1
|
Klar P, Çatal Y, Jocham G, Langner R, Northoff G. Time-dependent scale-free brain dynamics during naturalistic inputs. Neuroimage 2025; 314:121255. [PMID: 40347997 DOI: 10.1016/j.neuroimage.2025.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/20/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
Environmental processes, such as auditory and visual inputs, often follow power-law distributions with a time-dependent and constantly changing spectral exponent, β(t). However, it remains unclear how the brain's scale-free dynamics continuously respond to naturalistic inputs, such as by potentially alternating instead of static levels of the spectral exponent. Our fMRI study investigates the brain's dynamic, time-dependent spectral exponent, β(t), during movie-watching, and uses time-varying inter-subject correlation, ISC(t), to assess the extent to which input dynamics are reflected as shared brain activity across subjects in early sensory regions. Notably, we investigate the level of ISC particularly based on the modulation by time-dependent scale-free dynamics or β(t). We obtained three key findings: First, the brain's β(t) showed a distinct temporal structure in visual and auditory regions during naturalistic inputs compared to the resting-state, investigated in the 7 Tesla Human Connectome Project dataset. Second, β(t) and ISC(t) were positively correlated during naturalistic inputs. Third, grouping subjects based on the Rest-to-Movie standard deviation change of the time-dependent spectral exponent β(t) revealed that the brain's relative shift from intrinsic to stimulus-driven scale-free dynamics modulates the level of shared brain activity, or ISC(t), and thus the imprinting of inputs on brain activity. This modulation was further supported by the observation that the two groups displayed significantly different β(t)-ISC(t) correlations, where the group with a higher mean of ISC(t) during inputs also exhibited a higher β(t)-ISC(t) correlation in visual and auditory regions. In summary, our fMRI study underscores a positive relationship between time-dependent scale-free dynamics and ISC, where higher spectral exponents correspond to higher degrees of shared brain activity during ongoing audiovisual inputs.
Collapse
Affiliation(s)
- Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada
| | - Gerhard Jocham
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada
| |
Collapse
|
2
|
Runfola C, Petkoski S, Sheheitli H, Bernard C, McIntosh AR, Jirsa V. A mechanism for the emergence of low-dimensional structures in brain dynamics. NPJ Syst Biol Appl 2025; 11:32. [PMID: 40210621 PMCID: PMC11985988 DOI: 10.1038/s41540-025-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025] Open
Abstract
Recent neuroimaging advancements have led to datasets characterized by an overwhelming number of features. Different dimensionality reduction techniques have been employed to uncover low-dimensional manifold representations underlying cognitive functions, while maintaining the fundamental characteristics of the data. These range from linear algorithms to more intricate non-linear methods for manifold extraction. However, the mechanisms responsible for the emergence of these simplified architectures remain a topic of debate. Motivated by concepts from dynamical systems theory, such as averaging and time-scale separation, our study introduces a novel mechanism for the collapse of high dimension brain dynamics onto lower dimensional manifolds. In our framework, fast neuronal activity oscillations average out over time, leading to the resulting dynamics approximating task-related processes occurring at slower time scales. This leads to the emergence of low-dimensional solutions as complex dynamics collapse into slow invariant manifolds. We test this assumption via neural simulations using a simplified model and then enhance the complexity of our simulations by incorporating a large-scale brain network model to mimic realistic neuroimaging signals. We observe in the different cases the convergence of fast oscillatory fluctuations of neuronal activity across time scales that correspond to simulated behavioral configurations. Specifically, by employing various dimensionality reduction techniques and manifold extraction schemes, we observe the reduction of high-dimensional dynamics onto lower-dimensional spaces, revealing emergent low-dimensional solutions. Our findings shed light on the role of frequency and time-scale separation in neuronal activity, proposing and testing a novel theoretical framework for understanding the inner mechanisms governing low-dimensional pattern formation in brain dynamics.
Collapse
Affiliation(s)
- Claudio Runfola
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Spase Petkoski
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Hiba Sheheitli
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Anthony R McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
| | - Viktor Jirsa
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| |
Collapse
|
3
|
Ross L, Jirsa V, McIntosh A. The Possibility Space Concept in Neuroscience: Possibilities, Constraints, and Explanations. Eur J Neurosci 2025; 61:e70038. [PMID: 40075500 PMCID: PMC11903908 DOI: 10.1111/ejn.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 02/16/2025] [Indexed: 03/14/2025]
Abstract
Although the brain is often characterized as a complex system, theoretical and philosophical frameworks often struggle to capture this. For example, mainstream mechanistic accounts model neural systems as fixed and static in ways that fail to capture their dynamic nature and large set of possible behaviors. In this paper, we provide a framework for capturing a common type of complex system in neuroscience, which involves two main aspects: (i) constraints on the system and (ii) the system's possibility space of available outcomes. Our analysis merges neuroscience examples with recent work in the philosophy of science to suggest that the possibility space concept involves two essential types of constraints, which we call hard and soft constraints. Our analysis focuses on a domain-general notion of possibility space that is present in manifold frameworks and representations, phase space diagrams in dynamical systems theory, and paradigmatic cases, such as Waddington's epigenetic landscape model. After building the framework with such cases, we apply it to three main examples in neuroscience: adaptability, resilience, and phenomenology. We explore how this framework supports a philosophical toolkit for neuroscience and how it helps advance recent work in the philosophy of science on constraints, scientific explanations, and impossibility explanations. We show how fruitful connections between neuroscience and philosophy can support conceptual clarity, theoretical advances, and the identification of similar systems across different domains in neuroscience.
