1
|
Crowley LE, Stockley RA, Thickett DR, Dosanjh D, Scott A, Parekh D. Neutrophil dynamics in pulmonary fibrosis: pathophysiological and therapeutic perspectives. Eur Respir Rev 2024; 33:240139. [PMID: 39603661 PMCID: PMC11600124 DOI: 10.1183/16000617.0139-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024] Open
Abstract
The shared pathobiological mechanisms driving progressive fibrosis in interstitial lung diseases (ILDs) remain unclear. Neutrophils, the most common immune cells in the human body, contain an extensive array of proteinases that are important for cell function, including tissue repair and remodelling. Increasing observational studies have reported elevated neutrophil counts in the respiratory tract and circulation of patients with ILD and suggest a role as a biomarker of disease severity. Neutrophils and their contents (including the formation of neutrophil extracellular traps (NETs)) are present in fibrotic lung tissue. Proteinases and NETs may drive fibrogenesis in animal and in vitro models and may impact transforming growth factor-β1 activation. However, the effect of neutrophil action, whether reparative or pathologically destructive to the delicate lung architecture, has yet to be determined. This review aims to summarise the current literature surrounding the potential role of the neutrophil as a biomarker and contributor to the pathogenesis of ILD. There is currently a paucity of treatment options in ILD driven by the knowledge gap underlying the overall disease mechanisms. This review concludes that neutrophils warrant further evaluation as manipulation of recruitment and function could provide a novel and much needed therapeutic strategy.
Collapse
Affiliation(s)
- Louise Elizabeth Crowley
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Robert Andrew Stockley
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
| | - David Richard Thickett
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Davinder Dosanjh
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Joint senior authors
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Joint senior authors
| |
Collapse
|
2
|
Singh P, Guin D, Pattnaik B, Kukreti R. Mapping the genetic architecture of idiopathic pulmonary fibrosis: Meta-analysis and epidemiological evidence of case-control studies. Gene 2024; 895:147993. [PMID: 37977320 DOI: 10.1016/j.gene.2023.147993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a rare and devastating fibrotic lung disorder with unknown etiology. Although it is believed that genetic component is an important risk factor for IPF, a comprehensive understanding of its genetic landscape is lacking. Hence, we aimed to highlight the susceptibility genes and pathways implicated in IPF pathogenesis through a two-staged systematic literature search of genetic association studies on IPF, followed by meta-analysis and pathway enrichment analysis. METHODS This study was performed based on PRISMA guidelines (PROSPERO, registration number: CRD42022297970). The first search was performed (using PubMed and Web of Science) retrieving a total of 5642 articles, of which 52 were eligible for inclusion in the first stage. The second search was performed (using PubMed, Web of Science and Scopus) for ten polymorphisms, identified from the first search, with 2 or more studies. Finally, seven polymorphisms, [rs35705950/MUC5B, rs2736100/TERT, rs2609255/FAM13A, rs2076295/DSP, rs12610495/DPP9, rs111521887/TOLLIP and rs1800470/TGF-β1] qualified for meta-analyses. The epidemiological credibility was evaluated using Venice criteria. RESULTS From the systematic review, 222 polymorphisms in 118 genes showed a significant association with IPF susceptibility. Meta-analyses findings revealed significant association of rs35705950/T [OR = 3.92(3.26-4.57)], rs2609255/G [OR = 1.50(1.18-1.82)], rs2076295/G [OR = 1.19(0.82-1.756)], rs12610495/G [OR = 1.28(1.12-1.44)], rs2736100/C [OR = 0.68(0.54-0.82), rs111521887/G [OR = 1.34(1.06-1.61)] and suggestive evidence for rs1800470/T [OR = 1.08(0.82-1.34)] with IPF susceptibility. Four polymorphisms- rs35705950/MUC5B, rs2736100/TERT, rs2076295/DSP and rs111521887/TOLLIP, exhibited substantial epidemiological evidence supporting their association with IPF risk. Gene ontology and pathway enrichment analysis performed on IPF risk-associated genes identified a critical role of genes in mucin production, immune response and inflammation, host defence, cell-cell adhesion and telomere maintenance. CONCLUSIONS Our findings present the most prominent IPF-associated genetic risk variants involved in alveolar epithelial injuries (MUC5B, TERT, FAM13A, DSP, DPP9) and epithelial-mesenchymal transition (TOLLIP, TGF-β1), providing genetic and biological insights into IPF pathogenesis. However, further experimental research and human studies with larger sample sizes, diverse ethnic representation, and rigorous design are warranted.
Collapse
Affiliation(s)
- Pooja Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India; Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Debleena Guin
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi, India; Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research in Asthma and Lung Diseases, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India; Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| |
Collapse
|
3
|
Chong DLW, Mikolasch TA, Sahota J, Rebeyrol C, Garthwaite HS, Booth HL, Heightman M, Denneny EK, José RJ, Khawaja AA, Duckworth A, Labelle M, Scotton CJ, Porter JC. Investigating the role of platelets and platelet-derived transforming growth factor-β in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2023; 325:L487-L499. [PMID: 37643008 PMCID: PMC10639018 DOI: 10.1152/ajplung.00227.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Transforming growth factor-β1 (TGFβ1) is the key profibrotic cytokine in idiopathic pulmonary fibrosis (IPF), but the primary source of this cytokine in this disease is unknown. Platelets have abundant stores of TGFβ1, although the role of these cells in IPF is ill-defined. In this study, we investigated whether platelets, and specifically platelet-derived TGFβ1, mediate IPF disease progression. Patients with IPF and non-IPF patients were recruited to determine platelet reactivity, and separate cohorts of patients with IPF were followed for mortality. To study whether platelet-derived TGFβ1 modulates pulmonary fibrosis (PF), mice with a targeted deletion of TGFβ1 in megakaryocytes and platelets (TGFβ1fl/fl.PF4-Cre) were used in the well-characterized bleomycin-induced pulmonary fibrosis (PF) animal model. In a discovery cohort, we found significantly higher mortality in patients with IPF who had elevated platelet counts within the normal range. However, our validation cohort did not confirm this observation, despite significantly increased platelets, neutrophils, active TGFβ1, and CCL5, a chemokine produced by inflammatory cells, in the blood, lung, and bronchoalveolar lavage (BAL) of patients with IPF. In vivo, we showed that despite platelets being readily detected within the lungs of bleomycin-treated mice, neither the degree of pulmonary inflammation nor fibrosis was significantly different between TGFβ1fl/fl.PF4-Cre and control mice. Our results demonstrate for the first time that platelet-derived TGFβ1 does not significantly mediate inflammation or fibrosis in a PF animal model. Furthermore, our human studies revealed blood platelet counts do not consistently predict mortality in IPF but other platelet-derived mediators, such as C-C chemokine ligand 5 (CCL5), may promote neutrophil recruitment and human IPF.NEW & NOTEWORTHY Platelets are a rich source of profibrotic TGFβ; however, the role of platelets in idiopathic pulmonary fibrosis (IPF) is unclear. We identified that patients with IPF have significantly more platelets, neutrophils, and active TGFβ in their airways than control patients. Using an animal model of IPF, we demonstrated that platelet-derived TGFβ does not significantly drive lung fibrosis or inflammation. Our findings offer a better understanding of platelets in both human and animal studies of IPF.
Collapse
Affiliation(s)
- Deborah L W Chong
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Theresia A Mikolasch
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jagdeep Sahota
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Carine Rebeyrol
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Helen S Garthwaite
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Helen L Booth
- Interstitial Lung Disease Service, University College London Hospital, London, United Kingdom
| | - Melissa Heightman
- Interstitial Lung Disease Service, University College London Hospital, London, United Kingdom
| | - Emma K Denneny
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Ricardo J José
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Akif A Khawaja
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Anna Duckworth
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, United Kingdom
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Chris J Scotton
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, United Kingdom
| | - Joanna C Porter
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
4
|
Yin L, Han K, Jiang B, Meng Q, Aschner M, Li X, Chen R. NAT10 accelerates pulmonary fibrosis through N4-acetylated TGFB1-initiated epithelial-to-mesenchymal transition upon ambient fine particulate matter exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121149. [PMID: 36731737 DOI: 10.1016/j.envpol.2023.121149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) has been linked to a higher pulmonary fibrosis risk. Dysregulation of the epitranscriptome results in abnormal expression of mRNAs during fibrosis development. N4-acetylcytidine (ac4C) is one of the most frequent RNA epigenetic alterations, however, its function in PM2.5-triggered fibrosis is yet unknown. In this study, lung epithelial and murine models were established and exposed to PM2.5 to analyze the function of ac4C alteration in pulmonary fibrosis and underlying mechanisms. Meanwhile, the expression levels of only known ac4C "writer" protein, N-acetyltransferase 10 (NAT10), were significantly induced in pulmonary epithelia, relative to the control. Subsequently, NAT10 enhanced the stability of transforming growth factor beta 1 (TGFB1) mRNA as well as protein levels. As an up-stream driver, TGFB1 accelerated EMT and fibrosis process. Inhibition of NAT10 significantly protected against pulmonary EMT and fibrosis driven by PM2.5 exposure, whereas TGFB1 overexpression reversed the protective effects of NAT10 inhibition. Thus, NAT10 accelerated PM2.5-triggered pulmonary fibrosis via increasing TGFB1 mRNA stability in an ac4C-dependent manner. Our results reveal a pivotal role of NAT10-regulated mRNA ac4C acetylation in PM2.5-triggered pulmonary fibrosis and uncover the potential epitranscriptional mechanism.
