1
|
Manji A, Wang L, Pape CM, McCaig LA, Troitskaya A, Batnyam O, McDonald LJ, Appleton CT, Veldhuizen RA, Gill SE. Effect of aging on pulmonary cellular responses during mechanical ventilation. JCI Insight 2025; 10:e185834. [PMID: 39946196 PMCID: PMC11949020 DOI: 10.1172/jci.insight.185834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in substantial morbidity and mortality, especially in elderly people. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA-Seq was used to delineate cell-specific transcriptional changes. The results showed that, in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.
Collapse
Affiliation(s)
- Aminmohamed Manji
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Lefeng Wang
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Cynthia M. Pape
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Lynda A. McCaig
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Alexandra Troitskaya
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Onon Batnyam
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
| | - Leah J.J. McDonald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Ruud A.W. Veldhuizen
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| | - Sean E. Gill
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| |
Collapse
|
2
|
Gaulton TG, Xin Y, Victor M, Nova A, Cereda M. Imaging the pulmonary vasculature in acute respiratory distress syndrome. Nitric Oxide 2024; 147:6-12. [PMID: 38588918 PMCID: PMC11253040 DOI: 10.1016/j.niox.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by a redistribution of regional lung perfusion that impairs gas exchange. While speculative, experimental evidence suggests that perfusion redistribution may contribute to regional inflammation and modify disease progression. Unfortunately, tools to visualize and quantify lung perfusion in patients with ARDS are lacking. This review explores recent advances in perfusion imaging techniques that aim to understand the pulmonary circulation in ARDS. Dynamic contrast-enhanced computed tomography captures first-pass kinetics of intravenously injected dye during continuous scan acquisitions. Different contrast characteristics and kinetic modeling have improved its topographic measurement of pulmonary perfusion with high spatial and temporal resolution. Dual-energy computed tomography can map the pulmonary blood volume of the whole lung with limited radiation exposure, enabling its application in clinical research. Electrical impedance tomography can obtain serial topographic assessments of perfusion at the bedside in response to treatments such as inhaled nitric oxide and prone position. Ongoing technological improvements and emerging techniques will enhance lung perfusion imaging and aid its incorporation into the care of patients with ARDS.
Collapse
Affiliation(s)
- Timothy G Gaulton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Yi Xin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Marcus Victor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Electronics Engineering Division, Aeronautics Institute of Technology, Sao Paulo, Brazil
| | - Alice Nova
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Garcia-Flores AE, Gross CM, Zemskov EA, Lu Q, Tieu K, Wang T, Black SM. Loss of SOX18/CLAUDIN5 disrupts the pulmonary endothelial barrier in ventilator-induced lung injury. Front Physiol 2022; 13:1066515. [PMID: 36620216 PMCID: PMC9813411 DOI: 10.3389/fphys.2022.1066515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mechanical strain contributes to ventilator-induced lung injury (VILI) through multi-factorial and complex mechanisms that remain unresolved. Prevailing evidence suggests that the loss of pulmonary endothelial tight junctions (TJs) plays a critical role. TJs are dynamically regulated by physiologic and hemodynamic forces to stabilize the endothelial barrier. The transcription factor sex-determining region Y-box (SOX)-18 is important in regulating blood vessel development and vascular permeability through its ability to regulate the transcription of Claudin-5, an endothelial TJ protein. Previously, we demonstrated that SOX18 expression is increased by shear stress in the pulmonary endothelium. Therefore, in this study, we investigated how mechanical strain mediated through cyclic stretch affects the SOX18/Claudin-5 regulatory axis. Our data demonstrate that SOX18 and Claudin-5 are downregulated in human lung microvascular endothelial cells (HLMVEC) exposed to cyclic stretch and the mouse lung exposed to high tidal mechanical ventilation. Overexpression of SOX18 reduced the loss of Claudin-5 expression in HLMVEC with cyclic stretch and preserved endothelial barrier function. Additionally, overexpression of Claudin-5 in HLMVEC ameliorated barrier dysfunction in HLMVEC exposed to cyclic stretch, although SOX18 expression was not enhanced. Finally, we found that the targeted overexpression of SOX18 in the pulmonary vasculature preserved Claudin-5 expression in the lungs of mice exposed to HTV. This, in turn reduced lung vascular leak, attenuated inflammatory lung injury, and preserved lung function. Together, these data suggest that enhancing SOX18 expression may prove a useful therapy to treat patients with ventilator-induced lung injury.
Collapse
Affiliation(s)
| | - Christine M. Gross
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine at Washington Hospital Center, Washington, DC, United States
| | - Evgeny A. Zemskov
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Qing Lu
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Ting Wang
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Stephen M. Black
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States,*Correspondence: Stephen M. Black,
| |
Collapse
|
4
|
Wildi K, Bouquet M, Ainola C, Livingstone S, Colombo SM, Heinsar S, Sato N, Sato K, Wilson E, Abbate G, Passmore MR, Hyslop K, Liu K, Li Bassi G, Suen JY, Fraser JF. Differential Protein Expression among Two Different Ovine ARDS Phenotypes-A Preclinical Randomized Study. Metabolites 2022; 12:metabo12070655. [PMID: 35888779 PMCID: PMC9319228 DOI: 10.3390/metabo12070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
Despite decades of comprehensive research, Acute Respiratory Distress Syndrome (ARDS) remains a disease with high mortality and morbidity worldwide. The discovery of inflammatory subphenotypes in human ARDS provides a new approach to study the disease. In two different ovine ARDS lung injury models, one induced by additional endotoxin infusion (phenotype 2), mimicking some key features as described in the human hyperinflammatory group, we aim to describe protein expression among the two different ovine models. Nine animals on mechanical ventilation were included in this study and were randomized into (a) phenotype 1, n = 5 (Ph1) and (b) phenotype 2, n = 4 (Ph2). Plasma was collected at baseline, 2, 6, 12, and 24 h. After protein extraction, data-independent SWATH-MS was applied to inspect protein abundance at baseline, 2, 6, 12, and 24 h. Cluster analysis revealed protein patterns emerging over the study observation time, more pronounced by the factor of time than different injury models of ARDS. A protein signature consisting of 33 proteins differentiated among Ph1/2 with high diagnostic accuracy. Applying network analysis, proteins involved in the inflammatory and defense response, complement and coagulation cascade, oxygen binding, and regulation of lipid metabolism were activated over time. Five proteins, namely LUM, CA2, KNG1, AGT, and IGJ, were more expressed in Ph2.
Collapse
Affiliation(s)
- Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Correspondence:
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Emily Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Margaret R. Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Medical Faculty, Queensland University of Technology, Brisbane 4059, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane 4001, Australia
| | - Jacky Y. Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
| | - John F. Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane 4032, Australia; (M.B.); (C.A.); (S.L.); (S.M.C.); (S.H.); (N.S.); (K.S.); (E.W.); (G.A.); (M.R.P.); (K.H.); (K.L.); (G.L.B.); (J.Y.S.); (J.F.F.)
- Medical Faculty, The University of Queensland, St. Lucia, Brisbane 4067, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane 4001, Australia
| |
Collapse
|
5
|
Biselli PJC, Degobbi Tenorio Quirino Dos Santos Lopes F, Righetti RF, Moriya HT, Tibério IFLC, Martins MA. Lung Mechanics Over the Century: From Bench to Bedside and Back to Bench. Front Physiol 2022; 13:817263. [PMID: 35910573 PMCID: PMC9326096 DOI: 10.3389/fphys.2022.817263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lung physiology research advanced significantly over the last 100 years. Respiratory mechanics applied to animal models of lung disease extended the knowledge of the workings of respiratory system. In human research, a better understanding of respiratory mechanics has contributed to development of mechanical ventilators. In this review, we explore the use of respiratory mechanics in basic science to investigate asthma and chronic obstructive pulmonary disease (COPD). We also discuss the use of lung mechanics in clinical care and its role on the development of modern mechanical ventilators. Additionally, we analyse some bench-developed technologies that are not in widespread use in the present but can become part of the clinical arsenal in the future. Finally, we explore some of the difficult questions that intensive care doctors still face when managing respiratory failure. Bringing back these questions to bench can help to solve them. Interaction between basic and translational science and human subject investigation can be very rewarding, as in the conceptualization of “Lung Protective Ventilation” principles. We expect this interaction to expand further generating new treatments and managing strategies for patients with respiratory disease.