Collapse
Affiliation(s)
- Lauren N. Ross
- Logic and Philosophy of ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Viktor Jirsa
- Institut de Neuroscience des SystèmesAix‐Marseille UniversiteMarseilleFrance
| | | |
Collapse
|
4
|
Fousek J, Rabuffo G, Gudibanda K, Sheheitli H, Petkoski S, Jirsa V. Symmetry breaking organizes the brain's resting state manifold. Sci Rep 2024; 14:31970. [PMID: 39738729 PMCID: PMC11686292 DOI: 10.1038/s41598-024-83542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain's health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a mechanistic description of the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major data features across scales and imaging modalities. These include spontaneous high-amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the single recordings towards the brain's capacity to generate certain dynamics characteristic of health and pathology.
Collapse
Affiliation(s)
- Jan Fousek
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| | - Giovanni Rabuffo
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Kashyap Gudibanda
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Hiba Sheheitli
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Spase Petkoski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Viktor Jirsa
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
| |
Collapse
|
5
|
Misic B. Compressing human brain activity for studying brain function. PLoS Biol 2024; 22:e3002966. [PMID: 39680827 DOI: 10.1371/journal.pbio.3002966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/20/2024] [Indexed: 12/18/2024] Open
Abstract
Due to its complexity and size, the optimal scale or level at which to describe the brain remains an open question in neuroscience. A new study published in PLOS Biology shows that simplifying complex brain recordings makes them more useful for studying brain function.
Collapse
Affiliation(s)
- Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
6
|
Popova M, Messé A, Gulberti A, Gerloff C, Pötter-Nerger M, Hilgetag CC. The effect of deep brain stimulation on cortico-subcortical networks in Parkinson's disease patients with freezing of gait: Exhaustive exploration of a basic model. Netw Neurosci 2024; 8:926-945. [PMID: 39355431 PMCID: PMC11424038 DOI: 10.1162/netn_a_00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/09/2024] [Indexed: 10/03/2024] Open
Abstract
Current treatments of Parkinson's disease (PD) have limited efficacy in alleviating freezing of gait (FoG). In this context, concomitant deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the substantia nigra pars reticulata (SNr) has been suggested as a potential therapeutic approach. However, the mechanisms underlying this approach are unknown. While the current rationale relies on network-based hypotheses of intensified disinhibition of brainstem locomotor areas to facilitate the release of gait motor programs, it is still unclear how simultaneous high-frequency DBS in two interconnected basal ganglia nuclei affects large-scale cortico-subcortical network activity. Here, we use a basic model of neural excitation, the susceptible-excited-refractory (SER) model, to compare effects of different stimulation modes of the network underlying FoG based on the mouse brain connectivity atlas. We develop a network-based computational framework to compare subcortical DBS targets through exhaustive analysis of the brain attractor dynamics in the healthy, PD, and DBS states. We show that combined STN+SNr DBS outperforms STN DBS in terms of the normalization of spike propagation flow in the FoG network. The framework aims to move toward a mechanistic understanding of the network effects of DBS and may be applicable to further perturbation-based therapies of brain disorders.
Collapse
Affiliation(s)
- Mariia Popova
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Arnaud Messé
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Alessandro Gulberti
- Department of Neurology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| |
Collapse
|
7
|
Medrano J, Sajid N. A Broken Duet: Multistable Dynamics in Dyadic Interactions. ENTROPY (BASEL, SWITZERLAND) 2024; 26:731. [PMID: 39330066 PMCID: PMC11431444 DOI: 10.3390/e26090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Misunderstandings in dyadic interactions often persist despite our best efforts, particularly between native and non-native speakers, resembling a broken duet that refuses to harmonise. This paper delves into the computational mechanisms underpinning these misunderstandings through the lens of the broken Lorenz system-a continuous dynamical model. By manipulating a specific parameter regime, we induce bistability within the Lorenz equations, thereby confining trajectories to distinct attractors based on initial conditions. This mirrors the persistence of divergent interpretations that often result in misunderstandings. Our simulations reveal that differing prior beliefs between interlocutors result in misaligned generative models, leading to stable yet divergent states of understanding when exposed to the same percept. Specifically, native speakers equipped with precise (i.e., overconfident) priors expect inputs to align closely with their internal models, thus struggling with unexpected variations. Conversely, non-native speakers with imprecise (i.e., less confident) priors exhibit a greater capacity to adjust and accommodate unforeseen inputs. Our results underscore the important role of generative models in facilitating mutual understanding (i.e., establishing a shared narrative) and highlight the necessity of accounting for multistable dynamics in dyadic interactions.
