1
|
Hanke S, Niedeggen M. Event-related potentials of stimuli inhibition and access in cross-modal distractor-induced blindness. PLoS One 2024; 19:e0309425. [PMID: 39441852 PMCID: PMC11498723 DOI: 10.1371/journal.pone.0309425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Distractor-induced blindness (DIB) describes a reduced access to a cued visual target-if multiple target-like distractors have been presented beforehand. Previous ERP data suggest a cumulative frontal inhibition triggered by distractors, which affects the updating process of the upcoming target. In the present study, we examine whether the modality of the cue-formerly defined in the visual domain-affects the expression of these neural signatures. 27 subjects were tested in a cross-modal DIB task: Distractors and targets were defined by a transient change of stimuli shape in a random-dot kinematogram. The onset of the target was announced by a rise in amplitude of a sinusoidal tone. Behavioral results confirmed that detection of the target relies on the number of preceding distractor episodes. Replicating previous unimodal results, ERP responses to distractors were characterized by a frontal negativity starting at 100 ms, which increases with an increasing number of distractor episodes. However, the processing-and detection-of the target was not characterized by a more-expressed P3 response, but by an occipital negativity. The current data confirm that the neural signatures of target awareness depend on the experimental setup used: In case of the DIB, the cross-modal setting might lead to a reduction of attentional resources in the visual domain.
Collapse
Affiliation(s)
- Sophie Hanke
- Division General Psychology and Neuropsychology, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Michael Niedeggen
- Division General Psychology and Neuropsychology, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Jeong J, Cho YS. Object-based suppression in target search but not in distractor inhibition. Atten Percept Psychophys 2024; 86:1-27. [PMID: 38839715 DOI: 10.3758/s13414-024-02905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The present study investigated the effect of object representation on attentional priority regarding distractor inhibition and target search processes while the statistical regularities of singleton distractor location were biased. A color singleton distractor appeared more frequently at one of six stimulus locations, called the 'high-probability location,' to induce location-based suppression. Critically, three objects were presented, each of which paired two adjacent stimuli in a target display by adding background contours (Experiment 1) or using perceptual grouping (Experiments 2 and 3). The results revealed that attention capture by singleton distractors was hardly modulated by objects. In contrast, target selection was impeded at the location in the object containing the high-probability location compared to an equidistant location in a different object. This object-based suppression in target selection was evident when object-related features were parts of task-relevant features. These findings suggest that task-irrelevant objects modulate attentional suppression. Moreover, different features are engaged in determining attentional priority for distractor inhibition and target search processes.
Collapse
Affiliation(s)
- Jiyoon Jeong
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Yang Seok Cho
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| |
Collapse
|
3
|
Wegner-Clemens K, Malcolm GL, Shomstein S. Predicting attentional allocation in real-world environments: The need to investigate crossmodal semantic guidance. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1675. [PMID: 38243393 DOI: 10.1002/wcs.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
Real-world environments are multisensory, meaningful, and highly complex. To parse these environments in a highly efficient manner, a subset of this information must be selected both within and across modalities. However, the bulk of attention research has been conducted within sensory modalities, with a particular focus on vision. Visual attention research has made great strides, with over a century of research methodically identifying the underlying mechanisms that allow us to select critical visual information. Spatial attention, attention to features, and object-based attention have all been studied extensively. More recently, research has established semantics (meaning) as a key component to allocating attention in real-world scenes, with the meaning of an item or environment affecting visual attentional selection. However, a full understanding of how semantic information modulates real-world attention requires studying more than vision in isolation. The world provides semantic information across all senses, but with this extra information comes greater complexity. Here, we summarize visual attention (including semantic-based visual attention), crossmodal attention, and argue for the importance of studying crossmodal semantic guidance of attention. This article is categorized under: Psychology > Attention Psychology > Perception and Psychophysics.
Collapse
Affiliation(s)
- Kira Wegner-Clemens
- Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| | | | - Sarah Shomstein
- Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Chapman AF, Störmer VS. Representational structures as a unifying framework for attention. Trends Cogn Sci 2024; 28:416-427. [PMID: 38280837 PMCID: PMC11290436 DOI: 10.1016/j.tics.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/29/2024]
Abstract
Our visual system consciously processes only a subset of the incoming information. Selective attention allows us to prioritize relevant inputs, and can be allocated to features, locations, and objects. Recent advances in feature-based attention suggest that several selection principles are shared across these domains and that many differences between the effects of attention on perceptual processing can be explained by differences in the underlying representational structures. Moving forward, it can thus be useful to assess how attention changes the structure of the representational spaces over which it operates, which include the spatial organization, feature maps, and object-based coding in visual cortex. This will ultimately add to our understanding of how attention changes the flow of visual information processing more broadly.
Collapse
Affiliation(s)
- Angus F Chapman
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| | - Viola S Störmer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
5
|
Noah S, Meyyappan S, Ding M, Mangun GR. Time Courses of Attended and Ignored Object Representations. J Cogn Neurosci 2023; 35:645-658. [PMID: 36735619 PMCID: PMC10024573 DOI: 10.1162/jocn_a_01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selective attention prioritizes information that is relevant to behavioral goals. Previous studies have shown that attended visual information is processed and represented more efficiently, but distracting visual information is not fully suppressed, and may also continue to be represented in the brain. In natural vision, to-be-attended and to-be-ignored objects may be present simultaneously in the scene. Understanding precisely how each is represented in the visual system, and how these neural representations evolve over time, remains a key goal in cognitive neuroscience. In this study, we recorded EEG while participants performed a cued object-based attention task that involved attending to target objects and ignoring simultaneously presented and spatially overlapping distractor objects. We performed support vector machine classification on the stimulus-evoked EEG data to separately track the temporal dynamics of target and distractor representations. We found that (1) both target and distractor objects were decodable during the early phase of object processing (∼100 msec to ∼200 msec after target onset), and (2) the representations of both objects were sustained over time, remaining decodable above chance until ∼1000-msec latency. However, (3) the distractor object information faded significantly beginning after about 300-msec latency. These findings provide information about the fate of attended and ignored visual information in complex scene perception.
Collapse
Affiliation(s)
- Sean Noah
- University of California, Davis.,University of California, Berkeley
| | | | | | | |
Collapse
|
6
|
Zeller J, Bylund E, Lewis AG. The parser consults the lexicon in spite of transparent gender marking: EEG evidence from noun class agreement processing in Zulu. Cognition 2022; 226:105148. [DOI: 10.1016/j.cognition.2022.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
|
7
|
Renton AI, Painter DR, Mattingley JB. Optimising the classification of feature-based attention in frequency-tagged electroencephalography data. Sci Data 2022; 9:296. [PMID: 35697741 PMCID: PMC9192640 DOI: 10.1038/s41597-022-01398-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-computer interfaces (BCIs) are a rapidly expanding field of study and require accurate and reliable real-time decoding of patterns of neural activity. These protocols often exploit selective attention, a neural mechanism that prioritises the sensory processing of task-relevant stimulus features (feature-based attention) or task-relevant spatial locations (spatial attention). Within the visual modality, attentional modulation of neural responses to different inputs is well indexed by steady-state visual evoked potentials (SSVEPs). These signals are reliably present in single-trial electroencephalography (EEG) data, are largely resilient to common EEG artifacts, and allow separation of neural responses to numerous concurrently presented visual stimuli. To date, efforts to use single-trial SSVEPs to classify visual attention for BCI control have largely focused on spatial attention rather than feature-based attention. Here, we present a dataset that allows for the development and benchmarking of algorithms to classify feature-based attention using single-trial EEG data. The dataset includes EEG and behavioural responses from 30 healthy human participants who performed a feature-based motion discrimination task on frequency tagged visual stimuli.
