1
|
Munro JE, Coussens AK, Bahlo M. TBtypeR: Sensitive detection and sublineage classification of Mycobacterium tuberculosis complex mixed-strain infections. Commun Biol 2025; 8:260. [PMID: 39972208 PMCID: PMC11840096 DOI: 10.1038/s42003-025-07705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Tuberculosis (TB) is typically attributed to a single infecting strain of the Mycobacterium tuberculosis Complex (MTBC), however mixed-strain infections are more common than reported due to the limitations of conventional diagnostics. While whole genome sequencing (WGS) methods have improved the detection of mixed-strain infections, existing tools struggle to reliably identify mixed-strain infections with frequencies below 10%. TBtypeR, a new tool, addresses this challenge by comparing WGS data to a phylogenetic SNP panel of over 10,000 sites and 164 MTBC phylotypes and using a model based on the binomial distribution to classify sublineage mixtures at frequencies as low as 1%. Extensive benchmarking shows TBtypeR outperforms current methods. Application to a published dataset of 5000 WGS samples identified 305 mixed-strain infections, six-fold higher than previously reported. The TBtypeR R package and a Nextflow pipeline are available at github.com/bahlolab/TBtypeR, providing a powerful tool for studying TB epidemiology and mixed-strain infections.
Collapse
Affiliation(s)
- Jacob E Munro
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia.
| | - Anna K Coussens
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
- Infection and Global Health Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
2
|
Molnár D, Surányi ÉV, Trombitás T, Füzesi D, Hirmondó R, Toth J. Genetic stability of Mycobacterium smegmatis under the stress of first-line antitubercular agents. eLife 2024; 13:RP96695. [PMID: 39565350 DOI: 10.7554/elife.96695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.
Collapse
Affiliation(s)
- Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Viola Surányi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Trombitás
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Füzesi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Rita Hirmondó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Toth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
3
|
Komakech K, Nakiyingi L, Fred A, Achan B, Joloba M, Kirenga BJ, Ssengooba W. Effect of mixed Mycobacterium tuberculosis infection on rapid molecular diagnostics among patients starting MDR-TB treatment in Uganda. BMC Infect Dis 2024; 24:70. [PMID: 38200467 PMCID: PMC10782568 DOI: 10.1186/s12879-023-08968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Mixed M. tuberculosis (MTB) infection occurs when one is infected with more than one clonally distinct MTB strain. This form of infection can assist MTB strains to acquire additional mutations, facilitate the spread of drug-resistant strains, and boost the rate of treatment failure. Hence, the presence of mixed MTB infection could affect the performance of some rapid molecular diagnostic tests such as Line Probe Assay (LPA) and GeneXpert MTB/RIF (Xpert) assays. METHODS This was a cross-sectional study that used sputum specimens collected from participants screened for STREAM 2 clinical trial between October 2017 and October 2019. Samples from 62 MTB smear-positive patients and rifampicin-resistant patients from peripheral health facilities were processed for Xpert and LPA as screening tests for eligibility in the trial. From November 2020, processed stored sputum samples were retrieved and genotyped to determine the presence of mixed-MTB strain infection using a standard 24-locus Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem-Repeat (MIRU-VNTR). Samples with at least 20/24 MIRU-VNTR loci amplified were considered for analysis. Agar proportional Drug Susceptibility Test (DST) was performed on culture isolates of samples that had discordant results between LPA and Xpert. The impact of the presence of mixed-MTB strain on Xpert and LPA test interpretation was analyzed. RESULTS A total of 53/62 (85%) samples had analyzable results from MIRU-VNTR. The overall prevalence of mixed-MTB infection was 5/53 (9.4%). The prevalence was highest among male's 3/31 (9.7%) and among middle-aged adults, 4/30 (33.3%). Lineage 4 of MTB contributed 3/5 (60.0%) of the mixed-MTB infection prevalence. Having mixed MTB strain infection increased the odds of false susceptible Xpert test results (OR 7.556, 95% CI 0.88-64.44) but not for LPA. Being HIV-positive (P = 0.04) independently predicted the presence of mixed MTB infection. CONCLUSIONS The presence of mixed-MTB strain infection may affect the performance of the GeneXpert test but not for LPA. For patients with high pre-test probability of rifampicin resistance, an alternative rapid method such as LPA should be considered.
Collapse
Affiliation(s)
- Kevin Komakech
- Department of Medical Microbiology, Mycobacteriology (BSL-3) Laboratory, Makerere University, Kampala, Uganda
| | - Lydia Nakiyingi
- Department of Medicine, School of Medicine, Makerere University, Kampala, Uganda
| | - Ashab Fred
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Beatrice Achan
- Department of Medical Microbiology, Mycobacteriology (BSL-3) Laboratory, Makerere University, Kampala, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Bruce J Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Mycobacteriology (BSL-3) Laboratory, Makerere University, Kampala, Uganda.
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| |
Collapse
|
4
|
Rao M, Wollenberg K, Harris M, Kulavalli S, Thomas L, Chawla K, Shenoy VP, Varma M, Saravu K, Hande HM, Shanthigrama Vasudeva CS, Jeffrey B, Gabrielian A, Rosenthal A. Lineage classification and antitubercular drug resistance surveillance of Mycobacterium tuberculosis by whole-genome sequencing in Southern India. Microbiol Spectr 2023; 11:e0453122. [PMID: 37671895 PMCID: PMC10580826 DOI: 10.1128/spectrum.04531-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/03/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Studies mapping genetic heterogeneity of clinical isolates of M. tuberculosis for determining their strain lineage and drug resistance by whole-genome sequencing are limited in high tuberculosis burden settings. We carried out whole-genome sequencing of 242 M. tuberculosis isolates from drug-sensitive and drug-resistant tuberculosis patients, identified and collected as part of the TB Portals Program, to have a comprehensive insight into the genetic diversity of M. tuberculosis in Southern India. We report several genetic variations in M. tuberculosis that may confer resistance to antitubercular drugs. Further wide-scale efforts are required to fully characterize M. tuberculosis genetic diversity at a population level in high tuberculosis burden settings for providing precise tuberculosis treatment.
Collapse
Affiliation(s)
- Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kurt Wollenberg
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Harris
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shrivathsa Kulavalli
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vishnu Prasad Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - H. Manjunatha Hande
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - Brendan Jeffrey
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrei Gabrielian
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alex Rosenthal
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Dlamini TC, Mkhize BT, Sydney C, Maningi NE, Malinga LA. Molecular investigations of Mycobacterium tuberculosis genotypes among baseline and follow-up strains circulating in four regions of Eswatini. BMC Infect Dis 2023; 23:566. [PMID: 37644382 PMCID: PMC10466871 DOI: 10.1186/s12879-023-08546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The tuberculosis (TB) epidemic remains a major global health problem and Eswatini is not excluded. Our study investigated the circulating genotypes in Eswatini and compared them at baseline (start of treatment) and follow-up during TB treatment. METHODS Three hundred and ninety (n = 390) participants were prospectively enrolled from referral clinics and patients who met the inclusion criteria, were included in the study. A total of 103 participants provided specimens at baseline and follow-up within six months. Mycobacterium tuberculosis (M.tb) strains were detected by GeneXpert® MTB/RIF assay (Cephied, USA) and Ziehl -Neelsen (ZN) microscopy respectively at baseline and follow-up time-points respectively. The 206 collected specimens were decontaminated and cultured on BACTEC™ MGIT™ 960 Mycobacteria Culture System (Becton Dickinson, USA). Drug sensitivity testing was performed at both baseline and follow-up time points. Spoligotyping was performed on both baseline and follow-up strains after DNA extraction. RESULTS Resistance to at least one first line drug was detected higher at baseline compared to follow-up specimens with most of them developing into multidrug-resistant (MDR)-TB. A total of four lineages and twenty genotypes were detected. The distribution of the lineages varied among the different regions in Eswatini. The Euro-American lineage was the most prevalent with 46.12% (95/206) followed by the East Asian with 24.27% (50/206); Indo-Oceanic at 9.71% (20/206) and Central Asian at 1.94% (4/206). Furthermore, a high proportion of the Beijing genotype at 24.27% (50/206) and S genotype at 16.50% (34/206) were detected. The Beijing genotype was predominant in follow-up specimens collected from the Manzini region with 48.9% (23/47) (p = 0.001). A significant proportion of follow-up specimens developed MDR-TB (p = 0.001) with Beijing being the major genotype in most follow-up specimens (p < 0.000). CONCLUSION Eswatini has a high M.tb genotypic diversity. A significant proportion of the TB infected participants had the Beijing genotype associated with MDR-TB in follow-up specimens and thus indicate community wide transmission.
Collapse
Affiliation(s)
- Talent C Dlamini
- Department of Medical Laboratory Sciences, Southern Africa Nazarene University, Manzini, Eswatini.
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa.
| | - Brenda T Mkhize
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | - Clive Sydney
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | | | - Lesibana A Malinga
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Diaz Caballero J, Wheatley RM, Kapel N, López-Causapé C, Van der Schalk T, Quinn A, Shaw LP, Ogunlana L, Recanatini C, Xavier BB, Timbermont L, Kluytmans J, Ruzin A, Esser M, Malhotra-Kumar S, Oliver A, MacLean RC. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat Commun 2023; 14:4083. [PMID: 37438338 DOI: 10.1038/s41467-023-39416-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Antibiotic resistance poses a global health threat, but the within-host drivers of resistance remain poorly understood. Pathogen populations are often assumed to be clonal within hosts, and resistance is thought to emerge due to selection for de novo variants. Here we show that mixed strain populations are common in the opportunistic pathogen P. aeruginosa. Crucially, resistance evolves rapidly in patients colonized by multiple strains through selection for pre-existing resistant strains. In contrast, resistance evolves sporadically in patients colonized by single strains due to selection for novel resistance mutations. However, strong trade-offs between resistance and growth rate occur in mixed strain populations, suggesting that within-host diversity can also drive the loss of resistance in the absence of antibiotic treatment. In summary, we show that the within-host diversity of pathogen populations plays a key role in shaping the emergence of resistance in response to treatment.
Collapse
Affiliation(s)
| | - Rachel M Wheatley
- University of Oxford, Department of Biology, 11a Mansfield Rd, Oxford, UK
| | - Natalia Kapel
- University of Oxford, Department of Biology, 11a Mansfield Rd, Oxford, UK
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Thomas Van der Schalk
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Angus Quinn
- University of Oxford, Department of Biology, 11a Mansfield Rd, Oxford, UK
| | - Liam P Shaw
- University of Oxford, Department of Biology, 11a Mansfield Rd, Oxford, UK
| | - Lois Ogunlana
- University of Oxford, Department of Biology, 11a Mansfield Rd, Oxford, UK
| | - Claudia Recanatini
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexey Ruzin
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark Esser
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - R Craig MacLean
- University of Oxford, Department of Biology, 11a Mansfield Rd, Oxford, UK.
| |
Collapse
|
7
|
Yu J, Liu M, Mijiti X, Liu H, Wang Q, Yin C, Anwaierjiang A, Xu M, Li M, Deng L, Xiao H, Zhao X, Wan K, Li G, Yuan X. Association of Single-Nucleotide Polymorphisms in the VDR Gene with Tuberculosis and Infection of Beijing Genotype Mycobacterium tuberculosis. Infect Drug Resist 2023; 16:3157-3169. [PMID: 37235072 PMCID: PMC10208660 DOI: 10.2147/idr.s407595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Background The aim of the present study was to investigate the association between vitamin D receptor (VDR) gene polymorphism and tuberculosis susceptibility, as well as the potential interaction of host genetic factors with the heterogeneity of Mycobacterium tuberculosis in the population from Xinjiang, China. Methods From January 2019 to January 2020, we enrolled 221 tuberculosis patients as the case group and 363 staff with no clinical symptoms as the control group from four designated tuberculosis hospitals in southern Xinjiang, China. The polymorphisms of Fok I, Taq I, Apa I, Bsm I, rs3847987 and rs739837 in the VDR were detected by sequencing. M. tuberculosis isolates were collected from the case group and identified as Beijing or non-Beijing lineage by multiplex PCR. Propensity score (PS), univariate analysis and multivariable logistic regression models were used to perform the analysis. Results Our results showed that the allele and genotype frequencies of Fok I, Taq I, Apa I, Bsm I, rs3847987 and rs739837 in VDR were not correlated with tuberculosis susceptibility or lineages of M. tuberculosis. Two out of six loci of the VDR gene formed one haplotype block, and none of the haplotypes was found to correlate with tuberculosis susceptibility or lineages of M. tuberculosis infected. Conclusion Polymorphisms in the VDR gene may not indicate susceptibility to tuberculosis. There was also no evidence on the interaction between the VDR gene of host and the lineages of M. tuberculosis in the population from Xinjiang, China. Further studies are nonetheless required to prove our conclusions.
