1
|
Abstract
Respiratory immunity is accomplished using multiple mechanisms including structure/anatomy of the respiratory tract, mucosal defense in the form of the mucociliary apparatus, innate immunity using cells and molecules and acquired immunity. There are species differences of the respiratory immune system that influence the response to environmental challenges and pharmaceutical, industrial and agricultural compounds assessed in nonclinical safety testing and hazard identification. These differences influence the interpretation of respiratory system changes after exposure to these challenges and compounds in nonclinical safety assessment and hazard identification and their relevance to humans.
Collapse
|
2
|
Differential Expression Patterns of EGF, EGFR, and ERBB4 in Nasal Polyp Epithelium. PLoS One 2016; 11:e0156949. [PMID: 27285994 PMCID: PMC4902223 DOI: 10.1371/journal.pone.0156949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
Epidermal growth factor receptors play an important role in airway epithelial cell growth and differentiation. The current study investigates the expression profiles of EGF, EGFR and ERBB4 in patients with nasal polyps (NP), and their response to glucocorticosteroid (GC) treatment. Fifty patients with NP (40 without GC treatment and 10 with oral GC) and 20 control subjects with septal deviation were recruited into the study. Protein levels of EGF, EGFR, and ERBB4 were evaluated by immune-staining. In healthy nasal epithelium, EGF and EGFR localized within p63+ basal cells, while ERBB4 localized within ciliated cells. GC-naïve NP epithelium showed weak expression of EGF in 90% of samples versus 5% of controls. EGFR was significantly increased in the epithelium with basal cell hyperplasia from GC-naïve NPs (78%, 31/40) compared to controls (23%, 4/17). EGFR was also found in some degranulating goblet cells. ERBB4 expression was significantly higher in hyperplastic epithelium from GC-naïve NPs (65%, 26/40) than in controls (6%, 1/17). GC treatment restored the EGF expression and normalized the EGFR and ERBB4 expression in NPs. Differential expression patterns of EGF, EGFR, and ERBB4 are essential in epithelial restitution and remodeling in nasal epithelium.
Collapse
|
3
|
Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats. Chem Biol Interact 2015; 241:66-75. [PMID: 26367701 DOI: 10.1016/j.cbi.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/01/2015] [Indexed: 11/21/2022]
Abstract
This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated inhalation of ethylene can induce a local Th2-mediated response in the nasal mucosa of rats, however the mechanisms which induce nasal inflammatory and epithelial responses are yet to be determined.
Collapse
|
4
|
Kogel U, Schlage WK, Martin F, Xiang Y, Ansari S, Leroy P, Vanscheeuwijck P, Gebel S, Buettner A, Wyss C, Esposito M, Hoeng J, Peitsch MC. A 28-day rat inhalation study with an integrated molecular toxicology endpoint demonstrates reduced exposure effects for a prototypic modified risk tobacco product compared with conventional cigarettes. Food Chem Toxicol 2014; 68:204-17. [PMID: 24632068 DOI: 10.1016/j.fct.2014.02.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/26/2022]
Abstract
Towards a systems toxicology-based risk assessment, we investigated molecular perturbations accompanying histopathological changes in a 28-day rat inhalation study combining transcriptomics with classical histopathology. We demonstrated reduced biological activity of a prototypic modified risk tobacco product (pMRTP) compared with the reference research cigarette 3R4F. Rats were exposed to filtered air or to three concentrations of mainstream smoke (MS) from 3R4F, or to a high concentration of MS from a pMRTP. Histopathology revealed concentration-dependent changes in response to 3R4F that were irritative stress-related in nasal and bronchial epithelium, and inflammation-related in the lung parenchyma. For pMRTP, significant changes were seen in the nasal epithelium only. Transcriptomics data were obtained from nasal and bronchial epithelium and lung parenchyma. Concentration-dependent gene expression changes were observed following 3R4F exposure, with much smaller changes for pMRTP. A computational-modeling approach based on causal models of tissue-specific biological networks identified cell stress, inflammation, proliferation, and senescence as the most perturbed molecular mechanisms. These perturbations correlated with histopathological observations. Only weak perturbations were observed for pMRTP. In conclusion, a correlative evaluation of classical histopathology together with gene expression-based computational network models may facilitate a systems toxicology-based risk assessment, as shown for a pMRTP.
