1
|
Sit TPH, Feord RC, Dunn AWE, Chabros J, Oluigbo D, Smith HH, Burn L, Chang E, Boschi A, Yuan Y, Gibbons GM, Khayat-Khoei M, De Angelis F, Hemberg E, Hemberg M, Lancaster MA, Lakatos A, Eglen SJ, Paulsen O, Mierau SB. MEA-NAP: A flexible network analysis pipeline for neuronal 2D and 3D organoid multielectrode recordings. CELL REPORTS METHODS 2024; 4:100901. [PMID: 39520988 PMCID: PMC11706071 DOI: 10.1016/j.crmeth.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and thus can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Timothy P H Sit
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Rachael C Feord
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Alexander W E Dunn
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Jeremi Chabros
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - David Oluigbo
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hugo H Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Lance Burn
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Elise Chang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Alessio Boschi
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Yin Yuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - George M Gibbons
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Mahsa Khayat-Khoei
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | - Erik Hemberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Madeline A Lancaster
- MRC Laboratory for Molecular Biology, University of Cambridge, CB2 0QH Cambridge, UK
| | - Andras Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK; Cambridge University Hospitals, Cambridge Biomedical Campus, CB2 0QQ Cambridge, UK
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Susanna B Mierau
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Tang D, Zylberberg J, Jia X, Choi H. Stimulus type shapes the topology of cellular functional networks in mouse visual cortex. Nat Commun 2024; 15:5753. [PMID: 38982078 PMCID: PMC11233648 DOI: 10.1038/s41467-024-49704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
On the timescale of sensory processing, neuronal networks have relatively fixed anatomical connectivity, while functional interactions between neurons can vary depending on the ongoing activity of the neurons within the network. We thus hypothesized that different types of stimuli could lead those networks to display stimulus-dependent functional connectivity patterns. To test this hypothesis, we analyzed single-cell resolution electrophysiological data from the Allen Institute, with simultaneous recordings of stimulus-evoked activity from neurons across 6 different regions of mouse visual cortex. Comparing the functional connectivity patterns during different stimulus types, we made several nontrivial observations: (1) while the frequencies of different functional motifs were preserved across stimuli, the identities of the neurons within those motifs changed; (2) the degree to which functional modules are contained within a single brain region increases with stimulus complexity. Altogether, our work reveals unexpected stimulus-dependence to the way groups of neurons interact to process incoming sensory information.
Collapse
Affiliation(s)
- Disheng Tang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
| | - Joel Zylberberg
- Department of Physics and Astronomy, and Centre for Vision Research, York University, Toronto, ON M3J 1P3, ON, Canada.
- Learning in Machines and Brains Program, CIFAR, Toronto, ON M5G 1M1, ON, Canada.
| | - Xiaoxuan Jia
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Hannah Choi
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| |
Collapse
|
3
|
Sit TPH, Feord RC, Dunn AWE, Chabros J, Oluigbo D, Smith HH, Burn L, Chang E, Boschi A, Yuan Y, Gibbons GM, Khayat-Khoei M, De Angelis F, Hemberg E, Hemberg M, Lancaster MA, Lakatos A, Eglen SJ, Paulsen O, Mierau SB. MEA-NAP compares microscale functional connectivity, topology, and network dynamics in organoid or monolayer neuronal cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578738. [PMID: 38370637 PMCID: PMC10871179 DOI: 10.1101/2024.02.05.578738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches.
Collapse
Affiliation(s)
- Timothy PH Sit
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Rachael C Feord
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Alexander WE Dunn
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Jeremi Chabros
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - David Oluigbo
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo H Smith
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Lance Burn
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Elise Chang
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Alessio Boschi
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Yin Yuan
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - George M Gibbons
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Erik Hemberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Andras Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen J Eglen
- Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Susanna B Mierau
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Li C, Hens C. Complexity in structural and functional brain networks. Comment on "Structure and function in artificial, zebrafish and human neural networks" by Ji et al. Phys Life Rev 2023; 47:131-132. [PMID: 37866095 DOI: 10.1016/j.plrev.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Affiliation(s)
- Cong Li
- Adaptive Networks and Control Lab, Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Chittaranjan Hens
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
5
|
Nardin M, Csicsvari J, Tkačik G, Savin C. The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience. J Neurosci 2023; 43:8140-8156. [PMID: 37758476 PMCID: PMC10697404 DOI: 10.1523/jneurosci.0194-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Although much is known about how single neurons in the hippocampus represent an animal's position, how circuit interactions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain.SIGNIFICANCE STATEMENT Local circuit interactions play a key role in neural computation and are dynamically shaped by experience. However, measuring and assessing their effects during behavior remains a challenge. Here, we combine techniques from statistical physics and machine learning to develop new tools for determining the effects of local network interactions on neural population activity. This approach reveals highly structured local interactions between hippocampal neurons, which make the neural code more precise and easier to read out by downstream circuits, across different levels of experience. More generally, the novel combination of theory and data analysis in the framework of maximum entropy models enables traditional neural coding questions to be asked in naturalistic settings.
