1
|
Liang Q, Wang Y, Li Z. Lipid metabolism reprogramming in chronic obstructive pulmonary disease. Mol Med 2025; 31:129. [PMID: 40197131 PMCID: PMC11974042 DOI: 10.1186/s10020-025-01191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a complex and diverse respiratory disorder, characterized by ongoing respiratory symptoms and restricted airflow. The major clinical manifestations typically encompass chronic cough, sputum production, and wheezing. The main pathological characteristics involve infiltration of inflammatory cells, overproduction of mucus, and damage to the alveolar walls. The underlying causes of COPD are complex and remain incompletely elucidated, thought to originate from the combined effect of various factors. Lipids, as hydrophobic molecules, fulfill three fundamental functions: energy storage, membrane biosynthesis, and signal transduction. Lipid metabolism is intricately intertwined with various metabolic pathways and plays a pivotal role in the complex pathogenesis of COPD. Delving into lipid metabolism, as well as the particular modifications and roles of lipid molecules in cells, is of paramount importance in the context of COPD. This review primarily aims to elucidate the role of fatty acid metabolism in the onset and progression of COPD. Additionally, it examines the potential of lipid metabolism reprogramming as a promising therapeutic approach, illuminating new paths for the management and treatment of this disabling respiratory condition.
Collapse
Affiliation(s)
- Qianqian Liang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Yide Wang
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Zheng Li
- Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China.
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Urumqi, 830000, Xinjiang, China.
- Xinjiang Key Laboratory of Respiratory Disease Research, Urumqi, 830000, Xinjiang, China.
- Xinjiang Clinical Research Center for Respiratory Diseases, Urumqi, 830000, Xinjiang, People's Republic of China.
| |
Collapse
|
2
|
Jiang X, Peng Z, He B, Li S, Huang Q. A comprehensive review of ferroptosis in environmental pollutants-induced chronic obstructive pulmonary disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177534. [PMID: 39542274 DOI: 10.1016/j.scitotenv.2024.177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic lung disease that impacts hundreds of millions of individuals worldwide. It is principally characterized by irreversible and progressive airflow limitation. Environmental pollutants, including cigarette smoke, air pollution, occupational pollutants, remain predominant risk factors for COPD and play remarkable roles in COPD progression. Despite the availability of treatments to alleviate symptoms of COPD, it continues to exert a serious health and socioeconomic burden. Ferroptosis, a unique form of iron-dependent cell death distinguished by lipid peroxidation, is implicated in various diseases. Recent studies, utilizing COPD patients samples, animal models, and Gene Expression Omnibus (GEO) database, have revealed that ferroptosis is involved in pathogenesis of COPD. Inhibiting ferroptosis signaling pathways halts the progression of COPD. This review consolidates current insights into the mechanisms of ferroptosis in environmental pollutants-induced COPD, which might offer a novel therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenyu Peng
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Ranogajec A, Ilić A, Benko Meštrović S, Rumbak I. Effect of Phytochemical-Rich Food Intake on Respiratory and Muscle Function in Middle-Aged Patients with COPD: A Cross-Sectional Study. Nutrients 2024; 16:3962. [PMID: 39599748 PMCID: PMC11597668 DOI: 10.3390/nu16223962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Background: It is known that the consumption of single phytochemicals improves respiratory function in chronic obstructive pulmonary disease (COPD) patients. Since phytochemicals have a synergistic effect on health, a more comprehensive analysis is needed. The aim of this study was to estimate the intake of phytochemicals using the dietary phytochemical index (DPI) and assess their association with respiratory function, inspiratory muscle strength and function, and peripheral muscle strength. Methods: This study was conducted at the Special Hospital for Pulmonary Diseases in Zagreb (September 2023 to May 2024). The DPI was assessed using three 24 h recalls from 71 COPD patients (66.5 ± 8.4 years; 53.5% men). Anthropometric measurements, respiratory function, inspiratory muscle function and strength, and peripheral muscle strength were assessed during pulmonary rehabilitation following standard protocols. Results: Patients were divided into DPI tertiles with mean values of 7.3 ± 3.0, 16.0 ± 3.0, and 32.2 ± 8.8, respectively. After controlling for confounding factors, a significant association was found between DPI tertiles and FEV1 (p-trend < 0.001), FVC (p-trend = 0.002), FEV1/FVC (p-trend < 0.001), MIP (p-trend = 0.012), and MSUE (p-trend = 0.002). In addition, an inverse association was found between DPI tertiles and diaphragm thickness during inhalation (p-trend = 0.012) and exhalation (p-trend = 0.013). Conclusions: This study suggests that a higher intake of phytochemicals could be beneficial in dietary interventions for COPD therapy. Future prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Alda Ranogajec
- Special Hospital for Pulmonary Diseases, Rockefellerova 3, 10000 Zagreb, Croatia; (A.R.); (S.B.M.)
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Ana Ilić
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Snježana Benko Meštrović
- Special Hospital for Pulmonary Diseases, Rockefellerova 3, 10000 Zagreb, Croatia; (A.R.); (S.B.M.)
- Physiotherapy Department, University of North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Ivana Rumbak
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
DeBenedictis JN, Murrell C, Hauser D, van Herwijnen M, Elen B, de Kok TM, van Breda SG. Effects of Different Combinations of Phytochemical-Rich Fruits and Vegetables on Chronic Disease Risk Markers and Gene Expression Changes: Insights from the MiBLEND Study, a Randomized Trial. Antioxidants (Basel) 2024; 13:915. [PMID: 39199161 PMCID: PMC11351619 DOI: 10.3390/antiox13080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Adequate fruit and vegetable (F and V) intake, as recommended by the World Health Organization (over 400 g/day), is linked to reduced chronic disease risk. However, human intervention trials, especially with whole F and V and in complex combinations, are lacking. The MiBlend Study explored the effects of various phytochemical-rich F and V combinations on chronic disease risk markers, phytochemical absorption, and gene expression in blood. This randomized cross-over study involved participants consuming two of seven different F and V blends for 2 weeks (450 g/day), following a 2-week low F and V intake period (50 g/day). Each blend represented major phytochemical classes (flavonoids, anthocyanins, carotenoids, and glucosinolates) or combinations thereof. Markers of chronic disease risk, including DNA damage, oxidative stress, and retinal microvasculature, were measured. Increasing F and V intake significantly improved plasma antioxidant capacity, DNA damage protection, and retinal arteriolar dilation. Flavonoid-rich, carotenoid-rich, and complex blends notably reduced DNA damage susceptibility. Anthocyanin-rich and carotenoid-rich interventions were most effective in boosting antioxidant capacity, while blends high in flavonoids, especially combined with anthocyanins, significantly improved retinal microvasculature. Gene expression analysis revealed changes in DNA repair, signal transduction, and transcription processes, indicating mechanisms for these health benefits. The study suggests specific F and V blends can provide targeted health improvements, emphasizing the importance of both overall F and V intake and the specific phytochemical composition for personalized preventive strategies.
Collapse
Affiliation(s)
- Julia N. DeBenedictis
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Courtney Murrell
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Duncan Hauser
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Bart Elen
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Theo M. de Kok
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Simone G. van Breda
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Bender C, Candi I, Rogel E. Efficacy of Hydroxytyrosol-Rich Food Supplements on Reducing Lipid Oxidation in Humans. Int J Mol Sci 2023; 24:ijms24065521. [PMID: 36982623 PMCID: PMC10054451 DOI: 10.3390/ijms24065521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
In the present study we report the efficacy of two food supplements derived from olives in reducing lipid oxidation. To this end, 12 healthy volunteers received a single dose (25 mL) of olive phenolics, mainly hydroxytyrosol (HT), provided as a liquid dietary supplement (30.6 or 61.5 mg HT), followed by an investigation of two reliable markers of oxidative stress. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h post-intake. Plasma-oxidized low-density lipoprotein (oxLDL) cholesterol levels were measured with ELISA using a monoclonal antibody, while F2-isoprostanes (F2-IsoPs) were quantified in urine with UHPLC-DAD-MS/MS. Despite the great variability observed between individuals, a tendency to reduce lipoxidation reactions was observed in the blood in response to a single intake of the food supplements. In addition, the subgroup of individuals with the highest baseline oxLDL level showed a significant (p < 0.05) decrease in F2-IsoPs at 0.5 and 12 h post-intervention. These promising results suggest that HT supplementation could be a useful aid in preventing lipoxidation. Additionally, people with a redox imbalance could benefit even more from supplementing with bioavailable HT.