Collapse
Affiliation(s)
- Johan Medrano
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Noor Sajid
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany;
| |
Collapse
|
8
|
Wolman A, Çatal Y, Klar P, Steffener J, Northoff G. Repertoire of timescales in uni - and transmodal regions mediate working memory capacity. Neuroimage 2024; 291:120602. [PMID: 38579900 DOI: 10.1016/j.neuroimage.2024.120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Working memory (WM) describes the dynamic process of maintenance and manipulation of information over a certain time delay. Neuronally, WM recruits a distributed network of cortical regions like the visual and dorsolateral prefrontal cortex as well as the subcortical hippocampus. How the input dynamics and subsequent neural dynamics impact WM remains unclear though. To answer this question, we combined the analysis of behavioral WM capacity with measuring neural dynamics through task-related power spectrum changes, e.g., median frequency (MF) in functional magnetic resonance imaging (fMRI). We show that the processing of the input dynamics, e.g., the task structure's specific timescale, leads to changes in the unimodal visual cortex's corresponding timescale which also relates to working memory capacity. While the more transmodal hippocampus relates to working memory capacity through its balance across multiple timescales or frequencies. In conclusion, we here show the relevance of both input dynamics and different neural timescales for WM capacity in uni - and transmodal regions like visual cortex and hippocampus for the subject's WM performance.
Collapse
Affiliation(s)
- Angelika Wolman
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada; Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada.
| | - Yasir Çatal
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jason Steffener
- Interdisciplinary School of Health Science, University of Ottawa, 200 Lees Ave, Ottawa, ON K1N 6N5, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
9
|
Latifi S, Carmichael ST. The emergence of multiscale connectomics-based approaches in stroke recovery. Trends Neurosci 2024; 47:303-318. [PMID: 38402008 DOI: 10.1016/j.tins.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/26/2024]
Abstract
Stroke is a leading cause of adult disability. Understanding stroke damage and recovery requires deciphering changes in complex brain networks across different spatiotemporal scales. While recent developments in brain readout technologies and progress in complex network modeling have revolutionized current understanding of the effects of stroke on brain networks at a macroscale, reorganization of smaller scale brain networks remains incompletely understood. In this review, we use a conceptual framework of graph theory to define brain networks from nano- to macroscales. Highlighting stroke-related brain connectivity studies at multiple scales, we argue that multiscale connectomics-based approaches may provide new routes to better evaluate brain structural and functional remapping after stroke and during recovery.
Collapse
Affiliation(s)
- Shahrzad Latifi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Medrano J, Friston K, Zeidman P. Linking fast and slow: The case for generative models. Netw Neurosci 2024; 8:24-43. [PMID: 38562283 PMCID: PMC10861163 DOI: 10.1162/netn_a_00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
A pervasive challenge in neuroscience is testing whether neuronal connectivity changes over time due to specific causes, such as stimuli, events, or clinical interventions. Recent hardware innovations and falling data storage costs enable longer, more naturalistic neuronal recordings. The implicit opportunity for understanding the self-organised brain calls for new analysis methods that link temporal scales: from the order of milliseconds over which neuronal dynamics evolve, to the order of minutes, days, or even years over which experimental observations unfold. This review article demonstrates how hierarchical generative models and Bayesian inference help to characterise neuronal activity across different time scales. Crucially, these methods go beyond describing statistical associations among observations and enable inference about underlying mechanisms. We offer an overview of fundamental concepts in state-space modeling and suggest a taxonomy for these methods. Additionally, we introduce key mathematical principles that underscore a separation of temporal scales, such as the slaving principle, and review Bayesian methods that are being used to test hypotheses about the brain with multiscale data. We hope that this review will serve as a useful primer for experimental and computational neuroscientists on the state of the art and current directions of travel in the complex systems modelling literature.
Collapse
Affiliation(s)
- Johan Medrano
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Zeidman
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
11
|
Ross LN, Bassett DS. Causation in neuroscience: keeping mechanism meaningful. Nat Rev Neurosci 2024; 25:81-90. [PMID: 38212413 DOI: 10.1038/s41583-023-00778-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
A fundamental goal of research in neuroscience is to uncover the causal structure of the brain. This focus on causation makes sense, because causal information can provide explanations of brain function and identify reliable targets with which to understand cognitive function and prevent or change neurological conditions and psychiatric disorders. In this research, one of the most frequently used causal concepts is 'mechanism' - this is seen in the literature and language of the field, in grant and funding inquiries that specify what research is supported, and in journal guidelines on which contributions are considered for publication. In these contexts, mechanisms are commonly tied to expressions of the main aims of the field and cited as the 'fundamental', 'foundational' and/or 'basic' unit for understanding the brain. Despite its common usage and perceived importance, mechanism is used in different ways that are rarely distinguished. Given that this concept is defined in different ways throughout the field - and that there is often no clarification of which definition is intended - there remains a marked ambiguity about the fundamental goals, orientation and principles of the field. Here we provide an overview of causation and mechanism from the perspectives of neuroscience and philosophy of science, in order to address these challenges.