Collapse
Affiliation(s)
- Lijia Yin
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ke Han
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bo Jiang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China; Beijing laboratory of allergic diseases, Capital Medical University; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Therapeutic Effect of Astragali Radix Extract Injection Combined with Bone Marrow Mesenchymal Stem Cells in Bleomycin-Induced Pulmonary Fibrotic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4933255. [PMID: 35733628 PMCID: PMC9208943 DOI: 10.1155/2022/4933255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is a serious disease for which effective drugs are unavailable. Here, we treated rat models of bleomycin (BLM)-induced pulmonary fibrosis with Astragali Radix extract injection (AI) combined with or without bone marrow mesenchymal stem cells (BMSCs). We injected rats intratracheally with BLM and transplanted BMSCs via tail vein injection 15 days later. We also intraperitoneally injected AI daily from days 15 to 28. Changes in lung pathology and function, as well as the levels of matrix metalloproteinases, collagen, C-X-C motif chemokine ligand 12 (CXCL12), and cluster of differentiation 90 (CD90) were assessed. The results revealed that compared with the BLM group, groups treated with ARE and BMSCs (alone or combined) reduced the expression levels of TGF-β1 and collagens I and III, ameliorated pathological lung fibrotic damage, and improved lung function. The expression levels of MMP-1, MMP-3, and MMP-9 were reduced by either AI or BMSCs alone, whereas those of MMP-3, MMP-9, TIMP-1, CXCL12, and CD90 were elevated by combined AI and BMSCs compared with the BLM group. Overall, these findings demonstrated that AI and BMSCs both can reduce damage caused by PF in rats and that AI altered the expression of chemokines and surface markers in BMSCs.
Collapse
|
6
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
7
|
Cadena-Suárez AR, Hernández-Hernández HA, Alvarado-Vásquez N, Rangel-Escareño C, Sommer B, Negrete-García MC. Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms23126613. [PMID: 35743055 PMCID: PMC9224458 DOI: 10.3390/ijms23126613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality and unclear etiology. Previous evidence supports that the origin of this disease is associated with epigenetic alterations, age, and environmental factors. IPF initiates with chronic epithelial lung injuries, followed by basal membrane destruction, which promotes the activation of myofibroblasts and excessive synthesis of extracellular matrix (ECM) proteins, as well as epithelial-mesenchymal transition (EMT). Due to miRNAs’ role as regulators of apoptosis, proliferation, differentiation, and cell-cell interaction processes, some studies have involved miRNAs in the biogenesis and progression of IPF. In this context, the analysis and discussion of the probable association of miRNAs with the signaling pathways involved in the development of IPF would improve our knowledge of the associated molecular mechanisms, thereby facilitating its evaluation as a therapeutic target for this severe lung disease. In this work, the most recent publications evaluating the role of miRNAs as regulators or activators of signal pathways associated with the pathogenesis of IPF were analyzed. The search in Pubmed was made using the following terms: “miRNAs and idiopathic pulmonary fibrosis (IPF)”; “miRNAs and IPF and signaling pathways (SP)”; and “miRNAs and IPF and SP and IPF pathogenesis”. Additionally, we focus mainly on those works where the signaling pathways involved with EMT, fibroblast differentiation, and synthesis of ECM components were assessed. Finally, the importance and significance of miRNAs as potential therapeutic or diagnostic tools for the treatment of IPF are discussed.
Collapse
Affiliation(s)
- Ana Ruth Cadena-Suárez
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Hilda Arely Hernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Claudia Rangel-Escareño
- Departamento de Genomica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col. Arenal Tepepan, Mexico City 14610, Mexico;
- Escuela de Ingenieria y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Cristina Negrete-García
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
- Correspondence:
| |
Collapse
|
8
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
9
|
He J, Du Y, Li G, Xiao P, Sun X, Song W, Lai L, Xia M, Zhang J, Wang Q. Myeloid Fbxw7 Prevents Pulmonary Fibrosis by Suppressing TGF-β Production. Front Immunol 2022; 12:760138. [PMID: 35069531 PMCID: PMC8767095 DOI: 10.3389/fimmu.2021.760138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by an inexorable decline in lung function with limited treatment options. The abnormal expression of transforming growth factor-β (TGF-β) in profibrotic macrophages is linked to severe pulmonary fibrosis, but the regulation mechanisms of TGF-β expression are incompletely understood. We found that decreased expression of E3 ubiquitin ligase Fbxw7 in peripheral blood mononuclear cells (PBMCs) was significantly related to the severity of pulmonary fibrosis in IPF patients. Fbxw7 is identified to be a crucial suppressing factor for pulmonary fibrosis development and progression in a mouse model induced by intratracheal bleomycin treatment. Myeloid cell-specific Fbxw7 deletion increases pulmonary monocyte-macrophages accumulation in lung tissue, and eventually promotes bleomycin-induced collagen deposition and progressive pulmonary fibrosis. Notably, the expression of TGF-β in profibrotic macrophages was significantly upregulated in myeloid cell-specific Fbxw7 deletion mice after bleomycin treatment. C-Jun has long been regarded as a critical transcription factor of Tgfb1, we clarified that Fbxw7 inhibits the expression of TGF-β in profibrotic macrophages by interacting with c-Jun and mediating its K48-linked ubiquitination and degradation. These findings provide insight into the role of Fbxw7 in the regulation of macrophages during the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yue Du
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Gaopeng Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Peng Xiao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Xingzheng Sun
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Wenjun Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Jianhua Zhang
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Atractylodin Suppresses TGF-β-Mediated Epithelial-Mesenchymal Transition in Alveolar Epithelial Cells and Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci 2021; 22:ijms222011152. [PMID: 34681813 PMCID: PMC8570326 DOI: 10.3390/ijms222011152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.
Collapse
|
11
|
Idiopathic pulmonary fibrosis and systemic sclerosis: pathogenic mechanisms and therapeutic interventions. Cell Mol Life Sci 2021; 78:5527-5542. [PMID: 34145462 PMCID: PMC8212897 DOI: 10.1007/s00018-021-03874-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/07/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
Fibrotic diseases take a very heavy toll in terms of morbidity and mortality equal to or even greater than that caused by metastatic cancer. In this review, we examine the pathogenesis of fibrotic diseases, mainly addressing triggers for induction, processes that lead to progression, therapies and therapeutic trials. For the most part, we have focused on two fibrotic diseases with lung involvement, idiopathic pulmonary fibrosis, in which the contribution of inflammatory mechanisms may be secondary to non-immune triggers, and systemic sclerosis in which the contribution of adaptive immunity may be predominant.
Collapse
|
12
|
Han J, Jia Y, Wang S, Gan X. The Improvement Effect of Sodium Ferulate on the Formation of Pulmonary Fibrosis in Silicosis Mice Through the Neutrophil Alkaline Phosphatase 3 (NALP3)/Transforming Growth Factor-β1 (TGF-β1)/α-Smooth Muscle Actin (α-SMA) Pathway. Med Sci Monit 2021; 27:e927978. [PMID: 34127642 PMCID: PMC8214818 DOI: 10.12659/msm.927978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Pneumoconiosis is a chronic progressive fibrotic interstitial pneumonia for which the pathogenesis and treatment remain unclear. Previous studies showed that sodium ferulate (SF) may have a therapeutic effect, and this study explored the mechanism underlying SF-related improvement. Material/Methods In this study, a silicosis mouse model and primary cultured mouse lung fibroblasts were established. Hematoxylin-eosin staining, western blot analysis, quantitative real-time polymerase chain reaction, and Masson staining were used to observe the lung injury, expression of vimentin, and the degree of pulmonary fibrosis. The extracted lung fibroblasts were identified by immunofluorescence. The expression of fibrosis-related genes encoding transforming growth factor-β1 (TGF-β1), neutrophil alkaline phosphatase 3 (NALP3), collagen-1, α-smooth muscle actin (α-SMA), and phosphorylated p38 (p-p38) and p38 proteins were detected by western blot. The effects of SF and the TGF-β pathway agonist SRI-011381 on cell proliferation and the expression of fibrosis-related protein in mouse lung fibroblasts were measured by Cell Counting Kit-8, immunofluorescence, and western blot as needed. Results SF reduced the lung lesions in silicosis mice and inhibited the expression of vimentin and fibrosis-related genes, while having no effect on body weight. Vimentin expression was positive in the extracted cells. In vitro experiments showed that SF inhibited the proliferation of lung fibroblasts and the expression of fibrosis-related proteins. In addition, SF partly reversed the opposite regulatory effect of SRI-011381 on lung fibroblasts. Conclusions SF inhibited lung injury and fibrosis in silicosis mice through the NALP3/TGF-β1/α-SMA pathway.
Collapse
Affiliation(s)
- Jingyin Han
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yangmin Jia
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shujuan Wang
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoyu Gan
- Department of Occupational Disease, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
13
|
Regorafenib-Attenuated, Bleomycin-Induced Pulmonary Fibrosis by Inhibiting the TGF-β1 Signaling Pathway. Int J Mol Sci 2021; 22:ijms22041985. [PMID: 33671452 PMCID: PMC7922359 DOI: 10.3390/ijms22041985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.