Collapse
Affiliation(s)
- Cecilia Bender
- Institut Kurz GmbH, 50829 Köln, Germany
- Istituto Kurz Italia S.R.L., 43126 Parma, Italy
- Correspondence: ; Tel.:+39-0521712675
| | | | - Eva Rogel
- Institut Kurz GmbH, 50829 Köln, Germany
| |
Collapse
|
6
|
Mazzocchi A, De Cosmi V, Risé P, Milani GP, Turolo S, Syrén ML, Sala A, Agostoni C. Bioactive Compounds in Edible Oils and Their Role in Oxidative Stress and Inflammation. Front Physiol 2021; 12:659551. [PMID: 33995124 PMCID: PMC8119658 DOI: 10.3389/fphys.2021.659551] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Diet and inflammatory response are recognized as strictly related, and interest in exploring the potential of edible fats and oils for health and chronic diseases is emerging worldwide. Polyunsaturated fatty acids (PUFAs) present in fish oil (FO), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be partly converted into oxygenated bioactive lipids with anti-inflammatory and/or pro-resolving activities. Moreover, the co-presence of phenolic compounds and vitamins in edible oils may prevent the development of chronic diseases by their anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory activities. Finally, a high content in mono-unsaturated fatty acids may improve the serum lipid profile and decrease the alterations caused by the oxidized low-density lipoproteins and free radicals. The present review aims to highlight the role of lipids and other bioactive compounds contained in edible oils on oxidative stress and inflammation, focusing on critical and controversial issues that recently emerged, and pointing to the opposing role often played by edible oils components and their oxidized metabolites.
Collapse
Affiliation(s)
- Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina De Cosmi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Turolo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marie-Louise Syrén
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angelo Sala
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.,Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Biomarkers of Oxidative Stress and Inflammation in Chronic Airway Diseases. Int J Mol Sci 2020; 21:ijms21124339. [PMID: 32570774 PMCID: PMC7353047 DOI: 10.3390/ijms21124339] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction: The global burden of chronic airway diseases represents an important public health concern. The role of oxidative stress and inflammation in the pathogenesis of these diseases is well known. The aim of this study is to evaluate the behavior of both inflammatory and oxidative stress biomarkers in patients with chronic bronchitis, current asthma and past asthma in the frame of a population-based study. Methods: For this purpose, data collected from the Gene Environment Interactions in Respiratory Diseases (GEIRD) Study, an Italian multicentre, multicase-control study, was evaluated. Cases and controls were identified through a two-stage screening process of individuals aged 20-65 years from the general population. Out of 16,569 subjects selected from the general population in the first stage of the survey, 2259 participated in the clinical evaluation. Oxidative stress biomarkers such as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), 8-isoprostane and glutathione and inflammatory biomarkers such as Fractional Exhaled Nitric Oxide (FENO) and white blood cells were evaluated in 1878 subjects. Results: Current asthmatics presented higher levels of FENO (23.05 ppm), leucocytes (6770 n/µL), basophils (30.75 n/µL) and eosinophils (177.80 n/µL), while subjects with chronic bronchitis showed higher levels of GSH (0.29 mg/mL) and lymphocytes (2101.6 n/µL). The multivariable multinomial logistic regression confirmed high levels of leucocytes (RRR = 1.33), basophils (RRR = 1.48), eosinophils (RRR = 2.39), lymphocytes (RRR = 1.26) and FENO (RRR = 1.42) in subjects with current asthma. Subjects with past asthma had a statistically significant higher level of eosinophils (RRR = 1.78) with respect to controls. Subjects with chronic bronchitis were characterized by increased levels of eosinophils (RRR = 2.15), lymphocytes (RRR = 1.58), GSH (RRR = 2.23) and 8-isoprostane (RRR = 1.23). Conclusion: In our study, current asthmatics show a greater expression of the inflammatory profile compared to subjects who have had asthma in the past and chronic bronchitis. On the other hand, chronic bronchitis subjects showed a higher rate of expression of oxidative stress biomarkers compared to asthmatic subjects. In particular, inflammatory markers such as circulating inflammatory cells and FENO seem to be more specific for current asthma, while oxidative stress biomarkers such as glutathione and 8-isoprostane appear to be more specific and applicable to patients with chronic bronchitis.
Collapse
|
8
|
Reliability and Usefulness of Different Biomarkers of Oxidative Stress in Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4982324. [PMID: 32509143 PMCID: PMC7244946 DOI: 10.1155/2020/4982324] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by airflow limitation that is not fully reversible after inhaled bronchodilator use associated with an abnormal inflammatory condition. The biggest risk factor for COPD is cigarette smoking. The exposure to noxious chemicals contained within tobacco smoke is known to cause airway epithelial injury through oxidative stress, which in turn has the ability to elicit an inflammatory response. In fact, the disruption of the delicate balance between oxidant and antioxidant defenses leads to an oxidative burden that has long been held responsible to play a pivotal role in the pathogenesis of COPD. There are currently several biomarkers of oxidative stress in COPD that have been evaluated in a variety of biological samples. The aim of this review is to identify the best studied molecules by summarizing the key literature findings, thus shedding some light on the subject. Methods We searched for relevant case-control studies examining oxidative stress biomarkers in stable COPD, taking into account the analytical method of detection as an influence factor. Results Many oxidative stress biomarkers have been evaluated in several biological matrices, mostly in the blood. Some of them consistently differ between the cases and controls even when allowing different analytical methods of detection. Conclusions The present review provides an overview of the oxidative stress biomarkers that have been evaluated in patients with COPD, bringing focus on those molecules whose reliability has been confirmed by the use of different analytical methods.
Collapse
|
9
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
10
|
Zhao P, Li J, Yang L, Li Y, Tian Y, Li S. Integration of transcriptomics, proteomics, metabolomics and systems pharmacology data to reveal the therapeutic mechanism underlying Chinese herbal Bufei Yishen formula for the treatment of chronic obstructive pulmonary disease. Mol Med Rep 2018; 17:5247-5257. [PMID: 29393428 PMCID: PMC5865990 DOI: 10.3892/mmr.2018.8480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Bufei Yishen formula (BYF) is a traditional Chinese medicine formula, which has long been used as a therapeutic agent for the treatment of chronic obstructive pulmonary disease (COPD). Systems pharmacology has previously been used to identify the potential targets of BYF, and an experimental study has demonstrated that BYF is able to prevent COPD. In addition, the transcriptomic and metabolomic profiles of lung tissues from rats with COPD and BYF-treated rats have been characterized. The present study aimed to determine the therapeutic mechanisms underlying the effects of BYF on COPD treatment by integrating transcriptomics, proteomics and metabolomics, together with systems pharmacology datasets. Initially, the proteomic profiles of rats with COPD and BYF-treated rats were analyzed. Subsequently, pathway and network analyses were conducted to integrate three-omics data; the results demonstrated that the genes, proteins and metabolites were predominantly associated with oxidoreductase activity, antioxidant activity, focal adhesion and lipid metabolism. Finally, a comprehensive analysis of systems pharmacology, transcriptomic, proteomic and metabolomic datasets was performed, and numerous genes, proteins and metabolites were found to be regulated in BYF-treated rats; the potential target proteins of BYF were involved in lipid metabolism, inflammatory response, oxidative stress and focal adhesion. In conclusion, BYF exerted beneficial effects against COPD, potentially by modulating lipid metabolism, the inflammatory response, oxidative stress and cell junction pathways at the system level.