Collapse
Affiliation(s)
- Angela I Renton
- The University of Queensland, Queensland Brain Institute, St Lucia, 4072, Australia.
- The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia, Australia.
| | - David R Painter
- The University of Queensland, Queensland Brain Institute, St Lucia, 4072, Australia
| | - Jason B Mattingley
- The University of Queensland, Queensland Brain Institute, St Lucia, 4072, Australia
- The University of Queensland, School of Psychology, St Lucia, 4072, Australia
- Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
8
|
Behavioral and ERP Evidence that Object-based Attention Utilizes Fine-grained Spatial Mechanisms. Cortex 2022; 151:89-104. [DOI: 10.1016/j.cortex.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
|
9
|
Kanari K, Kaneko H. Pupil response is modulated with optokinetic nystagmus in transparent motion. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:149-156. [PMID: 33690525 DOI: 10.1364/josaa.409940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
When two visual patterns moving in opposite directions are superimposed on the same depth plane, they appear to have two transparent surfaces moving independently (transparent motion). Additionally, the direction of the slow phase of optokinetic nystagmus (OKN) corresponds to the direction of motion that dominates the perceptual appearance. This study examines whether pupil changes correspond to the luminance of the dominated objects related to the transition of the slow-phase direction in OKN following objects. Stimuli consisted of two random dot patterns of different luminance that moved in opposite directions. The results showed that pupil size changed in accordance with the luminance of the pattern in the slow phase of OKN immediately after OKN transition. This suggests that pupil size is modulated with OKN in transparent motion.
Collapse
|
10
|
Luck SJ, Gaspelin N, Folk CL, Remington RW, Theeuwes J. Progress Toward Resolving the Attentional Capture Debate. VISUAL COGNITION 2020; 29:1-21. [PMID: 33574729 PMCID: PMC7872136 DOI: 10.1080/13506285.2020.1848949] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
For over 25 years, researchers have debated whether physically salient stimuli capture attention in an automatic manner, independent of the observer's goals, or whether the capture of attention depends on the match between a stimulus and the observer's task set. Recent evidence suggests an intermediate position in which salient stimuli automatically produce a priority signal, but the capture of attention can be prevented via an inhibitory mechanism that suppresses the salient stimulus. Here, proponents from multiple sides of the debate describe how their original views have changed in light of recent research, as well as remaining areas of disagreement. These perspectives highlight some emerging areas of consensus and provide new directions for future research on attentional capture.
Collapse
Affiliation(s)
- Steven J. Luck
- Center for Mind & Brain, University of California, Davis, CA, USA
| | - Nicholas Gaspelin
- Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Charles L. Folk
- Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, USA
| | - Roger W. Remington
- School of Psychology, University of Queensland, St. Lucia, Queensland, Australia
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Jan Theeuwes
- Experimental and Applied Psychology and the Institute of Brain and Behavior Amsterdam (iBBA), Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Bertamini M, Rampone G, Tyson-Carr J, Makin ADJ. The response to symmetry in extrastriate areas and its time course are modulated by selective attention. Vision Res 2020; 177:68-75. [PMID: 32987356 DOI: 10.1016/j.visres.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Neurophysiological studies have shown a strong activation in visual areas in response to symmetry. Electrophysiological (EEG) studies, in particular, have confirmed that amplitude at posterior electrodes is more negative for symmetrical compared to asymmetrical patterns. This response is present even when observers perform tasks that do not require processing of symmetry. In this sense the activation is automatic. In this study we test this automaticity more directly by presenting stimuli that contain both symmetry and asymmetry, as overlapping patterns of dots of different colour (black and white). Observers were asked to respond to symmetry in only one of the two colours. If feature-based attention has no role the response should depend on properties of the image. If attention fully filters only the relevant colour the response should depend on properties of the relevant colour only. Neither of these models fully explained the data. We conclude that selective attention does modulate the neural response to symmetry, however we also found a significant contribution from the irrelevant pattern.
Collapse
Affiliation(s)
- Marco Bertamini
- University of Liverpool, Department of Psychology, Liverpool L697ZA, UK; University of Padua, Dipartimento di Psicologia Generale, Padua, Italy.
| | - Giulia Rampone
- University of Liverpool, School of Psychology, Liverpool L697ZA, UK
| | - John Tyson-Carr
- University of Liverpool, Department of Psychology, Liverpool L697ZA, UK
| | - Alexis D J Makin
- University of Liverpool, Department of Psychology, Liverpool L697ZA, UK
| |
Collapse
|
12
|
Nobre AC, van Ede F. Under the Mind's Hood: What We Have Learned by Watching the Brain at Work. J Neurosci 2020; 40:89-100. [PMID: 31630115 PMCID: PMC6939481 DOI: 10.1523/jneurosci.0742-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/14/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023] Open
Abstract
Imagine you were asked to investigate the workings of an engine, but to do so without ever opening the hood. Now imagine the engine fueled the human mind. This is the challenge faced by cognitive neuroscientists worldwide aiming to understand the neural bases of our psychological functions. Luckily, human ingenuity comes to the rescue. Around the same time as the Society for Neuroscience was being established in the 1960s, the first tools for measuring the human brain at work were becoming available. Noninvasive human brain imaging and neurophysiology have continued developing at a relentless pace ever since. In this 50 year anniversary, we reflect on how these methods have been changing our understanding of how brain supports mind.
Collapse
Affiliation(s)
- Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom, and
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom, and
| |
Collapse
|
13
|
Orlandi A, Proverbio AM. Left-Hemispheric Asymmetry for Object-Based Attention: an ERP Study. Brain Sci 2019; 9:E315. [PMID: 31717267 PMCID: PMC6896090 DOI: 10.3390/brainsci9110315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/11/2023] Open
Abstract
It has been shown that selective attention enhances the activity in visual regions associated with stimulus processing. The left hemisphere seems to have a prominent role when non-spatial attention is directed towards specific stimulus features (e.g., color, spatial frequency). The present electrophysiological study investigated the time course and neural correlates of object-based attention, under the assumption of left-hemispheric asymmetry. Twenty-nine right-handed participants were presented with 3D graphic images representing the shapes of different object categories (wooden dummies, chairs, structures of cubes) which lacked detail. They were instructed to press a button in response to a target stimulus indicated at the beginning of each run. The perception of non-target stimuli elicited a larger anterior N2 component, which was likely associated with motor inhibition. Conversely, target selection resulted in an enhanced selection negativity (SN) response lateralized over the left occipito-temporal regions, followed by a larger centro-parietal P300 response. These potentials were interpreted as indexing attentional selection and categorization processes, respectively. The standardized weighted low-resolution electromagnetic tomography (swLORETA) source reconstruction showed the engagement of a fronto-temporo-limbic network underlying object-based visual attention. Overall, the SN scalp distribution and relative neural generators hinted at a left-hemispheric advantage for non-spatial object-based visual attention.