Collapse
Affiliation(s)
- Jinjie Yu
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Mengwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830011, People’s Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830049, People’s Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830049, People’s Republic of China
| | - Chunjie Yin
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830011, People’s Republic of China
| | | | - Miao Xu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830049, People’s Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Lele Deng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Hui Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830011, People’s Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiuqin Yuan
- School of Public Health, University of South China, Hengyang, 421001, People’s Republic of China
| |
Collapse
|
8
|
Borah Slater K, Kim D, Chand P, Xu Y, Shaikh H, Undale V. A Current Perspective on the Potential of Nanomedicine for Anti-Tuberculosis Therapy. Trop Med Infect Dis 2023; 8:100. [PMID: 36828516 PMCID: PMC9965948 DOI: 10.3390/tropicalmed8020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is one of the ten infectious diseases that cause the highest amount of human mortality and morbidity. This infection, which is caused by a single pathogen, Mycobacterium tuberculosis, kills over a million people every year. There is an emerging problem of antimicrobial resistance in TB that needs urgent treatment and management. Tuberculosis treatment is complicated by its complex drug regimen, its lengthy duration and the serious side-effects caused by the drugs required. There are a number of critical issues around drug delivery and subsequent intracellular bacterial clearance. Drugs have a short lifespan in systemic circulation, which limits their activity. Nanomedicine in TB is an emerging research area which offers the potential of effective drug delivery using nanoparticles and a reduction in drug doses and side-effects to improve patient compliance with the treatment and enhance their recovery. Here, we provide a minireview of anti-TB treatment, research progress on nanomedicine and the prospects for future applications in developing innovative therapies.
Collapse
Affiliation(s)
- Khushboo Borah Slater
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Daniel Kim
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Pooja Chand
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Ye Xu
- School of Biosciences, Faculty of Health and Microbial Sciences, University of Surrey, Guildford GU27XH, UK
| | - Hanif Shaikh
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune 411018, India
- Clinical, Assessment, Regulatory and Evaluation (CARE) Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune 411018, India
| |
Collapse
|
9
|
Grunnill M, Hall I, Finnie T. Check your assumptions: Further scrutiny of basic model frameworks of antimicrobial resistance. J Theor Biol 2022; 554:111277. [PMID: 36150539 DOI: 10.1016/j.jtbi.2022.111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Since the mid-1990s, growing concerns over antimicrobial resistant (AMR) organisms has led to an increase in the use of mathematical models to explore the inter-host transmission of such infections. Previous work reviewing such models categorised them into generic frameworks based on their underlying assumptions. These assumptions dictated the coexistence between AMR and antimicrobial sensitive strains. We add to this work performing stability analyses of the frameworks, along with simulating them deterministically and stochastically. Stability analyses found that many of these assumptions lead to models having the same equilibria, but showed differences in the equilibria's stability between models. Deterministic simulations reveal that assuming replacement of one infecting strain by another leads to an unusual antimicrobial treatment threshold. Increasing beyond this threshold causes a discontinuous increase in disease burden. The cost of AMR to pathogen fitness (lowered transmission) dictates both the threshold of treatment that causes the discontinuous increase in disease burden and the size of that increase. It was also shown that Superinfection states can be biased against resident strains and so favour coexistence of both strains. Stochastic simulations demonstrated that differing scenario starting conditions can guide models to converge upon equilibria that they may not have under deterministic simulation. These findings highlight the importance of checking assumptions when modelling AMR and strain competition more widely.
Collapse
Affiliation(s)
- Martin Grunnill
- Laboratory of Applied Mathematics (LIAM), York University, North York, M3J 3K1, Ontario, Canada.
| | - Ian Hall
- Department of Mathematics, University of Manchester, Manchester, M13 9PL, Greater Manchester, United Kingdom
| | - Thomas Finnie
- Directorate of Emergency Preparedness, Resilience and Response, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, Wiltshire, United Kingdom
| |
Collapse
|
10
|
Chengalroyen MD, Beukes GM, Otwombe K, Gordhan BG, Martinson N, Kana B. The detection of mixed tuberculosis infections using culture filtrate and resuscitation promoting factor deficient filtrate. Front Cell Infect Microbiol 2022; 12:1072073. [PMID: 36506007 PMCID: PMC9729742 DOI: 10.3389/fcimb.2022.1072073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) infected individuals harbor a heterogenous population of differentially culturable tubercle bacilli (DCTB). Herein, we describe how DCTB assays using culture filtrate either containing or deficient in resuscitation promoting factors can uncover mixed infections. We demonstrate that Mycobacterium tuberculosis (Mtb) strain genotypes can be separated in DCTB assays based on their selective requirement for growth stimulatory factors. Beijing mixed infections appear to be associated with a higher bacterial load and reduced reliance on growth stimulatory factors. These data have important implications for identifying mixed infections and hetero-resistance, which in turn can affect selection of treatment regimen and establishment of transmission links.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Germar M. Beukes
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bhavna G. Gordhan
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa,Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Center for TB Research, Johns Hopkins University, Baltimore, MD, United States
| | - Bavesh Kana
- National Health Laboratory Service, DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Bavesh Kana,
| |
Collapse
|
11
|
Singh A, Zhao X, Drlica K. Fluoroquinolone heteroresistance, antimicrobial tolerance, and lethality enhancement. Front Cell Infect Microbiol 2022; 12:938032. [PMID: 36250047 PMCID: PMC9559723 DOI: 10.3389/fcimb.2022.938032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
With tuberculosis, the emergence of fluoroquinolone resistance erodes the ability of treatment to interrupt the progression of MDR-TB to XDR-TB. One way to reduce the emergence of resistance is to identify heteroresistant infections in which subpopulations of resistant mutants are likely to expand and make the infections fully resistant: treatment modification can be instituted to suppress mutant enrichment. Rapid DNA-based detection methods exploit the finding that fluoroquinolone-resistant substitutions occur largely in a few codons of DNA gyrase. A second approach for restricting the emergence of resistance involves understanding fluoroquinolone lethality through studies of antimicrobial tolerance, a condition in which bacteria fail to be killed even though their growth is blocked by lethal agents. Studies with Escherichia coli guide work with Mycobacterium tuberculosis. Lethal action, which is mechanistically distinct from blocking growth, is associated with a surge in respiration and reactive oxygen species (ROS). Mutations in carbohydrate metabolism that attenuate ROS accumulation create pan-tolerance to antimicrobials, disinfectants, and environmental stressors. These observations indicate the existence of a general death pathway with respect to stressors. M. tuberculosis displays a variation on the death pathway idea, as stress-induced ROS is generated by NADH-mediated reductive stress rather than by respiration. A third approach, which emerges from lethality studies, uses a small molecule, N-acetyl cysteine, to artificially increase respiration and additional ROS accumulation. That enhances moxifloxacin lethality with M. tuberculosis in culture, during infection of cultured macrophages, and with infection of mice. Addition of ROS stimulators to fluoroquinolone treatment of tuberculosis constitutes a new direction for suppressing the transition of MDR-TB to XDR-TB.
Collapse
Affiliation(s)
- Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- *Correspondence: Amit Singh, ; Karl Drlica,
| | - Xilin Zhao
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
- *Correspondence: Amit Singh, ; Karl Drlica,
| |
Collapse
|
12
|
MGIT sensitivity testing and genotyping of drug resistant Mycobacterium tuberculosis isolates from Mizoram, Northeast India. Indian J Med Microbiol 2022; 40:347-353. [PMID: 35760644 DOI: 10.1016/j.ijmmb.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Tuberculosis, a crucial infectious disease is still a health concern globally. India is among the countries with high MDR-TB burden. Currently, sputum smear microscopy using Ziehl Neelsen stain and GeneXpert are the only diagnostic means in Mizoram. This study was done to characterize local tuberculosis strains circulating in Mizoram. METHODS Sputum was cultured using MGIT 960 and DST was performed for Streptomycin, Isoniazid, Rifampicin, Ethambutol and Pyrazinamide. GeneXpert test was done simultaneously. DNA was extracted using Trueprep AUTO v2, molbio diagnostics. Antibiotic Resistance Genes and LSP were amplified and sequenced. RESULTS Ser315Thr was the most common mutation in katG among MDR-TB isolates. GeneXpert probes A and D drop out upon sequencing showed L511P, H526Q and H526L mutation. The L511P and H526Q mutations were seen in new and treated cases. Discrepancy between MGIT 960 and GeneXpert were observed. LSP-PCR revealed that Indo-Oceanic, East-African Indian, Euro-American and Beijing lineages were found in Mizoram. CONCLUSION This study provides mutation information on the resistant genotypes detected with GeneXpert as well as MGIT 960. It also provides information on the lineages of Mycobacterium tuberculosis circulating in the state. Utilization of sequencing technologies is essential in diagnostic laboratories to rule out discrepant results and as a cautionary measure to prevent wrong diagnosis and treatment.
Collapse
|
13
|
Dookie N, Khan A, Padayatchi N, Naidoo K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Front Microbiol 2022; 13:775030. [PMID: 35401475 PMCID: PMC8988194 DOI: 10.3389/fmicb.2022.775030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
The World Health Organization’s End TB Strategy prioritizes universal access to an early diagnosis and comprehensive drug susceptibility testing (DST) for all individuals with tuberculosis (TB) as a key component of integrated, patient-centered TB care. Next generation whole genome sequencing (WGS) and its associated technology has demonstrated exceptional potential for reliable and comprehensive resistance prediction for Mycobacterium tuberculosis isolates, allowing for accurate clinical decisions. This review presents a descriptive analysis of research describing the potential of WGS to accelerate delivery of individualized care, recent advances in sputum-based WGS technology and the role of targeted sequencing for resistance detection. We provide an update on recent research describing the mechanisms of resistance to new and repurposed drugs and the dynamics of mixed infections and its potential implication on TB diagnosis and treatment. Whilst the studies reviewed here have greatly improved our understanding of recent advances in this arena, it highlights significant challenges that remain. The wide-spread introduction of new drugs in the absence of standardized DST has led to rapid emergence of drug resistance. This review highlights apparent gaps in our knowledge of the mechanisms contributing to resistance for these new drugs and challenges that limit the clinical utility of next generation sequencing techniques. It is recommended that a combination of genotypic and phenotypic techniques is warranted to monitor treatment response, curb emerging resistance and further dissemination of drug resistance.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Navisha Dookie,
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
14
|
Getahun M, Ameni G, Mollalign H, Diriba G, Beyene D. Genotypic and phenotypic drug-resistance detection and prevalence of heteroresistance in patients with isoniazid- and multidrug-resistant tuberculosis in Ethiopia. IJID REGIONS 2022; 2:149-153. [PMID: 35757078 PMCID: PMC9216396 DOI: 10.1016/j.ijregi.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Objective To assess the agreement between genotypic and phenotypic methods for detecting drug resistance, and examine the prevalence of heteroresistance among isoniazid (INH)- and multidrug/rifampicin-resistant (MDR/RR) TB. Method In total, 127 Mycobacterium tuberculosis (Mtb) isolates, including 65 MDR/RR and 62 INH resistant, were used. First-line drug susceptibility testing (DST) was performed using the LJ method to determine the percentage of resistant bacteria. All drug-resistant isolates underwent testing with LPA. Heteroresistance was defined as simultaneous detection of wild-type and resistance-conferring mutations using LPA. Result The sensitivity of LPA (compared with LJ DST) was 96% for any INH-resistant TB and 94% for any RR TB. The prevalence of heteroresistance among the 123. Mtb isolates was 9.8%. The percentage of resistant bacteria ranged from 1% to 10% for heteroresistant TB. Rifampicin heteroresistance was detected in 1.6% of MDR TB patients. INH heteroresistance was detected in 1.6% and 16.7% of MDR and INH-resistant TB patients, respectively. The proportion of INH heteroresistance was significantly higher (p = 0.030) in persons living with HIV. Conclusion Some phenotypic drug resistances were not captured by LPA. The prevalence and percentage of resistant bacteria among heteroresistant TB highlight the importance of LPA for early detection of heteroresistant TB.