Collapse
|
14
|
Mousapasandi A, Herbert C, Thomas P. Potential use of biomarkers for the clinical evaluation of sarcoidosis. J Investig Med 2021; 69:jim-2020-001659. [PMID: 33452128 DOI: 10.1136/jim-2020-001659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Sarcoidosis is a systemic granulomatous disease of unknown etiology and pathogenesis with a heterogeneous clinical presentation. In the appropriate clinical and radiological context and with the exclusion of other diagnoses, the disease is characterized by the pathological presence of non-caseating epithelioid cell granulomas. Sarcoidosis is postulated to be a multifactorial disease caused by chronic antigenic stimulation. The immunopathogenesis of sarcoidosis encompasses a complex interaction between the host, genetic factors and postulated environmental and infectious triggers, which result in granuloma development.The exact pathogenesis of the disease has yet to be elucidated, but some of the inflammatory pathways that play a key role in disease progression and outcomes are becoming apparent, and these may form the logical basis for selecting potential biomarkers.Biomarkers are biological molecules that are altered pathologically. To date, there exists no single reliable biomarker for the evaluation of sarcoidosis, either diagnostically or prognostically but new candidates are emerging. A diagnosis of sarcoidosis ideally requires a biopsy confirming non-caseating granulomas, but the likelihood of progression that requires intervention remains unpredictable. These challenging aspects could be potentially resolved by incorporating biomarkers into clinical practice for both diagnosis and monitoring disease activity.This review outlines the current knowledge on sarcoidosis with an emphasis on pulmonary sarcoidosis, and delineates the understanding surrounding the implication of biomarkers for the clinical evaluation of sarcoidosis.
Collapse
Affiliation(s)
- Amir Mousapasandi
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Cristan Herbert
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Respiratory Medicine, Prince of Wales' Hospital and Prince of Wales' Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Dagneaux L, Owen AR, Bettencourt JW, Barlow JD, Amadio PC, Kocher JP, Morrey ME, Sanchez-Sotelo J, Berry DJ, van Wijnen AJ, Abdel MP. Human Fibrosis: Is There Evidence for a Genetic Predisposition in Musculoskeletal Tissues? J Arthroplasty 2020; 35:3343-3352. [PMID: 32593486 PMCID: PMC7842876 DOI: 10.1016/j.arth.2020.05.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pathologic fibrosis is characterized by dysregulation of gene expression with excessive extracellular matrix production. The genetic basis for solid organ fibrosis is well described in the literature. However, there is a paucity of evidence for similar processes in the musculoskeletal (MSK) system. The purpose of this review is to provide an overview of existing evidence of genetic predisposition to pathologic fibrosis in the cardiac, pulmonary, and MSK systems, and to describe common genetic variants associated with these processes. METHODS A comprehensive search of several databases from 2000 to 2019 was conducted using relevant keywords in the English language. Genes reported as involved in idiopathic fibrotic processes in the heart, lung, hand, shoulder, and knee were recorded by 2 independent authors. RESULTS Among 2373 eligible studies, 52 studies investigated genetic predisposition in terms of variant analysis with the following organ system distribution: 36 pulmonary studies (69%), 15 hand studies (29%), and 1 knee study (2%). Twenty-two percent of gene variants identified were associated with both pulmonary and MSK fibrosis (ie, ADAM, HLA, CARD, EIF, TGF, WNT, and ZNF genes). Genetic variants known to be involved in the MSK tissue development or contractility properties in muscle were identified in the pulmonary fibrosis. CONCLUSION Despite shared genetic variations in both the lung and hand, there remains limited information about genetic variants associated with fibrosis in other MSK regions. This finding establishes the necessity of further studies to elucidate the genetic determinants involved in the knee, shoulder, and other joint fibrotic pathways. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Louis Dagneaux
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | | | - Peter C. Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Jean P. Kocher
- Department of Bioinformatics, Mayo Clinic, Rochester, MN
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN,Reprint requests: Matthew P. Abdel, MD, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905
| |
Collapse
|
16
|
Affiliation(s)
- Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
17
|
Chang X, Xing L, Wang Y, Yang CX, He YJ, Zhou TJ, Gao XD, Li L, Hao HP, Jiang HL. Monocyte-derived multipotent cell delivered programmed therapeutics to reverse idiopathic pulmonary fibrosis. SCIENCE ADVANCES 2020; 6:eaba3167. [PMID: 32518825 PMCID: PMC7253157 DOI: 10.1126/sciadv.aba3167] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/20/2020] [Indexed: 05/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous and fatal disease. However, IPF treatment has been limited by the low drug delivery efficiency to lungs and dysfunctional "injured" type II alveolar epithelial cell (AEC II). Here, we present surface-engineered nanoparticles (PER NPs) loading astaxanthin (AST) and trametinib (TRA) adhered to monocyte-derived multipotent cell (MOMC) forming programmed therapeutics (MOMC/PER). Specifically, the cell surface is designed to backpack plenty of PER NPs that reach directly to the lungs due to the homing characteristic of the MOMC and released PER NPs retarget injured AEC II after responding to the matrix metalloproteinase-2 (MMP-2) in IPF tissues. Then, released AST can enhance synergetic effect of TRA for inhibiting myofibroblast activation, and MOMC can also repair injured AEC II to promote damaged lung regeneration. Our findings provide proof of concept for developing a strategy for cell-mediated lung-targeted delivery platform carrying dual combined therapies to reverse IPF.
Collapse
Affiliation(s)
- Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chen-Xi Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang-Dong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hai-Ping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Wang J, Xu L, Xiang Z, Ren Y, Zheng X, Zhao Q, Zhou Q, Zhou Y, Xu L, Wang Y. Microcystin-LR ameliorates pulmonary fibrosis via modulating CD206 + M2-like macrophage polarization. Cell Death Dis 2020; 11:136. [PMID: 32075954 PMCID: PMC7031231 DOI: 10.1038/s41419-020-2329-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix deposition with limited treatment options. Based on our previous observation, we hypothesized microcystin-leucine arginine (LR), an environmental cyanobacterial toxin, could potentially suppress pulmonary fibrosis. In this study, we first demonstrated that chronic exposure of microcystin-LR by oral for weeks indeed attenuated the pulmonary fibrosis both on bleomycin-induced rat and fluorescein isothiocyanate-induced mouse models. Our data further indicated that treatment with microcystin-LR substantially reduced TGF-β1/Smad signaling in rat pulmonary tissues. The experiments in vitro found that microcystin-LR was capable of blocking epithelial–mesenchymal transition (EMT) and fibroblast–myofibroblast transition (FMT) through suppressing the differentiation of CD206+ macrophages. Mechanically, microcystin-LR was found to bind to glucose-regulated protein 78 kDa (GRP78) and suppress endoplasmic reticulum unfolded protein response (UPRER) signaling pathways. These events led to the modulation of M2 polarization of macrophages, which eventually contributed to the alleviation of pulmonary fibrosis. Our results revealed a novel mechanism that may account for therapeutic effect of microcystin-LR on IPF.
Collapse
Affiliation(s)
- Jie Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lizhi Xu
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yan Ren
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Xiufen Zheng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingya Zhao
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Qunzhi Zhou
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Yuefen Zhou
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.
| |
Collapse
|
19
|
Kangfuxin Oral Liquid Attenuates Bleomycin-Induced Pulmonary Fibrosis via the TGF- β1/Smad Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5124026. [PMID: 31885648 PMCID: PMC6926420 DOI: 10.1155/2019/5124026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/17/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease with a poor prognosis characterized by transforming growth factor (TGF)-β-induced proliferation, migration, and differentiation of fibroblasts, resulting in excessive extracellular matrix (ECM) deposition. Whether Kangfuxin oral liquid (KFXOL) has a protective function in pulmonary fibrosis is largely unknown. The goal of this study was to investigate the potential efficacy of KFXOL, as well as the underlying mechanism by which KFXOL regulates pulmonary fibrosis in vivo and in vitro. We found that KFXOL dramatically attenuated intratracheal bleomycin (BLM)-induced pulmonary fibrosis in terms of both severe alveolar architecture destruction and collagen deposition. KFXOL treatment significantly inhibited the proliferation, migration, and differentiation of pulmonary fibroblasts following activation using BLM/TGF-β1 and normalized the expression of ECM deposition-related proteins, including matrix metalloproteinase (MMP)-1, MMP-9, and tissue inhibitor of metalloproteinases 1. These effects were mediated via the inhibition of TGF-β1 and phosphorylated Smad2/3 activation in vivo. Taken together, our data suggest that KFXOL attenuates the development of pulmonary fibrosis via the TGF-β1/Smad signaling pathway and thus has potential utility in the treatment of pulmonary fibrosis.