Collapse
Affiliation(s)
- Andrea Orlandi
- Neuro-MI, Milan Center for Neuroscience, Dept. of Psychology, University of Milano - Bicocca, Milan 20126, Italy;
| | | |
Collapse
|
14
|
Adamian N, Andersen SK, Hillyard SA. Parallel attentional facilitation of features and objects in early visual cortex. Psychophysiology 2019; 57:e13498. [PMID: 31691314 PMCID: PMC7027440 DOI: 10.1111/psyp.13498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022]
Abstract
Selective attention can enhance the processing of attended features across the entire visual field. Attention also spreads within objects, enhancing all internal locations and task-irrelevant features of selected objects. Here, we examine the extent to which attentional enhancement of a feature spreads across attended and unattended objects. Two fully overlapping counter-rotating bicolored surfaces of light and dark random dots were presented on a gray background of intermediate luminance. This stimulus creates a percept of two separate semitransparent surfaces and allows the measurement of feature- and object-based selections while controlling spatial attention. On each trial, human participants attended to a subset of dots defined by feature (luminance polarity) and object (surface) in order to detect brief episodes of radial motion while ignoring any events in the unattended groups of dots. Attentional selection was assessed by means of steady-state visual evoked potentials (SSVEPs) and behavioral measures. SSVEP amplitudes recorded at medial occipital electrode sites were modulated both by surface-based and luminance polarity-based selection in a manner consistent with independent multiplicative enhancement of attentional effects in different dimensions in early visual cortex. This finding supports the view that feature-based attention spreads across object boundaries, at least at an early stage of processing. However, SSVEPs elicited at more lateral electrode sites showed a hierarchical pattern of selection, potentially reflecting the binding of surface-defining features with luminance features to enable surface-based attention.
Collapse
Affiliation(s)
- Nika Adamian
- School of Psychology, University of Aberdeen, Aberdeen, UK
| | | | - Steven A Hillyard
- Department of Neurosciences, University of California, San Diego, California.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
15
|
Brummerloh B, Müller MM. Time matters: Feature-specific prioritization follows feature integration in visual object processing. Neuroimage 2019; 196:81-93. [DOI: 10.1016/j.neuroimage.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 04/05/2019] [Indexed: 10/27/2022] Open
|
16
|
Chen Z, Humphries A, Cave KR. Location-Specific Orientation Set Is Independent of the Horizontal Benefit with or Without Object Boundaries. Vision (Basel) 2019; 3:vision3020030. [PMID: 31735831 PMCID: PMC6802788 DOI: 10.3390/vision3020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
Chen and Cave (2019) showed that facilitation in visual comparison tasks that had previously been attributed to object-based attention could more directly be explained as facilitation in comparing two shapes that are configured horizontally rather than vertically. They also cued the orientation of the upcoming stimulus configuration without cuing its location and found an asymmetry: the orientation cue only enhanced performance for vertical configurations. The current study replicates the horizontal benefit in visual comparison and again demonstrates that it is independent of surrounding object boundaries. In these experiments, the cue is informative about the location of the target configuration as well as its orientation, and it enhances performance for both horizontal and vertical configurations; there is no asymmetry. Either a long or a short cue can enhance performance when it is valid. Thus, Chen and Cave’s cuing asymmetry seems to reflect unusual aspects of an attentional set for orientation that must be established without knowing the upcoming stimulus location. Taken together, these studies show that a location-specific cue enhances comparison independently of the horizontal advantage, while a location-nonspecific cue produces a different type of attentional set that does not enhance comparison in horizontal configurations.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
- Correspondence: ; Tel.: +64-3-369-4415; Fax: +64-3-364-2181
| | - Ailsa Humphries
- Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Kyle R. Cave
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Attention scales according to inferred real-world object size. Nat Hum Behav 2019; 3:40-47. [PMID: 30932061 DOI: 10.1038/s41562-018-0485-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022]
Abstract
Natural scenes consist of objects of varying shapes and sizes. The impact of object size on visual perception has been well-demonstrated, from classic mental imagery experiments1, to recent studies of object representations reporting topographic organization of object size in the occipito-temporal cortex2. While the role of real-world physical size in perception is clear, the effect of inferred size on attentional selection is ill-defined. Here, we investigate whether inferred real-world object size influences attentional allocation. Across five experiments, attentional allocation was measured in objects of equal retinal size, but varied in inferred real-world size (for example, domino, bulldozer). Following each experiment, participants rated the real-world size of each object. We hypothesized that, if inferred real-world size influences attention, selection in retinal size-matched objects should be less efficient in larger objects. This effect should increase with greater attentional demand. Predictions were supported by faster identified targets in objects inferred to be small than large, with costlier attentional shifting in large than small objects when attentional demand was high. Critically, there was a direct correlation between the rated size of individual objects and response times (and shifting costs). Finally, systematic degradation of size inference proportionally reduced object size effect. It is concluded that, along with retinal size, inferred real-world object size parametrically modulates attention. These findings have important implications for models of attentional control and invite sensitivity to object size for future studies that use real-world images in psychological research.
Collapse
|
18
|
Revealing Dissociable Attention Biases in Chronic Smokers Through an Individual-Differences Approach. Sci Rep 2019; 9:4930. [PMID: 30894577 PMCID: PMC6427017 DOI: 10.1038/s41598-019-40957-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Addiction is accompanied by attentional biases (AB), wherein drug-related cues grab attention independently of their perceptual salience. AB have emerged in different flavours depending on the experimental approach, and their clinical relevance is still debated. In chronic smokers we sought evidence for dissociable attention abnormalities that may play distinct roles in the clinical manifestations of the disorder. Fifty smokers performed a modified visual probe-task measuring two forms of AB and their temporal dynamics, and data on their personality traits and smoking history/status were collected. Two fully dissociable AB effects were found: A Global effect, reflecting the overall impact of smoke cues on attention, and a Location-specific effect, indexing the impact of smoke cues on visuospatial orienting. Importantly, the two effects could be neatly separated from one another as they: (i) unfolded with dissimilar temporal dynamics, (ii) were accounted for by different sets of predictors associated with personality traits and smoking history and (iii) were not correlated with one another. Importantly, the relevance of each of these two components in the single individual depends on a complex blend of personality traits and smoking habits, a result that future efforts addressing the clinical relevance of addiction-related AB should take into careful consideration.