Collapse
Affiliation(s)
- Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Liping Yang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Ya Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Suyun Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
11
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
12
|
Integrating Transcriptomics, Proteomics, and Metabolomics Profiling with System Pharmacology for the Delineation of Long-Term Therapeutic Mechanisms of Bufei Jianpi Formula in Treating COPD. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7091087. [PMID: 28424787 PMCID: PMC5382313 DOI: 10.1155/2017/7091087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
In previous work, we identified 145 active compounds from Bufei Jianpi formula (BJF) by system pharmacology and found that BJF showed short-term effect on chronic obstructive pulmonary disease (COPD) rats. Here, we applied the transcriptomic, proteomic, and metabolomics approaches to illustrate the long-term anti-COPD action and its system mechanism of BJF. BJF has obvious anti-COPD effect through decreasing inflammatory cytokines level, preventing protease-antiprotease imbalance and collagen deposition on week 32 by continuous oral administration to rats from weeks 9 to 20. Subsequently, applying the transcriptomic, proteomic, and metabolomics techniques, we detected a number of regulated genes, proteins, and metabolites, mainly related to antioxidant activity, focal adhesion, or lipid metabolism, in lung tissues of COPD and BJF-treated rats. Afterwards, we integrated system pharmacology target, transcript, protein, and metabolite data sets and found that many genes, proteins, and metabolites in rats BJF-treated group and the target proteins of BJF were mainly attributed to lipid metabolism, inflammatory response, oxidative stress, and focal adhesion. Taken together, BJF displays long-term anti-COPD effect probably by system regulation of the lipid metabolism, inflammatory response pathways oxidative stress, and focal adhesion.
Collapse
|
13
|
Choudhury G, MacNee W. Role of Inflammation and Oxidative Stress in the Pathology of Ageing in COPD: Potential Therapeutic Interventions. COPD 2016; 14:122-135. [DOI: 10.1080/15412555.2016.1214948] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gourab Choudhury
- MRC Centre for Inflammation Research, Queens Medical Research Institute, 47 little France Crescent Edinburgh, United Kingdom
| | - William MacNee
- MRC Centre for Inflammation Research, Queens Medical Research Institute, 47 little France Crescent Edinburgh, United Kingdom
| |
Collapse
|
14
|
Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD 2014; 11:705-17. [PMID: 24787454 PMCID: PMC4245155 DOI: 10.3109/15412555.2014.898040] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a "multilevel cycle" responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of "multilevel cycle" helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results.
Collapse
Affiliation(s)
- Pierachille Santus
- Università degli Studi di Milano, Dipartimento di Scienze della Salute. Pneumologia Riabilitativa Fondazione Salvatore Maugeri-Istituto Scientifico di Milano-IRCCS, Milano, Italy
| | - Angelo Corsico
- Respiratory Disease Unit, Fondazione IRCCS Policlinico San Matteo, University of Pavia, DMM, Pavia, Italy
| | - Paolo Solidoro
- SCDO Pneumologia, Dipartimento Cardiovascolare e Toracico, Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Fulvio Braido
- Clinica Malattie Respiratorie e Allergologia Dipartimento di Medicina Interna (DiMI) Azienda Ospedaliera Universitaria IRCCS San Martino di Genova, Genova, Italy
| | - Fabiano Di Marco
- Università degli Studi di Milano, Dipartimento di Scienze della Salute, Pneumologia, Ospedale San Paolo, Milano, Italy
| | - Nicola Scichilone
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Sezione di Pneumologia, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Domej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD--implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 2014; 9:1207-24. [PMID: 25378921 PMCID: PMC4207545 DOI: 10.2147/copd.s51226] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress occurs when free radicals and other reactive species overwhelm the availability of antioxidants. Reactive oxygen species (ROS), reactive nitrogen species, and their counterpart antioxidant agents are essential for physiological signaling and host defense, as well as for the evolution and persistence of inflammation. When their normal steady state is disturbed, imbalances between oxidants and antioxidants may provoke pathological reactions causing a range of nonrespiratory and respiratory diseases, particularly chronic obstructive pulmonary disease (COPD). In the respiratory system, ROS may be either exogenous from more or less inhalative gaseous or particulate agents such as air pollutants, cigarette smoke, ambient high-altitude hypoxia, and some occupational dusts, or endogenously generated in the context of defense mechanisms against such infectious pathogens as bacteria, viruses, or fungi. ROS may also damage body tissues depending on the amount and duration of exposure and may further act as triggers for enzymatically generated ROS released from respiratory, immune, and inflammatory cells. This paper focuses on the general relevance of free radicals for the development and progression of both COPD and pulmonary emphysema as well as novel perspectives on therapeutic options. Unfortunately, current treatment options do not suffice to prevent chronic airway inflammation and are not yet able to substantially alter the course of COPD. Effective therapeutic antioxidant measures are urgently needed to control and mitigate local as well as systemic oxygen bursts in COPD and other respiratory diseases. In addition to current therapeutic prospects and aspects of genomic medicine, trending research topics in COPD are presented.
Collapse
Affiliation(s)
- Wolfgang Domej
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Karl Oettl
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Antoniu SA. Targeting 5-lipoxygenase-activating protein in asthma and chronic obstructive pulmonary disease. Expert Opin Ther Targets 2014; 18:1285-92. [PMID: 25213852 DOI: 10.1517/14728222.2014.945425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In asthma and chronic obstructive pulmonary disease (COPD), there is an unmet therapeutic need for the anti-inflammatory therapies, and the identification of therapeutic targets and potent corresponding therapies is necessary. Although inhaled corticosteroids and leukotriene modifiers are most effective in asthma they are still not always capable of appropriately controlling the disease. In COPD, the therapeutic gap is even larger because inhaled corticosteroids and other anti-inflammatory therapies are not beneficial in all disease subsets. AREAS COVERED The role of the 5-lipoxygenase-activating protein (FLAP) in generating proinflammatory molecules such as leukotrienes is discussed, highlighting, in particular, its potential as a therapeutic target in asthma and COPD. The preclinical data on FLAP inhibitors are discussed. The clinical data on the FLAP inhibitors investigated so far for these diseases are analyzed. EXPERT OPINION FLAP inhibitors have emerged during the past decade as a promising therapeutic class in asthma and COPD, but there exists only a limited amount of data supporting their efficacy in these diseases. This might be due to the fact that the development of some of the molecules discussed was abandoned. Such therapies might be of particular interest in COPD and in asthma-COPD overlap syndrome.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- University of Medicine and Pharmacy Grigore T Popa Iasi, Interdisciplinary Medicine , 16 Universitatii Str, Iasi, 700115 , Romania
| |
Collapse
|
17
|
Tse HN, Tseng CZS. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014; 9:825-36. [PMID: 25125976 PMCID: PMC4130719 DOI: 10.2147/copd.s51057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and morbid disease characterized by high oxidative stress. Its pathogenesis is complex, and involves excessive oxidative stress (redox imbalance), protease/antiprotease imbalance, inflammation, apoptosis, and autoimmunity. Among these, oxidative stress has a pivotal role in the pathogenesis of COPD by initiating and mediating various redox-sensitive signal transduction pathways and gene expression. The protective physiological mechanisms of the redox balance in the human body, their role in the pathogenesis of COPD, and the clinical correlation between oxidative stress and COPD are reviewed in this paper. N-acetylcysteine (NAC) is a mucolytic agent with both antioxidant and anti-inflammatory properties. This paper also reviews the use of NAC in patients with COPD, especially the dose-dependent properties of NAC, eg, its effects on lung function and the exacerbation rate in patients with the disease. Earlier data from BRONCUS (the Bronchitis Randomized on NAC Cost-Utility Study) did not suggest that NAC was beneficial in patients with COPD, only indicating that it reduced exacerbation in an “inhaled steroid-naïve” subgroup. With regard to the dose-dependent properties of NAC, two recent randomized controlled Chinese trials suggested that high-dose NAC (1,200 mg daily) can reduce exacerbations in patients with COPD, especially in those with an earlier (moderately severe) stage of disease, and also in those who are at high risk of exacerbations. However, there was no significant effect on symptoms or quality of life in patients receiving NAC. Further studies are warranted to investigate the effect of NAC at higher doses in non-Chinese patients with COPD.
Collapse
Affiliation(s)
- Hoi Nam Tse
- Medical and Geriatric Department, Kwong Wah Hospital, Hong Kong Special Administrative Region
| | - Cee Zhung Steven Tseng
- Medical and Geriatric Department, Kwong Wah Hospital, Hong Kong Special Administrative Region
| |
Collapse
|
18
|
Petrosino T, Serafini M. Antioxidant Modulation of F2-Isoprostanes in Humans: A Systematic Review. Crit Rev Food Sci Nutr 2014; 54:1202-21. [DOI: 10.1080/10408398.2011.630153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Zhang Q, Lin JL, Thomas PS. Reactive Oxygen Species and Obstructive Lung Disease. SYSTEMS BIOLOGY OF FREE RADICALS AND ANTIOXIDANTS 2014:1643-1670. [DOI: 10.1007/978-3-642-30018-9_121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
20
|
Antioxidant Potential of Bark Extracts from Boreal Forest Conifers. Antioxidants (Basel) 2013; 2:77-89. [PMID: 26784337 PMCID: PMC4665433 DOI: 10.3390/antiox2030077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 06/28/2013] [Indexed: 01/06/2023] Open
Abstract
The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORACFL potency and cellular antioxidant activity (IC50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity.