Collapse
|
20
|
Comeglio P, Filippi S, Sarchielli E, Morelli A, Cellai I, Corno C, Pini A, Adorini L, Vannelli GB, Maggi M, Vignozzi L. Therapeutic effects of obeticholic acid (OCA) treatment in a bleomycin-induced pulmonary fibrosis rat model. J Endocrinol Invest 2019; 42:283-294. [PMID: 29923060 DOI: 10.1007/s40618-018-0913-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE We recently demonstrated a protective effect of the farnesoid X receptor agonist obeticholic acid (OCA) in rat models of bleomycin-induced pulmonary fibrosis (PF). Aim of the present study was to investigate whether the positive effects of OCA treatment are apparent also on ongoing bleomycin-induced PF, i.e., after 2 weeks of bleomycin administration. METHODS Bleomycin-induced PF rats were treated 2 weeks after bleomycin administration with OCA or pirfenidone for two additional weeks. Pulmonary function test was performed at 2 and 4 weeks in all experimental groups. At the same time points, lung morphological features and mRNA expression profile of genes related to fibrosis, inflammation and epithelial-mesenchymal transition were also assessed. RESULTS After 2 weeks, bleomycin significantly increased the pressure at the airway opening (PAO), a functional parameter related to fibrosis-induced lung stiffness, and induced diffuse lung interstitium fibrosis, with upregulation of inflammation (IL1β, MCP1) and tissue remodeling (COL1A1, COL3A1, ET1, MMP7, PDGFa, αSMA, SNAI1) markers. At week four, a further increase of lung fibrosis and PAO was observed, accompanied by upregulation of extracellular matrix-related mRNA expression. OCA administration, even after the establishment of PF, significantly improved pulmonary function, normalizing PAO, and reverted the bleomycin-induced lung alterations, with significant reduction of markers of inflammation (CD206, COX2, HIF1, IL1β, MCP1), epithelial proliferation (CTGF, PDGFa) and fibrosis (COL1A1, COL3A1, ET1, FN1, MMPs, αSMA, SNAIs, TGFβ1, TIMPs). Results with OCA were similar or superior to those obtained with pirfenidone. CONCLUSIONS In conclusion, our results demonstrate a significant therapeutic effect of OCA in already established PF.
Collapse
Affiliation(s)
- P Comeglio
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - S Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of NEUROFARBA, University of Florence, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - I Cellai
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - C Corno
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - A Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - L Adorini
- Intercept Pharmaceuticals, New York, NY, USA
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | - L Vignozzi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy.
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy.
| |
Collapse
|
21
|
Chen J, Lu J, Wang B, Zhang X, Huang Q, Yuan J, Hao H, Chen X, Zhi J, Zhao L, Chu H. Polysaccharides from Dendrobium officinale inhibit bleomycin-induced pulmonary fibrosis via the TGFβ1-Smad2/3 axis. Int J Biol Macromol 2018; 118:2163-2175. [DOI: 10.1016/j.ijbiomac.2018.07.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
|
22
|
Xin L, Jiang M, Su G, Xie M, Chen H, Liu X, Xu M, Zhang G, Gong J. The association between transforming growth factor beta1 polymorphism and susceptibility to pulmonary fibrosis: A meta-analysis (MOOSE compliant). Medicine (Baltimore) 2018; 97:e11876. [PMID: 30212926 PMCID: PMC6155963 DOI: 10.1097/md.0000000000011876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although many studies have investigated the association of single nucleotide polymorphisms (SNPs) in transforming growth factor beta1 (TGF-β1) gene with pulmonary fibrosis (PF), but their association is still controversial. To clarify this, we performed a meta-analysis.Studies related to TGF-β1 and PF were retrieved from PubMed, Medline, Embase, Scopus, and Wanfang (up to November 30, 2017). We targeted TGF-β1 SNPs that have been reported by ≥3 studies to be included in the current meta-analysis, resulting in only 1 final SNP (rs1800470). The odds ratios (ORs) and 95% confidence intervals (CIs) were estimated in the models of allele comparison (T vs C), homozygote comparison (TT vs CC), dominant (TT vs TC + CC), recessive (TT + TC vs CC) to evaluate the strength of the associations.A total of 7 case-control studies were included in this meta-analysis. Overall, no significant association between TGF-β1 rs1800470 and PF was found (T vs C: OR [95% CI] = 0.96 [0.80, 1.15]; TT vs CC: 0.87 [0.61, 1.22]; TT vs TC + CC: 0.80 [0.62, 1.04]; TT + TC vs CC: 1.13 [0.83, 1.54]). In subgroup analyses by ethnicity or original disease, no statistically significant association between TGF-β1 rs1800470 polymorphisms and PF was demonstrated.This meta-analysis revealed that TGF-β1 rs1800470 polymorphism was not associated with susceptibility to PF development.
Collapse
|
23
|
Upagupta C, Shimbori C, Alsilmi R, Kolb M. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev 2018; 27:27/148/180033. [PMID: 29950306 DOI: 10.1183/16000617.0033-2018] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 11/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease, marked by excessive scarring, which leads to increased tissue stiffness, loss in lung function and ultimately death. IPF is characterised by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Myofibroblasts play a key role in ECM deposition. Transforming growth factor (TGF)-β1 is a major growth factor involved in myofibroblast differentiation, and the creation of a profibrotic microenvironment. There is a strong link between increased ECM stiffness and profibrotic changes in cell phenotype and differentiation. The activation of TGF-β1 in response to mechanical stress from a stiff ECM explains some of the influence of the tissue microenvironment on cell phenotype and function. Understanding the close relationship between cells and their surrounding microenvironment will ultimately facilitate better management strategies for IPF.
Collapse
Affiliation(s)
- Chandak Upagupta
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Chiko Shimbori
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rahmah Alsilmi
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Partida-Zavala N, Ponce-Gallegos MA, Buendía-Roldán I, Falfán-Valencia R. Type 2 macrophages and Th2 CD4+ cells in interstitial lung diseases (ILDs): an overview. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2018; 35:98-108. [PMID: 32476888 PMCID: PMC7170082 DOI: 10.36141/svdld.v35i2.6691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group characterized mainly by damage to pulmonary parenchyma, through histopathological processes such as granulomatous pneumopathy, inflammation and fibrosis. Factors that generate susceptibility to ILDs include age, exposure to occupational and environmental compounds, genetic, family history, radiation and chemotherapy/immunomodulatory and cigarette smoke. IFN-γ, IL-1β, and LPS are necessary to induce a classical activation of macrophages, whereas cytokines as IL-4 and IL-13 can induce an alternative activation in macrophages, through the JAK-STAT mediated signal transduction. M2 macrophages are identified based on the gene transcription or protein expression of a set of M2 markers. These markers include transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. Fibrotic lung disorders may have a M2 polarization background. The Th2 pathway with an elevated CCL-18 (marker of M2) concentration in the bronchoalveolar lavage fluid (BALF) is linked to fibrosis in ILDs. Besides the role of M2 in tissue repair and ECM remodeling, activated fibroblasts summon and stimulate macrophages by producing MCP-1, M-CSF and other chemokines, as well as activated macrophages secrete cytokines that attract and stimulate proliferation, survival and migration of fibroblast mediated by platelet-derived growth factor (PDGF). (Sarcoidosis Vasc Diffuse Lung Dis 2018; 35: 98-108).
Collapse
Affiliation(s)
- Neftali Partida-Zavala
- Universidad Autónoma de Nayarit, Unidad Académica de Medicina. Tepic, Nayarit. México. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Ciudad de México, Mexico
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Marco Antonio Ponce-Gallegos
- Universidad Autónoma de Nayarit, Unidad Académica de Medicina. Tepic, Nayarit. México. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Ciudad de México, Mexico
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Ivette Buendía-Roldán
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas City, Mexico
| |
Collapse
|
25
|
Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 2018; 27:27/147/170077. [PMID: 29491034 PMCID: PMC6019552 DOI: 10.1183/16000617.0077-2017] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
A past history of pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognised, despite its relatively high prevalence and its association with reduced quality of life. Importantly, specific host and pathogen factors causing lung impairment remain unclear. Host immune responses probably play a dominant role in lung damage, as excessive inflammation and elevated expression of lung matrix-degrading proteases are common during TB. Variability in host genes that modulate these immune responses may determine the severity of lung impairment, but this hypothesis remains largely untested. In this review, we provide an overview of the epidemiological literature on post-TB lung impairment and link it to data on the pathogenesis of lung injury from the perspective of dysregulated immune responses and immunogenetics. Host factors driving lung injury in TB likely contribute to variable patterns of pulmonary impairment after TBhttp://ow.ly/a3of30hBsxB
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hardy Kornfeld
- Dept of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Drew Weissman
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory P Bisson
- Dept of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Dept of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Interstitial lung disease (ILD) is comprised of a heterogeneous group of disorders with highly variable natural histories and response to therapies. Pharmacogenetics focuses on the variability in drug response because of the presence of genetic factors that influence drug metabolism or disease activity. In this article, we review relevant drug-specific and disease-specific polymorphisms that may influence therapeutic response, and then highlight a recently identified drug-gene interaction in patients with idiopathic pulmonary fibrosis (IPF). RECENT FINDINGS The emergence of high-throughput genomic technology has allowed for identification of gene polymorphisms associated with susceptibility to specific disease states, including IPF and several connective tissue diseases known to cause ILD. IPF risk loci span a diverse group of genes, while most associated with connective tissue disease are critical to immune signaling. A recent pharmacogenetic analysis of patients enrolled in an IPF clinical trial identified a variant within TOLLIP to be associated with differential response to N-acetylcysteine therapy. SUMMARY Though few pharmacogenetic investigations have been conducted in patients with ILD to date, ample opportunities for pharmacogenetic exploration exist in this patient population. Such exploration will advance our understanding of specific ILDs and help usher in an era of personalized medicine.
