1
|
Vakili-Azghandi M, Mollazadeh S, Ghaemi A, Ramezani M, Alibolandi M. Dendrimer-based nanomedicines for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:317-347. [DOI: 10.1016/b978-0-443-18770-4.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Blokhin AN, Dudkina MM, Tenkovtsev AV. Ionic Ring-Opening Polymerization for the Synthesis of Star-Shaped Polymers. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Singh J, Steele TWJ, Lim S. Fibrillated bacterial cellulose liquid carbene bioadhesives for mimicking and bonding oral cavity surfaces. J Mater Chem B 2022; 10:2570-2583. [PMID: 34981107 DOI: 10.1039/d1tb02044g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Topical treatments for oral wounds and infections exhibit weak adhesion to wet surfaces which results in short retention duration (6-8 hours), frequent dosing requirement and patient incompatibility. To address these limitations, aqueous composites made of fibrillated bacterial cellulose and photoactive bioadhesives are designed for soft epithelial surfaces. The aqueous composites crosslink upon photocuring within a minute and exhibit a transition from viscous to elastic adhesive hydrogels. The light-cured composites have shear moduli mimicking oral mucosa and other soft tissues. The tunable adhesion strength ranges from 3 to 35 kPa on hydrated tissue-mimicking surfaces (collagen film). The results support the application of bacterial cellulose hydrogel systems for potential treatment of mucosal wounds.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| |
Collapse
|
4
|
Oledzka E, Pachowska D, Orłowska K, Kolmas J, Drobniewska A, Figat R, Sobczak M. Pamidronate-Conjugated Biodegradable Branched Copolyester Carriers: Synthesis and Characterization. Molecules 2017; 22:molecules22071063. [PMID: 28672871 PMCID: PMC6151985 DOI: 10.3390/molecules22071063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 01/07/2023] Open
Abstract
The need for development of comprehensive therapeutic systems, (e.g., polymer-apatite composites) as a bone substitute material has previously been highlighted in many scientific reports. The aim of this study was to develop a new multifunctional composite based on hydroxyapatite porous granules doped with selenite ions (SeO₃2-) and a biodegradable branched copolymer-bisphosphonate conjugate as a promising bone substitute material for patients with bone tumours or bone metastasis. A series of biodegradable and branched copolymer matrices, adequate for delivery of bisphosphonate in the bone-deficient area were synthesized and physico-chemically and biologically (cyto- and genotoxicity assays) characterized. Branched copolymers were obtained using a hyperbranched bis-MPA polyester-16-hydroxyl initiator and Sn(Oct)₂, a (co)catalyst of the ring-opening polymerization (ROP) of l,l-lactide (LLA) and ε-caprolactone (CL). A new amide bond was formed between the hydroxyl end groups of the synthesized copolymer carriers and an amine group of pamidronate (PAM)-the drug inhibiting bone resorption and osteoclast activity in bone. The dependence of the physico-chemical properties of the copolymer matrices on the kinetic release of PAM from the synthesized branched copolymer conjugate-coated hydroxyapatite granules doped with selenite ions was observed. Moreover, the correlation of these results with the hydrolytic degradation data of the synthesized matrices was evidenced. Therefore, the developed composite porous hydroxyapatite doped with SeO₃2- ions/biodegradable copolymer-PAM conjugate appears most attractive as a bone substitute material for cancer patients.
Collapse
Affiliation(s)
- Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division, Banacha 1, 02-097 Warsaw, Poland.
| | - Dagmara Pachowska
- Department of Biomaterials Chemistry, Chair of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division, Banacha 1, 02-097 Warsaw, Poland.
| | - Katarzyna Orłowska
- Department of Biomaterials Chemistry, Chair of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division, Banacha 1, 02-097 Warsaw, Poland.
| | - Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Chair of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division, Banacha 1, 02-097 Warsaw, Poland.
| | - Agata Drobniewska
- Department of Environmental Health Science, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division, Banacha 1, 02-097 Warsaw, Poland.
| | - Ramona Figat
- Department of Environmental Health Science, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division, Banacha 1, 02-097 Warsaw, Poland.
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
5
|
Luo SH, Wu YC, Cao L, Wang QF, Chen SX, Hao ZF, Jing L, Wang ZY. One-pot preparation of polylactic acid-ibuprofen conjugates and their performance characterization. Polym Chem 2017. [DOI: 10.1039/c7py01213f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merging esterification modification, carrier preparation, and chemical conjugation into a one-pot reaction as a new strategy for developing the polylactic acid-ibuprofen conjugates is described.