Collapse
Affiliation(s)
- Muluwork Getahun
- Ethiopian Public Health Institute
- Addis Ababa University, Department of Microbial, Cellular, and Molecular Biology
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates University
| | | | | | - Dereje Beyene
- Addis Ababa University, Department of Microbial, Cellular, and Molecular Biology
| |
Collapse
|
15
|
Micheni LN, Kassaza K, Kinyi H, Ntulume I, Bazira J. Detection of Mycobacterium tuberculosis multiple strains in sputum samples from patients with pulmonary tuberculosis in south western Uganda using MIRU-VNTR. Sci Rep 2022; 12:1656. [PMID: 35102181 PMCID: PMC8803872 DOI: 10.1038/s41598-022-05591-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with multiple strains of Mycobacterium tuberculosis are now widely recognized as a common occurrence. Identification of patients infected with multiple strains provides both insight into the disease dynamics and the epidemiology of tuberculosis. Analysis of Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeats (MIRU-VNTR) has been shown to be highly sensitive in detecting multiple M. tuberculosis strains even in sputum. The goal of this study was to identify cases of multiple M. tuberculosis strain infections among patients diagnosed with pulmonary tuberculosis in Southwestern Uganda and assessment of factors associated with multiple strain infections. DNA extracted directly from 78 sputum samples, each from an individual patient, was analyzed using the standard 24 loci MIRU-VNTR typing. Five (6.4%) of the 78 patients were infected with multiple strains of M. tuberculosis with all of them being the newly diagnosed cases while two-thirds of them were co-infected with HIV. Exact regression analysis projected that the natives were more likely to harbor multiple strains (OR; 0.981, 95% CI 0–7.926) as well as those with a high microbial load (OR; 0.390, 95% CI 0–3.8167). Despite these findings being not statistically significant due to the small sample size, this points to a critical component of disease dynamics that has clinical implications and emphasizes a need for a study using a larger cohort. It is also essential to study the potential factors associated with higher risk of exposure to newly diagnosed and HIV positive patients at the community level. In addition, our ability to detect multiple M. tuberculosis strains using the standard 24 loci MIRU-VNTR typing especially with allelic diversity in loci 2059 and 3171, which are excluded from the 15-locus MIRU-VNTR, lead us to recommend the use of this genotyping technique, especially in areas with tuberculosis endemicity similar to this study.
Collapse
Affiliation(s)
- Lisa Nkatha Micheni
- Department of Microbiology, Mbarara University of Science and Technology, Box 1410, Mbarara, Uganda. .,Department of Microbiology and Immunology, Kampala International University Western Campus, Box 71, Bushenyi, Uganda.
| | - Kennedy Kassaza
- Department of Microbiology, Mbarara University of Science and Technology, Box 1410, Mbarara, Uganda
| | - Hellen Kinyi
- Department of Biochemistry, School of Medicine, Kabale University, Box 317, Kabale, Uganda
| | - Ibrahim Ntulume
- Department of Microbiology and Immunology, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Joel Bazira
- Department of Microbiology, Mbarara University of Science and Technology, Box 1410, Mbarara, Uganda.
| |
Collapse
|
16
|
Transmission patterns of a Mycobacterium avium subsp. paratuberculosis clone within a single heard investigated by Whole Genome Sequencing. Vet Microbiol 2021; 263:109272. [PMID: 34785477 DOI: 10.1016/j.vetmic.2021.109272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is characterized by a low genomic rate of mutation. Current subtyping tools, such as Mini-Micro-satellite analyses, do to have not sufficient discriminatory power to disclose MAP's evolution on small spatial and temporal scales. The aim of the study was to investigate the population structure of MAP inside a single dairy herd using whole genome sequencing (WGS) approaches. For this purpose, the genomes of 43 field isolates, recovered from the faeces of 36 cows of the same dairy herd from 2012 to 2016, were sequenced by WGS. The isolates' genomes showed a low number (43) of polymorphic sites (SNPs), confirming the clonal origin of the herd infection. However, despite the limited genomic diversity found in WGS, the phylogenetic analysis was discriminatory enough to detect the presence of different genomic clades and sub-clades inside the herd population. In addition, the phylodynamic reconstruction showed the existence of an ancestor clade from which the other clades and sub-clades originated. Moreover, by reconstructing the putative within-herd transmission networks using WGS data, we demonstrated that: (i) in a herd where MAP is endemic, multiple isolates recovered from a single animal and differing from each other by few (three/four) SNPs can originate from different transmission or passive shedding events and not from intra-host evolution; and (ii) variability of minisatellites coupled with a few microsatellites does not represent reliable tracers of within-herd infection chains. Our findings show that WGS, coupled with relevant epidemiological information, represents a valuable tool to work out fine epidemiological and micro-evolutionary relationships such as those at herd-level scale.
Collapse
|
17
|
Tabone O, Verma R, Singhania A, Chakravarty P, Branchett WJ, Graham CM, Lee J, Trang T, Reynier F, Leissner P, Kaiser K, Rodrigue M, Woltmann G, Haldar P, O'Garra A. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med 2021; 218:212624. [PMID: 34491266 PMCID: PMC8493863 DOI: 10.1084/jem.20210915] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 12/02/2022] Open
Abstract
Blood transcriptomics have revealed major characteristics of the immune response in active TB, but the signature early after infection is unknown. In a unique clinically and temporally well-defined cohort of household contacts of active TB patients that progressed to TB, we define minimal changes in gene expression in incipient TB increasing in subclinical and clinical TB. While increasing with time, changes in gene expression were highest at 30 d before diagnosis, with heterogeneity in the response in household TB contacts and in a published cohort of TB progressors as they progressed to TB, at a bulk cohort level and in individual progressors. Blood signatures from patients before and during anti-TB treatment robustly monitored the treatment response distinguishing early and late responders. Blood transcriptomics thus reveal the evolution and resolution of the immune response in TB, which may help in clinical management of the disease.
Collapse
Affiliation(s)
- Olivier Tabone
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | - Raman Verma
- Department of Respiratory Sciences, National Institute for Health Research Respiratory Biomedical Research Centre, University of Leicester, UK
| | - Akul Singhania
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | | | - William J Branchett
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | - Christine M Graham
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | - Jo Lee
- Department of Respiratory Sciences, National Institute for Health Research Respiratory Biomedical Research Centre, University of Leicester, UK
| | - Tran Trang
- Bioaster Microbiology Technology Institute, Lyon, France
| | | | | | - Karine Kaiser
- Medical Diagnostic Discovery Department, bioMérieux SA, Marcy l'Etoile, France
| | - Marc Rodrigue
- Global Medical Affairs, bioMérieux SA, Marcy l'Etoile, France
| | - Gerrit Woltmann
- Department of Respiratory Sciences, National Institute for Health Research Respiratory Biomedical Research Centre, University of Leicester, UK
| | - Pranabashis Haldar
- Department of Respiratory Sciences, National Institute for Health Research Respiratory Biomedical Research Centre, University of Leicester, UK
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
18
|
Hermans SM, Zinyakatira N, Caldwell J, Cobelens FGJ, Boulle A, Wood R. High Rates of Recurrent Tuberculosis Disease: A Population-level Cohort Study. Clin Infect Dis 2021; 72:1919-1926. [PMID: 32333760 PMCID: PMC8315130 DOI: 10.1093/cid/ciaa470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background Retreatment tuberculosis (TB) disease is common in high-prevalence settings. The risk of repeated episodes of recurrent TB is unknown. We calculated the rate of recurrent TB per subsequent episode by matching individual treatment episodes over a period of 13 years. Methods All recorded TB episodes in Cape Town between 2003 and 2016 were matched by probabilistic linkage of personal identifiers. Among individuals with a first episode notified in Cape Town and who completed their prior treatment successfully we estimated the recurrence rate stratified by subsequent episode and HIV status. We adjusted person-time to background mortality by age, sex, and HIV status. Results A total of 292 915 TB episodes among 263 848 individuals were included. The rate of recurrent TB was 16.4 per 1000 person-years (95% CI, 16.2–16.6), and increased per subsequent episode (8.4-fold increase, from 14.6 to 122.7 per 1000 from episode 2 to 6, respectively). These increases were similar stratified by HIV status. Rates among HIV positives were higher than among HIV negatives for episodes 2 and 3 (2- and 1.5-fold higher, respectively), and the same thereafter. Conclusions TB recurrence rates were high and increased per subsequent episode, independent of HIV status. This suggests that HIV infection is insufficient to explain the high burden of recurrence; it is more likely due to a high annual risk of infection combined with an increased risk of infection or progression to disease associated with a previous TB episode. The very high recurrence rates would justify increased TB surveillance of patients with >1 episode.
Collapse
Affiliation(s)
- Sabine M Hermans
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.,Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nesbert Zinyakatira
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,Western Cape Government Health, Cape Town, South Africa
| | - Judy Caldwell
- City Health, Department of Health, Cape Town, South Africa
| | - Frank G J Cobelens
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Andrew Boulle
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,Western Cape Government Health, Cape Town, South Africa
| | - Robin Wood
- Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Witte C, Fowler JH, Pfeiffer W, Hungerford LL, Braun J, Burchell J, Papendick R, Rideout BA. Social network analysis and whole-genome sequencing to evaluate disease transmission in a large, dynamic population: A study of avian mycobacteriosis in zoo birds. PLoS One 2021; 16:e0252152. [PMID: 34106953 PMCID: PMC8189513 DOI: 10.1371/journal.pone.0252152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
This study combined a social network analysis and whole-genome sequencing (WGS) to test for general patterns of contagious spread of a mycobacterial infection for which pathways of disease acquisition are not well understood. Our population included 275 cases diagnosed with avian mycobacteriosis that were nested in a source population of 16,430 birds at San Diego Zoo Wildlife Alliance facilities from 1992 through mid-2014. Mycobacteria species were determined using conventional methods and whole genome sequencing (WGS). Mycobacterium avium avium (MAA) and Mycobacterium genavense were the most common species of mycobacteria identified and were present in different proportions across bird taxa. A social network for the birds was constructed from the source population to identify directly and indirectly connected cases during time periods relevant to disease transmission. Associations between network connectivity and genetic similarity of mycobacteria (as determined by clusters of genotypes separated by few single nucleotide polymorphisms, or SNPs) were then evaluated in observed and randomly generated network permutations. Findings showed that some genotypes clustered along pathways of bird connectivity, while others were dispersed throughout the network. The proportion of directly connected birds having a similar mycobacterial genotype was 0.36 and significant (p<0.05). This proportion was higher (0.58) and significant for MAA but not for M. genavense. Evaluations of SNP distributions also showed genotypes of MAA were more related in connected birds than expected by chance; however, no significant patterns of genetic relatedness were identified for M. genavense, although data were sparse. Integrating the WGS analysis of mycobacteria with a social network analysis of their host birds revealed significant genetic clustering along pathways of connectivity, namely for MAA. These findings are consistent with a contagious process occurring in some, but not all, case clusters.