Collapse
|
21
|
Santus P, Russo A, Madonini E, Allegra L, Blasi F, Centanni S, Miadonna A, Schiraldi G, Amaducci S. How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. Respir Res 2012; 13:95. [PMID: 23078274 PMCID: PMC3511062 DOI: 10.1186/1465-9921-13-95] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022] Open
Abstract
Background Environmental pollution is a known risk factor for multiple diseases and furthermore increases rate of hospitalisations. We investigated the correlation between emergency room admissions (ERAs) of the general population for respiratory diseases and the environmental pollutant levels in Milan, a metropolis in northern Italy. Methods We collected data from 45770 ERAs for respiratory diseases. A time-stratified case-crossover design was used to investigate the association between air pollution levels and ERAs for acute respiratory conditions. The effects of air pollutants were investigated at lag 0 to lag 5, lag 0–2 and lag 3–5 in both single and multi-pollutant models, adjusted for daily weather variables. Results An increase in ozone (O3) levels at lag 3–5 was associated with a 78% increase in the number of ERAs for asthma, especially during the warm season. Exposure to carbon monoxide (CO) proved to be a risk factor for pneumonia at lag 0–2 and in the warm season increased the risk of ERA by 66%. A significant association was found between ERAs for COPD exacerbation and levels of sulphur dioxide (SO2), CO, nitrate dioxide (NO2), and particulate matter (PM10 and PM2.5). The multipollutant model that includes all pollutants showed a significant association between CO (26%) and ERA for upper respiratory tract diseases at lag 0–2. For chronic obstructive pulmonary disease (COPD) exacerbations, only CO (OR 1.19) showed a significant association. Conclusions Exposure to environmental pollution, even at typical low levels, can increase the risk of ERA for acute respiratory diseases and exacerbation of obstructive lung diseases in the general population.
Collapse
Affiliation(s)
- Pierachille Santus
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Respiratory Unit, San Paolo Hospital, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Santus P, Buccellati C, Centanni S, Fumagalli F, Busatto P, Blasi F, Sala A. Bronchodilators modulate inflammation in chronic obstructive pulmonary disease subjects. Pharmacol Res 2012; 66:343-8. [DOI: 10.1016/j.phrs.2012.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/30/2022]
|
23
|
Batra S, Cai S, Balamayooran G, Jeyaseelan S. Intrapulmonary administration of leukotriene B(4) augments neutrophil accumulation and responses in the lung to Klebsiella infection in CXCL1 knockout mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:3458-68. [PMID: 22379035 DOI: 10.4049/jimmunol.1101985] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In prior studies, we demonstrated that 1) CXCL1/KC is essential for NF-κB and MAPK activation and expression of CXCL2/MIP-2 and CXCL5/LPS-induced CXC chemokine in Klebsiella-infected lungs, and 2) CXCL1 derived from hematopoietic and resident cells contributes to host immunity against Klebsiella. However, the role of CXCL1 in mediating neutrophil leukotriene B(4) (LTB(4)), reactive oxygen species (ROS), and reactive nitrogen species (RNS) production is unclear, as is the contribution of these factors to host immunity. In this study, we investigated 1) the role of CXCL1 in LTB(4), NADPH oxidase, and inducible NO synthase (iNOS) expression in lungs and neutrophils, and 2) whether LTB(4) postinfection reverses innate immune defects in CXCL1(-/-) mice via regulation of NADPH oxidase and iNOS. Our results demonstrate reduced neutrophil influx, attenuated LTB(4) levels, and decreased ROS and iNOS production in the lungs of CXCL1(-/-) mice after Klebsiella pneumoniae infection. Using neutrophil depletion and repletion, we found that neutrophils are the predominant source of pulmonary LTB(4) after infection. To treat immune defects in CXCL1(-/-) mice, we intrapulmonarily administered LTB(4). Postinfection, LTB(4) treatment reversed immune defects in CXCL1(-/-) mice and improved survival, neutrophil recruitment, cytokine/chemokine expression, NF-κB/MAPK activation, and ROS/RNS production. LTB(4) also enhanced myeloperoxidase, H(2)O(2,) RNS production, and bacterial killing in K. pneumoniae-infected CXCL1(-/-) neutrophils. These novel results uncover important roles for CXCL1 in generating ROS and RNS in neutrophils and in regulating host immunity against K. pneumoniae infection. Our findings suggest that LTB(4) could be used to correct defects in neutrophil recruitment and function in individuals lacking or expressing malfunctional CXCL1.
Collapse
Affiliation(s)
- Sanjay Batra
- Laboratory of Lung Biology, Department of Pathobiological Sciences, Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
24
|
McAllister DA, MacNee W, Duprez D, Hoffman EA, Vogel-Claussen J, Criqui MH, Budoff M, Jiang R, Bluemke DA, Barr RG. Pulmonary function is associated with distal aortic calcium, not proximal aortic distensibility. MESA lung study. COPD 2011; 8:71-8. [PMID: 21495835 DOI: 10.3109/15412555.2011.558543] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Forced expiratory volume in one second strongly predicts mortality from cardiovascular disease. FEV(1) has been associated with aortic stiffness a strong independent predictor of cardiovascular mortality. However, the anatomical site and possible mechanisms linking aortic stiffness and lung function are unknown. We therefore examined if FEV(1) and CT percent emphysema were associated with calcification of the abdominal aorta or reduced distensibility of the proximal thoracic aorta.The Multi-Ethnic Study of Atherosclerosis (MESA) measured aortic calcification on cardiac and abdominal CT scans and proximal aortic distensibility using magnetic resonance among participants aged 45-84 years without clinical cardiovascular disease. Spirometry was measured following ATS/ERS guidelines and percent emphysema was measured in the lung fields of cardiac CT scans. Multivariate analyses adjusted for age, sex, race/ethnicity and cardiovascular risk factors. Of 1,917 participants with aortic distensibility measures, 13% were current and 38% were former smokers. Eighteen percent had airflow limitation without asthma. FEV(1) was associated with the extent of distal aortic calcification (0.76; 95%CI 0.60-0.97, p = 0.02) but not proximal aortic calcification or proximal aortic distensibility (-0.04 mmHg(-1); 95%CI -0.16-0.09 mmHg(-1), p = 0.60). Percent emphysema was associated with neither measure. FEV(1) was associated with severity of distal aortic calcification where it was present independently of smoking and other cardiovascular risk factors but not with distensibility or calcification of the proximal aorta.
Collapse
|
25
|
Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR, Curtis JL, Martinez FJ, Zick S, Hershenson MB, Sajjan US. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 2010; 11:131. [PMID: 20920189 PMCID: PMC2954923 DOI: 10.1186/1465-9921-11-131] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/28/2010] [Indexed: 01/14/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee W, Thomas PS. Oxidative stress in COPD and its measurement through exhaled breath condensate. Clin Transl Sci 2010; 2:150-5. [PMID: 20443881 DOI: 10.1111/j.1752-8062.2009.00093.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress and airway inflammation together form a vicious cycle, which is responsible for the disease progression in chronic pulmonary obstructive disease (COPD). The damaging effects of oxidative stress accumulate over the years, causing increased bronchial hyperresponsiveness and inflammation and destruction of airway epithelial cells and impairing the functions of antiproteases and surfactant. Although the lung expresses a number of antioxidants, cigarette smoking and recurrent infections associated with this disease overwhelm this protective mechanism. Studies of antioxidants in COPD have yielded conflicting results, probably due to the compartmentalization of these mediators, and because of the fact that the lung is a difficult organ to sample. Chronic exposure to oxidants upregulates the production of antioxidants, which become depleted during acute exacerbations. Future studies of the pathogenesis of COPD require a noninvasive yet accurate sampling procedure, of which exhaled breath condensate (EBC) is a good candidate. EBC samples the epithelial lining fluid, which contains the local oxidative stress markers in the lung. Oxidative stress markers such as hydrogen ions, hydrogen peroxide, 8-isoprostanes, thiobarbituric acid reactive products, nitrosothiols, and nitrite/nitrate have been identified in EBC of COPD patients, whereas many other markers of the oxidative-antioxidative balance have yet to be investigated.