Collapse
Affiliation(s)
- Shi-He Luo
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou 510006
| | - Yan-Cheng Wu
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou 510006
| | - Liang Cao
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou 510006
| | - Qun-Fang Wang
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou 510006
| | - Shui-Xia Chen
- PCFM Lab
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zhi-Feng Hao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Le Jing
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou 510006
| | - Zhao-Yang Wang
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou 510006
| |
Collapse
|
6
|
Conjugation of ß-Adrenergic Antagonist Alprenolol to Implantable Polymer-Aescin Matrices for Local Delivery. Polymers (Basel) 2015. [DOI: 10.3390/polym7091484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
7
|
Stebbins ND, Yu W, Uhrich KE. Enzymatic Polymerization of an Ibuprofen-Containing Monomer and Subsequent Drug Release. Macromol Biosci 2015; 15:1115-24. [PMID: 25879779 PMCID: PMC4534339 DOI: 10.1002/mabi.201500030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Indexed: 11/10/2022]
Abstract
Novel ibuprofen-containing monomers comprising naturally occurring and biocompatible compounds were synthesized and subsequently polymerized via enzymatic methods. Through the use of a malic acid sugar backbone, ibuprofen was attached as a pendant group, and then subsequently polymerized with a linear aliphatic diol (1,3-propanediol, 1,5-pentanediol, or 1,8-octanediol) as comonomer using lipase B from Candida antarctica, a greener alternative to traditional metal catalysts. Polymer structures were elucidated by nuclear magnetic resonance and infrared spectroscopies, and thermal properties and molecular weights were determined. All polymers exhibited sustained ibuprofen release, with the longer chain, more hydrophobic diols exhibiting the slowest release over the 30 d study. Polymers were deemed cytocompatible using mouse fibroblasts, when evaluated at relevant therapeutic concentrations. Additionally, ibuprofen retained its chemical integrity throughout the polymerization and in vitro hydrolytic degradation processes. This methodology of enzymatic polymerization of a drug presents a more environmentally friendly synthesis and a novel approach to bioactive polymer conjugates.
Collapse
Affiliation(s)
- Nicholas D Stebbins
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA
| | - Weiling Yu
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854-8087, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA.
| |
Collapse
|
8
|
Oledzka E, Sobczak M, Nalecz-Jawecki G, Skrzypczak A, Kolodziejski W. Ampicillin-ester bonded branched polymers: characterization, cyto-, genotoxicity and controlled drug-release behaviour. Molecules 2014; 19:7543-56. [PMID: 24914899 PMCID: PMC6271874 DOI: 10.3390/molecules19067543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022] Open
Abstract
The development and characterization of novel macromolecular conjugates of ampicillin using branched biodegradable polymers has been described in this study. The conjugates have been prepared coupling the β-lactam antibiotic with branched polymer matrices based on the natural oligopeptide core. The cyto- and genotoxicity of the synthesized polymers were evaluated with a bacterial luminescence test, two protozoan assays and Salmonella typhimurium TA1535. The presence of a newly formed covalent bond between the drug and the polymer matrices was confirmed by 1H-NMR and FTIR studies. A drug content (15.6 and 10.2 mole %) in the macromolecular conjugates has been determined. The obtained macromolecular products have been subjected to further in vitro release studies. The total percentage of ampicillin released after 21 days of incubation was nearly 60% and 14% and this resulted from the different physicochemical properties of the polymeric matrices. This is the first report on the application of branched biodegradable polymeric matrices for the covalent conjugation of ampicillin. The obtained results showed that the synthesized macromolecular drug-conjugates might slowly release the active drug molecule and improve the pharmacokinetics of ampicillin.
Collapse
Affiliation(s)
- Ewa Oledzka
- Department of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy, Banacha 1, Warsaw 02-097, Poland.
| | - Marcin Sobczak
- Department of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy, Banacha 1, Warsaw 02-097, Poland.
| | - Grzegorz Nalecz-Jawecki
- Department of Environmental Health Science, Medical University of Warsaw, Faculty of Pharmacy, Banacha 1,Warsaw 02-097, Poland.
| | - Agata Skrzypczak
- Department of Environmental Health Science, Medical University of Warsaw, Faculty of Pharmacy, Banacha 1,Warsaw 02-097, Poland.
| | - Waclaw Kolodziejski
- Department of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy, Banacha 1, Warsaw 02-097, Poland.
| |
Collapse
|
9
|
Synthesis of genistein-containing star-shaped homo- and copolyesters by the ring-opening polymerization. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-0973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Du Z, Lu Y, Dai X, Zhang-Negrerie D, Gao Q. The Discovery of a Facile Access to the Synthesis of NSAID Dendritic Prodrugs. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751913x13602443643042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient and straightforward method for the preparation of dendritic prodrugs is reported. Based on this new approach, a class of biodegradable dendrimers has been synthesised from L-tartaric acid and one of the nonsteroidal anti-inflammatory drugs, namely, aspirin or ibuprofen.
Collapse
Affiliation(s)
- Zuyin Du
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yanhui Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xuedong Dai
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Daisy Zhang-Negrerie
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|