Collapse
Affiliation(s)
- Carmel Witte
- Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, California, United States of America
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, United States of America
- Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - James H. Fowler
- Department of Political Science, University of California, San Diego, La Jolla, California, United States of America
| | - Wayne Pfeiffer
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
| | - Laura L. Hungerford
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Josephine Braun
- Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, California, United States of America
| | - Jennifer Burchell
- Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, California, United States of America
| | - Rebecca Papendick
- Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, California, United States of America
| | - Bruce A. Rideout
- Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, California, United States of America
| |
Collapse
|
20
|
Hong JY, Kim A, Park SY, Cho SN, Dockrell HM, Hur YG. Screening for Mycobacterium tuberculosis Infection Using Beijing/K Strain-Specific Peptides in a School Outbreak Cohort. Front Cell Infect Microbiol 2021; 11:599386. [PMID: 33869073 PMCID: PMC8044942 DOI: 10.3389/fcimb.2021.599386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background The Beijing strain of Mycobacterium tuberculosis (M. tb) has been most frequently isolated from TB patients in South Korea, and the hyper-virulent Beijing/K genotype is associated with TB outbreaks. To examine the diagnostic potential of Beijing/K-specific peptides, we performed IFN-γ release assays (IGRA) using a MTBK antigen tube containing Beijing/K MTBK_24800, ESAT-6, and CFP-10 peptides in a cohort studied during a school TB outbreak. Methods A total of 758 contacts were investigated for M. tb infection, and 43 contacts with latent TB infection (LTBI) and 25 active TB patients were enrolled based on serial screening with QuantiFERON-TB Gold In-Tube tests followed by clinical examinations. Blood collected in MTBK antigen tubes was utilized for IGRA and multiplex cytokine bead arrays. Immune responses were retested in 24 patients after TB treatment, and disease progression was investigated in subjects with LTBI. Results Total proportions of active disease and LTBI during the outbreak were 3.7% (28/758) and 9.2% (70/758), respectively. All clinical isolates had a Beijing/K M. tb genotype. IFN-γ responses to the MTBK antigen identified M. tb infection and distinguished between active disease and LTBI. After anti-TB treatment, IFN-γ responses to the MTBK antigen were significantly reduced, and strong TNF-α responses at diagnosis were dramatically decreased. Conclusions MTBK antigen-specific IFN-γ has diagnostic potential for differentiating M. tb infection from healthy controls, and between active TB and LTBI as well. In addition, TNF-α is a promising marker for monitoring therapeutic responses. These data provide informative readouts for TB diagnostics and vaccine studies in regions where the Beijing/K strain is endemic.
Collapse
Affiliation(s)
- Ji Young Hong
- Department of Pulmonary and Critical Care Medicine, Hallym University Medical Center, Gangwondo, South Korea
| | - Ahreum Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - So Yeong Park
- Department of Pulmonary and Critical Care Medicine, Hallym University Medical Center, Gangwondo, South Korea
| | - Sang-Nae Cho
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yun-Gyoung Hur
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Asare-Baah M, Séraphin MN, Salmon LAT, Lauzardo M. Effect of mixed strain infections on clinical and epidemiological features of tuberculosis in Florida. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 87:104659. [PMID: 33276149 PMCID: PMC7855629 DOI: 10.1016/j.meegid.2020.104659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Mixed infections with genetically distinct Mycobacterium tuberculosis (MTB) strains within a single host have been documented in different settings; however, this phenomenon is rarely considered in the management and care of new and relapse tuberculosis (T.B.) cases. This study aims to establish the epidemiological and clinical features of mixed infections among culture-confirmed T.B. patients enrolled in tuberculosis care at the Florida Department of Health (FDOH) and measure its association with T.B. mortality. We analyzed de-identified surveillance data of T.B. cases enrolled in T.B. care from April 2008 to January 2018. Mixed MTB infection was determined by the presence of more than one Copy Number Variant (CNV) in at least one locus, based on the genotype profile pattern of at least one isolate using 24-locus Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR). The prevalence of mixed MTB infections among the 4944 culture-confirmed TB cases included in this analysis was 2.6% (129). Increased odds of mixed infections were observed among middle-aged patients, 45-64 years (AOR = 2.38; 95% CI: 0.99, 5.69; p = 0.0513), older adults 65 years and above (AOR = 3.95; 95% CI: 1.63, 9.58; p = 0.0023) and patients with diabetes (OR = 1.77; 95% CI: 1.12, 2.80; p = 0.0150). There was no significant association between mixed infections and death. Our study provides insight into the epidemiological and clinical characteristics of patients with mixed MTB infections, which is essential in the management of T.B. patients.
Collapse
Affiliation(s)
- Michael Asare-Baah
- Department of Epidemiology, University of Florida, College of Public Health and Health Professions, College of Medicine, 2004 Mowry Road, P.O. Box 100231, Gainesville, FL 32610, United States; Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, United States.
| | - Marie Nancy Séraphin
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, United States; Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, United States
| | - LaTweika A T Salmon
- Florida Department of Health, Bureau of Tuberculosis Control, 4052 Bald Cypress Way, Bin A-20, Tallahassee, FL 32399, United States
| | - Michael Lauzardo
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, United States; Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, United States
| |
Collapse
|
22
|
Byrne AS, Goudreau A, Bissonnette N, Shamputa IC, Tahlan K. Methods for Detecting Mycobacterial Mixed Strain Infections-A Systematic Review. Front Genet 2020; 11:600692. [PMID: 33408740 PMCID: PMC7779811 DOI: 10.3389/fgene.2020.600692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with multiple strains of a single pathogenic species. Known to occur in humans and animals, MSIs deserve special consideration when studying transmission dynamics, evolution, and treatment of mycobacterial diseases, notably tuberculosis in humans and paratuberculosis (or Johne's disease) in ruminants. Therefore, a systematic review was conducted to examine how MSIs are defined in the literature, how widespread the phenomenon is across the host species spectrum, and to document common methods used to detect such infections. Our search strategy identified 121 articles reporting MSIs in both humans and animals, the majority (78.5%) of which involved members of the Mycobacterium tuberculosis complex, while only a few (21.5%) examined non-tuberculous mycobacteria (NTM). In addition, MSIs exist across various host species, but most reports focused on humans due to the extensive amount of work done on tuberculosis. We reviewed the strain typing methods that allowed for MSI detection and found a few that were commonly employed but were associated with specific challenges. Our review notes the need for standardization, as some highly discriminatory methods are not adapted to distinguish between microevolution of one strain and concurrent infection with multiple strains. Further research is also warranted to examine the prevalence of NTM MSIs in both humans and animals. In addition, it is envisioned that the accurate identification and a better understanding of the distribution of MSIs in the future will lead to important information on the epidemiology and pathophysiology of mycobacterial diseases.
Collapse
Affiliation(s)
| | - Alex Goudreau
- Science & Health Sciences Librarian, University of New Brunswick, Saint John, NB, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Isdore Chola Shamputa
- Department of Nursing & Health Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
23
|
Gupta A, Sinha P, Nema V, Gupta PK, Chakraborty P, Kulkarni S, Rastogi N, Anupurba S. Detection of Beijing strains of MDR M. tuberculosis and their association with drug resistance mutations in katG, rpoB, and embB genes. BMC Infect Dis 2020; 20:752. [PMID: 33054726 PMCID: PMC7557036 DOI: 10.1186/s12879-020-05479-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/05/2020] [Indexed: 11/29/2022] Open
Abstract
Background Molecular epidemiological studies of Mycobacterium tuberculosis (MTB) are the core of current research to find out the association of the M. tuberculosis genotypes with its outbreak and transmission. The high prevalence of the Beijing genotype strain among multidrug resistance (MDR) TB has already been reported in various studies around India. The overall objective of this study was to detect the prevalence of Beijing genotype strains of MDR M. tuberculosis and their association with the clinical characteristics of TB patients. Methods In this study 381 M. tuberculosis clinical isolates were obtained from sputum samples from 2008 to 2014. The multiplex-PCR and Spoligotyping (n = 131) methods were used to investigate the prevalence of the Beijing genotype strain by targeting the Rv2820 gene and their association with drug resistance and clinical characteristics of TB patients. The drug susceptibility testing of first-line anti-TB drugs was performed by using the proportion method and MGIT960. A collection of isolates having Beijing and non-Beijing strains were also characterized to see if Beijing genotype strains had a higher rate of mutations at codons 516, 526 and 531 of the 81-bp region of the rpoB gene, codon 315 of the katG gene, and codon 306 of the embB gene. Results The sensitivities and specificities of multiplex-PCR assay compared to that of standard Spoligotyping was detected to be 100%. Further, we observe that the multi drug-resistance was significantly associated with Beijing genotype strains (p = 0.03) and a strong correlation between Beijing genotype strains and specific resistance mutations at the katG315, rpoB531, and embB306 codons (p = < 0.0001, < 0.0001 & 0.0014 respectively) was also found. Conclusions This rapid, simple, and cost-effective multiplex PCR assay can effectively be used for monitoring the prevalence of Beijing genotype strains in low resource settings. Findings of this study may provide a scientific basis for the development of new diagnostic tools for detection and effective management of DR-TB in countries with a higher incidence rate of Beijing genotype strains.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.,Division of Molecular Biology, National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411026, India
| | - Pallavi Sinha
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Vijay Nema
- Division of Molecular Biology, National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411026, India
| | - Pramod K Gupta
- Laboratory Nuclear Medicine Section, Isotope Group, Bhabha Atomic Research Centre C/o T.M.H. Annexe, Parel, Mumbai, 400012, India
| | - Pampi Chakraborty
- Laboratory Nuclear Medicine Section, Isotope Group, Bhabha Atomic Research Centre C/o T.M.H. Annexe, Parel, Mumbai, 400012, India
| | - Savita Kulkarni
- Laboratory Nuclear Medicine Section, Isotope Group, Bhabha Atomic Research Centre C/o T.M.H. Annexe, Parel, Mumbai, 400012, India
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, TB & Mycobacteria Unit, Institute Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Shampa Anupurba
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
24
|
Beltran CGG, Heunis T, Gallant J, Venter R, du Plessis N, Loxton AG, Trost M, Winter J, Malherbe ST, Kana BD, Walzl G. Investigating Non-sterilizing Cure in TB Patients at the End of Successful Anti-TB Therapy. Front Cell Infect Microbiol 2020; 10:443. [PMID: 32984071 PMCID: PMC7477326 DOI: 10.3389/fcimb.2020.00443] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is extremely recalcitrant to antimicrobial chemotherapy requiring 6 months to treat drug-sensitive tuberculosis (TB). Despite this, 4-10% of cured patients will develop recurrent disease within 12 months after completing therapy. Reasons for relapse in cured TB patients remains speculative, attributed to both pathogen and host factors. Populations of dormant bacilli are hypothesized to cause relapse in initially cured TB patients however, development of tests to convincingly demonstrate their presence at the end of anti-TB treatment has been challenging. Previous studies have indicated the utility of culture filtrate supplemented media (CFSM) to detect differentially culturable tubercle bacilli (DCTB). Here, we show that 3/22 of clinically cured patients retained DCTB in induced sputum and bronchoalveolar lavage fluid (BALF), with one DCTB positive patient relapsing within the first year of completing therapy. We also show a correlation of DCTB status with "unresolved" end of treatment FDG PET-CT imaging. Additionally, 19 end of treatment induced sputum samples from patients not undergoing bronchoscopy were assessed for DCTB, identifying a further relapse case with DCTB. We further show that induced sputum is a less reliable source for the DCTB assay at the end of treatment, limiting the utility of this assay in a clinical setting. We next investigated the host proteome at the site of disease (BALF) using multiplexed proteomic analysis and compared these to active TB cases to identify host-specific factors indicative of cure. Distinct signatures stratified active from cured TB patients into distinct groups, with a DCTB positive, subsequently relapsing, end of treatment patient showing a proteomic signature closer to active TB disease than cure. This exploratory study offers evidence of live Mtb, undetectable with conventional culture methods, at the end of clinically successful treatment and putative host protein biomarkers of active disease and cure. These findings have implications for the assessment of true sterilizing cure in TB patients and opens new avenues for targeted approaches to monitor treatment response.