Collapse
Affiliation(s)
- Wei Lee
- Faculty of Medicine, University of New South Wales, Randwick, New South Wales 2031, Australia
| | | |
Collapse
|
27
|
Marwick JA, Caramori G, Casolari P, Mazzoni F, Kirkham PA, Adcock IM, Chung KF, Papi A. A role for phosphoinositol 3-kinase delta in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2010; 125:1146-53. [PMID: 20381852 DOI: 10.1016/j.jaci.2010.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Glucocorticoid function is markedly impaired in the lungs of patients with chronic obstructive pulmonary disease (COPD). This reduction in glucocorticoid sensitivity might be due to an oxidant-mediated increase in phosphoinositol 3-kinase (PI3K) delta signaling. OBJECTIVE We sought to determine the role of PI3Kdelta in the reduced glucocorticoid responsiveness in patients with COPD. METHODS Peripheral lung tissue was obtained from 24 patients with COPD, 20 age-matched smokers with normal lung function, and 13 nonsmokers. Peripheral blood monocytes were isolated from 9 patients with COPD and 7 age-matched smokers with normal lung function and from healthy volunteers. RESULTS The expressions of PI3Kdelta and Akt phosphorylation were increased in macrophages from patients with COPD compared with those from control groups of age-matched smokers and nonsmokers. In vitro oxidative stress induced phosphorylation of Akt in monocytes and macrophages, which was abolished by means of selective inhibition of PI3Kdelta but not PI3Kgamma. Dexamethasone was less effective at repressing LPS-induced GM-CSF and CXC motif chemokine 8 release in blood monocytes from patients with COPD compared with age-matched smokers. This reduced sensitivity was reversed by inhibition of PI3Kdelta but not PI3Kgamma. CONCLUSION PI3Kdelta expression and signaling is increased in the lungs of patients with COPD. Selective inhibition of PI3Kdelta might restore glucocorticoid function in patients with COPD and might therefore present a potential therapeutic target.
Collapse
Affiliation(s)
- John A Marwick
- Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Effects of lipid emulsions on lipid body formation and eicosanoid production by human peripheral blood mononuclear and polymorphonuclear cells. Clin Nutr 2009; 28:556-64. [DOI: 10.1016/j.clnu.2009.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/14/2009] [Accepted: 05/05/2009] [Indexed: 11/17/2022]
|
29
|
Duffield-Lillico AJ, Boyle JO, Zhou XK, Ghosh A, Butala GS, Subbaramaiah K, Newman RA, Morrow JD, Milne GL, Dannenberg AJ. Levels of prostaglandin E metabolite and leukotriene E(4) are increased in the urine of smokers: evidence that celecoxib shunts arachidonic acid into the 5-lipoxygenase pathway. Cancer Prev Res (Phila) 2009; 2:322-9. [PMID: 19336727 DOI: 10.1158/1940-6207.capr-09-0005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) play a role in inflammation and carcinogenesis. Biomarkers that reflect tobacco smoke-induced tissue injury are needed. In this study, levels of urinary prostaglandin E metabolite (PGE-M) and leukotriene E(4) (LTE(4)), biomarkers of the COX and 5-LO pathways, were compared in never smokers, former smokers, and current smokers. The effects of celecoxib, a selective COX-2 inhibitor, on levels of PGE-M and LTE(4) were determined. Baseline levels of PGE-M and LTE(4) were positively associated with smoking status; levels of PGE-M and LTE(4) were higher in current versus never smokers. Treatment with 200 mg celecoxib twice daily for 6 +/- 1 days led to a reduction in urinary PGE-M levels in all groups but exhibited the greatest effect among subjects with high baseline PGE-M levels. Thus, high baseline PGE-M levels in smokers reflected increased COX-2 activity. In individuals with high baseline PGE-M levels, treatment with celecoxib led to a significant increase in levels of urinary LTE(4), an effect that was not found in individuals with low baseline PGE-M levels. In conclusion, increased levels of urinary PGE-M and LTE(4) were found in human smokers, a result that may reflect subclinical lung inflammation. In individuals with high baseline levels of PGE-M (elevated COX-2 activity), celecoxib administration shunted arachidonic acid into the proinflammatory 5-LO pathway. Because 5-LO activity and LTE(4) have been suggested to play a role in cardiovascular disease, these results may help to explain the link between use of COX-2 inhibitors and cardiovascular complications.
Collapse
Affiliation(s)
- Anna J Duffield-Lillico
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a high incidence of morbidity and mortality. Cigarette smoke-induced oxidative stress is intimately associated with the progression and exacerbation of COPD and therefore targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to have beneficial outcome in the treatment of COPD. Among the various antioxidants tried so far, thiol antioxidants and mucolytic agents, such as glutathione, N-acetyl-L-cysteine, N-acystelyn, erdosteine, fudosteine and carbocysteine; Nrf2 activators; and dietary polyphenols (curcumin, resveratrol, and green tea catechins/quercetin) have been reported to increase intracellular thiol status along with induction of GSH biosynthesis. Such an elevation in the thiol status in turn leads to detoxification of free radicals and oxidants as well as inhibition of ongoing inflammatory responses. In addition, specific spin traps, such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo in the lung. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants and mucolytics will be effective in management of COPD. However, a successful outcome will critically depend upon the choice of antioxidant therapy for a particular clinical phenotype of COPD, whose pathophysiology should be first properly understood. This article will review the various approaches adopted to enhance lung antioxidant levels, antioxidant therapeutic advances and recent past clinical trials of antioxidant compounds in COPD.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
31
|
Biswas S, Rahman I. Modulation of steroid activity in chronic inflammation: a novel anti-inflammatory role for curcumin. Mol Nutr Food Res 2009; 52:987-94. [PMID: 18327875 DOI: 10.1002/mnfr.200700259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression of NF-kappaB (NF-kappaB)-dependent pro-inflammatory genes in response to oxidative stress is regulated by the acetylation-deacetylation status of histones bound to the DNA. It has been suggested that in severe asthma and in chronic obstructive pulmonary disease (COPD) patients, oxidative stress not only activates the NF-kappaB pathway but also alters the histone acetylation and deacetylation balance via post-translational modification of histone deacetylases (HDACs). Corticosteroids have been one of the major modes of therapy against various chronic respiratory diseases such as asthma and COPD. Failure of corticosteroids to ameliorate such disease conditions has been attributed to their inability to either recruit HDAC2 or to the presence of an oxidatively modified HDAC2 in asthmatics and COPD subjects. Naturally occurring polyphenols such as curcumin and resveratrol have been increasingly considered as safer nutraceuticals. Curcumin is a polyphenol present in the spice turmeric, which can directly scavenge free radicals such as superoxide anion and nitric oxide and modulate important signaling pathways mediated via NF-kappaB and mitogen-activated protein kinase pathways. Polyphenols also down-regulate expression of pro-inflammatory mediators, matrix metalloproteinases, adhesion molecules, and growth factor receptor genes and they up-regulate HDAC2 in the lung. Thus, curcumin may be a potential antioxidant and anti-inflammatory therapeutic agent against chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Saibal Biswas
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
32
|
Effects of pravastatin on functional capacity in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Clin Sci (Lond) 2009; 116:497-505. [DOI: 10.1042/cs20080241] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PH (pulmonary hypertension) often complicates the disease course of patients with COPD (chronic obstructive pulmonary disease) and is an indication of a worse prognosis. In the present study, we assessed whether pravastatin administration was effective in improving PH and exercise capacity in COPD patients with PH, and whether the pulmonary protection was mediated by inhibiting ET-1 (endothelin-1) production. In a double-blind parallel design, 53 COPD patients with PH were randomly assigned to receive either placebo or pravastatin (40 mg/day) over a period of 6 months at a medical centre. Baseline characteristics were similar in both groups. The exercise time remained stable throughout the study in the placebo group. After 6 months, the exercise time significantly increased 52% from 660±352 to 1006±316 s (P<0.0001) in pravastatin-treated patients. With pravastatin, echocardiographically derived systolic PAP (pulmonary artery pressure) decreased significantly from 47±8 to 40±6 mmHg. There was significant improvement in the Borg dyspnoea score after administering pravastatin. Despite unchanged plasma ET-1 levels throughout the study, urinary excretion of the peptide was decreased and significantly correlated with an improvement in exercise time in pravastatin-treated patients (r=−0.47, P=0.01). In conclusion, pravastatin significantly improved exercise tolerance, and decreased PH and dyspnoea during exercise in COPD patients with PH, probably by inhibiting ET-1 synthesis.