Collapse
Affiliation(s)
- Michele Nardin
- Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria
| | - Cristina Savin
- Center for Neural Science, New York University, New York, New York 10003
- Center for Data Science, New York University, New York, New York 10011
| |
Collapse
|
6
|
Ji P, Wang Y, Peron T, Li C, Nagler J, Du J. Structure and function in artificial, zebrafish and human neural networks. Phys Life Rev 2023; 45:74-111. [PMID: 37182376 DOI: 10.1016/j.plrev.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Network science provides a set of tools for the characterization of the structure and functional behavior of complex systems. Yet a major problem is to quantify how the structural domain is related to the dynamical one. In other words, how the diversity of dynamical states of a system can be predicted from the static network structure? Or the reverse problem: starting from a set of signals derived from experimental recordings, how can one discover the network connections or the causal relations behind the observed dynamics? Despite the advances achieved over the last two decades, many challenges remain concerning the study of the structure-dynamics interplay of complex systems. In neuroscience, progress is typically constrained by the low spatio-temporal resolution of experiments and by the lack of a universal inferring framework for empirical systems. To address these issues, applications of network science and artificial intelligence to neural data have been rapidly growing. In this article, we review important recent applications of methods from those fields to the study of the interplay between structure and functional dynamics of human and zebrafish brain. We cover the selection of topological features for the characterization of brain networks, inference of functional connections, dynamical modeling, and close with applications to both the human and zebrafish brain. This review is intended to neuroscientists who want to become acquainted with techniques from network science, as well as to researchers from the latter field who are interested in exploring novel application scenarios in neuroscience.
Collapse
Affiliation(s)
- Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Thomas Peron
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil.
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China; Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
| | - Jan Nagler
- Deep Dynamics, Frankfurt School of Finance & Management, Frankfurt, Germany; Centre for Human and Machine Intelligence, Frankfurt School of Finance & Management, Frankfurt, Germany
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
7
|
George VK, Gupta A, Silva GA. Identifying Steady State in the Network Dynamics of Spiking Neural Networks. Heliyon 2023; 9:e13913. [PMID: 36967881 PMCID: PMC10036509 DOI: 10.1016/j.heliyon.2023.e13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Analysis of the dynamics of complex networks can provide valuable information. For example, the dynamics can be used to characterize and differentiate between different network inputs and configurations. However, without quantitatively delineating the network's dynamic regimes, analysis of the network's dynamics is based on heuristics and qualitative signatures of transient or steady-state regimes. This is not ideal because interesting phenomena can occur during the transient regime, steady-state regime, or at the transition between the two dynamic regimes. Moreover, for simulated and observed systems, precise knowledge of the network's dynamical regime is imperative when considering metrics on minimal mathematical descriptions of the dynamics, otherwise either too much or too little data is analyzed. Here, we develop quantitative methods to ascertain the starting point and period of steady-state network activity. Using the precise knowledge of the network's dynamic regimes, we build minimal representations of the network dynamics that form the basis for future work. We show applications of our techniques on idealized signals and on the dynamics of a biologically inspired spiking neural network.
Collapse
|
8
|
Herzog R, Morales A, Mora S, Araya J, Escobar MJ, Palacios AG, Cofré R. Scalable and accurate method for neuronal ensemble detection in spiking neural networks. PLoS One 2021; 16:e0251647. [PMID: 34329314 PMCID: PMC8323916 DOI: 10.1371/journal.pone.0251647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. We found that our method outperforms current alternative methodologies. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity could be organized in distinguishable functional ensembles. We provide a Graphic User Interface, which facilitates the use of our method by the scientific community.