Collapse
|
19
|
Effects of meaningfulness on perception: Alpha-band oscillations carry perceptual expectations and influence early visual responses. Sci Rep 2018; 8:6606. [PMID: 29700428 PMCID: PMC5920106 DOI: 10.1038/s41598-018-25093-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/09/2018] [Indexed: 12/03/2022] Open
Abstract
Perceptual experience results from a complex interplay of bottom-up input and prior knowledge about the world, yet the extent to which knowledge affects perception, the neural mechanisms underlying these effects, and the stages of processing at which these two sources of information converge, are still unclear. In several experiments we show that language, in the form of verbal labels, both aids recognition of ambiguous “Mooney” images and improves objective visual discrimination performance in a match/non-match task. We then used electroencephalography (EEG) to better understand the mechanisms of this effect. The improved discrimination of images previously labeled was accompanied by a larger occipital-parietal P1 evoked response to the meaningful versus meaningless target stimuli. Time-frequency analysis of the interval between the cue and the target stimulus revealed increases in the power of posterior alpha-band (8–14 Hz) oscillations when the meaning of the stimuli to be compared was trained. The magnitude of the pre-target alpha difference and the P1 amplitude difference were positively correlated across individuals. These results suggest that prior knowledge prepares the brain for upcoming perception via the modulation of alpha-band oscillations, and that this preparatory state influences early (~120 ms) stages of visual processing.
Collapse
|
20
|
Cashdollar N, Ruhnau P, Weisz N, Hasson U. The Role of Working Memory in the Probabilistic Inference of Future Sensory Events. Cereb Cortex 2018; 27:2955-2969. [PMID: 27226445 DOI: 10.1093/cercor/bhw138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to represent the emerging regularity of sensory information from the external environment has been thought to allow one to probabilistically infer future sensory occurrences and thus optimize behavior. However, the underlying neural implementation of this process is still not comprehensively understood. Through a convergence of behavioral and neurophysiological evidence, we establish that the probabilistic inference of future events is critically linked to people's ability to maintain the recent past in working memory. Magnetoencephalography recordings demonstrated that when visual stimuli occurring over an extended time series had a greater statistical regularity, individuals with higher working-memory capacity (WMC) displayed enhanced slow-wave neural oscillations in the θ frequency band (4-8 Hz.) prior to, but not during stimulus appearance. This prestimulus neural activity was specifically linked to contexts where information could be anticipated and influenced the preferential sensory processing for this visual information after its appearance. A separate behavioral study demonstrated that this process intrinsically emerges during continuous perception and underpins a realistic advantage for efficient behavioral responses. In this way, WMC optimizes the anticipation of higher level semantic concepts expected to occur in the near future.
Collapse
Affiliation(s)
- Nathan Cashdollar
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy
| | - Philipp Ruhnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy.,Division of Physiological Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg A-5020, Austria
| | - Nathan Weisz
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy.,Division of Physiological Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg A-5020, Austria
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38060, Italy
| |
Collapse
|
21
|
Sols I, DuBrow S, Davachi L, Fuentemilla L. Event Boundaries Trigger Rapid Memory Reinstatement of the Prior Events to Promote Their Representation in Long-Term Memory. Curr Biol 2017; 27:3499-3504.e4. [PMID: 29129536 DOI: 10.1016/j.cub.2017.09.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 11/16/2022]
Abstract
Although everyday experiences unfold continuously over time, shifts in context, or event boundaries, can influence how those events come to be represented in memory [1-4]. Specifically, mnemonic binding across sequential representations is more challenging at context shifts, such that successful temporal associations are more likely to be formed within than across contexts [1, 2, 5-9]. However, in order to preserve a subjective sense of continuity, it is important that the memory system bridge temporally adjacent events, even if they occur in seemingly distinct contexts. Here, we used pattern similarity analysis to scalp electroencephalographic (EEG) recordings during a sequential learning task [2, 3] in humans and showed that the detection of event boundaries triggered a rapid memory reinstatement of the just-encoded sequence episode. Memory reactivation was detected rapidly (∼200-800 ms from the onset of the event boundary) and was specific to context shifts that were preceded by an event sequence with episodic content. Memory reinstatement was not observed during the sequential encoding of events within an episode, indicating that memory reactivation was induced specifically upon context shifts. Finally, the degree of neural similarity between neural responses elicited during sequence encoding and at event boundaries correlated positively with participants' ability to later link across sequences of events, suggesting a critical role in binding temporally adjacent events in long-term memory. Current results shed light onto the neural mechanisms that promote episodic encoding not only for information within the event, but also, importantly, in the ability to link across events to create a memory representation of continuous experience.
Collapse
Affiliation(s)
- Ignasi Sols
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat 08907, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona 08035, Spain
| | - Sarah DuBrow
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Lila Davachi
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat 08907, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona 08035, Spain; Institute of Neurosciences, University of Barcelona, Barcelona 08035, Spain.
| |
Collapse
|
22
|
Oakes LM, Baumgartner HA, Kanjlia S, Luck SJ. An eye tracking investigation of color-location binding in infants' visual short-term memory. INFANCY 2017; 22:584-607. [PMID: 28966559 DOI: 10.1111/infa.12184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two experiments examined 8- and 10-month-old infants' (N = 71) binding of object identity (color) and location information in visual short-term memory (VSTM) using a one-shot change detection task. Building on previous work using the simultaneous streams change detection task, we confirmed that 8- and 10-month-old infants are sensitive to changes in binding between identity and location in VSTM. Further, we demonstrated that infants recognize specifically what changed in these events. Thus, infants' VSTM for binding is robust and can be observed in different procedures and with different stimuli.
Collapse
Affiliation(s)
- Lisa M Oakes
- Department of Psychology, University of California, Davis.,Center for Mind and Brain, University of California, Davis
| | - Heidi A Baumgartner
- Department of Psychology, University of California, Davis.,Center for Mind and Brain, University of California, Davis
| | - Shipra Kanjlia
- Center for Mind and Brain, University of California, Davis
| | - Steven J Luck
- Department of Psychology, University of California, Davis.,Center for Mind and Brain, University of California, Davis
| |
Collapse
|
23
|
Abstract
Perceivers rapidly process social category information and form stereotypic impressions of unfamiliar others. However, a goal to individuate a target or to accurately predict their behavior can result in individuated impressions. It is unknown how the combination of both accuracy and individuation goals affects perceptual category processing. To explore this, participants were given both the goal to individuate targets and accurately predict behavior. We then recorded event-related brain potentials while participants viewed photos of black and white males along with four pieces of individuating information in the form of descriptions of past behavior. Even with explicit individuation and accuracy task goals, participants rapidly differentiated targets by race within 200 ms. Importantly, this rapid categorical processing did not influence behavioral outcomes as participants made individuated predictions. These findings indicate that individuals engage in category processing even when provided with individuation and accuracy goals, but that this processing does not necessarily result in category-based judgments.