Collapse
Affiliation(s)
- Ulrike Kogel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Walter K Schlage
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Patrick Vanscheeuwijck
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland; Philip Morris International R&D, Philip Morris Research Laboratories bvba, Grauwmeer 14, Researchpark Haasrode, 3001 Leuven, Belgium.
| | - Stephan Gebel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany.
| | - Ansgar Buettner
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany.
| | - Christoph Wyss
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Marco Esposito
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
5
|
Carson JL, Brighton LE, Collier AM, Bromberg PA. Correlative ultrastructural investigations of airway epithelium following experimental exposure to defined air pollutants and lifestyle exposure to tobacco smoke. Inhal Toxicol 2013; 25:134-40. [PMID: 23421485 DOI: 10.3109/08958378.2013.763314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Investigations of cell/molecular level effects of in vivo exposure of airway mucosa of experimental animals to common irritant gases have demonstrated structural and physiological changes reflective of breaches in epithelial barrier function, presence of inflammatory cell infiltrate and compromised ciliary function. These experimental animal studies provided useful perspectives of plausible, but more subtle pathologic outcomes having relevance to lifestyle exposure to gaseous environmental irritants including tobacco smoke. METHODS Freeze-fracture technology was applied to ultrastructural examination of large airway epithelium, with appropriate controls, from guinea pigs exposed to ozone and of nasal mucosa of human subjects exposed to ozone or sulfur dioxide, and nasal mucosa of active smokers. RESULTS We documented substantive membrane structural changes to tight junctional complexes and cilia as well as an infiltrate of neutrophils into the surface mucosal layer in exposed animals. These patterns also were evident but not as pervasive among human subjects acutely exposed experimentally to irritant gases and those chronically exposed by their lifestyle to tobacco smoke. DISCUSSION Our intent was to characterize respiratory tract mucosal membrane disorganization associated with high level acute irritant exposures in an experimental animal model and to evaluate evidence of similar but perhaps more subtle pathologic change associated with lower level experimental or lifestyle exposures. Our studies demonstrate continuity, albeit subtle, of pathologic change from high dosage experimental animal exposure to low dosage human exposures. CONCLUSIONS This study represents the first report of ultrastructural airway epithelial membrane anomalies associated with lifestyle exposure to tobacco smoke irritants.
Collapse
Affiliation(s)
- Johnny L Carson
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
6
|
Exacerbated airway toxicity of environmental oxidant ozone in mice deficient in Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:254069. [PMID: 23766849 PMCID: PMC3665255 DOI: 10.1155/2013/254069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/29/2013] [Indexed: 12/20/2022]
Abstract
Ozone (O3) is a strong oxidant in air pollution that has harmful effects on airways and exacerbates respiratory disorders. The transcription factor Nrf2 protects airways from oxidative stress through antioxidant response element-bearing defense gene induction. The present study was designed to determine the role of Nrf2 in airway toxicity caused by inhaled O3 in mice. For this purpose, Nrf2-deficient (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice received acute and subacute exposures to O3. Lung injury was determined by bronchoalveolar lavage and histopathologic analyses. Oxidation markers and mucus hypersecretion were determined by ELISA, and Nrf2 and its downstream effectors were determined by RT-PCR and/or Western blotting. Acute and sub-acute O3 exposures heightened pulmonary inflammation, edema, and cell death more severely in Nrf2(-/-) mice than in Nrf2(+/+) mice. O3 caused bronchiolar and terminal bronchiolar proliferation in both genotypes of mice, while the intensity of compensatory epithelial proliferation, bronchial mucous cell hyperplasia, and mucus hypersecretion was greater in Nrf2(-/-) mice than in Nrf2(+/+) mice. Relative to Nrf2(+/+), O3 augmented lung protein and lipid oxidation more highly in Nrf2(-/-) mice. Results suggest that Nrf2 deficiency exacerbates oxidative stress and airway injury caused by the environmental pollutant O3.