Collapse
Affiliation(s)
- Paolo Jose Cesare Biselli
- Intensive Care Unit, University Hospital, University of Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Paolo Jose Cesare Biselli,
| | | | - Renato Fraga Righetti
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Hospital Sírio-Libanês, Serviço de Reabilitação, São Paulo, Brazil
| | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Iolanda Fátima Lopes Calvo Tibério
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Lai Y, Huang Y. Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability. Front Physiol 2021; 12:714064. [PMID: 34671268 PMCID: PMC8521004 DOI: 10.3389/fphys.2021.714064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mechanical ventilation is a supportive therapy for patients with acute respiratory distress syndrome (ARDS). However, it also inevitably produces or aggravates the original lung injury with pathophysiological changes of pulmonary edema caused by increased permeability of alveolar capillaries which composed of microvascular endothelium, alveolar epithelium, and basement membrane. Vascular endothelium forms a semi-selective barrier to regulate body fluid balance. Mechanical ventilation in critically ill patients produces a mechanical force on lung vascular endothelium when the endothelial barrier was destructed. This review aims to provide a comprehensive overview of molecular and signaling mechanisms underlying the endothelial barrier permeability in ventilator-induced lung jury (VILI).
Collapse
Affiliation(s)
- Yan Lai
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Nguyen TK, Mai DH, Le AN, Nguyen QH, Nguyen CT, Vu TA. A review of intraoperative lung-protective mechanical ventilation strategy. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2021. [DOI: 10.1016/j.tacc.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Lu Q, Zemskov EA, Sun X, Wang H, Yegambaram M, Wu X, Garcia-Flores A, Song S, Tang H, Kangath A, Cabanillas GZ, Yuan JXJ, Wang T, Fineman JR, Black SM. Activation of the mechanosensitive Ca 2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics. Redox Biol 2021; 38:101785. [PMID: 33221570 PMCID: PMC7691184 DOI: 10.1016/j.redox.2020.101785] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS), a refractory lung disease with an unacceptable high mortality rate. Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The specific mechanisms involved in VILI-induced pulmonary capillary leakage, a key pathologic feature of VILI are still far from resolved. The mechanoreceptor, transient receptor potential cation channel subfamily V member 4, TRPV4 plays a key role in the development of VILI through unresolved mechanism. Endothelial nitric oxide synthase (eNOS) uncoupling plays an important role in sepsis-mediated ARDS so in this study we investigated whether there is a role for eNOS uncoupling in the barrier disruption associated with TRPV4 activation during VILI. Our data indicate that the TRPV4 agonist, 4α-Phorbol 12,13-didecanoate (4αPDD) induces pulmonary arterial endothelial cell (EC) barrier disruption through the disruption of mitochondrial bioenergetics. Mechanistically, this occurs via the mitochondrial redistribution of uncoupled eNOS secondary to a PKC-dependent phosphorylation of eNOS at Threonine 495 (T495). A specific decoy peptide to prevent T495 phosphorylation reduced eNOS uncoupling and mitochondrial redistribution and preserved PAEC barrier function under 4αPDD challenge. Further, our eNOS decoy peptide was able to preserve lung vascular integrity in a mouse model of VILI. Thus, we have revealed a functional link between TRPV4 activation, PKC-dependent eNOS phosphorylation at T495, and EC barrier permeability. Reducing pT495-eNOS could be a new therapeutic approach for the prevention of VILI.
Collapse
Affiliation(s)
- Qing Lu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xutong Sun
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Hui Wang
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Manivannan Yegambaram
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaomin Wu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Alejandro Garcia-Flores
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Shanshan Song
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Archana Kangath
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Gabriela Zubiate Cabanillas
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA; Department of Chemist-Biological Sciences, Universidad de Sonora, Hermosillo, SON, Mexico
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Stephen M Black
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Verhelst H, Vranken J, Muysoms F, Rondelez L, Schroë H, Jongh RD. The Use of Extracorporeal Membrane Oxygenation in Postpneumonectomy Pulmonary Oedema. Acta Chir Belg 2020. [DOI: 10.1080/00015458.1998.12098431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- H. Verhelst
- Departments of Thoracovascular Surgery, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - J. Vranken
- Departments of Anaesthesia and Intensive Care Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - F. Muysoms
- Departments of Thoracovascular Surgery, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - L. Rondelez
- Departments of Perfusion, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - H. Schroë
- Departments of Thoracovascular Surgery, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - R. De Jongh
- Departments of Anaesthesia and Intensive Care Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| |
Collapse
|
10
|
D'Angelo E, Koutsoukou A, Della Valle P, Gentile G, Pecchiari M. The development of various forms of lung injury with increasing tidal volume in normal rats. Respir Physiol Neurobiol 2020; 274:103369. [PMID: 31911202 DOI: 10.1016/j.resp.2020.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Sixty-three, open-chest normal rats were subjected to mechanical ventilation (MV) with tidal volumes (VT) ranging from 7.5-39.5ml kg-1 and PEEP 2.3 cmH2O. Arterial blood gasses and pressure, and lung mechanics were measured during baseline ventilation (VT = 7.5ml kg-1) before and after test ventilation, when cytokine, von Willebrand factor (vWF), and albumin concentration in serum and broncho-alveolar lavage fluid (BALF), wet-to-dry weight ratio (W/D), and histologic injury scores were assessed. Elevation of W/D and serum vWF and cytokine concentration occurred with VT > 25ml kg-1. With VT > 30ml kg-1 cytokine and albumin concentration increased also in BALF, arterial oxygen tension decreased, lung mechanics and histology deteriorated, while W/D and vWF and cytokine concentration increased further. Hence, the initial manifestation of injurious MV consists of damage of extra-alveolar vessels leading to interstitial edema, as shown by elevated vWF and cytokine levels in serum but not in BALF. Failure of the endothelial-epithelial barrier occurs at higher stress-strain levels, with alveolar edema, small airway injury, and mechanical alterations.
Collapse
Affiliation(s)
- Edgardo D'Angelo
- Department of Physiopathology and Transplantations, Università di Milano, Milan, Italy.
| | | | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Guendalina Gentile
- Department of Biomedical Sciences for Health, Università di Milano, Milan, Italy
| | - Matteo Pecchiari
- Department of Physiopathology and Transplantations, Università di Milano, Milan, Italy
| |
Collapse
|
11
|
Yehya N. Lessons learned in acute respiratory distress syndrome from the animal laboratory. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:503. [PMID: 31728356 DOI: 10.21037/atm.2019.09.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the description of the acute respiratory distress syndrome (ARDS) in 1967, investigators have struggled to reproduce the syndrome in the animal laboratory. While several different models of experimental acute lung injury (ALI) have been developed, none completely capture the inciting etiologies, initial inflammation, heterogeneity, and resolution of human ARDS. This potentially has contributed to the poor translation of potential therapeutics between animal ALI models and human ARDS. It was only recently that standardized criteria were suggested for what makes an ALI model comparable to human ARDS. Nevertheless, despite model heterogeneity, these models have contributed substantially to our understanding of the syndrome. From the initial studies identifying the risks of mechanical ventilation to the identification of potentially targetable inflammatory mediators, to modern studies focusing on regional heterogeneity and novel molecular pathways, animal models continue to inform our understanding of ARDS. This review will cover several major lessons learned from animal models of ALI, and provide some direction for future studies in this field.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Soares JHN, Carvalho AR, Bergamini BC, Gress MAK, Jandre FC, Zin WA, Giannella-Neto A. Alveolar Tidal recruitment/derecruitment and Overdistension During Four Levels of End-Expiratory Pressure with Protective Tidal Volume During Anesthesia in a Murine Lung-Healthy Model. Lung 2018; 196:335-342. [DOI: 10.1007/s00408-018-0096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
|
13
|
Katira BH, Giesinger RE, Engelberts D, Zabini D, Kornecki A, Otulakowski G, Yoshida T, Kuebler WM, McNamara PJ, Connelly KA, Kavanagh BP. Adverse Heart-Lung Interactions in Ventilator-induced Lung Injury. Am J Respir Crit Care Med 2017; 196:1411-1421. [PMID: 28795839 DOI: 10.1164/rccm.201611-2268oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE In the original 1974 in vivo study of ventilator-induced lung injury, Webb and Tierney reported that high Vt with zero positive end-expiratory pressure caused overwhelming lung injury, subsequently shown by others to be due to lung shear stress. OBJECTIVES To reproduce the lung injury and edema examined in the Webb and Tierney study and to investigate the underlying mechanism thereof. METHODS Sprague-Dawley rats weighing approximately 400 g received mechanical ventilation for 60 minutes according to the protocol of Webb and Tierney (airway pressures of 14/0, 30/0, 45/10, 45/0 cm H2O). Additional series of experiments (20 min in duration to ensure all animals survived) were studied to assess permeability (n = 4 per group), echocardiography (n = 4 per group), and right and left ventricular pressure (n = 5 and n = 4 per group, respectively). MEASUREMENTS AND MAIN RESULTS The original Webb and Tierney results were replicated in terms of lung/body weight ratio (45/0 > 45/10 ≈ 30/0 ≈ 14/0; P < 0.05) and histology. In 45/0, pulmonary edema was overt and rapid, with survival less than 30 minutes. In 45/0 (but not 45/10), there was an increase in microvascular permeability, cyclical abolition of preload, and progressive dilation of the right ventricle. Although left ventricular end-diastolic pressure decreased in 45/10, it increased in 45/0. CONCLUSIONS In a classic model of ventilator-induced lung injury, high peak pressure (and zero positive end-expiratory pressure) causes respiratory swings (obliteration during inspiration) in right ventricular filling and pulmonary perfusion, ultimately resulting in right ventricular failure and dilation. Pulmonary edema was due to increased permeability, which was augmented by a modest (approximately 40%) increase in hydrostatic pressure. The lung injury and acute cor pulmonale is likely due to pulmonary microvascular injury, the mechanism of which is uncertain, but which may be due to cyclic interruption and exaggeration of pulmonary blood flow.