Collapse
Affiliation(s)
- Jennifer T Kubota
- a Department of Psychology, The Center for the Study of Race, Politics, and Culture , University of Chicago , Chicago , IL , USA
| | - Tiffany Ito
- b Department of Psychology , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
24
|
The state of a central inhibition system predicts access to visual targets: An ERP study on distractor-induced blindness (DIB). Conscious Cogn 2015; 35:308-18. [DOI: 10.1016/j.concog.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
|
25
|
Iglesias-Fuster J, Santos-Rodríguez Y, Trujillo-Barreto N, Valdés-Sosa MJ. Asynchronous presentation of global and local information reveals effects of attention on brain electrical activity specific to each level. Front Psychol 2015; 5:1570. [PMID: 25628590 PMCID: PMC4292230 DOI: 10.3389/fpsyg.2014.01570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 12/18/2014] [Indexed: 01/26/2023] Open
Abstract
The neural basis of selective attention within hierarchically organized Navon figures has been extensively studied with event related potentials (ERPs), by contrasting responses obtained when attending the global and the local echelons. The findings are inherently ambiguous because both levels are always presented together. Thus, only a mixture of the brain responses to two levels can be observed. Here, we use a method that allows unveiling of global and local letters at distinct times, enabling estimation of separate ERPs related to each level. Two interspersed oddball streams were presented, each using letters from one level and comprised of frequent distracters and rare targets. Previous work and our Experiment 1 show that it is difficult to divide attention between two such streams of stimuli. ERP recording in Experiment 2 evinced an early selection negativity (SN, with latencies to the 50% area of about 266 ms for global distracters and 276 ms for local distracters) that was larger for attended relative to unattended distracters. The SN was larger over right posterior occipito-temporal derivations for global stimuli and over left posterior occipito-temporal derivations for local stimuli (although the latter was less strongly lateralized). A discrimination negativity (DN, accompanied by a P3b) was larger for attended targets relative to attended distracters, with latencies to the 50% area of about 316 ms for global stimuli and 301 ms for local stimuli, which presented a similar distribution for both levels over left temporo-parietal electrodes. The two negativities apparently index successive stages in the processing of a selected level within a compound figure. By resolving the ambiguity of traditional designs, our method allowed us to observe the effects of attention for each hierarchical level on its own.
Collapse
|
26
|
Emergence of visual objects involves multiple stages of spatial selection. Atten Percept Psychophys 2014; 77:441-9. [DOI: 10.3758/s13414-014-0799-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Rangelov D, Zeki S. Non-binding relationship between visual features. Front Hum Neurosci 2014; 8:749. [PMID: 25339879 PMCID: PMC4189329 DOI: 10.3389/fnhum.2014.00749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/05/2014] [Indexed: 12/01/2022] Open
Abstract
The answer as to how visual attributes processed in different brain loci at different speeds are bound together to give us our unitary experience of the visual world remains unknown. In this study we investigated whether bound representations arise, as commonly assumed, through physiological interactions between cells in the visual areas. In a focal attentional task in which correct responses from either bound or unbound representations were possible, participants discriminated the color or orientation of briefly presented single bars. On the assumption that representations of the two attributes are bound, the accuracy of reporting the color and orientation should co-vary. By contrast, if the attributes are not mandatorily bound, the accuracy of reporting the two attributes should be independent. The results of our psychophysical studies reported here supported the latter, non-binding, relationship between visual features, suggesting that binding does not necessarily occur even under focal attention. We propose a task-contingent binding mechanism, postulating that binding occurs at late, post-perceptual (PP), stages through the intervention of memory.
Collapse
Affiliation(s)
- Dragan Rangelov
- Psychology Department, Ludwig-Maximilians-Universität München Munich, Germany
| | - Semir Zeki
- Wellcome Laboratory of Neurobiology, University College London London, UK
| |
Collapse
|
28
|
Freeman ED, Macaluso E, Rees G, Driver J. fMRI correlates of object-based attentional facilitation vs. suppression of irrelevant stimuli, dependent on global grouping and endogenous cueing. Front Integr Neurosci 2014; 8:12. [PMID: 24574982 PMCID: PMC3918649 DOI: 10.3389/fnint.2014.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/20/2014] [Indexed: 11/23/2022] Open
Abstract
Theories of object-based attention often make two assumptions: that attentional resources are facilitatory, and that they spread automatically within grouped objects. Consistent with this, ignored visual stimuli can be easier to process, or more distracting, when perceptually grouped with an attended target stimulus. But in past studies, the ignored stimuli often shared potentially relevant features or locations with the target. In this fMRI study, we measured the effects of attention and grouping on Blood Oxygenation Level Dependent (BOLD) responses in the human brain to entirely task-irrelevant events. Two checkerboards were displayed each in opposite hemifields, while participants responded to check-size changes in one pre-cued hemifield, which varied between blocks. Grouping (or segmentation) between hemifields was manipulated between blocks, using common (vs. distinct) motion cues. Task-irrelevant transient events were introduced by randomly changing the color of either checkerboard, attended or ignored, at unpredictable intervals. The above assumptions predict heightened BOLD signals for irrelevant events in attended vs. ignored hemifields for ungrouped contexts, but less such attentional modulation under grouping, due to automatic spreading of facilitation across hemifields. We found the opposite pattern, in primary visual cortex. For ungrouped stimuli, BOLD signals associated with task-irrelevant changes were lower, not higher, in the attended vs. ignored hemifield; furthermore, attentional modulation was not reduced but actually inverted under grouping, with higher signals for events in the attended vs. ignored hemifield. These results challenge two popular assumptions underlying object-based attention. We consider a broader biased-competition framework: task-irrelevant stimuli are suppressed according to how strongly they compete with task-relevant stimuli, with intensified competition when the irrelevant features or locations comprise the same object.
Collapse
Affiliation(s)
- Elliot D Freeman
- Cognitive Neuroscience Research Unit, Department of Psychology, City University London London, UK
| | - Emiliano Macaluso
- Neuroimaging Laboratory, Fondazione Santa Lucia, I.R.C.C.S. Rome, Italy
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, University College London London, UK ; Institute of Cognitive Neuroscience, University College London London, UK
| | - Jon Driver
- Institute of Cognitive Neuroscience, University College London London, UK
| |
Collapse
|
29
|
Stojanoski BB, Niemeier M. Late electrophysiological modulations of feature-based attention to object shapes. Psychophysiology 2014; 51:298-308. [PMID: 24423181 DOI: 10.1111/psyp.12174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/14/2013] [Indexed: 11/28/2022]
Abstract
Feature-based attention has been shown to aid object perception. Our previous ERP effects revealed temporally late feature-based modulation in response to objects relative to motion. The aim of the current study was to confirm the timing of feature-based influences on object perception while cueing within the feature dimension of shape. Participants were told to expect either "pillow" or "flower" objects embedded among random white and black lines. Participants more accurately reported the object's main color for valid compared to invalid shapes. ERPs revealed modulation from 252-502 ms, from occipital to frontal electrodes. Our results are consistent with previous findings examining the time course for processing similar stimuli (illusory contours). Our results provide novel insights into how attending to features of higher complexity aids object perception presumably via feed-forward and feedback mechanisms along the visual hierarchy.