Collapse
|
27
|
Transforming growth factor β1polymorphism and serum levels in Egyptian patients with interstitial lung diseases. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2017. [DOI: 10.1016/j.ejcdt.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Paraquat poisoning induced pulmonary epithelial mesenchymal transition through Notch1 pathway. Sci Rep 2017; 7:924. [PMID: 28424456 PMCID: PMC5430447 DOI: 10.1038/s41598-017-01069-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Progressive pulmonary fibrosis is the most characteristic feature of subacute PQ poisoning. Epithelial-to-mesenchymal transition (EMT) is reported to be involved in the pulmonary fibrosis after PQ exposure. Recent evidence suggested Notch signaling is required for EMT. In this study, we investigated whether Notch1 and TGF-β1/Smad3 signaling was involved in EMT caused by PQ. It is demonstrated that A549 cells underwent EMT after treated with PQ at dose of 300 μmol/L for 6 days, charactered by increasing expression of mesenchymal marker α-SMA and decreasing expression of epithelial marker E-cadherin. We found that there was an apparent increased expression of Notch1 and jagged-1 in PQ induced EMT process. EMT could be enhanced by Jagged-1 ligand of Notch1, and be blocked by DAPT, a γ-secretase inhibitor. Our data also showed that the expression of TGF-β1/Smad3 increased after Notch1 is elevated in EMT caused by PQ. Jagged-1 significantly induced SMA expression, and this induction was completely inhibited by SB431542 in A549 cells. In conclusion, we demonstrated that Notch1 pathway was important in EMT induced by PQ, and TGF-β1/Smad3 signaling partly plays a role as the downstream of Notch1.
Collapse
|
29
|
Ding Q, Subramanian I, Luckhardt TR, Che P, Waghray M, Zhao XK, Bone N, Kurundkar AR, Hecker L, Hu M, Zhou Y, Horowitz JC, Vittal R, Thannickal VJ. Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF-β. Am J Physiol Lung Cell Mol Physiol 2017; 312:L926-L935. [PMID: 28360109 DOI: 10.1152/ajplung.00121.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023] Open
Abstract
Alveolar epithelial cell (AEC) injury and apoptosis are prominent pathological features of idiopathic pulmonary fibrosis (IPF). There is evidence of AEC plasticity in lung injury repair response and in IPF. In this report, we explore the role of focal adhesion kinase (FAK) signaling in determining the fate of lung epithelial cells in response to transforming growth factor-β1 (TGF-β1). Rat type II alveolar epithelial cells (RLE-6TN) were treated with or without TGF-β1, and the expressions of mesenchymal markers, phenotype, and function were analyzed. Pharmacological protein kinase inhibitors were utilized to screen for SMAD-dependent and -independent pathways. SMAD and FAK signaling was analyzed using siRNA knockdown, inhibitors, and expression of a mutant construct of FAK. Apoptosis was measured using cleaved caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. TGF-β1 induced the acquisition of mesenchymal markers, including α-smooth muscle actin, in RLE-6TN cells and enhanced the contraction of three-dimensional collagen gels. This phenotypical transition or plasticity, epithelial-myofibroblast plasticity (EMP), is dependent on SMAD3 and FAK signaling. FAK activation was found to be dependent on ALK5/SMAD3 signaling. We observed that TGF-β1 induces both EMP and apoptosis in the same cell culture system but not in the same cell. While blockade of SMAD signaling inhibited EMP, it had a minimal effect on apoptosis; in contrast, inhibition of FAK signaling markedly shifted to an apoptotic fate. The data support that FAK activation determines whether AECs undergo EMP vs. apoptosis in response to TGF-β1 stimulation. TGF-β1-induced EMP is FAK- dependent, whereas TGF-β1-induced apoptosis is favored when FAK signaling is inhibited.
Collapse
Affiliation(s)
- Qiang Ding
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama;
| | - Indhu Subramanian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Alameda Health System, Oakland, California
| | - Tracy R Luckhardt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Pulin Che
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Meghna Waghray
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xue-Ke Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama.,Department of Infectious Diseases, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China; and
| | - Nathaniel Bone
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Ashish R Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Louise Hecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Meng Hu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| |
Collapse
|
30
|
Deng CW, Zhang XX, Lin JH, Huang LF, Qu YL, Bai C. Association between Genetic Variants of Transforming Growth Factor-β1 and Susceptibility of Pneumoconiosis: A Meta-analysis. Chin Med J (Engl) 2017; 130:357-364. [PMID: 28139521 PMCID: PMC5308020 DOI: 10.4103/0366-6999.198917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Transforming growth factor-beta 1 (TGF-β1) and gene variants have been extensively studied in various human diseases. For example, TGF-β1 polymorphisms were associated with fibrosis and pneumoconiosis, but the data remained controversial. The aim of this meta-analysis was to assess the association between TGF-β1 −509 C>T [rs1800469], +869 T>C [rs1800470], and +915 G>C [rs1800471] polymorphisms and pneumoconiosis. Methods: A comprehensive literature search was conducted through searching in PubMed, Embase, the Chinese Biomedical Database, and the Wei Pu (Chinese) Database by the end of April 2016. Eleven publications with 21 studies were included in this meta-analysis, covering a total of 4333 patients with pneumoconiosis and 3478 controls. Study quality was assessed, and heterogeneity and publication bias were measured. All statistical analyses were performed using STATA version 12.0 (StataCorp, College Station, TX, USA) software. Results: The data showed significant associations between TGF-β1 −509 C>T polymorphism and the risk of pneumoconiosis development (T vs. C, odds ratio [OR] = 1.35, 95% confidence interval [CI]: 1.00–1.81, P = 0.046); between TGF-β1 +915 G>C polymorphism and the pneumoconiosis risk (C vs. G, OR = 1.69, 95% CI: 1.19–2.40, P = 0.004; CG vs. GG, OR = 1.79, 95% CI: 1.23–2.60, P = 0.002; CC+CG vs. GG, OR = 1.80, 95% CI: 1.24–2.61, P = 0.002). In addition, the subgroup analysis of ethnicity versus pneumoconiosis types indicated a significant association of silicosis among Asian populations but not that of coal workers’ pneumoconiosis in Caucasian populations. In contrast, no significant association was exhibited between TGF-β1 +869 T>C polymorphism and risk of pneumoconiosis. Conclusion: The polymorphisms of both TGF-β1 −509 C>T and +915 G>C are associated with increased risk of pneumoconiosis.
Collapse
Affiliation(s)
- Chang-Wen Deng
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433; Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xing-Xing Zhang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Li-Fei Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433; Department of Respiratory, Haining People's Hospital, Jiaxing, Zhejiang 314400, China
| | - Yu-Lan Qu
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
31
|
Xu L, Bian W, Gu XH, Shen C. Genetic polymorphism in matrix metalloproteinase-9 and transforming growth factor-β1 and susceptibility to combined pulmonary fibrosis and emphysema in a Chinese population. Kaohsiung J Med Sci 2017; 33:124-129. [PMID: 28254114 DOI: 10.1016/j.kjms.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
In this study, we aimed to explore the association of genetic polymorphism in matrix metalloproteinase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) and the susceptibility to combined pulmonary fibrosis and emphysema (CPFE). We examined the polymorphisms of the MMP-9 C-1562T and TGF-β1 T869C in 38 CPFE patients, 50 pulmonary emphysema patients, and 34 idiopathic pulmonary fibrosis (IPF) patients. The frequencies of polymorphic genotypes in MMP-9 were 78.95% CC and 21.05% CT in CPFE group, 76.0% CC and 24.0% CT in emphysema group, and 100.0% CC in IPF group. There were highly statistically significant increased frequencies of the CT genotype and T allele in CPFE and emphysema groups compared with IPF group (p < 0.05). The frequencies of polymorphic genotypes in TGF-β1 were 2.63% CC, 28.95% CT, 68.42% TT in CPFE group, 4.00% CC, 16.00% CT, 80.00% TT in emphysema group, and 5.88% CC, 41.18% CT, 52.94% TT in IPF group. Significant increases in the TT genotype and T allele frequencies were observed in emphysema group compared with IPF group (p < 0.05). Our study has showed that T allele in MMP-9 (C-1562T) and T allele in TGF-β1 (T869C) are risk factors of pulmonary emphysema. The T allele in MMP-9 (C-1562T) possibly predisposes patients with pulmonary fibrosis to develop emphysema.
Collapse
Affiliation(s)
- Ling Xu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Wei Bian
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Hua Gu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ce Shen
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Spagnolo P, Cottin V. Genetics of idiopathic pulmonary fibrosis: from mechanistic pathways to personalised medicine. J Med Genet 2016; 54:93-99. [DOI: 10.1136/jmedgenet-2016-103973] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
33
|
Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J Hum Genet 2016; 61:985-993. [PMID: 27488440 DOI: 10.1038/jhg.2016.99] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that is refractory to treatment and carries a high mortality rate. IPF is frequently associated with lung cancer. Identification of molecular targets involved in both diseases may elucidate novel molecular mechanisms contributing to their pathology. Recent studies of microRNA (miRNA) expression signatures showed that microRNA-29a (miR-29a) was downregulated in IPF and lung cancer. The aim of this study was to investigate the functional significance of miR-29a in lung cancer cells (A549 and EBC-1) and lung fibroblasts (MRC-5) and to identify molecular targets modulated by miR-29a in these cells. We confirmed the downregulation of miR-29a in clinical specimens of IPF and lung cancer. Restoration of miR-29a suppressed cancer cell aggressiveness and fibroblast migration. A combination of gene expression data and in silico analysis showed that a total of 24 genes were putative targets of miR-29a. Among them, lysyl oxidase-like 2 (LOXL2) and serpin peptidase inhibitor clade H, member 1 (SERPINH1) were direct targets of miR-29a by luciferase reporter assays. The functions of LOXL2 and SERPINH1 contribute significantly to collagen biosynthesis. Overexpression of LOXL2 and SERPINH1 was observed in clinical specimens of lung cancer and fibrotic lesions. Downregulation of miR-29a caused overexpression of LOXL2 and SERPINH1 in lung cancer and IPF, suggesting that these genes are involved in the pathogenesis of these two diseases.