Collapse
Affiliation(s)
- Bhushan H Katira
- 1 The Research Institute.,2 Department of Critical Care Medicine.,3 Interdepartmental Division of Critical Care Medicine
| | | | | | - Diana Zabini
- 5 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Alik Kornecki
- 6 Department of Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | | | - Takeshi Yoshida
- 1 The Research Institute.,2 Department of Critical Care Medicine.,3 Interdepartmental Division of Critical Care Medicine
| | - Wolfgang M Kuebler
- 7 Department of Surgery, and.,8 Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,5 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | | | - Kim A Connelly
- 5 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Brian P Kavanagh
- 1 The Research Institute.,2 Department of Critical Care Medicine.,9 Department of Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,3 Interdepartmental Division of Critical Care Medicine.,8 Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Protective Ventilation in general anesthesia. Anything new? ACTA ACUST UNITED AC 2017; 65:218-224. [PMID: 29102404 DOI: 10.1016/j.redar.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022]
|
15
|
Abstract
While traditional ventilation approaches are appropriate for the patient without significant lung disease and only requiring short-term mechanical ventilatory support, the strategy should be altered for the patient with severe lung disease. Research on the mechanisms of ventilator-induced lung injury has led to the development of mechanical ventilation strategies that imrove patient outcomes. The trend toward using lower tidal volmes, limited airway pressures, and PEEP have produced imroved outcome results. Predictive indices of outcome using laboratory values, biologic markers, and mediators of lung inury are being evaluated for early identification of patients at risk for lung injury. Nonconventional ventilatory approaches, such as noninvasive positive pressure ventilation and high freuency ventilation, as well as adjunctive therapies (inhaled niric oxide and extracorporeal circulation) are being explored as alternatives in ARDS and ALI. While more clinical studies outine outcomes in specific subgroups of patients, the ventilatoy strategy should continually be revised at the bedside.
Collapse
Affiliation(s)
- Sherif Afifi
- Yale University School of Medicine, Yale-New Haven Hospital, New Haven, CT, and Illinois Masonic Medical Center, Chicago, IL
| |
Collapse
|
16
|
Histopathological changes and mRNA expression in lungs of horses after inhalation anaesthesia with different ventilation strategies. Res Vet Sci 2016; 107:8-15. [PMID: 27473968 DOI: 10.1016/j.rvsc.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/08/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022]
Abstract
Inappropriate mechanical ventilation can lead to ventilator-induced lung injury (VILI). Aim of this study was to evaluate the effects of inhalation anaesthesia and ventilation with and without recruitment (RM) and PEEP titration on alveolar integrity in horses. Twenty-three horses were divided into 4 groups (group OLC ventilated with OLC, group IPPV ventilated with intermittent positive pressure ventilation, group NV non-ventilated, and group C non-anaesthetized control group). After sedation with xylazine and induction with diazepam and ketamine anaesthetized horses were under isoflurane anaesthesia for 5.5h. The horses were euthanized and tissue samples of the dependent and non-dependent lung areas were collected. Histopathological examinations of the lung tissue as well as relative quantification of mRNA of IL-1β, IL-6, iNOS, MMP1 and MMP9 by PCR were performed. Horses of group OLC had significantly less alveolar congestion and atelectasis but greater alveolar overdistension compared to groups NV and IPPV. In groups OLC and group IPPV an increase in IL-1β/6 and MMP1/9 was detected compared to groups NV and C. In conclusion, in breathing spontaneously or IPPV-ventilated horses a higher degree of atelectasis was detected, whereas in OLC-ventilated horses a higher degree of overdistention was present. Elevated levels in IL and MMP might be early signs of VILI in ventilated horses.
Collapse
|
17
|
Brook AD, Kollef MH. An Outcomes-Based Approach to Ventilatory Management: Review of Two Examples. J Intensive Care Med 2016. [DOI: 10.1177/088506669901400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology 2015; 123:692-713. [PMID: 26120769 DOI: 10.1097/aln.0000000000000754] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.
Collapse
|
19
|
Nieman GF, Gatto LA, Habashi NM. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol (1985) 2015; 119:1245-61. [PMID: 26472873 DOI: 10.1152/japplphysiol.00659.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023] Open
Abstract
The earliest description of what is now known as the acute respiratory distress syndrome (ARDS) was a highly lethal double pneumonia. Ashbaugh and colleagues (Ashbaugh DG, Bigelow DB, Petty TL, Levine BE Lancet 2: 319-323, 1967) correctly identified the disease as ARDS in 1967. Their initial study showing the positive effect of mechanical ventilation with positive end-expiratory pressure (PEEP) on ARDS mortality was dampened when it was discovered that improperly used mechanical ventilation can cause a secondary ventilator-induced lung injury (VILI), thereby greatly exacerbating ARDS mortality. This Synthesis Report will review the pathophysiology of ARDS and VILI from a mechanical stress-strain perspective. Although inflammation is also an important component of VILI pathology, it is secondary to the mechanical damage caused by excessive strain. The mechanical breath will be deconstructed to show that multiple parameters that comprise the breath-airway pressure, flows, volumes, and the duration during which they are applied to each breath-are critical to lung injury and protection. Specifically, the mechanisms by which a properly set mechanical breath can reduce the development of excessive fluid flux and pulmonary edema, which are a hallmark of ARDS pathology, are reviewed. Using our knowledge of how multiple parameters in the mechanical breath affect lung physiology, the optimal combination of pressures, volumes, flows, and durations that should offer maximum lung protection are postulated.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, Upstate Medical University, Syracuse, New York;
| | - Louis A Gatto
- Biological Sciences Department, State University of New York, Cortland, New York; and
| | - Nader M Habashi
- R Adams Cowley Shock/Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
20
|
Needham DM, Yang T, Dinglas VD, Mendez-Tellez PA, Shanholtz C, Sevransky JE, Brower RG, Pronovost PJ, Colantuoni E. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome. A prospective cohort study. Am J Respir Crit Care Med 2015; 191:177-85. [PMID: 25478681 DOI: 10.1164/rccm.201409-1598oc] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Reducing tidal volume decreases mortality in acute respiratory distress syndrome (ARDS). However, the effect of the timing of low tidal volume ventilation is not well understood. OBJECTIVES To evaluate the association of intensive care unit (ICU) mortality with initial tidal volume and with tidal volume change over time. METHODS Multivariable, time-varying Cox regression analysis of a multisite, prospective study of 482 patients with ARDS with 11,558 twice-daily tidal volume assessments (evaluated in milliliter per kilogram of predicted body weight [PBW]) and daily assessment of other mortality predictors. MEASUREMENTS AND MAIN RESULTS An increase of 1 ml/kg PBW in initial tidal volume was associated with a 23% increase in ICU mortality risk (adjusted hazard ratio, 1.23; 95% confidence interval [CI], 1.06-1.44; P = 0.008). Moreover, a 1 ml/kg PBW increase in subsequent tidal volumes compared with the initial tidal volume was associated with a 15% increase in mortality risk (adjusted hazard ratio, 1.15; 95% CI, 1.02-1.29; P = 0.019). Compared with a prototypical patient receiving 8 days with a tidal volume of 6 ml/kg PBW, the absolute increase in ICU mortality (95% CI) of receiving 10 and 8 ml/kg PBW, respectively, across all 8 days was 7.2% (3.0-13.0%) and 2.7% (1.2-4.6%). In scenarios with variation in tidal volume over the 8-day period, mortality was higher when a larger volume was used earlier. CONCLUSIONS Higher tidal volumes shortly after ARDS onset were associated with a greater risk of ICU mortality compared with subsequent tidal volumes. Timely recognition of ARDS and adherence to low tidal volume ventilation is important for reducing mortality. Clinical trial registered with www.clinicaltrials.gov (NCT 00300248).