Collapse
Affiliation(s)
- Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo Morales
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Soraya Mora
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Laboratorio de Biología Computacional, Fundación Ciencia y Vida, Santiago, Chile
| | - Joaquín Araya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
| | - María-José Escobar
- Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
9
|
Gava GP, McHugh SB, Lefèvre L, Lopes-dos-Santos V, Trouche S, El-Gaby M, Schultz SR, Dupret D. Integrating new memories into the hippocampal network activity space. Nat Neurosci 2021; 24:326-330. [PMID: 33603228 PMCID: PMC7116855 DOI: 10.1038/s41593-021-00804-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023]
Abstract
By investigating the topology of neuronal co-activity, we found that mnemonic information spans multiple operational axes in the mouse hippocampus network. High-activity principal cells form the core of each memory along a first axis, segregating spatial contexts and novelty. Low-activity cells join co-activity motifs across behavioral events and enable their crosstalk along two other axes. This reveals an organizational principle for continuous integration and interaction of hippocampal memories.
Collapse
Affiliation(s)
- Giuseppe P. Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom,Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Stephen B. McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vítor Lopes-dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stéphanie Trouche
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mohamady El-Gaby
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Simon R. Schultz
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom,Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom,Correspondence: and
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom,Correspondence: and
| |
Collapse
|
10
|
Luboeinski J, Tchumatchenko T. Nonlinear response characteristics of neural networks and single neurons undergoing optogenetic excitation. Netw Neurosci 2021; 4:852-870. [PMID: 33615093 PMCID: PMC7888483 DOI: 10.1162/netn_a_00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/20/2020] [Indexed: 01/04/2023] Open
Abstract
Optogenetic stimulation has become the method of choice for investigating neural computation in populations of neurons. Optogenetic experiments often aim to elicit a network response by stimulating specific groups of neurons. However, this is complicated by the fact that optogenetic stimulation is nonlinear, more light does not always equal to more spikes, and neurons that are not directly but indirectly stimulated could have a major impact on how networks respond to optogenetic stimulation. To clarify how optogenetic excitation of some neurons alters the network dynamics, we studied the temporal and spatial response of individual neurons and recurrent neural networks. In individual neurons, we find that neurons show a monotonic, saturating rate response to increasing light intensity and a nonmonotonic rate response to increasing pulse frequency. At the network level, we find that Gaussian light beams elicit spatial firing rate responses that are substantially broader than the stimulus profile. In summary, our analysis and our network simulation code allow us to predict the outcome of an optogenetic experiment and to assess whether the observed effects can be attributed to direct or indirect stimulation of neurons. Optogenetic circuit manipulation has become a popular tool to manipulate the activity of neurons. During optogenetic stimulation, the firing rate of a neuron can rise because of direct light excitation or indirect activation via other neurons. To disentangle these influences and predict the effects of optogenetic excitation, we set up a spiking network model with controlled connectivity and studied its response to light stimulation. We find that the optogenetically evoked activity in a network can spread far beyond the light-stimulated area. We further found a nonmonotonic rate response of single neurons to increasing light intensities and frequencies. Our results help to interpret optogenetic experiments in vivo, and we provide computer code that can be customized to simulate 2D connectivity scenarios and explore their consequences.
Collapse
Affiliation(s)
- Jannik Luboeinski
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Tatjana Tchumatchenko
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Huh N, Kim SP, Lee J, Sohn JW. Extracting single-trial neural interaction using latent dynamical systems model. Mol Brain 2021; 14:32. [PMID: 33588875 PMCID: PMC7885376 DOI: 10.1186/s13041-021-00740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 11/10/2022] Open
Abstract
In systems neuroscience, advances in simultaneous recording technology have helped reveal the population dynamics that underlie the complex neural correlates of animal behavior and cognitive processes. To investigate these correlates, neural interactions are typically abstracted from spike trains of pairs of neurons accumulated over the course of many trials. However, the resultant averaged values do not lead to understanding of neural computation in which the responses of populations are highly variable even under identical external conditions. Accordingly, neural interactions within the population also show strong fluctuations. In the present study, we introduce an analysis method reflecting the temporal variation of neural interactions, in which cross-correlograms on rate estimates are applied via a latent dynamical systems model. Using this method, we were able to predict time-varying neural interactions within a single trial. In addition, the pairwise connections estimated in our analysis increased along behavioral epochs among neurons categorized within similar functional groups. Thus, our analysis method revealed that neurons in the same groups communicate more as the population gets involved in the assigned task. We also showed that the characteristics of neural interaction from our model differ from the results of a typical model employing cross-correlation coefficients. This suggests that our model can extract nonoverlapping information about network topology, unlike the typical model.