Collapse
Affiliation(s)
- Bobby Boge Stojanoski
- Brain and Mind Institute, Department of Psychology, Western University, London, Ontario, Canada; Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Attention to memory: orienting attention to sound object representations. PSYCHOLOGICAL RESEARCH 2013; 78:439-52. [PMID: 24352689 DOI: 10.1007/s00426-013-0531-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/29/2013] [Indexed: 01/08/2023]
Abstract
Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.
Collapse
|
31
|
Abstract
What neural mechanisms underlie the ability to attend to a complex object in the presence of competing overlapping stimuli? We evaluated whether object-based attention might involve pattern-specific feedback to early visual areas to selectively enhance the set of low-level features corresponding to the attended object. Using fMRI and multivariate pattern analysis, we found that activity patterns in early visual areas (V1-V4) are strongly biased in favor of the attended object. Activity patterns evoked by single faces and single houses reliably predicted which of the 2 overlapping stimulus types was being attended with high accuracy (80-90% correct). Superior knowledge of upright objects led to improved attentional selection in early areas. Across individual blocks, the strength of the attentional bias signal in early visual areas was highly predictive of the modulations found in high-level object areas, implying that pattern-specific attentional filtering at early sites can determine the quality of object-specific signals that reach higher level visual areas. Through computational modeling, we show how feedback of an average template to V1-like units can improve discrimination of exemplars belonging to the attended category. Our findings provide a mechanistic account of how feedback to early visual areas can contribute to the attentional selection of complex objects.
Collapse
Affiliation(s)
- Elias H Cohen
- Psychology Department and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Frank Tong
- Psychology Department and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
32
|
Electrophysiological correlates of early attentional feature selection and distractor filtering. Biol Psychol 2013; 93:269-78. [DOI: 10.1016/j.biopsycho.2013.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 11/22/2022]
|
33
|
Time course of spatial and feature selective attention for partly-occluded objects. Neuropsychologia 2012; 50:2281-9. [DOI: 10.1016/j.neuropsychologia.2012.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 05/12/2012] [Accepted: 05/29/2012] [Indexed: 11/19/2022]
|
34
|
|
35
|
Akyürek EG, Meijerink SK. The deployment of visual attention during temporal integration: An electrophysiological investigation. Psychophysiology 2012; 49:885-98. [DOI: 10.1111/j.1469-8986.2012.01380.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/07/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Elkan G. Akyürek
- Department of Psychology; University of Groningen; Groningen; The Netherlands
| | - Steven K. Meijerink
- Department of Psychology; University of Groningen; Groningen; The Netherlands
| |
Collapse
|
36
|
Bartolomeo P, Thiebaut de Schotten M, Chica AB. Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci 2012; 6:110. [PMID: 22586384 PMCID: PMC3343690 DOI: 10.3389/fnhum.2012.00110] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/11/2012] [Indexed: 11/13/2022] Open
Abstract
Visual neglect is a multi-component syndrome including prominent attentional disorders. Research on the functional mechanisms of neglect is now moving from the description of dissociations in patients' performance to the identification of the possible component deficits and of their interaction with compensatory strategies. In recent years, the dissection of attentional deficits in neglect has progressed in parallel with increasing comprehension of the anatomy and function of large-scale brain networks implicated in attentional processes. This review focuses on the anatomy and putative functions of attentional circuits in the brain, mainly subserved by fronto-parietal networks, with a peculiar although not yet completely elucidated role for the right hemisphere. Recent results are discussed concerning the influence of a non-spatial attentional function, phasic alertness, on conscious perception in normal participants and on conflict resolution in neglect patients. The rapid rate of expansion of our knowledge of these systems raises hopes for the development of effective strategies to improve the functioning of the attentional networks in brain-damaged patients.
Collapse
Affiliation(s)
- Paolo Bartolomeo
- INSERM - UPMC UMRS 975, Brain and Spine Institute, Groupe Hospitalier Pitié-Salpêtrière Paris, France
| | | | | |
Collapse
|
37
|
Cosman JD, Vecera SP. Object-based attention overrides perceptual load to modulate visual distraction. J Exp Psychol Hum Percept Perform 2012; 38:576-9. [PMID: 22390296 DOI: 10.1037/a0027406] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to ignore task-irrelevant information and overcome distraction is central to our ability to efficiently carry out a number of tasks. One factor shown to strongly influence distraction is the perceptual load of the task being performed; as the perceptual load of task-relevant information processing increases, the likelihood that task-irrelevant information will be processed and interfere with task performance decreases. However, it has also been demonstrated that other attentional factors play an important role in whether or not distracting information affects performance. Specifically, object-based attention can modulate the extent of distractor processing, leaving open the possibility that object-based attention mechanisms may directly modulate the way in which perceptual load affects distractor processing. Here, we show that object-based attention dominates perceptual load to determine the extent of task-irrelevant information processing, with distractors affecting performance only when they are contained within the same object as the task-relevant search display. These results suggest that object-based attention effects play a central role in selective attention regardless of the perceptual load of the task being performed.
Collapse
Affiliation(s)
- Joshua D Cosman
- Department of Neuroscience, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
38
|
Stojanoski B, Niemeier M. The timing of feature-based attentional effects during object perception. Neuropsychologia 2011; 49:3406-18. [PMID: 21889519 DOI: 10.1016/j.neuropsychologia.2011.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/23/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
Allocating attention to basic features such as colour enhances perception of the respective features throughout the visual field. We have previously shown that feature-based attention also plays a role for more complex features required for object perception. To investigate at which level object perception is modulated by feature-based attention we recorded high-density event-related potentials (ERPs). Participants detected contour-defined objects or motion, and were informed to expect each feature dimension. Participants perceived contour-defined objects and motion better when they expected the congruent feature. This is consistent with modulation of the P1 when attending to lower-level features. For contours, modulation occurred at 290 ms, first at frontal electrodes and then at posterior sites, associated with sources in ventral visual areas accompanied by greater signal strength. This pattern of results is consistent with what has been observed in response to illusory contours. Our data provide novel insights into the contribution of feature-based attention to object perception that are associated with higher tier brain areas.