Collapse
|
21
|
Abrams D, Brodie D. Extracorporeal circulatory approaches to treat acute respiratory distress syndrome. Clin Chest Med 2014; 35:765-79. [PMID: 25453424 DOI: 10.1016/j.ccm.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The early history of extracorporeal membrane oxygenation (ECMO) for adult patients with the acute respiratory distress syndrome (ARDS) evolved slowly over decades, a consequence of extracorporeal technology with high risk and unclear benefit. However, advances in component technology, accumulating evidence, and growing experience in recent years have resulted in a resurgence of interest in ECMO. Extracorporeal support, though currently lacking high-level evidence, has the potential to improve outcomes, including survival, in ARDS. In the near future, novel extracorporeal management strategies may, in fact, lead to a new paradigm in the approach to certain patients with ARDS.
Collapse
Affiliation(s)
- Darryl Abrams
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, PH 8E 101, New York, NY 10032, USA
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care, Columbia University College of Physicians and Surgeons, PH 8E 101, New York, NY 10032, USA.
| |
Collapse
|
22
|
Liu K, Mao YF, Zheng J, Peng ZY, Liu WW, Liu Y, Xu WG, Sun XJ, Jiang CL, Jiang L. SC5b-9-induced pulmonary microvascular endothelial hyperpermeability participates in ventilator-induced lung injury. Cell Biochem Biophys 2014; 67:1421-31. [PMID: 23760612 DOI: 10.1007/s12013-013-9675-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mechanical ventilation with large tidal volumes can increase lung alveolar permeability and initiate inflammatory responses, termed ventilator-induced lung injury (VILI). VILI is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell death. But the underlying molecular mechanisms that regulate VILI remain unclear. The purpose of this study was to investigate the mechanisms that regulate pulmonary endothelial barrier in an animal model of VILI. These data suggest that SC5b-9, as the production of the complement activation, causes increase in rat pulmonary microvascular permeability by inducing activation of RhoA and subsequent phosphorylation of myosin light chain and contraction of endothelial cells, resulting in gap formation. In general, the complement-mediated increase in pulmonary microvascular permeability may participate in VILI.
Collapse
Affiliation(s)
- Kan Liu
- Department of Diving Medicine, Faculty of Nautical Medicine, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Luks AM. Ventilatory strategies and supportive care in acute respiratory distress syndrome. Influenza Other Respir Viruses 2014; 7 Suppl 3:8-17. [PMID: 24215377 DOI: 10.1111/irv.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
While antiviral therapy is an important component of care in patients with the acute respiratory distress syndrome (ARDS) following influenza infection, it is not sufficient to ensure good outcomes, and additional measures are usually necessary. Patients usually receive high levels of supplemental oxygen to counteract the hypoxemia resulting from severe gas exchange abnormalities. Many patients also receive invasive mechanical ventilation for support for oxygenation, while in resource-poor settings, supplemental oxygen via face mask may be the only available intervention. Patients with ARDS receiving mechanical ventilation should receive lung-protective ventilation, whereby tidal volume is decreased to 6 ml/kg of their predicted weight and distending pressures are maintained ≤ 30 cm H2 O, as well as increased inspired oxygen concentrations and positive end-expiratory pressure (PEEP) to prevent atelectasis and support oxygenation. While these measures are sufficient in most patients, a minority develop refractory hypoxemia and may receive additional therapies, including prone positioning, inhaled vasodilators, extracorporeal membrane oxygenation, recruitment maneuvers followed by high PEEP, and neuromuscular blockade, although recent data suggest that this last option may be warranted earlier in the clinical course before development of refractory hypoxemia. Application of these "rescue strategies" is complicated by the lack of guidance in the literature regarding implementation. While much attention is devoted to these strategies, clinicians must not lose sight of simple interventions that affect patient outcomes including head of bed elevation, prophylaxis against venous thromboembolism and gastrointestinal bleeding, judicious use of fluids in the post-resuscitative phase, and a protocol-based approach to sedation and spontaneous breathing trials.
Collapse
Affiliation(s)
- Andrew M Luks
- Division of Pulmonary and Critical Care Medicine and the International Respiratory and Severe Illness Center (INTERSECT), University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
25
|
García-Delgado M, Navarrete-Sánchez I, Chamorro-Marín V, Díaz-Monrové JC, Esquivias J, Fernández-Mondéjar E. Alveolar overdistension as a cause of lung injury: differences among three animal species. ScientificWorldJournal 2012; 2012:985923. [PMID: 22645503 PMCID: PMC3356768 DOI: 10.1100/2012/985923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/21/2011] [Indexed: 11/17/2022] Open
Abstract
This study analyses characteristics of lung injuries produced by alveolar overdistension in three animal species. Mechanical ventilation at normal tidal volume (10 mL/Kg) and high tidal volume (50 mL/Kg) was applied for 30 min in each species. Data were gathered on wet/dry weight ratio, histological score, and area of alveolar collapse. Five out of six rabbits with high tidal volume developed tension pneumothorax, and the rabbit results were therefore not included in the histological analysis. Lungs from the pigs and rats showed minimal histological lesions. Pigs ventilated with high tidal volume had significantly greater oedema, higher neutrophil infiltration, and higher percentage area of alveolar collapse than rats ventilated with high tidal volume. We conclude that rabbits are not an appropriate species for in vivo studies of alveolar overdistension due to their fragility. Although some histological lesions are observed in pigs and rats, the lesions do not appear to be relevant.
Collapse
Affiliation(s)
- Manuel García-Delgado
- Intensive Care Unit, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Ye H, Zhan Q, Ren Y, Liu X, Yang C, Wang C. Cyclic deformation-induced injury and differentiation of rat alveolar epithelial type II cells. Respir Physiol Neurobiol 2011; 180:237-46. [PMID: 22154752 DOI: 10.1016/j.resp.2011.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 01/20/2023]
Abstract
The injury and differentiation of alveolar epithelial type II cells induced by alveolar epithelial deformation play important roles in the pathophysiology of ventilator-induced lung injury and repair of the lung injury, respectively. We developed an in vitro rat model to investigate the effects of deformation amplitude, peak deformation, and minimum deformation on the viability and differentiation of type II cells. Rat primary alveolar epithelial type II cells were exposed to a variety of equibiaxial cyclic stretch protocols, and deformation-induced cell survival and differentiation were analyzed. Cell death increased when deformation consisted of change in cell surface area (ΔSA) of 0-37%, 0-50%, 12-50%, 37-50% (P=0.001, P<0.001, P<0.001, and P=0.003, respectively). When ΔSA was at 12-37% and 12-50%, mRNA transcription (P=0.034 and P=0.036) and protein expressions (P=0.008 and P=0.001) of caveolin-1 (a marker for the type I phenotype) increased, in contrast to the decrease of their mRNA transcription of surfactant protein C (a marker for the type II phenotype) (P=0.011, 0.002). These results suggest that amplitude or minimum deformation ≥ 37% ΔSA is an important cause of cell death, and amplitude ≥ 25% ΔSA promotes cell differentiation. Appropriate amplitude (25% ΔSA) can not only avoid cell death but also promote cell differentiation.