Collapse
Affiliation(s)
- Caroline G. G. Beltran
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tiaan Heunis
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James Gallant
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rouxjeane Venter
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Matthias Trost
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jill Winter
- Catalysis Foundation for Health, San Ramon, CA, United States
| | - Stephanus T. Malherbe
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bavesh D. Kana
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| | - Gerhard Walzl
- Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
25
|
Jajou R, Kohl TA, Walker T, Norman A, Cirillo DM, Tagliani E, Niemann S, de Neeling A, Lillebaek T, Anthony RM, van Soolingen D. Towards standardisation: comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases. ACTA ACUST UNITED AC 2020; 24. [PMID: 31847944 PMCID: PMC6918587 DOI: 10.2807/1560-7917.es.2019.24.50.1900130] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Whole genome sequencing (WGS) is a reliable tool for studying tuberculosis (TB) transmission. WGS data are usually processed by custom-built analysis pipelines with little standardisation between them. Aim To compare the impact of variability of several WGS analysis pipelines used internationally to detect epidemiologically linked TB cases. Methods From the Netherlands, 535 Mycobacterium tuberculosis complex (MTBC) strains from 2016 were included. Epidemiological information obtained from municipal health services was available for all mycobacterial interspersed repeat unit-variable number of tandem repeat (MIRU-VNTR) clustered cases. WGS data was analysed using five different pipelines: one core genome multilocus sequence typing (cgMLST) approach and four single nucleotide polymorphism (SNP)-based pipelines developed in Oxford, United Kingdom; Borstel, Germany; Bilthoven, the Netherlands and Copenhagen, Denmark. WGS clusters were defined using a maximum pairwise distance of 12 SNPs/alleles. Results The cgMLST approach and Oxford pipeline clustered all epidemiologically linked cases, however, in the other three SNP-based pipelines one epidemiological link was missed due to insufficient coverage. In general, the genetic distances varied between pipelines, reflecting different clustering rates: the cgMLST approach clustered 92 cases, followed by 84, 83, 83 and 82 cases in the SNP-based pipelines from Copenhagen, Oxford, Borstel and Bilthoven respectively. Conclusion Concordance in ruling out epidemiological links was high between pipelines, which is an important step in the international validation of WGS data analysis. To increase accuracy in identifying TB transmission clusters, standardisation of crucial WGS criteria and creation of a reference database of representative MTBC sequences would be advisable.
Collapse
Affiliation(s)
- Rana Jajou
- These authors contributed equally.,Center of Epidemiology and Surveillance of infectious diseases, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Thomas A Kohl
- German Center for Infection Research, Borstel site, Borstel, Germany.,Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany.,These authors contributed equally
| | - Timothy Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.,Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany
| | - Albert de Neeling
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Troels Lillebaek
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Richard M Anthony
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
26
|
Mycobacterium tuberculosis polyclonal infections through treatment and recurrence. PLoS One 2020; 15:e0237345. [PMID: 32813724 PMCID: PMC7437862 DOI: 10.1371/journal.pone.0237345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022] Open
Abstract
Background Mixed/polyclonal infections due to different genotypes are reported in Tuberculosis. The current study was designed to understand the fate of mixed infections during the course of treatment and follow-up and its role in disease pathogenesis. Methods Sputum samples were collected on 0,1,2,3,6,12 and 24 months from 157 treatment-naïve patients, cultures subjected to Drug-Susceptibility-testing (MGIT 960), spoligotyping, MIRU-VNTR and SNP genotyping. All isolated colonies on thin layer agar (7H11) were subjected to spoligotyping. Findings One thirty three baseline cultures were positive (133/157, 84.7%), 43(32.3%) had mixture of genotypes. Twenty-four of these patients (55.8%) showed change in genotype while six showed different drug-susceptibility patterns while on treatment. Twenty-three (53.5%) patients with polyclonal infections showed resistance to at least one drug compared to 10/90 (11.1%) monoclonal infections (P<0.0001). Eight patients had recurrent TB, two with a new genotype and two with altered phenotypic DST. Conclusions The coexistence of different genotypes and change of genotypes during the same disease episode, while on treatment, confirms constancy of polyclonal infections. The composition of the mixture of genotypes and the relative predominance may be missed by culture due to its limit of detection. Polyclonal infections in TB could be a rule rather than exception and challenges the age-old dogma of reactivation/reinfection.
Collapse
|
27
|
Tsenova L, Fallows D, Kolloli A, Singh P, O'Brien P, Kushner N, Kaplan G, Subbian S. Inoculum size and traits of the infecting clinical strain define the protection level against Mycobacterium tuberculosis infection in a rabbit model. Eur J Immunol 2020; 50:858-872. [PMID: 32130727 DOI: 10.1002/eji.201948448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Host protective immunity against pathogenic Mycobacterium tuberculosis (Mtb) infection is variable and poorly understood. Both prior Mtb infection and BCG vaccination have been reported to confer some protection against subsequent infection and/or disease. However, the immune correlates of host protection with or without BCG vaccination remain poorly understood. Similarly, the host response to concomitant infection with mixed Mtb strains is unclear. In this study, we used the rabbit model to examine the host response to various infectious doses of virulent Mtb HN878 with and without prior BCG vaccination, as well as simultaneous infection with a mixture of two Mtb clinical isolates HN878 and CDC1551. We demonstrate that both the ability of host immunity to control pulmonary Mtb infection and the protective efficacy of BCG vaccination against the progression of Mtb infection to disease is dependent on the infectious inoculum. The host response to infection with mixed Mtb strains mirrors the differential responses seen during infection with each of the strains alone. The protective response mounted against a hyperimmunogenic Mtb strain has a limited impact on the control of disease caused by a hypervirulent strain. This preclinical study will aid in predicting the success of any vaccination strategy and in optimizing TB vaccines.
Collapse
Affiliation(s)
- Liana Tsenova
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Biological Sciences, NYC College of Technology, Brooklyn, NY, USA
| | - Dorothy Fallows
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Celgene Corporation, Summit, NJ, USA
| | - Afsal Kolloli
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Pooja Singh
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Paul O'Brien
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers University, Newark, NJ, USA
| | - Nicole Kushner
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Gilla Kaplan
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
28
|
Anyansi C, Keo A, Walker BJ, Straub TJ, Manson AL, Earl AM, Abeel T. QuantTB - a method to classify mixed Mycobacterium tuberculosis infections within whole genome sequencing data. BMC Genomics 2020; 21:80. [PMID: 31992201 PMCID: PMC6986090 DOI: 10.1186/s12864-020-6486-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mixed infections of Mycobacterium tuberculosis and antibiotic heteroresistance continue to complicate tuberculosis (TB) diagnosis and treatment. Detection of mixed infections has been limited to molecular genotyping techniques, which lack the sensitivity and resolution to accurately estimate the multiplicity of TB infections. In contrast, whole genome sequencing offers sensitive views of the genetic differences between strains of M. tuberculosis within a sample. Although metagenomic tools exist to classify strains in a metagenomic sample, most tools have been developed for more divergent species, and therefore cannot provide the sensitivity required to disentangle strains within closely related bacterial species such as M. tuberculosis. Here we present QuantTB, a method to identify and quantify individual M. tuberculosis strains in whole genome sequencing data. QuantTB uses SNP markers to determine the combination of strains that best explain the allelic variation observed in a sample. QuantTB outputs a list of identified strains, their corresponding relative abundances, and a list of drugs for which resistance-conferring mutations (or heteroresistance) have been predicted within the sample. RESULTS We show that QuantTB has a high degree of resolution and is capable of differentiating communities differing by less than 25 SNPs and identifying strains down to 1× coverage. Using simulated data, we found QuantTB outperformed other metagenomic strain identification tools at detecting strains and quantifying strain multiplicity. In a real-world scenario, using a dataset of 50 paired clinical isolates from a study of patients with either reinfections or relapses, we found that QuantTB could detect mixed infections and reinfections at rates concordant with a manually curated approach. CONCLUSION QuantTB can determine infection multiplicity, identify hetero-resistance patterns, enable differentiation between relapse and re-infection, and clarify transmission events across seemingly unrelated patients - even in low-coverage (1×) samples. QuantTB outperforms existing tools and promises to serve as a valuable resource for both clinicians and researchers working with clinical TB samples.
Collapse
Affiliation(s)
- Christine Anyansi
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628XE, The Netherlands.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Arlin Keo
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628XE, The Netherlands
| | - Bruce J Walker
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.,Applied Invention, LLC, 486 Green Street, Cambridge, MA, 02139, USA
| | - Timothy J Straub
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628XE, The Netherlands. .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
29
|
Almeida SMD, Malaspina AC, Leite CQF, Saad MHF. Usefulness of 3'- 5' IS6110-RFLP genotyping and spoligotyping of Mycobacterium tuberculosis isolated in a tertiary hospital: a retrospective study detecting unsuspected epidemiological events. Rev Inst Med Trop Sao Paulo 2019; 61:e51. [PMID: 31531629 PMCID: PMC6746203 DOI: 10.1590/s1678-9946201961051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/18/2019] [Indexed: 11/22/2022] Open
Abstract
A drug resistance survey involving Mycobacterium tuberculosis isolated from patients of a tertiary Hospital in the Rio de Janeiro city (RJ), Brazil, between the years 1996 and 1998 revealed a high frequency of isoniazid (HR) resistance. These isolates were revisited and genotyped. Patients came from different RJ neighborhoods and municipalities, and 70% were outpatients. Applying the 3’ and 5’ IS 6110 -RFLP and the Spoligotype genotyping methods, the clonal structure of this population was investigated obtaining a snapshot of past epidemiological events. The 3’ clusters were subsequently 5’ IS 6110 -RFLP typed. Spoligotyping was analyzed in the SITVIT2 database. Epidemiological relationships were investigated. The major lineage was T (54.4%), and SIT 53/T1 and SIT 535/T1 were the most frequent. The T1 sublineage comprises 12.8% of resistant strains and SIT 535 were assigned for 31.8% of them. Orphan patterns corresponded to 12% and 73.3% and belonged to the T lineage. One pattern was unlisted in the SITVIT2. The 5’ IS 6110 -RFLP did not confirm 3/12 of the 3’ IS 6110 -RFLP clusters. A combination of all methods decreased the number of clusters to three. Nosocomial transmission was associated with one cluster involving a hospital cupbearer. This event was suspected in a multidrug resistant-TB inpatient caregiver who harbored a mixed infection. The 3’ IS 6110 clusters were associated with HR (p=0.046). These genotypic retrospective data may reflect a fraction of more extensive recent transmission in different communities that may be corroborated by the concentration of HR patients, and may serve as a database for further evolutionary and characterization evaluation of circulating strains and together with epidemiological data favors a more effective transmission control.