Collapse
|
33
|
Nagai K, Betsuyaku T, Suzuki M, Nasuhara Y, Kaga K, Kondo S, Nishimura M. Dual oxidase 1 and 2 expression in airway epithelium of smokers and patients with mild/moderate chronic obstructive pulmonary disease. Antioxid Redox Signal 2008; 10:705-14. [PMID: 18177232 DOI: 10.1089/ars.2007.1941] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dual oxidase (Duox) 1 and Duox2 are important sources of hydrogen peroxide production and play a role in host defense in airways. Little is known about their regulation in association with smoking or chronic obstructive pulmonary disease (COPD). We investigated the epithelial expression of Duox1 and Duox2 in the airways of smokers, and the relationship between this expression and COPD at early stage. First, using bronchoscopy, we harvested tracheal and bronchial epithelium from individuals who have never smoked and current smokers. Duox1 expression in brushed tracheal and bronchial epithelium was significantly downregulated, whereas Duox2 was upregulated, in current smokers as compared to individuals who have never smoked. Second, laser capture microdissection and microscope-assisted manual dissection were performed in surgically resected lung tissues to collect bronchiolar epithelium and alveolar septa. Subjects with mild/moderate COPD, who were all former smokers, exhibited downregulation of bronchiolar Duox1 and Duox2 when compared to individuals who have never smoked, whereas a difference between former smokers, with and without COPD, was observed only for Duox1. Alveolar Duox1 and Duox2 expression was low and did not differ among the groups. These results imply that the airway expression of Duox1 and Duox2 is diversely associated with smoking and COPD.
Collapse
Affiliation(s)
- Katsura Nagai
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Deslee G, Dury S, Perotin JM, Al Alam D, Vitry F, Boxio R, Gangloff SC, Guenounou M, Lebargy F, Belaaouaj A. Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD. Respir Res 2007; 8:86. [PMID: 18039378 PMCID: PMC2214730 DOI: 10.1186/1465-9921-8-86] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/26/2007] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic in vivo situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model. Methods Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2). Results BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes. Conclusion This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.
Collapse
Affiliation(s)
- Gaetan Deslee
- Service des Maladies Respiratoires, Hôpital Maison Blanche, CHU de REIMS, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tkacova R, Kluchova Z, Joppa P, Petrasova D, Molcanyiova A. Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respir Med 2007; 101:1670-6. [PMID: 17449234 DOI: 10.1016/j.rmed.2007.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND In patients with chronic obstructive pulmonary disease (COPD), the inflammatory processes and oxidative stress are closely linked in the lung compartment. However, the relationships between systemic inflammation and parameters of oxidative stress in the systemic circulation during acute exacerbations of COPD remain to be explored. OBJECTIVE To analyze relationships between erythrocytic glutathione peroxidase (GPx), a marker of systemic oxidative stress, and parameters reflecting systemic inflammation, such as circulating neutrophils, C-reactive protein (CRP), and interleukin (IL)-6, in patients with acute exacerbations of COPD. PATIENTS AND METHODS We measured erythrocytic GPx activity, circulating neutrophil count, and serum high-sensitivity (hs) CRP and IL-6 in 177 patients admitted to the hospital due to an acute exacerbation of COPD (91 males, mean age 66.8+/-0.9 years, mean FEV1 45.3+/-1.3% predicted). RESULTS From GOLD Stage II to Stage III and IV, erythrocytic GPx activity significantly decreased [mean+/-SEM: from 44.3+/-1.7 U/g Hb to 40.8+/-1.1 U/g Hb and to 38.4+/-1.5 U/g Hb, p = 0.037], while serum hsCRP increased [median (25th, 75th percentile): from 9.6 (3.0, 23.0) mg/l to 23.3 (6.4, 46.8) mg/l, and to 26.7 (6.5, 117.2) mg/l, p = 0.004]. Erythrocytic GPx activity was significantly inversely related to both, log neutrophil count (r = -0.219, p = 0.003) and log hsCRP (r = -0.199, p = 0.008). CONCLUSIONS Our study suggests an association between systemic inflammation and systemic oxidative stress reflected by erythrocytic GPx in patients with acute exacerbations of COPD.
Collapse
Affiliation(s)
- Ruzena Tkacova
- Department of Respiratory Medicine, Faculty of Medicine, PJ Safarik University and L Pasteur Teaching Hospital, Rastislavova 43, Kosice 041 90, Slovakia.
| | | | | | | | | |
Collapse
|
36
|
Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006; 72:1439-52. [PMID: 16920072 DOI: 10.1016/j.bcp.2006.07.004] [Citation(s) in RCA: 655] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, MRBX 3.11106, 601 Elmwood Avenue, Box 850, Rochester, NY 14642, USA
| | | | | |
Collapse
|
37
|
Hernández C, Abreu J, Abreu P, Colino R, Jiménez A. [Effects of nasal positive airway pressure treatment on oxidative stress in patients with sleep apnea-hypopnea syndrome]. Arch Bronconeumol 2006; 42:125-9. [PMID: 16545250 DOI: 10.1016/s1579-2129(06)60130-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze whether nasal continuous positive airway pressure (CPAP) reduces oxidative stress in patients with sleep apnea-hypopnea syndrome (SAHS). PATIENTS AND METHODS Thirty-six patients with SAHS requiring nasal CPAP treatment and 10 controls in whom SAHS was ruled out were enrolled. Oxidative stress was evaluated by measuring plasma malondialdehyde (MDA) concentrations to assess lipid peroxidation at the beginning of the study and then again after a mean (SD) of 2.9 (0.6) months of nasal CPAP. Plasma MDA concentrations were determined by measuring thiobarbituric acid reactive substances. We controlled for the following factors known to influence oxidative stress: age, sex, use of vitamin supplements, smoking habit, body mass index (kg/m2), ischemic cardiopathy, hypertension, diabetes, and hypercholesterolemia. RESULTS The mean age of patients with SAHS was 51.4 (9.9) years and the mean body mass index was 32.9 (5.3) kg/m2. Nasal CPAP was titrated to a mean pressure of 8.9 (3.4) cm H2O. The mean score on the Epworth sleepiness scale was 10.2 (4.3) before treatment and 4.2 (2.8) after treatment (P<.001). The apnea-hypopnea index decreased from 43.7 (22.6) before treatment to 4 (3.5) after treatment (P<.001). Mean MDA concentrations in patients with SAHS were 2.0 (1.1) micromol/mL before treatment and decreased significantly to 1.6 (.07) micromol/mL after treatment, whereas MDA concentrations remained unchanged in control subjects. CONCLUSIONS Nasal CPAP treatment significantly reduced oxidative stress in patients with SAHS in our study.
Collapse
Affiliation(s)
- C Hernández
- Servicio de Neumología, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain.
| | | | | | | | | |
Collapse
|
38
|
Mitra S, Abraham E. Participation of superoxide in neutrophil activation and cytokine production. Biochim Biophys Acta Mol Basis Dis 2006; 1762:732-41. [PMID: 16919916 DOI: 10.1016/j.bbadis.2006.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Reactive oxygen species (ROS) can participate in cellular signaling and have been shown to modulate activation of the transcriptional regulatory factor NF-kappaB. However, the effects of ROS can differ in various cell populations. To examine the role of superoxide in neutrophil activation, we exposed resting neutrophils and neutrophils stimulated with LPS to paraquat, an agent that specifically increases intracellular superoxide concentrations. Culture of resting neutrophils with paraquat resulted in increased production of the proinflammatory cytokines TNF-alpha and MIP-2, enhanced degradation of IkappaB-alpha, and increased nuclear accumulation of NF-kappaB. Such effects of paraquat were due to intracellular superoxide (O2-) since they were blocked by the non-specific antioxidant N-acetyl cysteine and the cell permeable superoxide scavenger Tiron, but not by catalase, which facilitates the conversion of H2O2 to H2O and O2. Similar potentiating effects of paraquat were found in LPS-stimulated neutrophils. Exposure of neutrophils to paraquat also enhanced phosphorylation of Ser536 in the p65 subunit of NF-kappaB an event associated with increased transcriptional activity. Examination of kinases critical for LPS-stimulated gene expression showed that addition of paraquat to resting or LPS exposed neutrophils enhanced activation of p38 MAPK, but not that of Akt or ERK1/2. The potentiation of NF-kappaB translocation and proinflammatory cytokine production, but not of Ser536 p65 phosphorylation, by paraquat was dependent on activation of p38 MAPK. These results demonstrate that increased intracellular superoxide concentrations are proinflammatory in neutrophils, acting through a p38 MAPK dependent mechanism that results in enhanced nuclear accumulation of NF-kappaB and increased expression of NF-kappaB dependent proinflammatory cytokines.