Collapse
Affiliation(s)
- Huan Ye
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | | | | | | | | | | |
Collapse
|
27
|
de Prost N, Ricard JD, Saumon G, Dreyfuss D. Ventilator-induced lung injury: historical perspectives and clinical implications. Ann Intensive Care 2011; 1:28. [PMID: 21906379 PMCID: PMC3224506 DOI: 10.1186/2110-5820-1-28] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 07/23/2011] [Indexed: 01/17/2023] Open
Abstract
Mechanical ventilation can produce lung physiological and morphological alterations termed ventilator-induced lung injury (VILI). Early experimental studies demonstrated that the main determinant of VILI is lung end-inspiratory volume. The clinical relevance of these experimental findings received resounding confirmation with the results of the acute respiratory distress syndrome (ARDS) Network study, which showed a 22% reduction in mortality in patients with the acute respiratory distress syndrome through a simple reduction in tidal volume. In contrast, the clinical relevance of low lung volume injury remains debated and the application of high positive end-expiratory pressure levels can contribute to lung overdistension and thus be deleterious. The significance of inflammatory alterations observed during VILI is debated and has not translated into clinical application. This review examines seminal experimental studies that led to our current understanding of VILI and contributed to the current recommendations in the respiratory support of ARDS patients.
Collapse
Affiliation(s)
- Nicolas de Prost
- Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Service de Réanimation Médicale, 51, Avenue de Tassigny, 94010, Créteil, France
| | - Jean-Damien Ricard
- Université Paris-Diderot and PRES Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Service de Réanimation Médicale, F-92700, 178, rue des Renouillers - 92701 Colombes Cedex, France
- INSERM U722, F-75018 Paris, France
| | - Georges Saumon
- Université Paris-Diderot and PRES Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
| | - Didier Dreyfuss
- Université Paris-Diderot and PRES Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Service de Réanimation Médicale, F-92700, 178, rue des Renouillers - 92701 Colombes Cedex, France
- INSERM U722, F-75018 Paris, France
| |
Collapse
|
28
|
Riva D, Contador R, Baez-Garcia C, Xisto D, Cagido V, Martini S, Morales M, Rocco P, Faffe D, Zin W. Recruitment maneuver: RAMP versus CPAP pressure profile in a model of acute lung injury. Respir Physiol Neurobiol 2009; 169:62-8. [DOI: 10.1016/j.resp.2009.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/21/2022]
|
29
|
Sammani S, Moreno-Vinasco L, Mirzapoiazova T, Singleton PA, Chiang ET, Evenoski CL, Wang T, Mathew B, Husain A, Moitra J, Sun X, Nunez L, Jacobson JR, Dudek SM, Natarajan V, Garcia JGN. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am J Respir Cell Mol Biol 2009; 43:394-402. [PMID: 19749179 DOI: 10.1165/rcmb.2009-0223oc] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The therapeutic options for ameliorating the profound vascular permeability, alveolar flooding, and organ dysfunction that accompanies acute inflammatory lung injury (ALI) remain limited. Extending our previous finding that the intravenous administration of the sphingolipid angiogenic factor, sphingosine 1-phosphate (S1P), attenuates inflammatory lung injury and vascular permeability via ligation of S1PR(1), we determine that a direct intratracheal or intravenous administration of S1P, or a selective S1P receptor (S1PR(1)) agonist (SEW-2871), produces highly concentration-dependent barrier-regulatory responses in the murine lung. The intratracheal or intravenous administration of S1P or SEW-2871 at < 0.3 mg/kg was protective against LPS-induced murine lung inflammation and permeability. However, intratracheal delivery of S1P at 0.5 mg/kg (for 2 h) resulted in significant alveolar-capillary barrier disruption (with a 42% increase in bronchoalveolar lavage protein), and produced rapid lethality when delivered at 2 mg/kg. Despite the greater selectivity for S1PR(1), intratracheally delivered SEW-2871 at 0.5 mg/kg also resulted in significant alveolar-capillary barrier disruption, but was not lethal at 2 mg/kg. Consistent with the S1PR(1) regulation of alveolar/vascular barrier function, wild-type mice pretreated with the S1PR(1) inverse agonist, SB-649146, or S1PR(1)(+/-) mice exhibited reduced S1P/SEW-2871-mediated barrier protection after challenge with LPS. In contrast, S1PR(2)(-/-) knockout mice as well as mice with reduced S1PR(3) expression (via silencing S1PR3-containing nanocarriers) were protected against LPS-induced barrier disruption compared with control mice. These studies underscore the potential therapeutic effects of highly selective S1PR(1) receptor agonists in reducing inflammatory lung injury, and highlight the critical role of the S1P delivery route, S1PR(1) agonist concentration, and S1PR(1) expression in target tissues.
Collapse
Affiliation(s)
- Saad Sammani
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brower RG, Brochard LJ. Lung-protective mechanical ventilation strategy for acute lung injury and acute respiratory distress syndrome. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060600580722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
McCarren B, Chow CM. Description of manual hyperinflation in intubated patients with atelectasis. Physiother Theory Pract 2009. [DOI: 10.3109/09593989809057166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Zheng Y, Fujioka H, Bian S, Torisawa Y, Huh D, Takayama S, Grotberg JB. Liquid plug propagation in flexible microchannels: A small airway model. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2009; 21:71903. [PMID: 19704915 PMCID: PMC2730709 DOI: 10.1063/1.3183777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/23/2009] [Indexed: 05/02/2023]
Abstract
In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.
Collapse
Affiliation(s)
- Y Zheng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Checkley W, Brower R, Korpak A, Thompson BT. Effects of a clinical trial on mechanical ventilation practices in patients with acute lung injury. Am J Respir Crit Care Med 2008; 177:1215-22. [PMID: 18356562 PMCID: PMC2408439 DOI: 10.1164/rccm.200709-1424oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 03/13/2008] [Indexed: 01/25/2023] Open
Abstract
RATIONALE In a clinical trial by the Acute Respiratory Distress Syndrome Network (ARDSNet), mechanical ventilation with tidal volumes of 6 ml/kg decreased mortality from acute lung injury. However, interpretations of these results generated controversy and it was unclear if this trial would change usual-care practices. OBJECTIVES First, to determine if clinical practices at ARDSNet hospitals changed after the tidal volume trial. Second, to determine if tidal volume and plateau pressure (Pplat) within 48 hours before randomization affected hospital mortality in patients subsequently managed with 6 ml/kg predicted body weight (PBW). METHODS We used preenrollment data from 2,451 patients enrolled in six trials (1996-2005) to describe changes in tidal volume over time. We used logistic regression to determine if preenrollment tidal volume or Pplat affected mortality. MEASUREMENTS AND MAIN RESULTS Median preenrollment tidal volume decreased from 10.3 ml/kg PBW (range, 4.3-17.1) during the tidal volume trial (1996-1999) to 7.3 ml/kg PBW (range, 3.9-16.2) after its completion (P < 0.001). Preenrollment tidal volume was not associated with mortality (P = 0.566). The odds of death increased multiplicatively with each cm H(2)O of preenrollment Pplat (P < 0.001) (e.g., the odds of death was 1.37 times greater when preenrollment Pplat increased by 10 cm H(2)O). CONCLUSIONS Physicians used lower tidal volumes after publication of the tidal volume trial. Preenrollment Pplat was strongly associated with mortality, and may reflect disease severity independent of tidal volume. Pplat measured early in the course of acute lung injury, after accounting for tidal volume, is a respiratory system-specific value with strong prognostic significance.