Collapse
Affiliation(s)
- Boge Stojanoski
- Department of Psychology, University of Toronto at Scarborough, Toronto, Ontario, Canada.
| | | |
Collapse
|
39
|
Klimesch W. Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res 2011; 1408:52-71. [PMID: 21774917 PMCID: PMC3158852 DOI: 10.1016/j.brainres.2011.06.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 12/02/2022]
Abstract
In this article, a theory is presented which assumes that the visual P1 reflects the same cognitive and physiological functionality as alpha (with a frequency of about 10 Hz).Whereas alpha is an ongoing process, the P1 is the manifestation of an event-related process. It is suggested that alpha and the P1 reflect inhibition that is effective during early access to a complex knowledge system (KS). Most importantly, inhibition operates in two different ways. In potentially competing and task irrelevant networks, inhibition is used to block information processing. In task relevant neural networks, however, inhibition is used to increase the signal to noise ratio (SNR) by enabling precisely timed activity in neurons with a high level of excitation but silencing neurons with a comparatively low level of excitation. Inhibition is increased to modulate the SNR when processing complexity and network excitation increases and when certain types of attentional demands - such as top-down control, expectancy or reflexive attention - increase. A variety of findings are reviewed to demonstrate that they can well be interpreted on the basis of the suggested theory. One interesting aspect thereby is that attentional benefits (reflected e.g., by a larger P1 for attended as compared to unattended items at contralateral sites) and costs (reflected e.g., by a larger P1 at ipsilateral sites) can both be interpreted in terms of inhibition. In the former case an increased P1 is associated with a more effective processing of the presented item (due to an inhibition modulated increase in SNR), in the latter case, however, with a suppression of item processing (due to inhibition that blocks information processing).
Collapse
Affiliation(s)
- Wolfgang Klimesch
- University of Salzburg, Department of Physiological Psychology, Institute of Psychology, Hellbrunnerstr. 34, A-5020 Salzburg, Austria.
| |
Collapse
|
40
|
Hollingworth A, Maxcey-Richard AM, Vecera SP. The spatial distribution of attention within and across objects. J Exp Psychol Hum Percept Perform 2011; 38:135-51. [PMID: 21728455 DOI: 10.1037/a0024463] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et al. object cuing task, we systematically manipulated within-object distance and object boundaries. Four major findings are reported: 1) spatial attention forms a gradient across the attended object; 2) object boundaries limit the distribution of this gradient, with the spread of attention constrained by a boundary; 3) boundaries within an object operate similarly to across-object boundaries: we observed object-based effects across a discontinuity within a single object, without the demand to divide or switch attention between discrete object representations; and 4) the gradient of spatial attention across an object directly modulates perceptual sensitivity, implicating a relatively early locus for the grouped array representation.
Collapse
Affiliation(s)
- Andrew Hollingworth
- Department of Psychology, The University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242-1407, USA.
| | | | | |
Collapse
|
41
|
Kasai T, Moriya H, Hirano S. Are objects the same as groups? ERP correlates of spatial attentional guidance by irrelevant feature similarity. Brain Res 2011; 1399:49-58. [PMID: 21652032 DOI: 10.1016/j.brainres.2011.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 04/27/2011] [Accepted: 05/07/2011] [Indexed: 01/09/2023]
Abstract
It has been proposed that the most fundamental units of attentional selection are "objects" that are grouped according to Gestalt factors such as similarity or connectedness. Previous studies using event-related potentials (ERPs) have shown that object-based attention is associated with modulations of the visual-evoked N1 component, which reflects an early cortical mechanism that is shared with spatial attention. However, these studies only examined the case of perceptually continuous objects. The present study examined the case of separate objects that are grouped according to feature similarity (color, shape) by indexing lateralized potentials at posterior sites in a sustained-attention task that involved bilateral stimulus arrays. A behavioral object effect was found only for task-relevant shape similarity. Electrophysiological results indicated that attention was guided to the task-irrelevant side of the visual field due to achromatic-color similarity in N1 (155-205 ms post-stimulus) and early N2 (210-260 ms) and due to shape similarity in early N2 and late N2 (280-400 ms) latency ranges. These results are discussed in terms of selection mechanisms and object/group representations.
Collapse
Affiliation(s)
- Tetsuko Kasai
- Faculty of Education, Hokkaido University, Sapporo, 060-0811, Japan.
| | | | | |
Collapse
|
42
|
Gazzaley A. Influence of early attentional modulation on working memory. Neuropsychologia 2011; 49:1410-24. [PMID: 21184764 PMCID: PMC3086962 DOI: 10.1016/j.neuropsychologia.2010.12.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/28/2010] [Accepted: 12/11/2010] [Indexed: 11/19/2022]
Abstract
It is now established that attention influences working memory (WM) at multiple processing stages. This liaison between attention and WM poses several interesting empirical questions. Notably, does attention impact WM via its influences on early perceptual processing? If so, what are the critical factors at play in this attention-perception-WM interaction. I review recent data from our laboratory utilizing a variety of techniques (electroencephalography (EEG), functional MRI (fMRI) and transcranial magnetic stimulation (TMS)), stimuli (features and complex objects), novel experimental paradigms, and research populations (younger and older adults), which converge to support the conclusion that top-down modulation of visual cortical activity at early perceptual processing stages (100-200 ms after stimulus onset) impacts subsequent WM performance. Factors that affect attentional control at this stage include cognitive load, task practice, perceptual training, and aging. These developments highlight the complex and dynamic relationships among perception, attention, and memory.
Collapse
Affiliation(s)
- Adam Gazzaley
- Department of Neurology, Physiology and Psychiatry, W. M. Keck Center for Integrative Neurosciences, University of California, San Francisco, USA.
| |
Collapse
|
43
|
Ciaramitaro VM, Mitchell JF, Stoner GR, Reynolds JH, Boynton GM. Object-based attention to one of two superimposed surfaces alters responses in human early visual cortex. J Neurophysiol 2011; 105:1258-65. [PMID: 21228306 DOI: 10.1152/jn.00680.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Faced with an overwhelming amount of sensory information, we are able to prioritize the processing of select spatial locations and visual features. The neuronal mechanisms underlying such spatial and feature-based selection have been studied in considerable detail. More recent work shows that attention can also be allocated to objects, even spatially superimposed objects composed of dynamically changing features that must be integrated to create a coherent object representation. Much less is known about the mechanisms underlying such object-based selection. Our goal was to investigate behavioral and neuronal responses when attention was directed to one of two objects, specifically one of two superimposed transparent surfaces, in a task designed to preclude space-based and feature-based selection. We used functional magnetic resonance imaging (fMRI) to measure changes in blood oxygen level-dependent (BOLD) signals when attention was deployed to one or the other surface. We found that visual areas V1, V2, V3, V3A, and MT+ showed enhanced BOLD responses to translations of an attended relative to an unattended surface. These results reveal that visual areas as early as V1 can be modulated by attending to objects, even objects defined by dynamically changing elements. This provides definitive evidence in humans that early visual areas are involved in a seemingly high-order process. Furthermore, our results suggest that these early visual areas may participate in object-specific feature "binding," a process that seemingly must occur for an object or a surface to be the unit of attentional selection.