Collapse
Affiliation(s)
- Lauren N Ross
- Department of Logic and Philosophy of Science, University of California, Irvine, Irvine, CA, USA.
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
12
|
Faber SEM, Belden AG, Loui P, McIntosh R. Age-related variability in network engagement during music listening. Netw Neurosci 2023; 7:1404-1419. [PMID: 38144689 PMCID: PMC10713012 DOI: 10.1162/netn_a_00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 12/26/2023] Open
Abstract
Listening to music is an enjoyable behaviour that engages multiple networks of brain regions. As such, the act of music listening may offer a way to interrogate network activity, and to examine the reconfigurations of brain networks that have been observed in healthy aging. The present study is an exploratory examination of brain network dynamics during music listening in healthy older and younger adults. Network measures were extracted and analyzed together with behavioural data using a combination of hidden Markov modelling and partial least squares. We found age- and preference-related differences in fMRI data collected during music listening in healthy younger and older adults. Both age groups showed higher occupancy (the proportion of time a network was active) in a temporal-mesolimbic network while listening to self-selected music. Activity in this network was strongly positively correlated with liking and familiarity ratings in younger adults, but less so in older adults. Additionally, older adults showed a higher degree of correlation between liking and familiarity ratings consistent with past behavioural work on age-related dedifferentiation. We conclude that, while older adults do show network and behaviour patterns consistent with dedifferentiation, activity in the temporal-mesolimbic network is relatively robust to dedifferentiation. These findings may help explain how music listening remains meaningful and rewarding in old age.
Collapse
Affiliation(s)
- Sarah E. M. Faber
- University of Toronto, Toronto, ON, Canada
- Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
13
|
Petkoski S, Ritter P, Jirsa VK. White-matter degradation and dynamical compensation support age-related functional alterations in human brain. Cereb Cortex 2023; 33:6241-6256. [PMID: 36611231 PMCID: PMC10183745 DOI: 10.1093/cercor/bhac500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 01/09/2023] Open
Abstract
Structural connectivity of the brain at different ages is analyzed using diffusion-weighted magnetic resonance imaging (MRI) data. The largest decrease of streamlines is found in frontal regions and for long inter-hemispheric links. The average length of the tracts also decreases, but the clustering is unaffected. From functional MRI we identify age-related changes of dynamic functional connectivity (dFC) and spatial covariation features of functional connectivity (FC) links captured by metaconnectivity. They indicate more stable dFC, but wider range and variance of MC, whereas static features of FC did not show any significant differences with age. We implement individual connectivity in whole-brain models and test several hypotheses for the mechanisms of operation among underlying neural system. We demonstrate that age-related functional fingerprints are only supported if the model accounts for: (i) compensation of the individual brains for the overall loss of structural connectivity and (ii) decrease of propagation velocity due to the loss of myelination. We also show that with these 2 conditions, it is sufficient to decompose the time-delays as bimodal distribution that only distinguishes between intra- and inter-hemispheric delays, and that the same working point also captures the static FC the best, and produces the largest variability at slow time-scales.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
14
|
Kotler S, Mannino M, Kelso S, Huskey R. First few seconds for flow: A comprehensive proposal of the neurobiology and neurodynamics of state onset. Neurosci Biobehav Rev 2022; 143:104956. [PMID: 36368525 DOI: 10.1016/j.neubiorev.2022.104956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Flow is a cognitive state that manifests when there is complete attentional absorption while performing a task. Flow occurs when certain internal as well as external conditions are present, including intense concentration, a sense of control, feedback, and a balance between the challenge of the task and the relevant skillset. Phenomenologically, flow is accompanied by a loss of self-consciousness, seamless integration of action and awareness, and acute changes in time perception. Research has begun to uncover some of the neurophysiological correlates of flow, as well as some of the state's neuromodulatory processes. We comprehensively review this work and consider the neurodynamics of the onset of the state, considering large-scale brain networks, as well as dopaminergic, noradrenergic, and endocannabinoid systems. To accomplish this, we outline an evidence-based hypothetical situation, and consider the flow state in a broader context including other profound alterations in consciousness, such as the psychedelic state and the state of traumatic stress that can induce PTSD. We present a broad theoretical framework which may motivate future testable hypotheses.
Collapse
Affiliation(s)
| | | | - Scott Kelso
- Human Brain & Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, United States; Intelligent Systems Research Centre, Ulster University, Derry∼Londonderry, North Ireland
| | - Richard Huskey
- Cognitive Communication Science Lab, Department of Communication, University of California Davis, United States; Cognitive Science Program, University of California Davis, United States; Center for Mind and Brain, University of California Davis, United States.