Collapse
Affiliation(s)
- Namjung Huh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, 25601, Republic of Korea.
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jeong-Woo Sohn
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, 25601, Republic of Korea. .,Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea.
| |
Collapse
|
12
|
Betzel RF. Organizing principles of whole-brain functional connectivity in zebrafish larvae. Netw Neurosci 2020; 4:234-256. [PMID: 32166210 PMCID: PMC7055648 DOI: 10.1162/netn_a_00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Network science has begun to reveal the fundamental principles by which large-scale brain networks are organized, including geometric constraints, a balance between segregative and integrative features, and functionally flexible brain areas. However, it remains unknown whether whole-brain networks imaged at the cellular level are organized according to similar principles. Here, we analyze whole-brain functional networks reconstructed from calcium imaging data recorded in larval zebrafish. Our analyses reveal that functional connections are distance-dependent and that networks exhibit hierarchical modular structure and hubs that span module boundaries. We go on to show that spontaneous network structure places constraints on stimulus-evoked reconfigurations of connections and that networks are highly consistent across individuals. Our analyses reveal basic organizing principles of whole-brain functional brain networks at the mesoscale. Our overarching methodological framework provides a blueprint for studying correlated activity at the cellular level using a low-dimensional network representation. Our work forms a conceptual bridge between macro- and mesoscale network neuroscience and opens myriad paths for future studies to investigate network structure of nervous systems at the cellular level.
Collapse
Affiliation(s)
- Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
13
|
Betzel RF, Wood KC, Angeloni C, Neimark Geffen M, Bassett DS. Stability of spontaneous, correlated activity in mouse auditory cortex. PLoS Comput Biol 2019; 15:e1007360. [PMID: 31815941 PMCID: PMC6968873 DOI: 10.1371/journal.pcbi.1007360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2020] [Accepted: 08/24/2019] [Indexed: 12/31/2022] Open
Abstract
Neural systems can be modeled as complex networks in which neural elements are represented as nodes linked to one another through structural or functional connections. The resulting network can be analyzed using mathematical tools from network science and graph theory to quantify the system’s topological organization and to better understand its function. Here, we used two-photon calcium imaging to record spontaneous activity from the same set of cells in mouse auditory cortex over the course of several weeks. We reconstruct functional networks in which cells are linked to one another by edges weighted according to the correlation of their fluorescence traces. We show that the networks exhibit modular structure across multiple topological scales and that these multi-scale modules unfold as part of a hierarchy. We also show that, on average, network architecture becomes increasingly dissimilar over time, with similarity decaying monotonically with the distance (in time) between sessions. Finally, we show that a small fraction of cells maintain strongly-correlated activity over multiple days, forming a stable temporal core surrounded by a fluctuating and variable periphery. Our work indicates a framework for studying spontaneous activity measured by two-photon calcium imaging using computational methods and graphical models from network science. The methods are flexible and easily extended to additional datasets, opening the possibility of studying cellular level network organization of neural systems and how that organization is modulated by stimuli or altered in models of disease. Neurons coordinate their activity with one another, forming networks that help support adaptive, flexible behavior. Still, little is known about the organization of these networks at the cellular scale and their stability over time. Here, we reconstruct networks from calcium imaging data recorded in mouse primary auditory cortex. We show that these networks exhibit spatially constrained, hierarchical modular structure, which may facilitate specialized information processing. However, we show that connection weights and modular structure are also variable over time, changing on a timescale of days and adopting novel network configurations. Despite this, a small subset of neurons maintain their connections to one another and preserve their modular organization across time, forming a stable temporal core surrounded by a flexible periphery. These findings represent a conceptual bridge linking network analyses of macroscale and cellular-level neuroimaging data. They also represent a complementary approach to existing circuits- and systems-based interrogation of nervous system function, opening the door for deeper and more targeted analysis in the future.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America.,Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America.,Network Science Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Katherine C Wood
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Angeloni
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria Neimark Geffen
- Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Santa Fe Institute, Santa Fa, New Mexico, United States of America
| |
Collapse
|
14
|
Fransson P, Schiffler BC, Thompson WH. Brain network segregation and integration during an epoch-related working memory fMRI experiment. Neuroimage 2018; 178:147-161. [PMID: 29777824 DOI: 10.1016/j.neuroimage.2018.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022] Open
Abstract
The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance.
Collapse
Affiliation(s)
- Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institute, Sweden.
| | | | | |
Collapse
|