Collapse
|
7
|
Haidarliu S, Golomb D, Kleinfeld D, Ahissar E. Dorsorostral snout muscles in the rat subserve coordinated movement for whisking and sniffing. Anat Rec (Hoboken) 2012; 295:1181-91. [PMID: 22641389 DOI: 10.1002/ar.22501] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 04/02/2012] [Accepted: 05/03/2012] [Indexed: 11/09/2022]
Abstract
Histochemical examination of the dorsorostral quadrant of the rat snout revealed superficial and deep muscles that are involved in whisking, sniffing, and airflow control. The part of M. nasolabialis profundus that acts as an intrinsic (follicular) muscle to facilitate protraction and translation of the vibrissae is described. An intraturbinate and selected rostral-most nasal muscles that can influence major routs of inspiratory airflow and rhinarial touch through their control of nostril configuration, atrioturbinate and rhinarium position, were revealed.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
8
|
Ahmad S, Nichols DP, Strand M, Rancourt RC, Randell SH, White CW, Ahmad A. SERCA2 regulates non-CF and CF airway epithelial cell response to ozone. PLoS One 2011; 6:e27451. [PMID: 22096575 PMCID: PMC3214057 DOI: 10.1371/journal.pone.0027451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 10/17/2011] [Indexed: 11/21/2022] Open
Abstract
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee MG, Wheelock AM, Boland B, Plopper CG. Long-term ozone exposure attenuates 1-nitronaphthalene-induced cytotoxicity in nasal mucosa. Am J Respir Cell Mol Biol 2007; 38:300-9. [PMID: 17901409 PMCID: PMC2258449 DOI: 10.1165/rcmb.2005-0416oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
1-Nitronaphthalene (1-NN) and ozone are cytotoxic air pollutants commonly found as components of photochemical smog. The mechanism of toxicity for 1-NN involves bioactivation by cytochrome P450s and subsequent adduction to proteins. Previous studies have shown that 1-NN toxicity in the lung is considerably higher in rats after long-term exposure to ozone compared with the corresponding filtered air-exposed control rats. The aim of the present study was to establish whether long-term exposure to ozone alters the susceptibility of nasal mucosa to the bioactivated toxicant, 1-NN. Adult male Sprague-Dawley rats were exposed to filtered air or 0.8 ppm ozone for 8 hours per day for 90 days, followed by a single treatment with 0, 12.5, or 50.0 mg/kg 1-NN by intraperitoneal injection. The results of the histopathologic analyses show that the nasal mucosa of rats is a target of systemic 1-NN, and that long-term ozone exposure markedly lessens the severity of injury, as well as the protein adduct formation by reactive 1-NN metabolites. The antagonistic effects were primarily seen in the nasal transitional epithelium, which corresponds to the main site of histologic changes attributed to ozone exposure (goblet cell metaplasia and hyperplasia). Long-term ozone exposure did not appear to alter susceptibility to 1-NN injury in other nasal regions. This study shows that long-term ozone exposure has a protective effect on the susceptibility of nasal transitional epithelium to subsequent 1-NN, a result that clearly contrasts with the synergistic toxicological effect observed in pulmonary airway epithelium in response to the same exposure regimen.