| |
Collapse
|
15
|
John YJ, Sawyer KS, Srinivasan K, Müller EJ, Munn BR, Shine JM. It's about time: Linking dynamical systems with human neuroimaging to understand the brain. Netw Neurosci 2022; 6:960-979. [PMID: 36875012 PMCID: PMC9976648 DOI: 10.1162/netn_a_00230] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022] Open
Abstract
Most human neuroscience research to date has focused on statistical approaches that describe stationary patterns of localized neural activity or blood flow. While these patterns are often interpreted in light of dynamic, information-processing concepts, the static, local, and inferential nature of the statistical approach makes it challenging to directly link neuroimaging results to plausible underlying neural mechanisms. Here, we argue that dynamical systems theory provides the crucial mechanistic framework for characterizing both the brain's time-varying quality and its partial stability in the face of perturbations, and hence, that this perspective can have a profound impact on the interpretation of human neuroimaging results and their relationship with behavior. After briefly reviewing some key terminology, we identify three key ways in which neuroimaging analyses can embrace a dynamical systems perspective: by shifting from a local to a more global perspective, by focusing on dynamics instead of static snapshots of neural activity, and by embracing modeling approaches that map neural dynamics using "forward" models. Through this approach, we envisage ample opportunities for neuroimaging researchers to enrich their understanding of the dynamic neural mechanisms that support a wide array of brain functions, both in health and in the setting of psychopathology.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Kayle S. Sawyer
- Departments of Anatomy and Neurobiology, Boston University, Boston University, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
- Sawyer Scientific, LLC, Boston, MA, USA
| | - Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eli J. Müller
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Brandon R. Munn
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Jha J, Hashemi M, Vattikonda AN, Wang H, Jirsa V. Fully Bayesian estimation of virtual brain parameters with self-tuning Hamiltonian Monte Carlo. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac9037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Virtual brain models are data-driven patient-specific brain models integrating individual brain imaging data with neural mass modeling in a single computational framework, capable of autonomously generating brain activity and its associated brain imaging signals. Along the example of epilepsy, we develop an efficient and accurate Bayesian methodology estimating the parameters linked to the extent of the epileptogenic zone. State-of-the-art advances in Bayesian inference using Hamiltonian Monte Carlo (HMC) algorithms have remained elusive for large-scale differential-equations based models due to their slow convergence. We propose appropriate priors and a novel reparameterization to facilitate efficient exploration of the posterior distribution in terms of computational time and convergence diagnostics. The methodology is illustrated for in-silico dataset and then, applied to infer the personalized model parameters based on the empirical stereotactic electroencephalography (SEEG) recordings of retrospective patients. This improved methodology may pave the way to render HMC methods sufficiently easy and efficient to use, thus applicable in personalized medicine.
Collapse
|
17
|
D'Angelo E, Jirsa V. The quest for multiscale brain modeling. Trends Neurosci 2022; 45:777-790. [PMID: 35906100 DOI: 10.1016/j.tins.2022.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 01/07/2023]
Abstract
Addressing the multiscale organization of the brain, which is fundamental to the dynamic repertoire of the organ, remains challenging. In principle, it should be possible to model neurons and synapses in detail and then connect them into large neuronal assemblies to explain the relationship between microscopic phenomena, large-scale brain functions, and behavior. It is more difficult to infer neuronal functions from ensemble measurements such as those currently obtained with brain activity recordings. In this article we consider theories and strategies for combining bottom-up models, generated from principles of neuronal biophysics, with top-down models based on ensemble representations of network activity and on functional principles. These integrative approaches are hoped to provide effective multiscale simulations in virtual brains and neurorobots, and pave the way to future applications in medicine and information technologies.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, and Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy.
| | - Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1106, Centre National de la Recherche Scientifique (CNRS), and University of Aix-Marseille, Marseille, France
| |
Collapse
|
18
|
Cabral J, Jirsa V, Popovych OV, Torcini A, Yanchuk S. Editorial: From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and Noise. Front Syst Neurosci 2022; 16:871165. [PMID: 35528150 PMCID: PMC9069101 DOI: 10.3389/fnsys.2022.871165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Joana Cabral
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Viktor Jirsa
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Oleksandr V. Popovych
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM7), Research Centre Jülich, Jülich, Germany
| | - Alessandro Torcini
- CY Cergy Paris Université, Laboratoire de Physique Théorique et Modélisation, CNRS, UMR 8089, Cergy, France
| | - Serhiy Yanchuk
- Research Department Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Serhiy Yanchuk
| |
Collapse
|
19
|
Varley TF, Sporns O. Network Analysis of Time Series: Novel Approaches to Network Neuroscience. Front Neurosci 2022; 15:787068. [PMID: 35221887 PMCID: PMC8874015 DOI: 10.3389/fnins.2021.787068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, there has been an explosion of interest in modeling the brain as a network, where nodes correspond variously to brain regions or neurons, and edges correspond to structural or statistical dependencies between them. This kind of network construction, which preserves spatial, or structural, information while collapsing across time, has become broadly known as "network neuroscience." In this work, we provide an alternative application of network science to neural data: network-based analysis of non-linear time series and review applications of these methods to neural data. Instead of preserving spatial information and collapsing across time, network analysis of time series does the reverse: it collapses spatial information, instead preserving temporally extended dynamics, typically corresponding to evolution through some kind of phase/state-space. This allows researchers to infer a, possibly low-dimensional, "intrinsic manifold" from empirical brain data. We will discuss three methods of constructing networks from nonlinear time series, and how to interpret them in the context of neural data: recurrence networks, visibility networks, and ordinal partition networks. By capturing typically continuous, non-linear dynamics in the form of discrete networks, we show how techniques from network science, non-linear dynamics, and information theory can extract meaningful information distinct from what is normally accessible in standard network neuroscience approaches.