Collapse
Affiliation(s)
- Silvia Maria de Almeida
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Malaspina
- Universidade Federal de São Paulo, Instituto de Ciências Farmacêuticas, São Paulo, São Paulo, Brazil
| | | | - Maria Helena Féres Saad
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Ssebuliba DM, Ouifki R. Effect of mixed infection on TB dynamics. INT J BIOMATH 2019. [DOI: 10.1142/s179352451950061x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Poor living conditions, overcrowding and strain diversity are some of the factors that influence mixed infection in Tuberculosis (TB) at the population level. We formulate a mathematical model for mixed infection in TB using nonlinear ordinary differential equations where such factors were represented as probabilities of acquiring mixed infection. A qualitative analysis of the model shows that it exhibits multiple endemic equilibria and backward bifurcation for certain parameter values. The reactivation rate and transmission rate of individuals with mixed infection were of importance as well as the probabilities for latent individuals to acquire mixed infection. We calculate the prevalence of mixed infection from the model and the effect of mixed infection on TB incidence, TB prevalence and Mycobacterium tuberculosis (MTB) infection rate. Numerical simulations show that mixed infection may explain high TB incidences in areas which have a high strain diversity, poor living conditions and are overcrowded even without HIV.
Collapse
Affiliation(s)
- Doreen Mbabazi Ssebuliba
- Faculty of Science, Kabale University, P. O. Box 317, Kabale, Uganda
- South African Centre for Epidemiological Modelling, and Analysis, 19 Jonkershoek, Mostertdrift, Stellenbosch, 7600, Cape Town, Western Cape, South Africa
| | - Rachid Ouifki
- South African Centre for Epidemiological Modelling, and Analysis, 19 Jonkershoek, Mostertdrift, Stellenbosch, 7600, Cape Town, Western Cape, South Africa
- Department of Mathematics and Applied Mathematics, University of Pretoria, Private bag X20, Hatfield, 0028 Pretoria, South Africa
| |
Collapse
|
31
|
van Leeuwen LM, Versteegen P, Zaharie SD, van Elsland SL, Jordaan A, Streicher EM, Warren RM, van der Kuip M, van Furth AM. Bacterial Genotyping of Central Nervous System Tuberculosis in South Africa: Heterogenic Mycobacterium tuberculosis Infection and Predominance of Lineage 4. J Clin Microbiol 2019; 57:e00415-19. [PMID: 31189579 PMCID: PMC6663911 DOI: 10.1128/jcm.00415-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Tuberculous meningitis (TBM), the most severe extrapulmonary manifestation of tuberculosis, is caused by the pathogen Mycobacterium tuberculosis The M. tuberculosis complex includes seven lineages, all described to harbor a unique geographical dissemination pattern and clinical presentation. In this study, we set out to determine whether a certain M. tuberculosis lineage demonstrated tropism to cause TBM in patients from Cape Town, South Africa. DNA was extracted from formalin-fixed paraffin-embedded central nervous system (CNS) tissue from a unique neuropathological cohort of 83 TBM patients, collected between 1975 and 2012. M. tuberculosis lineages 1, 2, 3, and 4 were determined using an allele-specific PCR and Sanger sequencing. Of the 83 patient specimens tested, bacterial characterization could be performed on 46 specimens (55%). M. tuberculosis lineage 4 was present in 26 patient specimens (56%), and non-lineage 4 was identified in 10 cases (22%). Moreover, genomic heterogeneity was detected in the CNS specimens of 7 adults and 3 children. We could show that infection of the CNS is not restricted to a single M. tuberculosis lineage and that even young children with rapid progression of disease can harbor more than one M. tuberculosis lineage in the CNS.
Collapse
Affiliation(s)
- L M van Leeuwen
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - P Versteegen
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - S D Zaharie
- Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - S L van Elsland
- Department of Paediatrics and Child Health, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - A Jordaan
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - E M Streicher
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - R M Warren
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - M van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - A M van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med 2019; 11:45. [PMID: 31345251 PMCID: PMC6657377 DOI: 10.1186/s13073-019-0660-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is a global infectious threat that is intensified by an increasing incidence of highly drug-resistant disease. Whole-genome sequencing (WGS) studies of Mycobacterium tuberculosis, the causative agent of TB, have greatly increased our understanding of this pathogen. Since the first M. tuberculosis genome was published in 1998, WGS has provided a more complete account of the genomic features that cause resistance in populations of M. tuberculosis, has helped to fill gaps in our knowledge of how both classical and new antitubercular drugs work, and has identified specific mutations that allow M. tuberculosis to escape the effects of these drugs. WGS studies have also revealed how resistance evolves both within an individual patient and within patient populations, including the important roles of de novo acquisition of resistance and clonal spread. These findings have informed decisions about which drug-resistance mutations should be included on extended diagnostic panels. From its origins as a basic science technique, WGS of M. tuberculosis is becoming part of the modern clinical microbiology laboratory, promising rapid and improved detection of drug resistance, and detailed and real-time epidemiology of TB outbreaks. We review the successes and highlight the challenges that remain in applying WGS to improve the control of drug-resistant TB through monitoring its evolution and spread, and to inform more rapid and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Keira A Cohen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, 21205, USA.
| | - Abigail L Manson
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Thomas Abeel
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, 2628, XE, Delft, The Netherlands
| | - Ashlee M Earl
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
33
|
Mycobacterium tuberculosis Next-Generation Whole Genome Sequencing: Opportunities and Challenges. Tuberc Res Treat 2018; 2018:1298542. [PMID: 30631597 PMCID: PMC6304523 DOI: 10.1155/2018/1298542] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/29/2018] [Accepted: 11/25/2018] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis drug resistance is a threat to global tuberculosis (TB) control. Comprehensive and timely drug susceptibility determination is critical to inform appropriate treatment of drug-resistant tuberculosis (DR-TB). Phenotypic drug susceptibility testing (DST) is the gold standard for M. tuberculosis drug resistance determination. M. tuberculosis whole genome sequencing (WGS) has the potential to be a one-stop method for both comprehensive DST and epidemiological investigations. We discuss in this review the tremendous opportunities that next-generation WGS presents in terms of understanding the molecular epidemiology of tuberculosis and mechanisms of drug resistance. The potential clinical value and public health impact in the areas of DST for patient management and tracing of transmission chains for timely public health intervention are also discussed. We present the current challenges for the implementation of WGS in low and middle-income settings. WGS analysis has already been adapted routinely in laboratories to inform patient management and public health interventions in low burden high-income settings such as the United Kingdom. We predict that the technology will be adapted similarly in high burden settings where the impact on the epidemic will be greatest.
Collapse
|
34
|
Shin SS, Modongo C, Baik Y, Allender C, Lemmer D, Colman RE, Engelthaler DM, Warren RM, Zetola NM. Mixed Mycobacterium tuberculosis-Strain Infections Are Associated With Poor Treatment Outcomes Among Patients With Newly Diagnosed Tuberculosis, Independent of Pretreatment Heteroresistance. J Infect Dis 2018; 218:1974-1982. [PMID: 30085153 PMCID: PMC6217728 DOI: 10.1093/infdis/jiy480] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 11/14/2022] Open
Abstract
Background Heteroresistant Mycobacterium tuberculosis infections (defined as concomitant infection with drug-resistant and drug-susceptible strains) may explain the higher risk of poor tuberculosis treatment outcomes observed among patients with mixed-strain M. tuberculosis infections. We investigated the clinical effect of mixed-strain infections while controlling for pretreatment heteroresistance in a population-based sample of patients with tuberculosis starting first-line tuberculosis therapy in Botswana. Methods We performed 24-locus mycobacterial interspersed repetitive unit-variable number tandem-repeat analysis and targeted deep sequencing on baseline primary cultured isolates to detect mixed infections and heteroresistance, respectively. Drug-sensitive, micro-heteroresistant, macro-heteroresistant, and fixed-resistant infections were defined as infections in which the frequency of resistance was <0.1%, 0.1%-4%, 5%-94%, and ≥95%, respectively, in resistance-conferring domains of the inhA promoter, the katG gene, and the rpoB gene. Results Of the 260 patients with tuberculosis included in the study, 25 (9.6%) had mixed infections and 30 (11.5%) had poor treatment outcomes. Micro-heteroresistance, macro-heteroresistance, and fixed resistance were found among 11 (4.2%), 2 (0.8%), and 11 (4.2%), respectively, for isoniazid and 21 (8.1%), 0 (0%), and 10 (3.8%), respectively, for rifampicin. In multivariable analysis, mixed infections but not heteroresistant infections independently predicted poor treatment outcomes. Conclusions Among patients starting first-line tuberculosis therapy in Botswana, mixed infections were associated with poor tuberculosis treatment outcomes, independent of heteroresistance.
Collapse
Affiliation(s)
- Sanghyuk S Shin
- Sue and Bill Gross School of Nursing, University of California, Irvine
| | - Chawangwa Modongo
- Botswana-Upenn Partnership, Gaborone, Botswana
- Department of Infectious Disease, Gaborone, Botswana
| | - Yeonsoo Baik
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles
| | | | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, Arizona
| | | | | | - Robin M Warren
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Tygerberg, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nicola M Zetola
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Gaborone, Botswana
| |
Collapse
|
35
|
Singhania A, Wilkinson RJ, Rodrigue M, Haldar P, O'Garra A. The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nat Immunol 2018; 19:1159-1168. [PMID: 30333612 PMCID: PMC6554194 DOI: 10.1038/s41590-018-0225-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Abstract
Blood transcriptomics analysis of tuberculosis has revealed an interferon-inducible gene signature that diminishes in expression after successful treatment; this promises improved diagnostics and treatment monitoring, which are essential for the eradication of tuberculosis. Sensitive radiography revealing lung abnormalities and blood transcriptomics have demonstrated heterogeneity in patients with active tuberculosis and exposed asymptomatic people with latent tuberculosis, suggestive of a continuum of infection and immune states. Here we describe the immune response to infection with Mycobacterium tuberculosis revealed through the use of transcriptomics, as well as differences among clinical phenotypes of infection that might provide information on temporal changes in host immunity associated with evolving infection. We also review the diverse blood transcriptional signatures, composed of small sets of genes, that have been proposed for the diagnosis of tuberculosis and the identification of at-risk asymptomatic people and suggest novel approaches for the development of such biomarkers for clinical use.
Collapse
Affiliation(s)
- Akul Singhania
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | - Robert J Wilkinson
- Laboratory of Tuberculosis, The Francis Crick Institute, London, UK
- Department of Medicine, Imperial College London, London, UK
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, 7925, Cape Town, Republic of South Africa
| | - Marc Rodrigue
- Medical Diagnostic Discovery Department, bioMerieux SA, Marcy l'Etoile, France
| | - Pranabashis Haldar
- Respiratory Biomedical Research Centre, Institute for Lung Health, Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
36
|
García De Viedma D, Pérez-Lago L. The Evolution of Genotyping Strategies To Detect, Analyze, and Control Transmission of Tuberculosis. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0002-2016. [PMID: 30338753 PMCID: PMC11633623 DOI: 10.1128/microbiolspec.mtbp-0002-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Indexed: 11/20/2022] Open
Abstract
The introduction of genotypic tools to analyze Mycobacterium tuberculosis isolates has transformed our knowledge of the transmission dynamics of this pathogen. We discuss the development of the laboratory methods that have been applied in recent years to study the epidemiology of M. tuberculosis. This review integrates two approaches: on the one hand, it considers how genotyping techniques have evolved over the years; and on the other, it looks at how the way we think these techniques should be applied has changed. We begin by examining the application of fingerprinting tools to suspected outbreaks only, before moving on to universal genotyping schemes, and finally we describe the latest real-time strategies used in molecular epidemiology. We also analyze refined approaches to obtaining epidemiological data from patients and to increasing the discriminatory power of genotyping by techniques based on genomic characterization. Finally, we review the development of integrative solutions to reconcile the speed of PCR-based methods with the high discriminatory power of whole-genome sequencing in easily implemented formats adapted to low-resource settings. Our analysis of future considerations highlights the need to bring together the three key elements of high-quality surveillance of transmission in tuberculosis, namely, speed, precision, and ease of implementation.