Collapse
|
34
|
Santovito A, Cervella P, Chiarizio M, Meschiati G, Delsoglio M, Manitta E, Picco G, Delpero M. Relationships between cytokine (IL-6 and TGF-β1) gene polymorphisms and chromosomal damage in hospital workers. J Immunotoxicol 2015; 13:314-23. [DOI: 10.3109/1547691x.2015.1076547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Piero Cervella
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Michela Chiarizio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Giulia Meschiati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Marta Delsoglio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Eleonora Manitta
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Giulia Picco
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Massimiliano Delpero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
35
|
Oueslati S, Hadj Fredj S, Dakhlaoui B, Othmani R, Siala H, Messaoud T. Association of TGFB1 -509C/T polymorphism gene with clinical variability in cystic fibrosis patients: A case-control study. ACTA ACUST UNITED AC 2015; 63:175-8. [PMID: 26277914 DOI: 10.1016/j.patbio.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/10/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE In this work, we are interested to study the implication of -509C/T polymorphism, located in the promoter region of TGFB1 (transforming growth factor β1), in the phenotypic variability of CF patients. PATIENTS AND METHODS The present study enrolled 111 CF patients and 100 healthy control subjects. The study of the -509C/T polymorphism was performed using PCR-RFLP method. RESULTS We found that patients carried non-F508del homozygous mutation with TT genotype was associated to lung symptoms (P=0.04). This association was not found in the sub-groups of patients with F508del at homozygous state P=0.145. No association was found between this polymorphism and the variability of digestive, pancreatic and ileus meconial symptoms. CONCLUSION On the basis of our results, the -509C/T polymorphism of the TGFB1 gene seems to be a modulator factor of cystic fibrosis.
Collapse
Affiliation(s)
- S Oueslati
- Biochemistry Laboratory (Research Laboratory Haemoglobinopathies and Cystic Fibrosis), Children's Hospital, Bab Saadoun Square, 1007 Tunis, Tunisia.
| | - S Hadj Fredj
- Biochemistry Laboratory (Research Laboratory Haemoglobinopathies and Cystic Fibrosis), Children's Hospital, Bab Saadoun Square, 1007 Tunis, Tunisia
| | - B Dakhlaoui
- Biochemistry Laboratory (Research Laboratory Haemoglobinopathies and Cystic Fibrosis), Children's Hospital, Bab Saadoun Square, 1007 Tunis, Tunisia
| | - R Othmani
- Biochemistry Laboratory (Research Laboratory Haemoglobinopathies and Cystic Fibrosis), Children's Hospital, Bab Saadoun Square, 1007 Tunis, Tunisia
| | - H Siala
- Biochemistry Laboratory (Research Laboratory Haemoglobinopathies and Cystic Fibrosis), Children's Hospital, Bab Saadoun Square, 1007 Tunis, Tunisia
| | - T Messaoud
- Biochemistry Laboratory (Research Laboratory Haemoglobinopathies and Cystic Fibrosis), Children's Hospital, Bab Saadoun Square, 1007 Tunis, Tunisia
| |
Collapse
|
36
|
Furukawa H, Oka S, Shimada K, Tsuchiya N, Tohma S. Genetics of Interstitial Lung Disease: Vol de Nuit (Night Flight). CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2015; 9:1-7. [PMID: 26056507 PMCID: PMC4444491 DOI: 10.4137/ccrpm.s23283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
Abstract
Interstitial lung disease (ILD) is a chronic, progressive fibrotic lung disease with a dismal prognosis. ILD of unknown etiology is referred to as idiopathic interstitial pneumonia (IIP), which is sporadic in the majority of cases. ILD is frequently accompanied by rheumatoid arthritis (RA), systemic sclerosis (SSc), polymyositis/dermatomyositis (PM/DM), and other autoimmune diseases, and is referred to as collagen vascular disease-associated ILD (CVD-ILD). Susceptibility to ILD is influenced by genetic and environmental factors. Recent advances in radiographic imaging techniques such as high-resolution computed tomography (CT) scanning as well as high-throughput genomic analyses have provided insights into the genetics of ILD. These studies have repeatedly revealed an association between IIP (sporadic and familial) and a single nucleotide polymorphism (SNP) in the promoter region of the mucin 5B (MUC5B). HLA-DRB1*11 alleles have been reported to correlate with ILD in European patients with SSc, whereas in Japanese patients with RA, the HLA-DR2 serological group was identified. The aim of this review is to describe the genetic background of sporadic IIP, CVD-ILD, drug-induced-ILD (DI-ILD), pneumoconiosis, and hypersensitivity pneumonitis. The genetics of ILD is still in progress. However, this information will enhance the understanding of the pathogenesis of ILD and aid the identification of novel therapeutic targets for personalized medicine in future.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| | - Shomi Oka
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| | - Kota Shimada
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Japan
| |
Collapse
|
37
|
Kropski JA, Blackwell TS, Loyd JE. The genetic basis of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45:1717-27. [PMID: 25837031 DOI: 10.1183/09031936.00163814] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/17/2015] [Indexed: 02/06/2023]
Abstract
Throughout the past decade, there have been substantial advances in understanding the pathogenesis of idiopathic pulmonary fibrosis (IPF). Recently, several large genome-wide association and linkage studies have identified common genetic variants in more than a dozen loci that appear to contribute to IPF risk. In addition, family-based studies have led to the identification of rare genetic variants in genes related to surfactant function and telomere biology, and mechanistic studies suggest pathophysiological derangements associated with these rare genetic variants are also found in sporadic cases of IPF. Current evidence suggests that rather than existing as distinct syndromes, sporadic and familial cases of IPF (familial interstitial pneumonia) probably reflect a continuum of genetic risk. Rapidly evolving bioinformatic and molecular biology techniques, combined with next-generation sequencing technologies, hold great promise for developing a comprehensive, integrated approach to defining the fundamental molecular mechanisms that underlie IPF pathogenesis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Dept of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Dept of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA Dept of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA Dept of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - James E Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine, Dept of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
38
|
Yang J, Zhong T, Xiao G, Chen Y, Liu J, Xia C, Du H, Kang X, Lin Y, Guan R, Yan P, Xiao J. Polymorphisms and haplotypes of the TGF-β1 gene are associated with risk of polycystic ovary syndrome in Chinese Han women. Eur J Obstet Gynecol Reprod Biol 2015; 186:1-7. [DOI: 10.1016/j.ejogrb.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/11/2014] [Indexed: 01/21/2023]
|
39
|
Yang G, Yang L, Wang W, Wang J, Wang J, Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene 2015; 562:138-44. [PMID: 25725128 DOI: 10.1016/j.gene.2015.02.065] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial lung disease of unknown etiology that is currently untreatable. In this study we aim to characterize the potential of extracellular/circulating microRNAs (miRNAs) in serum as biomarkers for IPF. METHODS Total serum RNAs were isolated from serum from healthy control subjects (n=12), rapid progressive (n=12) and slowly progressive IPF patients (n=12). Serum RNA was analyzed by using TaqMan microRNA assays containing probes for 366 human miRNAs, and selected findings were validated with quantitative RT-PCR. Target prediction and pathway analysis on the significant differential miRNAs were performed using DIANA-mirPath. RESULTS We found 47 significantly differentially expressed serum miRNAs (p<0.05) in rapid progressive or slowly progressive IPF patients compared to healthy controls, including 21 up-regulated miRNAs and 26 down-regulated miRNAs. Bioinformatic analysis by DIANA-mirPath demonstrated that 53 KEGG biological processes were significantly enriched (p < 0.05, FDR corrected) among differentially expressed serum miRNAs, including TGF-beta signaling pathway (p < 0.0001), MAPK signaling pathway (p < 0.0001), PI3K-Akt signaling pathway (p < 0.0001), Wnt signaling pathway (p < 0.0001), HIF-1 signaling pathway (p < 0.0001), Regulation of actin cytoskeleton (p < 0.0001), Jak-STAT signaling pathway (p < 0.0001), Notch signaling pathway (p < 0.0001), and Cytokine-cytokine receptor interaction (p = 0.0062). We further validated six miRNAs (miR-21, miR-199a-5p, miR-200c, miR-31, let-7a, and let-7d) for further validation using an independent cohort of 20 rapid progressive IPF, 24 slowly progressive IPF patients and 20 healthy controls. In agreement with the preliminary data from miRNA assay, miR-21, miR-199a-5p, and miR-200c were significantly increased in serums of IPF patients while miR-31, let-7a, and let-7d were significantly under expressed in serums of IPF patients compared to healthy controls. CONCLUSIONS These studies demonstrated that extracellular/circulating miRNAs in serum could be potentially served as novel regulators influencing disease progression of IPF.