Collapse
Affiliation(s)
- William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
34
|
Hirsch J, Hansen KC, Sapru A, Frank JA, Chalkley RJ, Fang X, Trinidad JC, Baker P, Burlingame AL, Matthay MA. Impact of low and high tidal volumes on the rat alveolar epithelial type II cell proteome. Am J Respir Crit Care Med 2007; 175:1006-13. [PMID: 17363773 PMCID: PMC1899270 DOI: 10.1164/rccm.200605-621oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 03/13/2007] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Mechanical ventilation with high tidal volumes leads to increased permeability, generation of inflammatory mediators, and damage to alveolar epithelial cells (ATII). OBJECTIVES To identify changes in the ATII proteome after two different ventilation strategies in rats. METHODS Rats (n = 6) were ventilated for 5 hours with high- and low tidal volumes (VTs) (high VT: 20 ml/kg; low VT: 6 ml/kg). Pooled nonventilated rats served as control animals. ATII cells were isolated and lysed, and proteins were tryptically cleaved into peptides. Cellular protein content was evaluated by peptide labeling of the ventilated groups with (18)O. Samples were fractionated by cation exchange chromatography and identified using electrospray tandem mass spectrometry. Proteins identified by 15 or more peptides were statistically compared using t tests corrected for the false discovery rate. MEASUREMENTS AND MAIN RESULTS High Vt resulted in a significant increase in airspace neutrophils without an increase in extravascular lung water. Compared with low-VT samples, high-VT samples showed a 32% decrease in the inositol 1,4,5-trisphosphate 3 receptor (p < 0.01), a 34% decrease in Na(+), K(+)-ATPase (p < 0.01), and a significantly decreased content in ATP synthase chains. Even low-VT samples displayed significant changes, including a 66% decrease in heat shock protein 90-beta (p < 0.01) and a 67% increase in mitochondrial pyruvate carboxylase (p < 0.01). Significant differences were found in membrane, acute phase, structural, and mitochondrial proteins. CONCLUSIONS After short-term exposure to high-VT ventilation, significant reductions in membrane receptors, ion channel proteins, enzymes of the mitochondrial energy system, and structural proteins in ATII cells were present. The data supports the two-hit concept that an unfavorable ventilatory strategy may make the lung more vulnerable to an additional insult.
Collapse
Affiliation(s)
- Jan Hirsch
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0130, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Verbrugge SJC, Lachmann B, Kesecioglu J. Lung protective ventilatory strategies in acute lung injury and acute respiratory distress syndrome: from experimental findings to clinical application. Clin Physiol Funct Imaging 2007; 27:67-90. [PMID: 17309528 DOI: 10.1111/j.1475-097x.2007.00722.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review addresses the physiological background and the current status of evidence regarding ventilator-induced lung injury and lung protective strategies. Lung protective ventilatory strategies have been shown to reduce mortality from adult respiratory distress syndrome (ARDS). We review the latest knowledge on the progression of lung injury by mechanical ventilation and correlate the findings of experimental work with results from clinical studies. We describe the experimental and clinical evidence of the effect of lung protective ventilatory strategies and open lung strategies on the progression of lung injury and current controversies surrounding these subjects. We describe a rational strategy, the open lung strategy, to accomplish an open lung, which may further prevent injury caused by mechanical ventilation. Finally, the clinician is offered directions on lung protective ventilation in the early phase of ARDS which can be applied on the intensive care unit.
Collapse
Affiliation(s)
- Serge J C Verbrugge
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
36
|
Kao KC, Tsai YH, Wu YK, Huang CT, Shih MJ, Huang CC. High frequency oscillatory ventilation for surgical patients with acute respiratory distress syndrome. ACTA ACUST UNITED AC 2006; 61:837-43. [PMID: 17033549 DOI: 10.1097/01.ta.0000235290.00606.84] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Numerous studies have suggested that high-frequency oscillatory ventilation (HFOV) used as rescue therapy may improve oxygenation in acute respiratory distress syndrome (ARDS) patients. The purpose of this study is to analyze the efficacy and safety of HFOV in surgical patients with ARDS. METHODS A total of 16 surgical ARDS patients with severe oxygenation failure received HFOV, despite aggressive conventional mechanical ventilatory support. Mean airway pressure was initially set 3 to 5 cm H2O higher than that for conventional ventilation and was subsequently adjusted to maintain oxygen saturation > or = 90% and FiO2 < or =0.6. Oxygenation, ventilation, and hemodynamic parameters were measured during conventional ventilation before initiating HFOV and during HFOV support for a total of 40 hours. Other outcome measures included duration of HFOV, successful weaning rate, cause of failure, complications, survival rate, and cause of death. RESULTS There was a considerable increase in Pao2/FiO2 ratio after 30 minutes, and this increase was maintained after 12 hours of HFOV throughout the study. There was a significant decrease in oxygenation index after 24 hours of HFOV support. There was no significant change in blood pressure associated with initiation and administration of HFOV. The successful weaning rate from HFOV to conventional ventilation was 75%. The intensive care unit survival rate was 43.8% and hospital survival rate was 37.5%. CONCLUSION High-frequency oscillatory ventilation was effective and safe in correcting oxygenation failure associated with ARDS in surgical patients. Future research is warranted to identify the suitable patients, timing, and optimal strategy for applying HFOV.
Collapse
Affiliation(s)
- Kuo-Chin Kao
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 2005; 172:1241-5. [PMID: 16081547 PMCID: PMC2718413 DOI: 10.1164/rccm.200501-048cp] [Citation(s) in RCA: 343] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 08/04/2005] [Indexed: 11/16/2022] Open
Abstract
Use of a volume- and pressure-limited mechanical ventilation strategy improves clinical outcomes of patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS). However, the extent to which tidal volumes and inspiratory airway pressures should be reduced to optimize clinical outcomes is a controversial topic. This article addresses the question, "Is there a safe upper limit to inspiratory plateau pressure in patients with ALI/ARDS?" We reviewed data from animal models with and without preexisting lung injury, studies of normal human respiratory system mechanics, and the results of five clinical trials of lung-protective mechanical ventilation strategies. We also present an original analysis of data from the largest of the five clinical trials. The available data from each of these assessments do not support the commonly held view that inspiratory plateau pressures of 30 to 35 cm H2O are safe. We could not identify a safe upper limit for plateau pressures in patients with ALI/ARDS.
Collapse
Affiliation(s)
- David N Hager
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Acute Respiratory Distress Syndrome (ARDS), an intense form of hypoxemic respiratory failure, may be one of the most elusive diagnoses encountered in the intensive care unit. Increasing the knowledge base of the critical care nurse is imperative to prevent and diagnose ARDS, as well as to generate and implement evidence-based clinical interventions. This article presents a thorough examination of the many facets of ARDS, including its definition, etiology, pathophysiology, presentation, diagnosis, and management.
Collapse
Affiliation(s)
- Meaghan M Taylor
- Johns' Hopkin, Bayview Medical Center in Baltimore, MD 20724, USA.
| |
Collapse
|
39
|
Abstract
Important advances have been made over the past decade towards understanding the optimal approach to ventilating patients with acute respiratory failure. Evidence now supports the use of noninvasive positive pressure ventilation in selected patients with hypercapnic respiratory failure and chronic obstructive pulmonary disease, cardiogenic pulmonary edema, and for facilitating the discontinuation of ventilatory support in patients with chronic pulmonary disease. The concept of a lung protective ventilatory strategy has revolutionized the management of the acute respiratory distress syndrome. The process of liberation from mechanical ventilation is becoming more standardized, with evidence supporting daily trials of spontaneous breathing in all suitable mechanically ventilated patients. This article critically reviews the most important recent advances in mechanical ventilation and suggests future directions for further research in the field.
Collapse
Affiliation(s)
- Carolyn S Calfee
- Cardiovascular Research Institute, San Francisco, California, USA.
| | | |
Collapse
|
40
|
Dahlem P, Bos AP, Haitsma JJ, Schultz MJ, Meijers JCM, Lachmann B. Alveolar fibrinolytic capacity suppressed by injurious mechanical ventilation. Intensive Care Med 2005; 31:724-32. [PMID: 15754195 DOI: 10.1007/s00134-005-2588-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/10/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the effect of mechanical ventilation on alveolar fibrinolytic capacity. DESIGN AND SETTING Randomized controlled animal study in 66 Sprague-Dawley rats. SUBJECTS AND INTERVENTIONS Test animals received intratracheal fibrinogen and thrombin instillations; six were killed immediately (fibrin controls), and the others were allocated to three ventilation groups (ventilation period: 225 min) differing in positive inspiratory pressure and positive end-expiratory pressure, respectively: group 1, 16 cmH2O and 5 cmH2O (n=17); group 2, 26 cmH2O and 5 cmH2O (n=16); group 3, 35 cmH2O and of 5 cmH2O (n=17). Ten animals that had not been ventilated served as healthy controls. MEASUREMENTS AND RESULTS After animals were killed, we measured D-dimers, plasminogen activator inhibitor (PAI) 1, and tumor necrosis factor alpha in the bronchoalveolar lavage fluid and calculated lung weight and pressure/volume (P/V) plots. The median D-dimer concentration (mg/l) decreased with increasing pressure amplitude (192 in group 1, IQR 119; 66 in group 2, IQR 107; 29 in group 3, IQR 30) while median PAI-1 (U/ml) increased (undetectable in group 1; 0.55 in group 2, IQR 4.55; 3.05 in group 3, IQR 4.85). PAI-1 level was correlated with increased lung weight per bodyweight (Spearman's rank correlation 0.708). Tumor necrosis factor alpha concentration was not correlated with PAI-1 level. CONCLUSIONS Alveolar fibrinolytic capacity is suppressed during mechanical ventilation with high pressure amplitudes due to local production of PAI-1.