Collapse
Affiliation(s)
- Darío García De Viedma
- Department of Microbiology and Infectious Diseases, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER Enfermedades respiratorias CIBERES, Spain
| | - Laura Pérez-Lago
- Department of Microbiology and Infectious Diseases, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
37
|
Naidoo K, Dookie N. Insights into Recurrent Tuberculosis: Relapse Versus Reinfection and Related Risk Factors. Tuberculosis (Edinb) 2018. [DOI: 10.5772/intechopen.73601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Sobkowiak B, Glynn JR, Houben RMGJ, Mallard K, Phelan JE, Guerra-Assunção JA, Banda L, Mzembe T, Viveiros M, McNerney R, Parkhill J, Crampin AC, Clark TG. Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics 2018; 19:613. [PMID: 30107785 PMCID: PMC6092779 DOI: 10.1186/s12864-018-4988-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mixed, polyclonal Mycobacterium tuberculosis infection occurs in natural populations. Developing an effective method for detecting such cases is important in measuring the success of treatment and reconstruction of transmission between patients. Using whole genome sequence (WGS) data, we assess two methods for detecting mixed infection: (i) a combination of the number of heterozygous sites and the proportion of heterozygous sites to total SNPs, and (ii) Bayesian model-based clustering of allele frequencies from sequencing reads at heterozygous sites. RESULTS In silico and in vitro artificially mixed and known pure M. tuberculosis samples were analysed to determine the specificity and sensitivity of each method. We found that both approaches were effective in distinguishing between pure strains and mixed infection where there was relatively high (> 10%) proportion of a minor strain in the mixture. A large dataset of clinical isolates (n = 1963) from the Karonga Prevention Study in Northern Malawi was tested to examine correlations with patient characteristics and outcomes with mixed infection. The frequency of mixed infection in the population was found to be around 10%, with an association with year of diagnosis, but no association with age, sex, HIV status or previous tuberculosis. CONCLUSIONS Mixed Mycobacterium tuberculosis infection was identified in silico using whole genome sequence data. The methods presented here can be applied to population-wide analyses of tuberculosis to estimate the frequency of mixed infection, and to identify individual cases of mixed infections. These cases are important when considering the evolution and transmission of the disease, and in patient treatment.
Collapse
Affiliation(s)
- Benjamin Sobkowiak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Judith R. Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Rein M. G. J. Houben
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- TB Modelling Group, TB Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Kim Mallard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jody E. Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - José Afonso Guerra-Assunção
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Bill Lyons Informatics Centre, University College London, London, UK
| | | | | | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Amelia C. Crampin
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Karonga Prevention Study, Chilumba, Malawi
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
39
|
Chihota VN, Niehaus A, Streicher EM, Wang X, Sampson SL, Mason P, Källenius G, Mfinanga SG, Pillay M, Klopper M, Kasongo W, Behr MA, Gey van Pittius NC, van Helden PD, Couvin D, Rastogi N, Warren RM. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One 2018; 13:e0200632. [PMID: 30067763 PMCID: PMC6070189 DOI: 10.1371/journal.pone.0200632] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the distribution of Mycobacterium tuberculosis genotypes across Africa. Methods The SITVIT2 global repository and PUBMED were searched for spoligotype and published genotype data respectively, of M. tuberculosis from Africa. M. tuberculosis lineages in Africa were described and compared across regions and with those from 7 European and 6 South-Asian countries. Further analysis of the major lineages and sub-lineages using Principal Component analysis (PCA) and hierarchical cluster analysis were done to describe clustering by geographical regions. Evolutionary relationships were assessed using phylogenetic tree analysis. Results A total of 14727 isolates from 35 African countries were included in the analysis and of these 13607 were assigned to one of 10 major lineages, whilst 1120 were unknown. There were differences in geographical distribution of major lineages and their sub-lineages with regional clustering. Southern African countries were grouped based on high prevalence of LAM11-ZWE strains; strains which have an origin in Portugal. The grouping of North African countries was due to the high percentage of LAM9 strains, which have an origin in the Eastern Mediterranean region. East African countries were grouped based on Central Asian (CAS) and East-African Indian (EAI) strain lineage possibly reflecting historic sea trade with Asia, while West African Countries were grouped based on Cameroon lineage of unknown origin. A high percentage of the Haarlem lineage isolates were observed in the Central African Republic, Guinea, Gambia and Tunisia, however, a mixed distribution prevented close clustering. Conclusions This study highlighted that the TB epidemic in Africa is driven by regional epidemics characterized by genetically distinct lineages of M. tuberculosis. M. tuberculosis in these regions may have been introduced from either Europe or Asia and has spread through pastoralism, mining and war. The vast array of genotypes and their associated phenotypes should be considered when designing future vaccines, diagnostics and anti-TB drugs.
Collapse
Affiliation(s)
- Violet N. Chihota
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- The Aurum Institute, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Antoinette Niehaus
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Xia Wang
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samantha L. Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter Mason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Gunilla Källenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sayoki G. Mfinanga
- National Institute for Medical Research Muhimbili Medical Research Centre, Dar es Saalam, Tanzania
| | - Marnomorney Pillay
- Department of Medical Microbiology University of KwaZulu Natal, Durban, South Africa
| | - Marisa Klopper
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | - Marcel A. Behr
- Division of Infectious Diseases, Department of Medicine McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolaas C. Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research /SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
40
|
Wangari IM, Stone L. Backward bifurcation and hysteresis in models of recurrent tuberculosis. PLoS One 2018; 13:e0194256. [PMID: 29566101 PMCID: PMC5863985 DOI: 10.1371/journal.pone.0194256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
An epidemiological model is presented that provides a comprehensive description of the transmission pathways involved for recurrent tuberculosis (TB), whereby cured individuals can become reinfected. Our main goal is to determine conditions that lead to the appearance of a backward bifurcation. This occurs when an asymptotically stable infection free equilibrium concurrently exists with a stable non-trivial equilibria even though the basic reproduction number R0 is less than unity. Although, some 10-30% cases of TB are recurrent, the role of recurrent TB as far as the formation of backward bifurcation is concerned, is rarely if ever studied. The model used here incorporates progressive primary infection, exogenous reinfection, endogenous reactivation and recurrent TB as transmission mechanisms that contribute to TB progression. Unlike other studies of TB dynamics that make use of frequency dependent transmission rates, our analysis provides exact backward bifurcation threshold conditions without resorting to commonly applied approximations and simplifying assumptions. Exploration of the model through analytical and numerical analysis reveal that recurrent TB is sometimes capable of triggering hysteresis effects which allow TB to persist when R0 < 1 even though there is no backward bifurcation. Furthermore, recurrent TB can independently induce backward bifurcation phenomena if it exceeds a certain threshold.
Collapse
Affiliation(s)
- Isaac Mwangi Wangari
- School of Science, Department of Mathematics and Geospatial Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
- * E-mail:
| | - Lewi Stone
- School of Science, Department of Mathematics and Geospatial Sciences, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
- Biomathematics Unit, Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Tarashi S, Fateh A, Mirsaeidi M, Siadat SD, Vaziri F. Mixed infections in tuberculosis: The missing part in a puzzle. Tuberculosis (Edinb) 2017; 107:168-174. [PMID: 29050766 DOI: 10.1016/j.tube.2017.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 11/26/2022]
Abstract
The mixed strains infection phenomenon is a major problem posing serious challenges in control of tuberculosis (TB). In patients with mixed infection, several different strains of Mycobacterium tuberculosis can be isolated simultaneously. Although different genotyping methods and various molecular approaches can be employed for detection of mixed infection in clinical samples, the MIRU-VNTR technique is more sensitive with higher discriminative power than many widely used techniques. Furthermore, the recent introduction of whole genome sequencing (WGS) promises to reveal more details about mixed infection with high resolution. WGS has been used for detection of mixed infection with high sensitivity and discriminatory, but the technology is currently limited to developed countries. Mixed infection may involve strains with different susceptibility patterns, which may alter the treatment outcome. In this report, we review the current concepts of mixed strains infection and also infection involving strains with a different susceptibility pattern in TB. We evaluate the importance of identifying mixed infection for diagnosis as well as treatment and highlight the accuracy and clinical utility of direct genotyping of clinical specimens.
Collapse
Affiliation(s)
- Samira Tarashi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
42
|
Mahomed S, Naidoo K, Dookie N, Padayatchi N. Whole genome sequencing for the management of drug-resistant TB in low income high TB burden settings: Challenges and implications. Tuberculosis (Edinb) 2017; 107:137-143. [DOI: 10.1016/j.tube.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/26/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
|
43
|
Prediction of Local Transmission of Mycobacterium tuberculosis Isolates of a Predominantly Beijing Lineage by Use of a Variable-Number Tandem-Repeat Typing Method Incorporating a Consensus Set of Hypervariable Loci. J Clin Microbiol 2017; 56:JCM.01016-17. [PMID: 29046413 DOI: 10.1128/jcm.01016-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Strain genotyping based on the variable-number tandem repeat (VNTR) is widely applied for identifying the transmission of Mycobacterium tuberculosis A consensus set of four hypervariable loci (1982, 3232, 3820, and 4120) has been proposed to improve the discrimination of Beijing lineage strains. Herein, we evaluated the utility of these four hypervariable loci for tracing local tuberculosis transmission in 981 cases over a 14-month period in Japan (2010 to 2011). We used six different VNTR systems, with or without the four hypervariable loci. Patient ages and weighted standard distances (a measure of the dispersion of genotype-clustered cases) were used as proxies for estimating local tuberculosis transmission. The highest levels of isolate discrimination were achieved with VNTR systems that incorporated the four hypervariable loci (i.e., the Japan Anti-Tuberculosis Association [JATA]18-VNTR, mycobacterial interspersed repetitive unit [MIRU]28-VNTR, and 24Beijing-VNTR). The clustering rates by JATA12-VNTR, MIRU15-VNTR, JATA15-VNTR, JATA18-VNTR, MIRU28-VNTR, and 24Beijing-VNTR systems were 52.2%, 51.0%, 39.0%, 24.1%, 23.1%, and 22.0%, respectively. As the discriminative power increased, the median weighted standard distances of the clusters tended to decrease (from 311 to 80 km, P < 0.001, Jonckheere-Terpstra trend test). Concurrently, the median ages of patients in the clusters tended to decrease (from 68 to 60 years, P < 0.001, Jonckheere-Terpstra trend test). These findings suggest that strain typing using the four hypervariable loci improves the prediction of active local tuberculosis transmission. The four-locus set can therefore contribute to the targeted control of tuberculosis in settings with high prevalence of Beijing lineage strains.
Collapse
|
44
|
Rasoahanitralisoa R, Rakotosamimanana N, Stucki D, Sola C, Gagneux S, Rasolofo Razanamparany V. Evaluation of spoligotyping, SNPs and customised MIRU-VNTR combination for genotyping Mycobacterium tuberculosis clinical isolates in Madagascar. PLoS One 2017; 12:e0186088. [PMID: 29053711 PMCID: PMC5650158 DOI: 10.1371/journal.pone.0186088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Combining different molecular typing methods for Mycobacterium tuberculosis complex (MTBC) can be a powerful tool for molecular epidemiology-based investigation of TB. However, the current standard method that provides high discriminatory power for such a combination, mycobacterial interspersed repetitive units-variable numbers of tandem repeats typing (MIRU-VNTR), is laborious, time-consuming and often too costly for many resource-limited laboratories. We aimed to evaluate a reduced set of loci for MIRU-VNTR typing in combination with spoligotyping and SNP-typing for routine molecular epidemiology of TB. METHOD Spoligotyping and SNP-typing, in combination with the 15 loci MIRU-VNTR typing, were first used to type clinical MTBC isolates (n = 158) from Madagascar. A step by step reduction of MIRU-VNTR loci number was then performed according to the Hunter and Gaston Discriminatory Index (HGDI) and to the Principal component analysis (PCA) correlation with the spoligotype profiles to evaluate the discrimination power inside the generated spoligotype clusters. The 15 MIRU-VNTR was used as reference and SNP-typing was used to determine the main MTBC lineages. RESULTS Of the 158 clinical isolates studied, the SNP-typing classified 23 into Lineage 1 (14.6%), 31 into Lineage 2 (19.6%), 23 into Lineage 3 (14.6%) and 81 into Lineage 4 strains (51.3%). 37 different spoligotypes profiles were obtained, 15 of which were unique and 20 in clusters. 15-loci MIRU-VNTR typing revealed 144 different genotypes: 132 isolates had a unique MIRU-VNTR profile and 27 isolates were grouped into 12 clusters. After a stepwise reduction of the MIRU-VNTR loci number within each main spoligotype families, three different sets composed of 5 customised MIRU-VNTR loci had a similar discrimination level to the reference 15 loci MIRU-VNTR in lineage 1, lineage 2 and lineage 3. For lineage 4, a set of 4 and 3 MIRU-VNTR loci were proposed to subtype the Harleem and LAM spoligotype families, respectively. For the T spoligotype family, a set of 5 MIRU-VNTR loci was proposed. CONCLUSION According to the lineages and the spoligotype families, the number of MIRU-VNTR loci can be reduced to get an optimal classification of MTBC. These customized sets of MIRU-VNTR loci reduce workload and save resources while maintaining optimal discriminatory power.
