment of monogenic diseases associated with TGFβ components including HHT1, HHT2, and PAH. In particular, we emphasis the need to establish disease mechanisms and to implement such novel approaches in modulating the molecular pathway of mutant TGFβ components in the quest for restoring protein folding and trafficking as a therapeutic approach.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
50
|
Celik H, Kucukler S, Ozdemir S, Comakli S, Gur C, Kandemir FM, Yardim A. Lycopene protects against central and peripheral neuropathy by inhibiting oxaliplatin-induced ATF-6 pathway, apoptosis, inflammation and oxidative stress in brains and sciatic tissues of rats. Neurotoxicology 2020; 80:29-40. [PMID: 32544411 DOI: 10.1016/j.neuro.2020.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
The fact that oxaliplatin (OXL), a platinum-based chemotherapeutic drug, causes severe neuropathy greatly limits its clinical use. This study investigated the effects of lycopene, a potent antioxidant, on OXL-induced central and peripheral neuropathy. In this study, 30 min after oral administration of LY at a dose of 2 mg/kg b.w./day and 4 mg/kg b.w./day on 1 st, 2nd, 4th and 5th days, rats were given 4 mg/kg b.w./day of OXL intraperitoneally. It was detected that LY decreased OXL-induced lipid peroxidation and increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and the levels of glutathione (GSH) in brain tissue. LY showed anti-inflammatory effects by decreasing levels of mitogen-activated protein kinase-14 (MAPK14), nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) in brain and sciatic tissue. It was determined that OXL-induced endoplasmic reticulum stress (ERS) decreased because LY administration reduced the expressions of activating transcription factor-6 (ATF6), glucose-regulated protein-78 (GRP78), RNA-activated protein kinase (PKR)-like ER kinase and inositol-requiring enzyme-1 (IRE1). LY administration also reduced the damage of OXL-induced brain and sciatic tissue by increasing NCAM levels and decreasing GFAP levels. It was determined that caspase-3 immunopositivity markedly decreased by OXL and LY in combination. It was also observed that LY provided neuronal protection by increasing brain-derived neurotrophic factor (BDNF) levels, which decreased with OXL administration in sciatic tissue. The results demonstrate that LY can be beneficial in ameliorating OXL-induced central and peripheral nerve injuries by showing antioxidant, anti-inflammatory and anti-apoptotic properties in the brain and sciatic tissue.
Collapse
Affiliation(s)
- Hamit Celik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selcuk Ozdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Comakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ahmet Yardim
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| |
Collapse
|