Collapse
Affiliation(s)
- Peter Dahlem
- Pediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Conrad SA, Zhang S, Arnold TC, Scott LK, Carden DL. Protective effects of low respiratory frequency in experimental ventilator-associated lung injury*. Crit Care Med 2005; 33:835-40. [PMID: 15818113 DOI: 10.1097/01.ccm.0000159532.56865.8a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine whether ventilator-associated lung hyperinflation injury can be attenuated by a reduction in respiratory frequency. DESIGN Prospective comparative laboratory investigation. SETTING University medical center research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Eight groups of isolated, perfused rat lungs were exposed to cyclic ventilation at different respiratory frequencies and tidal volumes. Each group of six to eight lung preparations was assigned to one of four respiratory frequencies (10, 20, 40, or 80 breaths/min) and one of two tidal volumes (5 or 20 mL.kg). Measurement of capillary filtration coefficient (Kf,c), a sensitive index of lung microvascular permeability and injury, was made at baseline and at 30, 60, and 90 mins of the experimental conditions. MEASUREMENTS AND MAIN RESULTS Lungs exposed to 5 mL.kg tidal volume had no elevation in Kf,c at any time point regardless of respiratory frequency. Lungs exposed to 20 mL. kg tidal volume and a respiratory frequency of 80 had significant elevations in Kf,c at all times after baseline compared with lungs exposed to respiratory frequencies of 10, 20, or 40 (0.14 +/- 0.03, 0.16 +/- 0.02, 0.31 +/- 0.05 vs. 0.76 +/- 0.16). Furthermore, the Kf,c at 90 mins was significantly higher than permeability at baseline in this group (1.53 +/- 0.45 vs. 0.12 +/- 0.02 mL.min.cm H2O.100 g of lung tissue). CONCLUSIONS Reduction in respiratory frequency to values much lower than normal ameliorated experimental ventilator-induced hyperinflation lung injury as determined by pulmonary capillary filtration coefficient.
Collapse
Affiliation(s)
- Steven A Conrad
- Department of Emergency Medicine, Louisiana State University Health Sciences Center, 1541 Kings Highway, PO Box 33932, Shreveport, LA 71130-3932, USA.
| | | | | | | | | |
Collapse
|
42
|
Cartotto R, Ellis S, Gomez M, Cooper A, Smith T. High frequency oscillatory ventilation in burn patients with the acute respiratory distress syndrome. Burns 2004; 30:453-63. [PMID: 15225911 DOI: 10.1016/j.burns.2004.01.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND High frequency oscillatory ventilation (HFOV) improves gas exchange while providing lung protective effects during the ventilation of patients with the acute respiratory distress syndrome (ARDS). The purpose of this study was to review our experience with HFOV in adult burn patients with oxygenation failure secondary to ARDS. METHODS Retrospective cohort review of all burn patients treated with HFOV at a regional adult burn center. RESULTS All values are reported as the mean +/- standard deviation (S.D.). HFOV was used on 28 occasions in 25 patients (age 44 +/- 16 years, %TBSA burns 40 +/- 15, and a 28% incidence of inhalation injury) who had severe oxygenation failure from ARDS (PaO2/FiO2 ratio 98 +/- 26, and oxygenation index (OI) (FiO2 x 100 x mean airway pressure/PaO2) 27 +/- 10) following 4.8 +/- 4.4 days of conventional mechanical ventilation (CMV). After switching from CMV to HFOV, there were significant improvements in the PaO(2)/FiO2 ratio within 1h and in the oxygenation index within 24 h. The duration of HFOV was 6.1 +/- 5.8 days. HFOV was continued during 26 surgeries for 14 patients where a mean of 18 +/- 9% TBSA burns were excised and closed. The only complications related to HFOV were three episodes of severe hypercapnia. In-hospital mortality was 32%. CONCLUSIONS HFOV was safe, and was highly effective in correcting oxygenation failure associated with ARDS in burn patients, and can be successfully used as an intra-operative ventilation modality for burn patients.
Collapse
Affiliation(s)
- Robert Cartotto
- Room D710, Ross Tilley Burn Center, Sunnybrook and Womens' College Health Sciences Center, 2075 Bayview Avenue, Toronto, Ont., Canada M4N 3M5.
| | | | | | | | | |
Collapse
|
43
|
Garcia CSNB, Rocco PRM, Facchinetti LD, Lassance RM, Caruso P, Deheinzelin D, Morales MM, Romero PV, Faffe DS, Zin WA. What increases type III procollagen mRNA levels in lung tissue: stress induced by changes in force or amplitude? Respir Physiol Neurobiol 2004; 144:59-70. [PMID: 15522703 DOI: 10.1016/j.resp.2004.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2004] [Indexed: 12/23/2022]
Abstract
We hypothesized that stress determined by force could induce higher type III procollagen (PCIII) mRNA expression than the stress determined by amplitude. To that end, rat lung tissue strips were oscillated for 1h under different amplitudes [1, 5 and 10% of resting length (L(B)), at 0.5 x 10(-2) N] and forces (0.25 x 10(-2), 0.5 x 10(-2) and 10(-2)N, at 5% L(B)). Resistance (R), elastance (E) and hysteresivity (eta) were analysed during sinusoidal oscillations at 1Hz. After 1h of oscillation, PCIII mRNA expression was determined by Northern-blot and semiquantitative RT-PCR. Control value of PCIII mRNA was obtained from unstressed strips. E and R increased with augmenting force and decreased with increasing amplitude, while eta remained unaltered. PCIII mRNA expression increased significantly after 1h of oscillation at 10(-2)N and 5% L(B) and remained unchanged for 6h. In conclusion, the stress induced by force but not by amplitude led to the increment in PCIII mRNA expression.
Collapse
Affiliation(s)
- Cristiane S N B Garcia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bandi VD, Munnur U, Matthay MA. Acute lung injury and acute respiratory distress syndrome in pregnancy. Crit Care Clin 2004; 20:577-607. [PMID: 15388190 DOI: 10.1016/j.ccc.2004.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute respiratory failure can be the result of a variety of clinical conditions, such as congestive heart failure, pneumonia, pulmonary embolism, exacerbation of obstructive lung diseases, and acute respiratory distress syndrome (ARDS). This article focuses on developments related to acute lung injury and ARDS and reviews epidemiology, pathogenesis and therapeutic advances with an emphasis on the obstetric population. A brief discussion of tocolytic-induced pulmonary edema, preeclampsia, venous air embolism, and aspiration-related ARDS is included. Management of pregnant women with ARDS is outlined.
Collapse
Affiliation(s)
- Venkata D Bandi
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
45
|
Gattinoni L, Carlesso E, Valenza F, Chiumello D, Caspani ML. Acute respiratory distress syndrome, the critical care paradigm: what we learned and what we forgot. Curr Opin Crit Care 2004; 10:272-8. [PMID: 15258499 DOI: 10.1097/01.ccx.0000135511.75998.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the last several years, we definitely learned that the acute respiratory distress syndrome lung is small, nonhomogeneous, and that mechanical ventilation in this baby lung may cause physical damage as well as inflammatory reaction. The clinical benefit of the gentle lung treatment, based on a decrease of global/regional stress and strain into the lung, has been finally proved. However, we forgot the importance of lung perfusion and its distribution in this syndrome and, besides a low tidal volume, we still do not know how to handle the other variables of mechanical ventilation. Measurements of variables as transpulmonary pressure and end expiratory lung volume, for a rational setting of mechanical ventilation, should be introduced in routine clinical practice.