Collapse
Affiliation(s)
- Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lin Yang
- Oncology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wendong Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jiashun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Zhongping Xu
- Department of Surgery, Washington University School of Medicine, St. Louis 63110, MO, USA.
| |
Collapse
|
40
|
Yan W, Li J, Chai R, Guo W, Xu L, Han Y, Bai X, Wang H. Combining use of captopril and losartan attenuates the progress of Streptococcus pneumoniae-induced tympanosclerosis through the suppression of TGF-β1 expression. PLoS One 2014; 9:e111620. [PMID: 25360706 PMCID: PMC4216096 DOI: 10.1371/journal.pone.0111620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives In this study, using an Streptococcus pneumoniae-induced tympanosclerosis (TS) model, we explored the effects of captopril and losartan in the treatment of TS and the possible mechanisms. Study Design A prospective experimental animal study. Methods We set up the TS models in both guinea pig and wistar rat by inoculation of type-3 Streptococcus pneumoniae microorganisms and then treated the animals with the combining use of captopril and losartan. Otomicroscopy was employed to observe the development of TS. Auditory brainstem response was used to test the hearing function of animals. Hematoxylin-eosin and von Kossa staining were performed to determine the morphological changes and calcium depositions. The protein expressions of transforming growth factor β1 (TGF-β1) were assessed by western blot and immunohistochemistry staining, and the mRNA level of TGF-β1 was measured by quantitative reverse transcription- polymerase chain reaction. Results The combining use of captopril and losartan attenuated TS responses in terms of a decrease in the TS incidence and the ABR threshold, a reduction of hyalinization and calcification in the middle ear mucosa and the thickness of the mucosa. In addition, the TGF-β1 expression was decreased at both protein and mRNA levels. Conclusion Our data indicate, for the first time, that the combining use of captopril and losartan obviously attenuates TS progress through inhibiting the overexpressing of TGF-β1.
Collapse
Affiliation(s)
- Wenqing Yan
- Department of Otolaryngology Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
| | - Jianfeng Li
- Department of Otolaryngology Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, P.R. China
| | - Wentao Guo
- Department of Otolaryngology Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Lei Xu
- Department of Otolaryngology Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Yuechen Han
- Department of Otolaryngology Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Xiaohui Bai
- Department of Otolaryngology Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
- * E-mail: (XB); (HW)
| | - Haibo Wang
- Department of Otolaryngology Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
- Shandong Institute of Otolaryngology, Jinan, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China
- * E-mail: (XB); (HW)
| |
Collapse
|
41
|
Krafft E, Lybaert P, Roels E, Laurila HP, Rajamäki MM, Farnir F, Myllärniemi M, Day MJ, Mc Entee K, Clercx C. Transforming growth factor beta 1 activation, storage, and signaling pathways in idiopathic pulmonary fibrosis in dogs. J Vet Intern Med 2014; 28:1666-75. [PMID: 25331544 PMCID: PMC4895628 DOI: 10.1111/jvim.12432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/25/2014] [Accepted: 07/14/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The pathogenesis of idiopathic pulmonary fibrosis (IPF) in dogs is poorly understood. In human, transforming growth factor β1 (TGF-β1) is considered central in the pathogenesis. OBJECTIVES To investigate TGF-β1 pathway in IPF. ANIMALS Lung tissues from 12 affected and 11 control dogs. Serum from 16 affected West Highland white Terriers (WHWTs) and healthy dogs from predisposed (13 WHWTs, 12 Scottish Terriers and 13 Bichons Frise) and nonpredisposed breeds (10 Whippets, 10 Belgian shepherds, 8 Labradors). METHODS In this prospective study, immunohistochemistry was used to evaluate expression and localization of TGF-β1 protein and proteins involved in TGF-β1 signaling (TGF-β receptor type I and phospho-Smad2/3). Pulmonary expression of TGF-β1 and molecules involved in its storage (latent TGF-β binding proteins [LTBP] 1, 2, and 4), activation (ανβ6 and ανβ8 integrins, thrombospondin-1) and signal inhibition (Smad 7) was analyzed by quantitative reverse transcriptase PCR. Circulating TGF-β1 concentration was measured by ELISA. RESULTS In IPF, high level of TGF-β1 protein was found in areas of fibrosis, epithelial cells had strong expression of TGF-β receptor type 1 and phospho-Smad2/3, gene expression was decreased for LTBP 4 (P = .009) and β8 integrin (P < .001) and increased for thrombospondin-1 (P = .016); no difference was seen for Smad7, LTBP1 and 2. Serum TGF-β1 concentration was higher in predisposed compared with nonpredisposed breeds (P < .0001). CONCLUSIONS AND CLINICAL IMPORTANCE This study identified an enhanced TGF-β1 signaling activity in IPF. TGF-β1 storage and activation proteins with altered expression represent potential therapeutic targets. Higher circulating TGF-β1 concentration in predisposed breeds might partly explain their susceptibility for IPF.
Collapse
Affiliation(s)
- E Krafft
- Division of Companion Animal Internal Medicine, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Susianti H, Handono K, Purnomo BB, Widodo N, Gunawan A, Kalim H. Changes to signal peptide and the level of transforming growth factor- β1 due to T869C polymorphism of TGF β1 associated with lupus renal fibrosis. SPRINGERPLUS 2014; 3:514. [PMID: 25279306 PMCID: PMC4179638 DOI: 10.1186/2193-1801-3-514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/02/2014] [Indexed: 11/17/2022]
Abstract
Lupus Nephritis (LN) is a serious manifestation of lupus that can lead to End Stage Renal Disease (ESRD). Fibrosis is the main feature of ESRD, and it is likely influenced by Transforming Growth Factor Beta1 (TGFβ1). The T869C gene polymorphism of TGFβ1 is assumed to change the signal peptide, that has potential to interfere the urine production and renal protein expression of TGFβ1. The influence of T869C gene polymorphism on TGFβ1 production and renal fibrosis was evaluated in this study. Subjects were 45 patients LN with renal fibrosis and 45 participants without renal fibrosis as control, that were recruited from 2011 to 2013.Their urinary TGFβ1 levels and TGFβ1 gene polymorphisms were examined. All lupus patients underwent renal biopsy to assess their protein expression of TGFβ1 in the renal tissue by immunohistochemistry and their renal fibrosis by morphometry and chronicity index. Changes in the signal peptide interaction with Signal Recognition Particle (SRP) and translocon of endoplasmic reticulum were analyzed by Bioinformatics. Levels of urinary and protein expression of TGFβ1 increased in the LN with renal fibrosis group. There were significant differences in levels of urinary TGFβ1 in T, C allele and TT, TC, CC genotypes between case and control groups. Furthermore, patients with C allele are 3.86 times more at risk of renal fibrosis than T allele. The C allele encodes proline, which stabilizes the interaction of the TGFβ1 signal peptide with SRP and translocon, resulting in elevation of TGFβ1 secretion. Our results indicated that T869C gene polymorphism of TGFβ1 changes the signal peptide, that contributes to the production of urinary TGFβ1 and affects renal fibrosis in lupus nephritis.
Collapse
Affiliation(s)
- Hani Susianti
- Department of Clinical Pathology, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Basuki B Purnomo
- Department of Urology, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Science, Brawijaya University, Malang, Indonesia
| | - Atma Gunawan
- Department of Internal Medicine, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine Brawijaya University/Dr. Saiful Anwar Hospital, Malang, Indonesia
| |
Collapse
|
43
|
Boorsma CE, Dekkers BGJ, van Dijk EM, Kumawat K, Richardson J, Burgess JK, John AE. Beyond TGFβ--novel ways to target airway and parenchymal fibrosis. Pulm Pharmacol Ther 2014; 29:166-80. [PMID: 25197006 DOI: 10.1016/j.pupt.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 01/18/2023]
Abstract
Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of the airways. In the past decade, significant advances have been made in understanding the disease behaviour and pathogenesis of parenchymal and airway fibrosis and as a result a variety of novel therapeutic targets for slowing or preventing progression of these fibrotic changes have been identified. This review highlights a number of these targets and discusses the potential for treating parenchymal or airway fibrosis through these mediators/pathways in the future.
Collapse
Affiliation(s)
- C E Boorsma
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B G J Dekkers
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E M van Dijk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - K Kumawat
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - J Richardson
- Division of Respiratory Medicine, Nottingham University Hospitals, QMC Campus, Nottingham NG7 2UH, United Kingdom
| | - J K Burgess
- Woolcock Institute of Medical Research, Glebe 2037, Australia; Discipline of Pharmacology, The University of Sydney, Sydney 2006, Australia
| | - A E John
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
44
|
Xu X, Dai H, Wang C. Epithelium-dependent profibrotic milieu in the pathogenesis of idiopathic pulmonary fibrosis: current status and future directions. CLINICAL RESPIRATORY JOURNAL 2014; 10:133-41. [PMID: 25047066 DOI: 10.1111/crj.12190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/24/2014] [Accepted: 07/20/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Idiopathic pulmonary fibrosis (IPF) is characterized by hyperplasia of type II alveolar epithelial cells, aggregation of activated (myo)fibroblasts and excessive deposition of extracellular matrix, which will ultimately lead to lung architecture destruction with no proven effective therapies. Despite a significant increase in our understanding on the etiology and pathogenesis of IPF, the real triggers that initiate epithelial cell injury and promote fibrosis evolution are still elusive. We wanted to discuss the evolution of hypothesis on IPF pathogenesis and to suggest some new directions which need to be further elucidated. METHODS We have done a literature search in PubMed database by using the term 'idiopathic pulmonary fibrosis' AND (pathogenesis OR inflammation OR wound healing OR apoptosis OR extracellular matrix OR animal model). RESULTS Inflammatory hypothesis had been the dominant idea for several decades which suggests that chronic inflammation drives the onset and advance of the fibrotic process. However, it is seriously challenged nowadays because lung tissues from IPF patients exhibit little inflammatory lesions. Also, anti-inflammation therapy failed to exert a beneficial effect to IPF patients. Furthermore, experimental lung fibrosis can be realized independent of inflammation. Today, modern paradigm suggests that IPF is mainly driven by the profibtic milieu formed by epithelial injury/ disability and dysregulated epithelial mesenchymal interaction. CONCLUSIONS Epithelium-dependent profibrotic milieu formation and mesenchymal activation is the current view on the pathogenesis of IPF. New evidence from more analogous animal models may emerge and shift our thinking to a new and more faithful concept in the future.