Collapse
Affiliation(s)
- Sanchayita Mitra
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado at Denver and Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
39
|
Szulakowski P, Crowther AJL, Jiménez LA, Donaldson K, Mayer R, Leonard TB, MacNee W, Drost EM. The Effect of Smoking on the Transcriptional Regulation of Lung Inflammation in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2006; 174:41-50. [PMID: 16574938 DOI: 10.1164/rccm.200505-725oc] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is believed to result from an abnormal inflammatory response in the lungs to noxious particles and gases usually found in cigarette smoke. OBJECTIVES In this study, the molecular mechanisms for the enhanced proinflammatory cytokine gene transcription in COPD were investigated. METHODS Lung tissue was examined from 56 subjects undergoing resection for peripheral lung tumors as follows: current smokers with (n = 14) and without COPD (n = 17), ex-smokers with COPD (n = 13), and nonsmokers (n = 12). The levels of inhibitor kappaB-alpha (IkappaB-alpha), histone deacetylase 2 (HDAC2), acetylated (ac-) histone H3 and H4, the transcription factor nuclear factor-kappaB (NF-kappaB), proinflammatory cytokine messenger RNA, and 8-isoprostane were measured. MEASUREMENTS AND MAIN RESULTS IkappaB-alpha levels were significantly decreased in healthy smokers and current and ex-smoking patients with COPD when compared with nonsmokers (p < 0.001), with an associated increase in NF-kappaB DNA binding in current smokers (p < 0.05). An increase in acetylated histone 4 (ac-H4; p < 0.01) was found in current smokers. Conversely, ex-smokers with COPD showed an increase in ac-H3 (p < 0.05). Decreased levels of cytoplasmic, but not nuclear, HDAC2 protein levels were detected. From the cytokine profiles, no significant differences were detected; however, interleukin-12p40 expression correlated with ac-H4 in current smokers with COPD (p < 0.01). CONCLUSION These data propose a role for modification of nucleosomal structure in inflammatory cytokine gene transcription in response to smoking. The imbalance between histone deacetylation and acetylation in favor of acetylation may contribute to the enhanced inflammation in smokers susceptible to the development of COPD.
Collapse
Affiliation(s)
- Patryk Szulakowski
- ELEGI Colt Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cerdá B, Soto C, Albaladejo MD, Martínez P, Sánchez-Gascón F, Tomás-Barberán F, Espín JC. Pomegranate juice supplementation in chronic obstructive pulmonary disease: a 5-week randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr 2006; 60:245-53. [PMID: 16278692 DOI: 10.1038/sj.ejcn.1602309] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aim of the present study is to investigate the effect of antioxidant polyphenol-rich pomegranate juice (PJ) supplementation for 5 weeks on patients with stable chronic obstructive pulmonary disease (COPD), since the oxidative stress plays a major role in the evolution and pathophysiology of COPD. DESIGN A randomized, double-blind, placebo-controlled trial was conducted. SUBJECTS A total of 30 patients with stable COPD were randomly distributed in two groups (15 patients each). INTERVENTIONS Both groups consumed either 400 ml PJ daily or matched placebo (synthetic orange-flavoured drink) for 5 weeks. Trolox Equivalent Antioxidant Capacity (TEAC) of PJ, blood parameters (14 haematological and 18 serobiochemical), respiratory function variables, bioavailability of PJ polyphenols (plasma and urine) and urinary isoprostane (8-iso-PGF(2alpha)) were evaluated. RESULTS The daily dose of PJ (containing 2.66 g polyphenols) provided 4 mmol/l TEAC. None of the polyphenols present in PJ were detected in plasma or in urine of volunteers. The most abundant PJ polyphenols, ellagitannins, were metabolized by the colonic microflora of COPD patients to yield two major metabolites in both plasma and urine (dibenzopyranone derivatives) with no TEAC. No differences were found (P > 0.05) between PJ and placebo groups for any of the parameters evaluated (serobiochemical and haematological), urinary 8-iso-PGF(2alpha), respiratory function variables and clinical symptoms of COPD patients. CONCLUSIONS Our results suggest that PJ supplementation adds no benefit to the current standard therapy in patients with stable COPD. The high TEAC of PJ cannot be extrapolated in vivo probably due to the metabolism of its polyphenols by the colonic microflora. The understanding of the different bioavailability of dietary polyphenols is critical before claiming any antioxidant-related health benefit. SPONSORSHIP 'Fundación Séneca' (Murcia, Spain), Project PB/18/FS/02 and Spanish CICYT, Project AGL2003-02195.
Collapse
Affiliation(s)
- B Cerdá
- Department of Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Fabbri LM, Luppi F, Beghé B, Rabe KF. Update in Chronic Obstructive Pulmonary Disease 2005. Am J Respir Crit Care Med 2006; 173:1056-65. [PMID: 16679444 DOI: 10.1164/rccm.2603005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Leonardo M Fabbri
- Department of Respiratory Diseases, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW To review the reason for and clinical effects of selenium supplementation in critically ill patients. RECENT FINDINGS Selenium-dependent enzymes and selenoprotein P regulate immune and endothelial cell function. Obviously not the anorganic compounds of selenium but the activity of selenium-dependent enzymes is the most important factor modulating the immune system and the clinical outcome of patients. Despite low selenium levels in severely ill patients and low glutathione peroxidase activity associated with the extent of multiorgan dysfunction, only a few trials have investigated the effect of selenium supplementation on clinical outcome. A metaanalysis did not reveal a statistically significant survival rate with selenium supplementation, but suggested a dose-dependent trend. The recently completed multicentre trial on high-dose selenium supplementation in septic patients also did not reveal a significant overall reduction in mortality. SUMMARY The available evidence suggests that selenoproteins play an important role in the immunomodulation of critically ill patients and a sodium selenite supplementation upregulates these selenoenzymes. The intervention trials with sodium selenite performed to date are small and therefore only a tendency in reduction of morbidity and mortality could be demonstrated. Larger trials are necessary to show the supposed benefits and risks of selenite supplementation in critically ill patients.
Collapse
|
43
|
Hernández C, Abreu J, Abreu P, Colino R, Jiménez A. Efectos del tratamiento con CPAP nasal en el estrés oxidativo en pacientes con síndrome de apnea del sueño. Arch Bronconeumol 2006. [DOI: 10.1157/13085561] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Kirkham P, Rahman I. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 2006; 111:476-94. [PMID: 16458359 DOI: 10.1016/j.pharmthera.2005.10.015] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 01/10/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are inflammatory lung diseases that are characterized by systemic and chronic localized inflammation and oxidative stress. Sources of oxidative stress arise from the increased burden of inhaled oxidants, as well as elevated amounts of reactive oxygen species (ROS) released from inflammatory cells. Increased levels of ROS, either directly or via the formation of lipid peroxidation products, may play a role in enhancing the inflammatory response in both asthma and COPD. Moreover, in COPD it is now recognized as the main pathogenic factor for driving disease progression and increasing severity. ROS and lipid peroxidation products can influence the inflammatory response at many levels through its impact on signal transduction mechanisms, activation of redox-sensitive transcriptions factors, and chromatin regulation resulting in pro-inflammatory gene expression. It is this impact of ROS on chromatin regulation by reducing the activity of the transcriptional co-repressor, histone deacetylase-2 (HDAC-2), that leads to the poor efficacy of corticosteroids in COPD, severe asthma, and smoking asthmatics. Thus, the presence of oxidative stress has important consequences for the pathogenesis, severity, and treatment of asthma and COPD. However, for ROS to have such an impact, it must first overcome a variety of antioxidant defenses. It is likely, therefore, that a combination of antioxidants may be effective in the treatment of asthma and COPD. Various approaches to enhance the lung antioxidant screen and clinical trials of antioxidant compounds are discussed.