Collapse
Affiliation(s)
- Myong Gyong Lee
- Lung Research Lab L4:01, Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
10
|
Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 2006; 34:252-69. [PMID: 16698724 DOI: 10.1080/01926230600713475] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nose is a very complex organ with multiple functions that include not only olfaction, but also the conditioning (e.g., humidifying, warming, and filtering) of inhaled air. The nose is also a "scrubbing tower" that removes inhaled chemicals that may be harmful to the more sensitive tissues in the lower tracheobronchial airways and pulmonary parenchyma. Because the nasal airway may also be a prime target for many inhaled toxicants, it is important to understand the comparative aspects of nasal structure and function among laboratory animals commonly used in inhalation toxicology studies, and how nasal tissues and cells in these mammalian species may respond to inhaled toxicants. The surface epithelium lining the nasal passages is often the first tissue in the nose to be directly injured by inhaled toxicants. Five morphologically and functionally distinct epithelia line the mammalian nasal passages--olfactory, respiratory, squamous, transitional, and lymphoepithelial--and each nasal epithelium may be injured by an inhaled toxicant. Toxicant-induced epithelial lesions in the nasal passages of laboratory animals (and humans) are often site-specific and dependent on the intranasal regional dose of the inhaled chemical and the sensitivity of the nasal epithelial tissue to the specific chemical. In this brief review, we present examples of nonneoplastic epithelial lesions (e.g., cell death, hyperplasia, metaplasia) caused by single or repeated exposure to various inhaled chemical toxicants. In addition, we provide examples of how nasal maps may be used to record the character, magnitude and distribution of toxicant-induced epithelial injury in the nasal airways of laboratory animals. Intranasal mapping of nasal histopathology (or molecular and biochemical alterations to the nasal mucosa) may be used along with innovative dosimetric models to determine dose/response relationships and to understand if site-specific lesions are driven primarily by airflow, by tissue sensitivity, or by another mechanism of toxicity. The present review provides a brief overview of comparative nasal structure, function and toxicologic pathology of the mammalian nasal epithelium and a brief discussion on how data from animal toxicology studies have been used to estimate the risk of inhaled chemicals to human health.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
11
|
Harkema JR, Wagner JG. Epithelial and inflammatory responses in the airways of laboratory rats coexposed to ozone and biogenic substances: enhancement of toxicant-induced airway injury. ACTA ACUST UNITED AC 2005; 57 Suppl 1:129-41. [PMID: 16092720 DOI: 10.1016/j.etp.2005.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
People are often concurrently exposed to more than one air pollutant whether they are in outdoor or indoor environments. Therefore, inhalation studies that are designed to examine the toxicity of coexposures to two or more airborne toxicants may be more relevant for assessing human health risks than those studies that investigate the toxic effects of only one airborne toxicant at a time. Furthermore, airborne biogenic substances such as pollens, bacteria, fungi, and microbial toxins often coexist with common air pollutants in the ambient air, and when inhaled may also cause specific adverse effects on the respiratory tract. One such biogenic substance, bacterial endotoxin, is a potent stimulus of airway inflammation and is commonly found in domestic, agricultural, and industrial settings. Little is known about the interaction of exposures to biogenic substances and common air pollutants, such as ozone or airborne particulate matter. In the last few years, we have performed a series of in vivo studies using laboratory rodents that examined how airway surface epithelial cells are altered by coexposure to ozone and a biogenic substance, either bacterial endotoxin or a commonly used experimental aeroallergen (ovalbumin). Results from these studies indicate that the ozone-induced epithelial and inflammatory responses in laboratory rodents may be markedly enhanced by coexposure to an inhaled biogenic substance. Conversely, the adverse airway alterations caused by exposure to biogenic substances may be enhanced by coexposure to ozone. The results from these initial studies have also suggested some of the cellular and molecular mechanisms underlying the phenotypic epithelial alterations induced by these coexposures. Many more studies are needed to fully elucidate the potential risk to human health from coexposure to air pollutants and airborne biogenic substances.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
12
|
Voynow JA, Fischer BM, Malarkey DE, Burch LH, Wong T, Longphre M, Ho SB, Foster WM. Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1293-302. [PMID: 15273079 DOI: 10.1152/ajplung.00140.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Goblet cell hyperplasia in the superficial airway epithelia is a signature pathological feature of chronic bronchitis and cystic fibrosis. In these chronic inflammatory airway diseases, neutrophil elastase (NE) is found in high concentrations in the epithelial lining fluid. NE has been reported to trigger mucin secretion and increase mucin gene expression in vitro. We hypothesized that chronic NE exposure to murine airways in vivo would induce goblet cell metaplasia. Human NE (50 microg) or PBS saline was aspirated intratracheally by male Balb/c (6 wk of age) mice on days 1, 4, and 7. On days 8, 11, and 14, lung tissues for histology and bronchoalveolar lavage (BAL) samples for cell counts and cytokine levels were obtained. NE induced Muc5ac mRNA and protein expression and goblet cell metaplasia on days 8, 11, and 14. These cellular changes were the result of proteolytic activity, since the addition of an elastase inhibitor, methoxysuccinyl Ala-Ala-Pro-Val chloromethylketone (AAPV-CMK), blocked NE-induced Muc5ac expression and goblet cell metaplasia. NE significantly increased keratinocyte-derived chemokine and IL-5 in BAL and increased lung tissue inflammation and BAL leukocyte counts. The addition of AAPV-CMK reduced these measures of inflammation to control levels. These experiments suggest that NE proteolytic activity initiates an inflammatory process leading to goblet cell metaplasia.