Collapse
Affiliation(s)
- Xuefeng Xu
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Chen Wang
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Chen H, Fang X, Zhu H, Li S, He J, Gu P, Fan D, Han F, Zeng Y, Yu X, Luo B, Xu H, Yi X. Gene expression profile analysis for different idiopathic interstitial pneumonias subtypes. Exp Lung Res 2014; 40:367-79. [PMID: 25058599 DOI: 10.3109/01902148.2014.933985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Idiopathic interstitial pneumonias (IIPs) are a group of diffuse parenchymal lung diseases of unknown etiology characterized by the presence of various degrees of inflammation and fibrosis. We aimed to screen the differences among IIPs subtypes in the gene level by using the microarray expression profiles of normal lung tissue and IIPs tissue for the key genes associated with early diagnosis and treatment of IIPs. METHODS The gene expression profile of six kinds of IIPs (GSE 32537) subtypes tissue and normal lung tissues were downloaded. The differentially expressed genes (DEGs) in different IIPs subtypes were selected by using the expression profiling. In addition, the screened DEGs were further analyzed by function annotation, pathway analysis, and interaction network analysis to reveal the differences among these subtypes. RESULTS The gene expression analysis showed that nine genes including SERPINA3, IL1R2, CBS, MGAM, SLCO4A1, S100A12, FPR1, SDR16C5, and MT1X in six subtypes of IIPs were significantly increased. There were significant differences in DEGs among six subtypes of IIPs, and the DEGs of some IIPs subtypes involved in immune, inflammatory response and cell adhesion processes. Moreover, the PPI network analysis indicated that SERPINA3 played an important role in the molecular mechanisms of IIPs. CONCLUSION This comprehensive description of altered gene expression in different subtypes of IIPs underscores the complex biological processes characteristic of different subtypes of IIPs and may provide a foundation for future research into this devastating disease.
Collapse
Affiliation(s)
- Hanzhang Chen
- 1Department of Pathology, Central Hospital of Shanghai Zhabei District , Shanghai , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Spagnolo P, Rossi G, Cavazza A. Pathogenesis of idiopathic pulmonary fibrosis and its clinical implications. Expert Rev Clin Immunol 2014; 10:1005-17. [PMID: 24953006 DOI: 10.1586/1744666x.2014.917050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of idiopathic interstitial pneumonia. The disease is thought to arise following an aberrant reparative response to recurrent alveolar epithelial cell injury leading to progressive loss of function. The median survival time is 3-5 years from diagnosis. Cigarette smoking, exposure to organic and inorganic dust and genetic factors have been shown to increase the risk of disease, although the cause of IPF remains elusive and its pathogenesis incompletely understood. In the last decade, several clinical trials evaluating novel therapies for IPF have been conducted but the results have been mostly disappointing. Conversely, compounds that target anti-fibrotic and growth factor pathways have been proven effective in slowing functional decline and disease progression. These promising results notwithstanding, truly effective therapeutic strategies will likely require combinations of drugs in order to target the multitude of pathways involved in disease pathogenesis.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Center for Rare Lung Diseases, Respiratory Disease Unit, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy
| | | | | |
Collapse
|
47
|
Yamashita CM, Radisky DC, Aschner Y, Downey GP. The importance of matrix metalloproteinase-3 in respiratory disorders. Expert Rev Respir Med 2014; 8:411-21. [DOI: 10.1586/17476348.2014.909288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Spagnolo P, Grunewald J, du Bois RM. Genetic determinants of pulmonary fibrosis: evolving concepts. THE LANCET RESPIRATORY MEDICINE 2014; 2:416-28. [DOI: 10.1016/s2213-2600(14)70047-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Aschner Y, Khalifah AP, Briones N, Yamashita C, Dolgonos L, Young SK, Campbell MN, Riches DWH, Redente EF, Janssen WJ, Henson PM, Sap J, Vacaresse N, Kapus A, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase α mediates profibrotic signaling in lung fibroblasts through TGF-β responsiveness. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1489-502. [PMID: 24650563 DOI: 10.1016/j.ajpath.2014.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/23/2013] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
Abstract
Fibrotic lung diseases represent a diverse group of progressive and often fatal disorders with limited treatment options. Although the pathogenesis of these conditions remains incompletely understood, receptor type protein tyrosine phosphatase α (PTP-α encoded by PTPRA) has emerged as a key regulator of fibroblast signaling. We previously reported that PTP-α regulates cellular responses to cytokines and growth factors through integrin-mediated signaling and that PTP-α promotes fibroblast expression of matrix metalloproteinase 3, a matrix-degrading proteinase linked to pulmonary fibrosis. Here, we sought to determine more directly the role of PTP-α in pulmonary fibrosis. Mice genetically deficient in PTP-α (Ptpra(-/-)) were protected from pulmonary fibrosis induced by intratracheal bleomycin, with minimal alterations in the early inflammatory response or production of TGF-β. Ptpra(-/-) mice were also protected from pulmonary fibrosis induced by adenoviral-mediated expression of active TGF-β1. In reciprocal bone marrow chimera experiments, the protective phenotype tracked with lung parenchymal cells but not bone marrow-derived cells. Because fibroblasts are key contributors to tissue fibrosis, we compared profibrotic responses in wild-type and Ptpra(-/-) mouse embryonic and lung fibroblasts. Ptpra(-/-) fibroblasts exhibited hyporesponsiveness to TGF-β, manifested by diminished expression of αSMA, EDA-fibronectin, collagen 1A, and CTGF. Ptpra(-/-) fibroblasts exhibited markedly attenuated TGF-β-induced Smad2/3 transcriptional activity. We conclude that PTP-α promotes profibrotic signaling pathways in fibroblasts through control of cellular responsiveness to TGF-β.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Anthony P Khalifah
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Natalie Briones
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Cory Yamashita
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Respirology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Lior Dolgonos
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Scott K Young
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Megan N Campbell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | | | - William J Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Peter M Henson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Immunology, University of Colorado, Aurora, Colorado
| | - Jan Sap
- Unit of Epigenetics and Cell Fate, UMR7216, University of Paris-Diderot, Paris, France
| | - Nathalie Vacaresse
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute-St. Michael's Hospital, University of Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Gregory P Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Immunology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
50
|
O'Dwyer DN, Armstrong ME, Trujillo G, Cooke G, Keane MP, Fallon PG, Simpson AJ, Millar AB, McGrath EE, Whyte MK, Hirani N, Hogaboam CM, Donnelly SC. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2014; 188:1442-50. [PMID: 24070541 DOI: 10.1164/rccm.201304-0760oc] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a fatal progressive interstitial pneumonia. The innate immune system provides a crucial function in the recognition of tissue injury and infection. Toll-like receptor 3 (TLR3) is an innate immune system receptor. We investigated the role of a functional TLR3 single-nucleotide polymorphism in IPF. OBJECTIVES To characterize the effects of the TLR3 Leu412Phe polymorphism in primary pulmonary fibroblasts from patients with IPF and disease progression in two independent IPF patient cohorts. To investigate the role of TLR3 in a murine model of pulmonary fibrosis. METHODS TLR3-mediated cytokine, type 1 IFN, and fibroproliferative responses were examined in TLR3 wild-type (Leu/Leu), heterozygote (Leu/Phe), and homozygote (Phe/Phe) primary IPF pulmonary fibroblasts by ELISA, real-time polymerase chain reaction, and proliferation assays. A murine model of bleomycin-induced pulmonary fibrosis was used in TLR3 wild-type (tlr3(+/+)) and TLR3 knockout mice (tlr3(-/-)). A genotyping approach was used to investigate the role of the TLR3 L412F polymorphism in disease progression in IPF using survival analysis and longitudinal decline in FVC. MEASUREMENTS AND MAIN RESULTS Activation of TLR3 in primary lung fibroblasts from TLR3 L412F-variant patients with IPF resulted in defective cytokine, type I IFN, and fibroproliferative responses. We demonstrate increased collagen and profibrotic cytokines in TLR3 knockout mice (tlr3(-/-)) compared with wild-type mice (tlr3(+/+)). TLR3 L412F was also associated with a significantly greater risk of mortality and an accelerated decline in FVC in patients with IPF. CONCLUSIONS This study reveals the crucial role of defective TLR3 function in promoting progressive IPF.
Collapse
Affiliation(s)
- David N O'Dwyer
- 1 School of Medicine and Medical Science, College of Life Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|