Collapse
Affiliation(s)
- Thomas F. Varley
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
20
|
Ziegler C, Skardal PS, Dutta H, Taylor D. Balanced Hodge Laplacians optimize consensus dynamics over simplicial complexes. CHAOS (WOODBURY, N.Y.) 2022; 32:023128. [PMID: 35232052 DOI: 10.1063/5.0080370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Despite the vast literature on network dynamics, we still lack basic insights into dynamics on higher-order structures (e.g., edges, triangles, and more generally, k-dimensional "simplices") and how they are influenced through higher-order interactions. A prime example lies in neuroscience where groups of neurons (not individual ones) may provide building blocks for neurocomputation. Here, we study consensus dynamics on edges in simplicial complexes using a type of Laplacian matrix called a Hodge Laplacian, which we generalize to allow higher- and lower-order interactions to have different strengths. Using techniques from algebraic topology, we study how collective dynamics converge to a low-dimensional subspace that corresponds to the homology space of the simplicial complex. We use the Hodge decomposition to show that higher- and lower-order interactions can be optimally balanced to maximally accelerate convergence and that this optimum coincides with a balancing of dynamics on the curl and gradient subspaces. We additionally explore the effects of network topology, finding that consensus over edges is accelerated when two-simplices are well dispersed, as opposed to clustered together.
Collapse
Affiliation(s)
- Cameron Ziegler
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | | | - Haimonti Dutta
- Management Science and Systems Department, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Dane Taylor
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
21
|
Schirner M, Kong X, Yeo BTT, Deco G, Ritter P. Dynamic primitives of brain network interaction Special Issue "Advances in Mapping the Connectome". Neuroimage 2022; 250:118928. [PMID: 35101596 DOI: 10.1016/j.neuroimage.2022.118928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
What dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled neural populations in brain network models (BNMs). From detailed spiking networks to more abstract population models, there is strong support for the idea that the brain operates near critical instabilities that give rise to multistable or metastable dynamics that in turn lead to the intermittently synchronized slow oscillations underlying FC(D). We explore further consequences from these fundamental mechanisms and how they fit with reality. We conclude by highlighting the need for integrative brain models that connect separate mechanisms across levels of description and spatiotemporal scales and link them with cognitive function.
Collapse
Affiliation(s)
- Michael Schirner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| | - Xiaolu Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Clayton, Australia
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| |
Collapse
|
22
|
Focal neural perturbations reshape low-dimensional trajectories of brain activity supporting cognitive performance. Nat Commun 2022; 13:4. [PMID: 35013147 PMCID: PMC8749005 DOI: 10.1038/s41467-021-26978-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022] Open
Abstract
The emergence of distributed patterns of neural activity supporting brain functions and behavior can be understood by study of the brain's low-dimensional topology. Functional neuroimaging demonstrates that brain activity linked to adaptive behavior is constrained to low-dimensional manifolds. In human participants, we tested whether these low-dimensional constraints preserve working memory performance following local neuronal perturbations. We combined multi-session functional magnetic resonance imaging, non-invasive transcranial magnetic stimulation (TMS), and methods translated from the fields of complex systems and computational biology to assess the functional link between changes in local neural activity and the reshaping of task-related low dimensional trajectories of brain activity. We show that specific reconfigurations of low-dimensional trajectories of brain activity sustain effective working memory performance following TMS manipulation of local activity on, but not off, the space traversed by these trajectories. We highlight an association between the multi-scale changes in brain activity underpinning cognitive function.
Collapse
|
23
|
Lee KM, Ferreira-Santos F, Satpute AB. Predictive processing models and affective neuroscience. Neurosci Biobehav Rev 2021; 131:211-228. [PMID: 34517035 PMCID: PMC9074371 DOI: 10.1016/j.neubiorev.2021.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/10/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023]
Abstract
The neural bases of affective experience remain elusive. Early neuroscience models of affect searched for specific brain regions that uniquely carried out the computations that underlie dimensions of valence and arousal. However, a growing body of work has failed to identify these circuits. Research turned to multivariate analyses, but these strategies, too, have made limited progress. Predictive processing models offer exciting new directions to address this problem. Here, we use predictive processing models as a lens to critique prevailing functional neuroimaging research practices in affective neuroscience. Our review highlights how much work relies on rigid assumptions that are inconsistent with a predictive processing approach. We outline the central aspects of a predictive processing model and draw out their implications for research in affective and cognitive neuroscience. Predictive models motivate a reformulation of "reverse inference" in cognitive neuroscience, and placing a greater emphasis on external validity in experimental design.
Collapse
Affiliation(s)
- Kent M Lee
- Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02118, USA.
| | - Fernando Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal
| | - Ajay B Satpute
- Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02118, USA
| |
Collapse
|
24
|
Owen LLW, Chang TH, Manning JR. High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns. Nat Commun 2021; 12:5728. [PMID: 34593791 PMCID: PMC8484677 DOI: 10.1038/s41467-021-25876-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain's functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain.