Collapse
Affiliation(s)
- Judith A Voynow
- Department of Pediatrics, Duke University Medical Center, Box 2994, Durham, NC 27710, USA. )
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nikasinovic L, Momas I, Seta N. Nasal epithelial and inflammatory response to ozone exposure: a review of laboratory-based studies published since 1985. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2003; 6:521-568. [PMID: 12888446 DOI: 10.1080/10937400306477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article summarizes biological events in human and animal nasal epithelium after short- and long-term exposure to ozone, the principal agent in photochemical smog. Despite anatomical and histological interspecies differences, ozone exposures resulted in common nasal qualitative alterations with an anterior-posterior gradient of phenomena occurring immediately, and with a lag time postexposure: epithelial disruption and increased permeability, inflammatory cell influx, and proliferative and secretory responses. Described mechanisms of toxicity included a direct effect of ozone on epithelial lining fluid and cellular membranes and the subsequent release of cytokines and cyclooxygenase and lipoxygenase products. An indirect effect of ozone was indicated by a decreased mucociliary clearance, free radicals production interacting with a gene promoting factor, and increased DNA synthesis. Studies highlighted the pivotal role of activated neutrophils and mast cells leading to the release of deleterious enzymes (tryptase, eosinophil cationic protein) and numerous cytokines. Experiments performed with ozone exposure/allergen challenge reported that, besides the intrinsic deleterious properties of ozone, it also had a priming effect on the late-phase response to allergen challenge, providing new insights into the pathophysiology of respiratory allergic diseases.
Collapse
Affiliation(s)
- L Nikasinovic
- Laboratoire d'Hygiène et de Santé Publique, Faculté des Sciences Pharmaceutiques et Biologiques, Université René Descartes, Paris, France
| | | | | |
Collapse
|
14
|
Abstract
Ozone (O3) is an air pollutant produced by sunlight-driven reactions involving the oxides of nitrogen and volatile organic compounds. The population of many large metropolitan areas in the US is exposed to high levels of O3, particularly in the summer months. Individuals exposed to O3 levels in human experiments at higher than common ambient levels develop reversible reductions in lung function often associated with symptoms, such as airway hyperreactivity and lung inflammation. Animal models have helped characterize potential mechanisms of lung injury from O3 exposure. Defining the adverse effects of chronic exposure to ambient levels of O3 on lung function and disease have been challenging, in part due to the presence of co-pollutants, such as particulate matter. The US Environmental Protection Agency's 1997 revised standard for O3 (0.08 ppm averaged over 8 hours) is designed to provide better protection to susceptible individuals. The revised standard is being implemented following the failure of court challenges.
Collapse
Affiliation(s)
- Nevin Uysal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, 53295, USA.