Collapse
Affiliation(s)
- Luciano Gattinoni
- Istituto di Anestesia e Rianimazione, Universita' degli Studi di Milano, Ospedale Policlinico IRCCS, Milano, Italy.
| | | | | | | | | |
Collapse
|
46
|
Suzuki S, Hotchkiss JR, Takahashi T, Olson D, Adams AB, Marini JJ. Effect of core body temperature on ventilator-induced lung injury. Crit Care Med 2004; 32:144-9. [PMID: 14707573 DOI: 10.1097/01.ccm.0000098857.14923.44] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Ventilator-induced lung injury is a risk in patients requiring elevated ventilatory support pressures. We hypothesized that thermal stress modulates the development of ventilator-induced lung injury. DESIGN Experimental study. SETTING University laboratory. SUBJECTS Anesthetized rabbits. INTERVENTIONS Two experimental studies were designed to determine the role of temperature as a cofactor in ventilator-induced lung injury. In the first study, three groups of anesthetized rabbits were randomized to be ventilated for 2 hrs at core body temperatures of 33, 37, or 41 degrees C while ventilated with pressure control ventilation of 15/3 cm H2O (noninjurious settings-control) or 35/3 cm H2O (potentially injurious settings-experimental). To exclude effects arising from cardiac output fluctuations or from extrapulmonary organs, an isolated lung model was used for the second study, perfused at a fixed rate and studied at either 33 degrees C or 41 degrees C. MEASUREMENTS AND MAIN RESULTS In the first study, the hyperthermic group compared with the hypothermic animals had significantly reduced mean PaO2 (-114 vs. + 14 mm Hg, p <.05), increased lung edema formation (mean wet weight/dry weight ratio of 8.1 vs. 5.7), and altered pressure-volume curves. The hyperthermic isolated, perfused lungs had an increased ultrafiltration coefficient, formed more edema, and experienced greater alveolar hemorrhage than hypothermic lungs. CONCLUSIONS In two studies of ventilator-induced lung injury in rabbits, maintaining hyperthermia compared with hypothermia augmented the development of lung injury. Similar results from both the in vivo and isolated, perfused lung studies suggest that the observed effects were not due to cardiovascular factors or consequences of heating nonpulmonary organs.
Collapse
Affiliation(s)
- So Suzuki
- Department of Traumatology, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Moe SM, Conhaim RL, Lai-Fook SJ. Interstitial albumin concentration measured during growth of perivascular cuffs in liquid-filled rabbit lung. J Appl Physiol (1985) 2003; 96:283-92. [PMID: 14660494 DOI: 10.1152/japplphysiol.00581.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The growth rate and albumin concentration of interstitial fluid cuffs were measured in isolated rabbit lungs inflated with albumin solution (3 g/dl) to constant airway (Paw) and vascular pressures for up to 10 h. Cuff size was measured from images of frozen lung sections, and cuff albumin concentration (Cc) was measured from the fluorescence of Evans blue labeled albumin that entered the cuffs from the alveolar space. At 5-cmH2O Paw, cuff size peaked at 1 h and then decreased by 75% in 2 h. The decreased cuff size was consistent with an osmotic absorption into the albumin solution that filled the vascular and alveolar spaces. At 15-cmH2O Paw, cuff size peaked at 0.25 h and then remained constant. Cc rose continuously at both pressures, but was greater at the higher pressure. The increasing Cc with a constant cuff size was modeled as diffusion through epithelial pores. Initial Cc-to-airway albumin concentration ratio was 0.1 at 5-cmH2O Paw and increased to 0.3 at 15 cmH2O, a behavior that indicated an increased permeability with lung inflation. Estimated epithelial reflection coefficient was 0.9 and 0.7, and equivalent epithelial pore radii were 4.5 and 6.1 nm at 5- and 15-cmH2O Paw, respectively. The initial cuff growth occurred against an albumin colloid osmotic pressure gradient because a high interstitial resistance reduced the overall epithelial-interstitial reflection coefficient to the low value of the interstitium.
Collapse
Affiliation(s)
- Sonja M Moe
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | | | | |
Collapse
|
48
|
Abstract
Although ALI/ARDS mortality rates have improved over the last several decades, they remain high, particularly in the geriatric patient population. Although considerable progress has been made in understanding the pathogenesis of the disease, a large number of promising treatments have proven unsuccessful. One exception has been in the area of ventilator management, where a strategy of protective ventilation with low tidal volumes has demonstrated a significant mortality benefit. Basic research continues to help advance our understanding of this complex syndrome and identify interesting new directions of investigation. The results of several large, randomized trials of new ventilatory and pharmacologic strategies currently underway may help identify successful methods of treating this important disease.
Collapse
Affiliation(s)
- Ivan W Cheng
- University of California, San Francisco, Cardiovascular Research Institute, 505 Parnassus Avenue, Box 0130, San Francisco, CA 94143-0624, USA.
| | | |
Collapse
|
49
|
Herrera MT, Toledo C, Valladares F, Muros M, Díaz-Flores L, Flores C, Villar J. Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model. Intensive Care Med 2003; 29:1345-53. [PMID: 12698249 DOI: 10.1007/s00134-003-1756-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 03/11/2003] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Previous animal studies have shown that certain modes of mechanical ventilation (MV) can injure the lungs. Most of those studies were performed with models that differ from clinical causes of respiratory failure. We examined the effects of positive end-expiratory pressure (PEEP) in the setting of a clinically relevant, in vivo animal model of sepsis-induced acute lung injury ventilated with low or injurious tidal volume. METHODS Septic male Sprague-Dawley rats were anesthetized and randomized to spontaneous breathing or four different strategies of MV for 3 h at low (6 ml/kg) or high (20 ml/kg) tidal volume (V(T)) with zero PEEP or PEEP above inflection point in the pressure-volume curve. Sepsis was induced by cecal ligation and perforation. Mortality rates, pathological evaluation, lung tissue cytokine gene expression, and plasma cytokine concentrations were analyzed in all experimental groups. RESULTS Lung damage, cytokine synthesis and release, and mortality rates were significantly affected by the method of MV in the presence of sepsis. PEEP above the inflection point significantly attenuated lung damage and decreased mortality during 3 h of ventilation with low V(T) (25% vs. 0%) and increased lung damage and mortality in the high V(T) group (19% vs. 50%). PEEP attenuated lung cytokine gene expression and plasma concentrations during mechanical ventilation with low V(T). CONCLUSIONS The use of a PEEP level above the inflection point in a sepsis-induced acute lung injury animal model modulates the pulmonary and systemic inflammatory responses associated with sepsis and decreases mortality during 3 h of MV.
Collapse
Affiliation(s)
- María Teresa Herrera
- Research Institute, Hospital Universitario N.S. de Candelaria, Carretera del Rosario s/n, 38010, Santa Cruz de Tenerife, Canary Islands, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Nucci G, Suki B, Lutchen K. Modeling airflow-related shear stress during heterogeneous constriction and mechanical ventilation. J Appl Physiol (1985) 2003; 95:348-56. [PMID: 12651864 DOI: 10.1152/japplphysiol.01179.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ventilator-induced lung injury has been proposed as being caused by overdistention and closure and reopening of small airways and alveoli. Here we investigate the possibility that heterogeneous constriction increases airflow-related shear stress to a dangerously high level that may be sufficient to cause injury to the epithelial cells during mechanical ventilation. We employed an anatomically consistent model of the respiratory system, based on Horsfield morphometric data, and solved for the time evolution of pressure and flow along the airway tree during mechanical ventilation. We simulated constant-flow ventilation with passive expiration in two different conditions: baseline and highly heterogeneous constriction. The constriction was applied with two strategies: establishing a simple diameter reduction or adding also a length shortening. The shear stress distribution on airway walls was analyzed for airways ranging from the trachea to the acini. Our results indicate that 1). heterogeneous constriction can amplify the maximal values of shear stress up to 50-fold, with peak values higher than 0.6 cmH2O; 2). the highest shear stress is found in pathways constricted by 60-80%; 3). simultaneous diameter reduction and shortening amplifies the shear stresses by three- to fourfold, with shear stresses reaching 2 cmH2O; and 4). there is a range of airways (diameters from 0.6 to 0.3 mm at baseline) that appear to be at risk of very high stresses. We conclude that elevated airflow-related shear stress on the epithelial cell layer can occur during heterogeneous constriction and conjecture that this may constitute a mechanism contributing to ventilator-induced lung injury.
Collapse
Affiliation(s)
- Gianluca Nucci
- Department of Information Engineering, University of Padova, Padova 35131, Italy.
| | | | | |
Collapse
|