Collapse
Affiliation(s)
- Paul Kirkham
- Respiratory Diseases, Novartis Institutes for Biomedical Research, Horsham, West Sussex, RH12 5AB, UK.
| | | |
Collapse
|
45
|
Juul K, Tybjaerg-Hansen A, Marklund S, Lange P, Nordestgaard BG. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 173:858-64. [PMID: 16399992 DOI: 10.1164/rccm.200509-1387oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Increased oxidative stress is involved in chronic obstructive pulmonary disease (COPD); however, plasma and bronchial lining fluid contains the antioxidant extracellular superoxide dismutase. Approximately 2% of white individuals carry the R213G polymorphism in the gene encoding extracellular superoxide dismutase, which increases plasma extracellular superoxide dismutase 10-fold and presumably also renders bronchial lining fluid high in extracellular superoxide dismutase. OBJECTIVE We tested the hypothesis that R213G reduces the risk of COPD. METHODS We studied cross-sectionally and prospectively (during 24 yr) 9,258 individuals from the Danish general population genotyped for R213G. MEASUREMENTS We determined plasma extracellular superoxide dismutase concentration, pulmonary function and COPD diagnosed by means of spirometry or through national hospitalization and death registers. MAIN RESULTS In the general population, 97.5% were noncarriers, 2.4% were heterozygotes, and 0.02% were homozygotes. Among R213G noncarriers, extracellular superoxide dismutase plasma concentration was 148+/-52 and 142+/-43 ng/ml (mean+/-SD) in individuals with and without COPD (Student's t test, p=0.02). Among heterozygotes, corresponding concentrations were 1,665+/-498 ng/ml and 1,256+/-379 (p<0.001). The adjusted odds ratio for spirometrically diagnosed COPD in heterozygotes versus noncarriers was 0.5 (95% confidence interval: 0.3-0.9). After stratification, the equivalent adjusted odds ratio was 1.5 (0.3-6.6) among nonsmokers and 0.4 (0.2-0.8) among smokers (p value for interaction=0.10). The adjusted hazard ratio for COPD hospitalization or death during follow-up in heterozygotes versus noncarriers was 0.3 (0.1-0.8). CONCLUSIONS Extracellular superoxide dismutase R213G heterozygosity protects against development of COPD in the Danish general population. This was observed in smokers, but not in nonsmokers.
Collapse
Affiliation(s)
- Klaus Juul
- Department of Clinical Biochemistry, Herlev University Hospital, Herlev, Denmark
| | | | | | | | | |
Collapse
|
46
|
Foronjy R, D'Armiento J. The Effect of Cigarette Smoke-derived Oxidants on the Inflammatory Response of the Lung. ACTA ACUST UNITED AC 2006; 6:53-72. [PMID: 23997664 DOI: 10.1016/j.cair.2006.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inhalation of cigarette smoke triggers a marked cellular influx in the lung and this inflammation is believed to play a central role in the development of smoke-related lung diseases such as asthma and COPD. Studies demonstrate that smoke-derived oxidants are a major factor in this inflammatory reaction to cigarette smoke. These oxidants can overwhelm the lung's antioxidant defenses and they can up regulate inflammation by a number of mechanisms. Free radicals directly stimulate the production of chemotactic compounds such as 8-isoprostane. In addition, smoke-derived oxidants can activate several intracellular signaling cascades including NF-κB, MAPK and AP-1. This transcriptional activation induces the expression of cytokines and intracellular adhesion molecules that facilitates the trafficking of neutrophils, macrophages and lymphocytes into the lung. Moreover, oxidants can promote chromatin remodeling that facilitates the expression of proinflammatory genes by stimulating the acetylation of histone residues in the nucleosome. This leads to conformational changes that enhance expression by rendering the gene more accessible to binding to transcriptional factors. Thus, the oxidant-antioxidant imbalance generated by cigarette smoke can promote inflammation which is critical to the functional decline that occurs in both asthma and COPD patients. Future research is needed to better define the effects of smoke-derived oxidants on lung inflammation and to determine the most efficacious strategies for generating significant antioxidant protection in the lung.
Collapse
Affiliation(s)
- Robert Foronjy
- Columbia University Medical Center, Divisions of Molecular Medicine and Pulmonary and Critical Care Medicine, New York, New York 10032
| | | |
Collapse
|
47
|
Foronjy RF, Mirochnitchenko O, Propokenko O, Lemaitre V, Jia Y, Inouye M, Okada Y, D'Armiento JM. Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am J Respir Crit Care Med 2005; 173:623-31. [PMID: 16387805 PMCID: PMC3982860 DOI: 10.1164/rccm.200506-850oc] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Oxidants are believed to play a major role in the development of emphysema. OBJECTIVES This study aimed to determine if the expression of human copper-zinc superoxide dismutase (CuZnSOD) within the lungs of mice protects against the development of emphysema. METHODS Transgenic CuZnSOD and littermate mice were exposed to cigarette smoke (6 h/d, 5 d/wk, for 1 yr) and compared with nonexposed mice. A second group was treated with intratracheal elastase to induce emphysema. MEASUREMENTS Lung inflammation was measured by cell counts and myeloperoxidase levels. Oxidative damage was assessed by immunofluorescence for 3-nitrotyrosine and 8-hydroxydeoxyguanosine and lipid peroxidation levels. The development of emphysema was determined by measuring the mean linear intercept (Lm). MAIN RESULTS Smoke exposure caused a fourfold increase in neutrophilic inflammation and doubled lung myeloperoxidase activity. This inflammatory response did not occur in the smoke-exposed CuZnSOD mice. Similarly, CuZnSOD expression prevented the 58% increase in lung lipid peroxidation products that occurred after smoke exposure. Most important, CuZnSOD prevented the onset of emphysema in both the smoke-induced model (Lm, 68 exposed control vs. 58 exposed transgenic; p < 0.04) and elastase-generated model (Lm, 80 exposed control vs. 63 exposed transgenic; p < 0.03). These results demonstrate for the first time that antioxidants can prevent smoke-induced inflammation and can counteract the proteolytic cascade that leads to emphysema formation in two separate animal models of the disease. CONCLUSIONS These findings indicate that strategies aimed at enhancing or supplementing lung antioxidants could be effective for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Robert F Foronjy
- Department of Medicine, Columbia University, 630 West 168th Street, P&S 8-401, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yasuda H, Yamaya M, Nakayama K, Ebihara S, Sasaki T, Okinaga S, Inoue D, Asada M, Nemoto M, Sasaki H. Increased Arterial Carboxyhemoglobin Concentrations in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2005; 171:1246-51. [PMID: 15764730 DOI: 10.1164/rccm.200407-914oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exhaled carbon monoxide (CO) and arterial blood carboxyhemoglobin concentrations (Hb-CO) increase in inflammatory pulmonary diseases. OBJECTIVES To study whether arterial Hb-CO is useful to monitor disease activity in patients with chronic obstructive pulmonary disease (COPD) who had stopped smoking. METHODS We measured arterial Hb-CO, arteriovenous Hb-CO differences, and FEV1 in 58 patients with COPD and 61 ex-smoking control subjects. RESULTS Arterial Hb-CO concentrations in patients at stable conditions were higher than those in control subjects (p < 0.0001). Furthermore, the Hb-CO concentrations in patients at the exacerbations (p < 0.0001) were higher than those at the stable conditions. Arterial Hb-CO concentrations in patients at stage III were higher than those in patients at stage II, and the Hb-CO concentrations in patients at stage IV were higher than those in patients at stage III at the stable conditions and exacerbations. Arterial Hb-CO correlated with exhaled CO in patients with COPD at stage II and stage III at the exacerbations. Arterial Hb-CO inversely correlated with the arterial blood partial oxygen pressure and FEV1. Arteriovenous Hb-CO differences in patients at the exacerbations did not differ from those in patients at stable conditions and from those in control subjects. Moreover, arterial Hb-CO correlated with serum C-reactive protein values and serum lipid peroxide concentrations. CONCLUSIONS These findings suggest that increased arterial Hb-CO may relate to severity in patients with COPD because of lung and systemic inflammation and production of reactive oxygen species.
Collapse
Affiliation(s)
- Hiroyasu Yasuda
- Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|