Collapse
Affiliation(s)
- Rondroarivelo Rasoahanitralisoa
- Mycobacteria Unit, Institut Pasteur of Madagascar, Antananarivo, Madagascar, Ecole Doctorale Science de la Vie et de l'Environnement, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | | | - David Stucki
- Department of Medical Parasitology and infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Sebastien Gagneux
- Department of Medical Parasitology and infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Institut for Integrative Cell Biology, I2BC, UMR9198 CEA-CNRS-UP Saclay, Orsay, France
| | | |
Collapse
|
45
|
Manson AL, Abeel T, Galagan JE, Sundaramurthi JC, Salazar A, Gehrmann T, Shanmugam SK, Palaniyandi K, Narayanan S, Swaminathan S, Earl AM. Mycobacterium tuberculosis Whole Genome Sequences From Southern India Suggest Novel Resistance Mechanisms and the Need for Region-Specific Diagnostics. Clin Infect Dis 2017; 64:1494-1501. [PMID: 28498943 PMCID: PMC5434337 DOI: 10.1093/cid/cix169] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/30/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND. India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3. METHODS. We whole genome sequenced 223 randomly selected M. tuberculosis strains from 196 patients within the Tiruvallur and Madurai districts of Tamil Nadu in Southern India. Using comparative genomics, we examined genetic diversity, transmission patterns, and evolution of resistance. RESULTS. Genomic analyses revealed (11) prevalence of strains from lineages 1 and 3, (11) recent transmission of strains among patients from the same treatment centers, (11) emergence of drug resistance within patients over time, (11) resistance gained in an order typical of strains from different lineages and geographies, (11) underperformance of known resistance-conferring mutations to explain phenotypic resistance in Indian strains relative to studies focused on other geographies, and (11) the possibility that resistance arose through mutations not previously implicated in resistance, or through infections with multiple strains that confound genotype-based prediction of resistance. CONCLUSIONS. In addition to substantially expanding the genomic perspectives of lineages 1 and 3, sequencing and analysis of M. tuberculosis whole genomes from Southern India highlight challenges of infection control and rapid diagnosis of resistant tuberculosis using current technologies. Further studies are needed to fully explore the complement of diversity and resistance determinants within endemic M. tuberculosis populations.
Collapse
Affiliation(s)
| | - Thomas Abeel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Delft Bioinformatics Lab, Delft University of Technology, The Netherlands
| | - James E Galagan
- Department of Biomedical Engineering, and
- National Emerging Infectious Diseases Laboratory, Boston University, Massachusetts
| | | | - Alex Salazar
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Delft Bioinformatics Lab, Delft University of Technology, The Netherlands
| | - Thies Gehrmann
- Delft Bioinformatics Lab, Delft University of Technology, The Netherlands
| | | | | | | | | | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
46
|
McIvor A, Koornhof H, Kana BD. Relapse, re-infection and mixed infections in tuberculosis disease. Pathog Dis 2017; 75:3003284. [PMID: 28334088 DOI: 10.1093/femspd/ftx020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/16/2017] [Indexed: 01/19/2023] Open
Abstract
Tuberculosis (TB) disease can be characterized by genotypic and phenotypic complexity in Mycobacterium tuberculosis bacilli within a single patient. This microbiological heterogeneity has become an area of intense study due its perceived importance in drug tolerance, drug resistance and as a surrogate measure of transmission rates. This review presents a descriptive analysis of research describing the prevalence of mixed-strain TB infections in geographically distinct locations. Despite significant variation in disease burden and a rampant human immunodeficiency virus (HIV)-TB co-epidemic, there was no difference in the prevalence range of mixed infections reported in African countries when compared to the rest of the world. The occurrence of recurrent TB was associated with a higher prevalence of mixed-strain infections, but this difference was not reported as statistically significant. These interpretations were limited by differences in the design and overall size of the studies assessed. Factors such as sputum quality, culture media, number of repeated culture steps, molecular typing methods and HIV-infection status can affect the detection of mixed-strain infection. It is recommended that future clinical studies should focus on settings with varying TB burdens, with a common sample processing protocol to gain further insight into these phenomena and develop novel transmission blocking strategies.
Collapse
Affiliation(s)
- Amanda McIvor
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Hendrik Koornhof
- Centre for Tuberculosis, National Institute for Communicable Diseases and National Health Laboratory Service, Johannesburg, 2000, South Africa
| | - Bavesh Davandra Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa.,CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, 4001, South Africa
| |
Collapse
|
47
|
Pelletier-Galarneau M, Martineau P, Zuckier LS, Pham X, Lambert R, Turpin S. 18 F-FDG-PET/CT Imaging of Thoracic and Extrathoracic Tuberculosis in Children. Semin Nucl Med 2017; 47:304-318. [DOI: 10.1053/j.semnuclmed.2016.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Nagai Y, Iwade Y, Nakano M, Akachi S, Kobayashi T, Nishinaka T. Rapid and simple identification of Beijing genotype strain of Mycobacterium tuberculosis using a loop-mediated isothermal amplification assay. Microbiol Immunol 2017; 60:459-67. [PMID: 27213686 DOI: 10.1111/1348-0421.12389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Abstract
Beijing genotype strains of Mycobacterium tuberculosis are geographically widespread and pose a notorious public health problem, these strains causing outbreaks of multidrug-resistant tuberculosis (TB); some studies have reported an association with drug resistance. Because the prevalence of Beijing strain has a substantial impact on TB control programs, the availability of a rapid and reliable method for detecting these strains is important for epidemiological monitoring of their circulation. The main methods currently used to identify Beijing genotype strains are IS6110 DNA fingerprinting, spoligotyping and PCR to detect specific deletions such as region of difference (RD)207. More recently, multiplex PCR assay using a Beijing-specific single nucleotide polymorphism (SNP) has been developed for detecting Beijing lineage strains. However, these methods are time-consuming and technically demanding. In the present study, a loop-mediated isothermal amplification (LAMP) assay that allows specific identification of Beijing genotype strain was developed. This Beijing genotype strain-identifying LAMP assay was performed 214 clinical isolates and the results compared with those of conventional PCR that targeted RD207 and Rv0679c-targreting multiplex PCR for Beijing lineage identification. LAMP assay showed 100% sensitivity and specificity compared with RD207-PCR. Furthermore, the sensitivity and specificity were 99.3% and 100%, respectively, compared with Rv0679c-multiplex PCR. This LAMP assay could be used routinely in local laboratories to monitor the prevalence of the Beijing genotype strain and thereby used to help control the spread of these potentially highly virulent and drug resistant strains.
Collapse
Affiliation(s)
- Yuhki Nagai
- Mie Prefecture Health and Environment Research Institute, 3684-11 Sakura, Yokkaichi, Mie 512-1211
| | - Yoshito Iwade
- Tsu Public Health Center, 3-446-34 Sakurabashi, Tsu, Mie 514-8567
| | - Manabu Nakano
- National Hospital Organization Mie-Chuo Medical Center, 2158-5 Hisaimyoujin, Tsu, Mie 514-1101, Japan
| | - Shigehiro Akachi
- Mie Prefecture Health and Environment Research Institute, 3684-11 Sakura, Yokkaichi, Mie 512-1211
| | - Takashi Kobayashi
- Mie Prefecture Health and Environment Research Institute, 3684-11 Sakura, Yokkaichi, Mie 512-1211
| | - Takamichi Nishinaka
- Mie Prefecture Health and Environment Research Institute, 3684-11 Sakura, Yokkaichi, Mie 512-1211
| |
Collapse
|
49
|
Pfeiffer W, Braun J, Burchell J, Witte CL, Rideout BA. Whole-genome analysis of mycobacteria from birds at the San Diego Zoo. PLoS One 2017; 12:e0173464. [PMID: 28267758 PMCID: PMC5340394 DOI: 10.1371/journal.pone.0173464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Methods Mycobacteria isolated from more than 100 birds diagnosed with avian mycobacteriosis at the San Diego Zoo and its Safari Park were cultured postmortem and had their whole genomes sequenced. Computational workflows were developed and applied to identify the mycobacterial species in each DNA sample, to find single-nucleotide polymorphisms (SNPs) between samples of the same species, to further differentiate SNPs between as many as three different genotypes within a single sample, and to identify which samples are closely clustered genomically. Results Nine species of mycobacteria were found in 123 samples from 105 birds. The most common species were Mycobacterium avium and Mycobacterium genavense, which were in 49 and 48 birds, respectively. Most birds contained only a single mycobacterial species, but two birds contained a mixture of two species. The M. avium samples represent diverse strains of M. avium avium and M. avium hominissuis, with many pairs of samples differing by hundreds or thousands of SNPs across their common genome. By contrast, the M. genavense samples are much closer genomically; samples from 46 of 48 birds differ from each other by less than 110 SNPs. Some birds contained two, three, or even four genotypes of the same bacterial species. Such infections were found in 4 of 49 birds (8%) with M. avium and in 11 of 48 birds (23%) with M. genavense. Most were mixed infections, in which the bird was infected by multiple mycobacterial strains, but three infections with two genotypes differing by ≤ 10 SNPs were likely the result of within-host evolution. The samples from 31 birds with M. avium can be grouped into nine clusters within which any sample is ≤ 12 SNPs from at least one other sample in the cluster. Similarly, the samples from 40 birds with M. genavense can be grouped into ten such clusters. Information about these genomic clusters is being used in an ongoing, companion study of mycobacterial transmission to help inform management of bird collections.
Collapse
Affiliation(s)
- Wayne Pfeiffer
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Josephine Braun
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| | - Jennifer Burchell
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| | - Carmel L. Witte
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| | - Bruce A. Rideout
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| |
Collapse
|
50
|
Clonal Complexity in Mycobacterium tuberculosis Can Hamper Diagnostic Procedures. J Clin Microbiol 2017; 55:1388-1395. [PMID: 28202799 DOI: 10.1128/jcm.00149-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
Clonal complexity is increasingly accepted in Mycobacterium tuberculosis infection, including mixed infections by ≥2 strains, which usually occur in settings with a high burden of tuberculosis and/or a high risk of overexposure to infected patients. Mixed infections can hamper diagnostic procedures; obtaining an accurate antibiogram is difficult when the susceptibility patterns of the strains differ. Here, we show how mixed infections can also prove challenging for other diagnostic procedures, even outside settings where mixed infections are traditionally expected. We show how an unnoticed mixed infection in an HIV-positive patient diagnosed in Madrid, Spain, with differences in the representativeness of the coinfecting strains in different sputum samples, markedly complicated the resolution of a laboratory cross-contamination false positivity alert.
Collapse
|