| | | |
Collapse
|
15
|
Laskin DL, Fakhrzadeh L, Laskin JD. Nitric oxide and peroxynitrite in ozone-induced lung injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:183-90. [PMID: 11764933 DOI: 10.1007/978-1-4615-0667-6_24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the hallmarks of the inflammatory response associated with tissue injury is the accumulation of macrophages at sites of damage. These cell types release proinflammatory cytokines and cytotoxic mediators to destroy invading pathogens and initiate wound repair. However, when produced in excessive amounts, these macrophage-derived mediators may actually contribute to tissue injury. This process involves both direct damage to target tissues and amplification of the inflammatory response. One group of macrophage-derived mediators of particular interest are reactive nitrogen intermediates including nitric oxide and peroxynitrite which have been implicated in tissue injury induced by a variety oftoxicants. Our laboratory has been investigating the role of reactive nitrogen intermediates in lung injury induced by oxidants such as ozone. Inhalation of ozone causes epithelial cell damage and Type II cell hyperplasia. This is associated with an accumulation of activated macrophages in the lower lungs which we have demonstrated contribute to toxicity. To analyze the role of macrophage-derived reactive nitrogen intermediates in ozone toxicity, we used transgenic mice lacking the gene for inducible nitric oxide synthase (NOSII). Treatment of wild type control animals with ozone (0.8 ppm) for 3 hr resulted in an increase in bronchoalveolar lavage (BAL) fluid protein reaching a maximum 24-48 hr after exposure. This was correlated with increased expression of NOSII protein and mRNA by alveolar macrophages and increased production of nitric oxide as well as peroxynitrite. Ozone inhalation also resulted in the appearance of nitrotyrosine residues in the lungs, an in vivo marker of peroxynitrite-induced damage. In contrast, in NOSII knockout mice, BAL protein was not increased demonstrating that these mice were protected from ozone-induced epithelial injury. Moreover, alveolar macrophages from the transgenic mice did not produce nitric oxide or peroxynitrite even after ozone inhalation. There was also no evidence for the formation of nitrotyrosine in lung tissue. These data indicate that ozone-induced lung injury is mediated by reactive nitrogen intermediates.
Collapse
Affiliation(s)
- D L Laskin
- Environmental and Occupational Health Sciences Institute and Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
16
|
Ganey PE, Roth RA. Concurrent inflammation as a determinant of susceptibility to toxicity from xenobiotic agents. Toxicology 2001; 169:195-208. [PMID: 11718960 DOI: 10.1016/s0300-483x(01)00523-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sensitivity to the toxic effects of xenobiotic agents is influenced by a number of factors. Recent evidence derived from studies using experimental animals suggests that inflammation is one of these factors. For example, induction of inflammation by coexposure to bacterial endotoxin, vitamin A or Corynebacterium parvum increases injury in response to a number of xenobiotic agents that target liver. These agents are diverse in chemical nature and in mechanism of hepatotoxic action. Factors critical to the augmentation of liver injury by inflammation include Kupffer cells, neutrophils, cytokines such as tumor necrosis factor-alpha (TNF-alpha) and lipid mediators such as prostaglandins, but these may vary depending on the xenobiotic agent and the mechanisms by which it alters hepatocellular homeostasis. In addition, the timing of inflammagen exposure can qualitatively alter the toxic response to chemicals. Inflammation-induced increases in susceptibility to toxicity are not limited to liver. Concurrent inflammation also sensitizes animals to the toxic effects of agents that damage the respiratory tract, kidney and lymphoid tissue. It is concluded that inflammation should be considered as a determinant of susceptibility to intoxication by xenobiotic exposure.
Collapse
Affiliation(s)
- P E Ganey
- Department of Pharmacology and Toxicology, Institute for Environmental Toxicology, B346 Life Sciences Bldg., Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- M J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Edward Hines, Jr., Veterans Affairs Hospital, Hines, Illinois 6041, USA.
| |
Collapse
|
18
|
Abstract
Allergic rhinitis is a very common disease worldwide and is influenced by both genetic and environmental factors. Exposure to environmental allergens is the most significant environmental factor in development and exacerbation of allergic rhinitis. However, air pollutants that are not allergens may affect allergic inflammation in the nasal airway. The nasal airway possesses a number of defense mechanisms to deal with environmental irritants. This article examines the effect of ozone and particulate air pollution of TH2-type inflammation in the airway and how nasal defenses protect the upper and lower airway from adverse effects of pollutants.
Collapse
Affiliation(s)
- D B Peden
- Center for Environmental Medicine & Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Road, CB# 7310, School of Medicine, Chapel Hill, NC 27599-7310, USA.
| |
Collapse
|