Collapse
Affiliation(s)
- Lucy L W Owen
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Thomas H Chang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
- Amazon.com, Seattle, WA, USA
| | - Jeremy R Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
25
|
Sorrentino P, Seguin C, Rucco R, Liparoti M, Troisi Lopez E, Bonavita S, Quarantelli M, Sorrentino G, Jirsa V, Zalesky A. The structural connectome constrains fast brain dynamics. eLife 2021; 10:67400. [PMID: 34240702 PMCID: PMC8294846 DOI: 10.7554/elife.67400] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural connections comprising the human connectome are hypothesized to impose constraints on the dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the extent to which fast neural dynamics in the human brain are constrained by structural connections inferred from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain activity at the millisecond scale from source-reconstructed MEG data, estimating the probability that any two brain regions will significantly deviate from baseline activity in consecutive time epochs. We find that the structural connectome relates to, and likely affects, the rapid spreading of neuronal avalanches, evidenced by a significant association between these transition probabilities and structural connectivity strengths (r = 0.37, p<0.0001). This finding opens new avenues to study the relationship between brain structure and neural dynamics.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy.,Institute for Diagnosis and Cure Hermitage Capodimonte, Naples, Italy.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Caio Seguin
- University of Melbourne, Melbourne, Australia
| | - Rosaria Rucco
- Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy.,Institute for Diagnosis and Cure Hermitage Capodimonte, Naples, Italy
| | - Marianna Liparoti
- Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy.,Institute for Diagnosis and Cure Hermitage Capodimonte, Naples, Italy
| | - Emahnuel Troisi Lopez
- Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy.,Institute for Diagnosis and Cure Hermitage Capodimonte, Naples, Italy
| | | | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| | - Giuseppe Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Viktor Jirsa
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | | |
Collapse
|
26
|
Hashemi M, Vattikonda AN, Sip V, Diaz-Pier S, Peyser A, Wang H, Guye M, Bartolomei F, Woodman MM, Jirsa VK. On the influence of prior information evaluated by fully Bayesian criteria in a personalized whole-brain model of epilepsy spread. PLoS Comput Biol 2021; 17:e1009129. [PMID: 34260596 PMCID: PMC8312957 DOI: 10.1371/journal.pcbi.1009129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 07/26/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
Individualized anatomical information has been used as prior knowledge in Bayesian inference paradigms of whole-brain network models. However, the actual sensitivity to such personalized information in priors is still unknown. In this study, we introduce the use of fully Bayesian information criteria and leave-one-out cross-validation technique on the subject-specific information to assess different epileptogenicity hypotheses regarding the location of pathological brain areas based on a priori knowledge from dynamical system properties. The Bayesian Virtual Epileptic Patient (BVEP) model, which relies on the fusion of structural data of individuals, a generative model of epileptiform discharges, and a self-tuning Monte Carlo sampling algorithm, is used to infer the spatial map of epileptogenicity across different brain areas. Our results indicate that measuring the out-of-sample prediction accuracy of the BVEP model with informative priors enables reliable and efficient evaluation of potential hypotheses regarding the degree of epileptogenicity across different brain regions. In contrast, while using uninformative priors, the information criteria are unable to provide strong evidence about the epileptogenicity of brain areas. We also show that the fully Bayesian criteria correctly assess different hypotheses about both structural and functional components of whole-brain models that differ across individuals. The fully Bayesian information-theory based approach used in this study suggests a patient-specific strategy for epileptogenicity hypothesis testing in generative brain network models of epilepsy to improve surgical outcomes.
Collapse
Affiliation(s)
- Meysam Hashemi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Viktor Sip
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Sandra Diaz-Pier
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Peyser
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
- Google, München, Germany
| | - Huifang Wang
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Fabrice Bartolomei
- Epileptology Department, and Clinical Neurophysiology Department, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | | | - Viktor K. Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
27
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
28
|
Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states. Nat Commun 2020; 11:6337. [PMID: 33303766 PMCID: PMC7729877 DOI: 10.1038/s41467-020-19716-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023] Open
Abstract
The biological mechanisms that allow the brain to balance flexibility and integration remain poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate that increasing diffuse cortical coupling within a validated biophysical corticothalamic model traverses the system through a quasi-critical regime in which spatial heterogeneities in input noise support transient critical dynamics in distributed subregions. The presence of quasi-critical states coincides with known signatures of complex, adaptive brain network dynamics. Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain human neuroimaging data. Together, our results establish that modulating the balance between local and diffuse synaptic coupling in a thalamocortical model subtends the emergence of quasi-critical brain states that act to flexibly transition the brain between unique modes of information processing.