Collapse
Affiliation(s)
- Vivian M Ciaramitaro
- University of Massachusetts, Boston, Depatment of Psychology, 100 Morrissey Boulevard, Boston, MA 02125, USA.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Chelazzi L, Della Libera C, Sani I, Santandrea E. Neural basis of visual selective attention. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2010; 2:392-407. [PMID: 26302199 DOI: 10.1002/wcs.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Attentional modulation along the object-recognition pathway of the cortical visual system of primates has been shown to consist of enhanced representation of the retinal input at a specific location in space, or of objects located anywhere in the visual field which possess a critical object feature. Moreover, selective attention mechanisms allow the visual system to resolve competition among multiple objects in a crowded scene in favor of the object that is relevant for the current behavior. Finally, selective attention affects the spontaneous activity of neurons as well as their visually driven responses, and it does so not only by modulating the spiking activity of individual neurons, but also by modulating the degree of coherent firing within the critical neuronal populations. WIREs Cogni Sci 2011 2 392-407 DOI: 10.1002/wcs.117 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Leonardo Chelazzi
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona Medical School, Verona, Italy.,Italian Institute of Neuroscience, Verona, Italy
| | - Chiara Della Libera
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona Medical School, Verona, Italy.,Italian Institute of Neuroscience, Verona, Italy
| | - Ilaria Sani
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona Medical School, Verona, Italy.,Italian Institute of Neuroscience, Verona, Italy
| | - Elisa Santandrea
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona Medical School, Verona, Italy.,Italian Institute of Neuroscience, Verona, Italy
| |
Collapse
|
46
|
Boehler CN, Schoenfeld MA, Heinze HJ, Hopf JM. Object-based selection of irrelevant features is not confined to the attended object. J Cogn Neurosci 2010; 23:2231-9. [PMID: 20666592 DOI: 10.1162/jocn.2010.21558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Attention to one feature of an object can bias the processing of unattended features of that object. Here we demonstrate with ERPs in visual search that this object-based bias for an irrelevant feature also appears in an unattended object when it shares that feature with the target object. Specifically, we show that the ERP response elicited by a distractor object in one visual field is modulated as a function of whether a task-irrelevant color of that distractor is also present in the target object that is presented in the opposite visual field. Importantly, we find this modulation to arise with a delay of approximately 80 msec relative to the N2pc--a component of the ERP response that reflects the focusing of attention onto the target. In a second experiment, we demonstrate that this modulation reflects enhanced neural processing in the unattended object. These observations together facilitate the surprising conclusion that the object-based selection of irrelevant features is spatially global even after attention has selected the target object.
Collapse
|
47
|
Vlamings PHJM, Jonkman LM, Kemner C. An Eye for Detail: An Event-Related Potential Study of the Rapid Processing of Fearful Facial Expressions in Children. Child Dev 2010; 81:1304-19. [DOI: 10.1111/j.1467-8624.2010.01470.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Müller D, Winkler I, Roeber U, Schaffer S, Czigler I, Schröger E. Visual Object Representations Can Be Formed outside the Focus of Voluntary Attention: Evidence from Event-related Brain Potentials. J Cogn Neurosci 2010; 22:1179-88. [DOI: 10.1162/jocn.2009.21271] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
There is an ongoing debate whether visual object representations can be formed outside the focus of voluntary attention. Recently, implicit behavioral measures suggested that grouping processes can occur for task-irrelevant visual stimuli, thus supporting theories of preattentive object formation (e.g., Lamy, D., Segal, H., & Ruderman, L. Grouping does not require attention. Perception and Psychophysics, 68, 17–31, 2006; Russell, C., & Driver, J. New indirect measures of “inattentive” visual grouping in a change-detection task. Perception and Psychophysics, 67, 606–623, 2005). We developed an ERP paradigm that allows testing for visual grouping when neither the objects nor its constituents are related to the participant's task. Our paradigm is based on the visual mismatch negativity ERP component, which is elicited by stimuli deviating from a regular stimulus sequence even when the stimuli are ignored. Our stimuli consisted of four pairs of colored discs that served as objects. These objects were presented isochronously while participants were engaged in a task related to the continuously presented fixation cross. Occasionally, two color deviances occurred simultaneously either within the same object or across two different objects. We found significant ERP differences for same- versus different-object deviances, supporting the notion that forming visual object representations by grouping can occur outside the focus of voluntary attention. Also our behavioral experiment, in which participants responded to color deviances—thus, this time the discs but, again, not the objects were task relevant—showed that the object status matters. Our results stress the importance of early grouping processes for structuring the perceptual world.
Collapse
Affiliation(s)
| | - István Winkler
- 2Institute for Psychology of the Hungarian Academy of Sciences, Budapest, Hungary
- 4University of Szeged, Hungary
| | | | | | - István Czigler
- 2Institute for Psychology of the Hungarian Academy of Sciences, Budapest, Hungary
- 5University of Debrecen, Hungary
| | | |
Collapse
|
49
|
Rutman AM, Clapp WC, Chadick JZ, Gazzaley A. Early top-down control of visual processing predicts working memory performance. J Cogn Neurosci 2010; 22:1224-34. [PMID: 19413473 PMCID: PMC2842470 DOI: 10.1162/jocn.2009.21257] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Selective attention confers a behavioral benefit on both perceptual and working memory (WM) performance, often attributed to top-down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography to study the temporal dynamics of top-down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, "double-exposed" images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97-129 msec) event-related potential during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory.
Collapse
|
50
|
Proverbio AM, Del Zotto M, Zani A. Electrical neuroimaging evidence that spatial frequency-based selective attention affects V1 activity as early as 40-60 ms in humans. BMC Neurosci 2010; 11:59. [PMID: 20459601 PMCID: PMC2890012 DOI: 10.1186/1471-2202-11-59] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 05/06/2010] [Indexed: 11/29/2022] Open
Abstract
Background Karns and Knight (2009) [1] demonstrated by using ERP and gamma band oscillatory responses that intermodal attention modulates visual processing at the latency of the early phase of the C1 response (62-72 ms) thought to be generated in the primary visual cortex. However, the timing of attentional modulation of visual cortex during object-based attention remains a controversial issue. Results In this study, EEG recording and LORETA source reconstruction were performed. A large number of subjects (29) and of trial repetitions were used (13,312). EEG was recorded from 128 scalp sites at a sampling rate of 512 Hz. Four square-wave gratings (0.75, 1.5, 3, 6 c/deg) were randomly presented in the 4 quadrants of the visual field. Participants were instructed to pay conjoined attention to a given stimulus quadrant and spatial frequency. The C1 and P1 sensory-evoked components of ERPs were quantified by measuring their mean amplitudes across time within 5 latency ranges 40-60, 60-80, 80-100, 100-120 and 120-140 ms. Conclusions Early attention effects were found in the form of an enhanced C1 response (40-80 ms) to frequency-relevant gratings. LORETA, within its spatial resolution limits, identified the neural generators of this effect in the striate cortex (BA17), among other areas.
Collapse
Affiliation(s)
- Alice M Proverbio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.
| | | | | |
Collapse
|