Collapse
|
29
|
Muthoharoh L, Hardhienata H, Alatas H. Modified Asano-Ohya-Khrennikov quantum-like model for decision-making process in a two-player game with nonlinear self- and cross-interaction terms of brain's amygdala and prefrontal-cortex. J Biol Phys 2020; 46:297-307. [PMID: 32710262 PMCID: PMC7501371 DOI: 10.1007/s10867-020-09553-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
In this report, we propose a modification on the Asano-Ohya-Khrennikov
quantum-like decision-making process model of a two-player game by adding additional
nonlinear terms to the related comparison step dynamical equation. The additions are
in the form of a self-interaction and cross-interaction of the brain’s
amygdala and prefrontal cortex. We show that the cross-interaction significantly
determines the final decision of a player, whether it becomes a rational or an
irrational choice. In contrast, the nonlinear self-interaction term provides a
feedback mechanism that speeds up the corresponding decision-making process. We also
suggest the form of expectation values of the overall reaction rate coefficients of
those nonlinear terms by making an analogy with the original model
formulation.
Collapse
Affiliation(s)
- Luluk Muthoharoh
- Theoretical Physics Division, Department of Physics, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Hendradi Hardhienata
- Theoretical Physics Division, Department of Physics, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Husin Alatas
- Theoretical Physics Division, Department of Physics, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia.
| |
Collapse
|
30
|
Battaglia D, Boudou T, Hansen ECA, Lombardo D, Chettouf S, Daffertshofer A, McIntosh AR, Zimmermann J, Ritter P, Jirsa V. Dynamic Functional Connectivity between order and randomness and its evolution across the human adult lifespan. Neuroimage 2020; 222:117156. [PMID: 32698027 DOI: 10.1016/j.neuroimage.2020.117156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Functional Connectivity (FC) during resting-state or task conditions is not static but inherently dynamic. Yet, there is no consensus on whether fluctuations in FC may resemble isolated transitions between discrete FC states rather than continuous changes. This quarrel hampers advancing the study of dynamic FC. This is unfortunate as the structure of fluctuations in FC can certainly provide more information about developmental changes, aging, and progression of pathologies. We merge the two perspectives and consider dynamic FC as an ongoing network reconfiguration, including a stochastic exploration of the space of possible steady FC states. The statistical properties of this random walk deviate both from a purely "order-driven" dynamics, in which the mean FC is preserved, and from a purely "randomness-driven" scenario, in which fluctuations of FC remain uncorrelated over time. Instead, dynamic FC has a complex structure endowed with long-range sequential correlations that give rise to transient slowing and acceleration epochs in the continuous flow of reconfiguration. Our analysis for fMRI data in healthy elderly revealed that dynamic FC tends to slow down and becomes less complex as well as more random with increasing age. These effects appear to be strongly associated with age-related changes in behavioural and cognitive performance.
Collapse
Affiliation(s)
- Demian Battaglia
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France.
| | - Thomas Boudou
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France; ENSTA ParisTech, F-91762, Palaiseau, France.
| | - Enrique C A Hansen
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France; Institut de biologie de l'Ecole normale supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75005, Paris, France.
| | - Diego Lombardo
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France.
| | - Sabrina Chettouf
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, D-10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, D-10117, Berlin, Germany; Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, the Netherlands.
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, the Netherlands.
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, M6A 2E1, Canada.
| | - Joelle Zimmermann
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, D-10117, Berlin, Germany; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, M6A 2E1, Canada.
| | - Petra Ritter
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, D-10117, Berlin, Germany; Bernstein Center for Computational Neuroscience, D-10117, Berlin, Germany.
| | - Viktor Jirsa
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France.
| |
Collapse
|
31
|
Hashemi M, Vattikonda AN, Sip V, Guye M, Bartolomei F, Woodman MM, Jirsa VK. The Bayesian Virtual Epileptic Patient: A probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. Neuroimage 2020; 217:116839. [PMID: 32387625 DOI: 10.1016/j.neuroimage.2020.116839] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
Despite the importance and frequent use of Bayesian frameworks in brain network modeling for parameter inference and model prediction, the advanced sampling algorithms implemented in probabilistic programming languages to overcome the inference difficulties have received relatively little attention in this context. In this technical note, we propose a probabilistic framework, namely the Bayesian Virtual Epileptic Patient (BVEP), which relies on the fusion of structural data of individuals to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. To invert the individualized whole-brain model employed in this study, we use the recently developed algorithms known as No-U-Turn Sampler (NUTS) as well as Automatic Differentiation Variational Inference (ADVI). Our results indicate that NUTS and ADVI accurately estimate the degree of epileptogenicity of brain regions, therefore, the hypothetical brain areas responsible for the seizure initiation and propagation, while the convergence diagnostics and posterior behavior analysis validate the reliability of the estimations. Moreover, we illustrate the efficiency of the transformed non-centered parameters in comparison to centered form of parameterization. The Bayesian framework used in this work proposes an appropriate patient-specific strategy for estimating the epileptogenicity of the brain regions to improve outcome after epilepsy surgery.
Collapse
Affiliation(s)
- M Hashemi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - A N Vattikonda
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - V Sip
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - M Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - F Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Epileptology Department, and Clinical Neurophysiology Department, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - M M Woodman
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - V K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
32
|
Faber SEM, McIntosh AR. Towards a standard model of musical improvisation. Eur J Neurosci 2020; 51:840-849. [DOI: 10.1111/ejn.14567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
|