1
|
Xiao X, Ding Z, Shi Y, Zhang Q. Causal Role of Immune Cells in Chronic Obstructive Pulmonary Disease: A Two-Sample Mendelian Randomization Study. COPD 2024; 21:2327352. [PMID: 38573027 DOI: 10.1080/15412555.2024.2327352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Accumulating evidence has highlighted the importance of immune cells in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the understanding of the causal association between immunity and COPD remains incomplete due to the existence of confounding variables. In this study, we employed a two-sample Mendelian randomization (MR) analysis, utilizing the genome-wide association study database, to investigate the causal association between 731 immune-cell signatures and the susceptibility to COPD from a host genetics perspective. To validate the consistency of our findings, we utilized MR analysis results of lung function data to assess directional concordance. Furthermore, we employed MR-Egger intercept tests, Cochrane's Q test, MR-PRESSO global test, and "leave-one-out" sensitivity analyses to evaluate the presence of horizontal pleiotropy, heterogeneity, and stability, respectively. Inverse variance weighting results showed that seven immune phenotypes were associated with the risk of COPD. Analyses of heterogeneity and pleiotropy analysis confirmed the reliability of MR results. These results highlight the interactions between the immune system and the lungs. Further investigations into their mechanisms are necessary and will contribute to inform targeted prevention strategies for COPD.
Collapse
Affiliation(s)
- Xinru Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ziqi Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yujia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
Ackermann M, Werlein C, Plucinski E, Leypold S, Kühnel MP, Verleden SE, Khalil HA, Länger F, Welte T, Mentzer SJ, Jonigk DD. The role of vasculature and angiogenesis in respiratory diseases. Angiogenesis 2024; 27:293-310. [PMID: 38580869 PMCID: PMC11303512 DOI: 10.1007/s10456-024-09910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 04/07/2024]
Abstract
In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany.
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Witten, Germany.
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sophie Leypold
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - Hassan A Khalil
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
3
|
Aono K, Matsumoto J, Matsumoto T, Koga M, Migita K, Tominaga K, Nakagawa S, Yamauchi A. Association of T cell infiltration and morphological change of thymus gland with the aggravation of pulmonary emphysema in testosterone deficiency. Biochem Biophys Rep 2023; 34:101489. [PMID: 37250981 PMCID: PMC10220313 DOI: 10.1016/j.bbrep.2023.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
Chronic obstructive pulmonary disease is an inflammatory lung disease characterized by chronic bronchitis and emphysema. Our previous study revealed that testosterone depletion induced T cell infiltration in the lungs and aggravated pulmonary emphysema in orchiectomized (ORX) mice exposed to porcine pancreatic elastase (PPE). However, the association between T cell infiltration and emphysema remains unclear. The aim of this study was to determine whether thymus and T cells are involved in the exacerbation of PPE-induced emphysema in ORX mice. The weight of thymus gland in ORX mice was significantly greater than that of sham mice. The pretreatment of anti-CD3 antibody suppressed PPE-induced thymic enlargement and T cell infiltration in the lungs in ORX mice, resulting in improved expansion of the alveolar diameter, a marker of emphysema exacerbation. These results suggest that increased thymic function due to testosterone deficiency and the associated increased pulmonary infiltration of T cells may trigger the development of emphysema.
Collapse
Affiliation(s)
- Kentaro Aono
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Mitsuhisa Koga
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Koji Tominaga
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
4
|
Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide. Nutrients 2023; 15:nu15020468. [PMID: 36678340 PMCID: PMC9865488 DOI: 10.3390/nu15020468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
We studied the activities of Siraitia grosvenorii extracts (SGE) on airway inflammation in a mouse model of chronic obstructive pulmonary disease (COPD) stimulated by cigarette smoke extract (CSE) and lipopolysaccharide (LPS), as well as in LPS-treated human bronchial epithelial cell line (BEAS-2B). SGE improved the viability of LPS-incubated BEAS-2B cells and inhibited the expression and production of inflammatory cytokines. SGE also attenuated the mitogen-activated protein kinase (MAPK)-nuclear factor-kappa B (NF-κB) signaling activated by LPS stimulation in BEAS-2B cells. In mice stimulated by CSE and LPS, we observed the infiltration of immune cells into the airway after COPD induction. SGE reduced the number of activated T cells, B cells, and neutrophils in bronchoalveolar fluid (BALF), lung tissue, mesenteric lymph node, and peripheral blood mononuclear cells, as well as inhibited infiltration into organs and mucus production. The secretion of cytokines in BALF and the expression level of pro-inflammatory cytokines, mucin 5AC, Transient receptor potential vanilloid 1, and Transient receptor potential ankyrin 1 in lung tissue were alleviated by SGE. In addition, to investigate the activity of SGE on expectoration, we evaluated phenol red secretions in the trachea of mice. SGE administration showed the effect of improving expectoration through an increase in phenol red secretion. Consequently, SGE attenuates the airway inflammatory response in CSE/LPS-stimulated COPD. These findings indicate that SGE may be a potential herbal candidate for the therapy of COPD.
Collapse
|
5
|
Biswas M, Suvarna R, Krishnan S V, Devasia T, Shenoy Belle V, Prabhu K. The mechanistic role of neutrophil lymphocyte ratio perturbations in the leading non communicable lifestyle diseases. F1000Res 2022; 11:960. [PMID: 36619602 PMCID: PMC9780608 DOI: 10.12688/f1000research.123245.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/13/2023] Open
Abstract
Inflammation plays a critical role in the development and progression of chronic diseases like type 2 diabetes mellitus, coronary artery disease, and chronic obstructive pulmonary disease. Inflammatory responses are indispensable for pathogen control and tissue repair, but they also cause collateral damage. A chronically activated immune system and the resultant immune dysregulation mediated inflammatory surge may cause multiple negative effects, requiring tight regulation and dampening of the immune response to minimize host injury. While chronic diseases are characterized by systemic inflammation, the mechanistic relationship of neutrophils and lymphocytes to inflammation and its correlation with the clinical outcomes is yet to be elucidated. The neutrophil to lymphocyte ratio (NLR) is an easy-to-measure laboratory marker used to assess systemic inflammation. Understanding the mechanisms of NLR perturbations in chronic diseases is crucial for risk stratification, early intervention, and finding novel therapeutic targets. We investigated the correlation between NLR and prevalent chronic conditions as a measure of systemic inflammation. In addition to predicting the risk of impending chronic conditions, NLR may also provide insight into their progression. This review summarizes the mechanisms of NLR perturbations at cellular and molecular levels, and the key inflammatory signaling pathways involved in the progression of chronic diseases. We have also explored preclinical studies investigating these pathways and the effect of quelling inflammation in chronic disease as reported by a few in vitro, in vivo studies, and clinical trials.
Collapse
Affiliation(s)
- Monalisa Biswas
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Renuka Suvarna
- Division of Ayurveda, Center for Integrative Medicine and Research, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vimal Krishnan S
- Department of Emergency Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vijetha Shenoy Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India,
| | - Krishnananda Prabhu
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India,
| |
Collapse
|
6
|
Uliński R, Kwiecień I, Domagała-Kulawik J. Lung Cancer in the Course of COPD-Emerging Problems Today. Cancers (Basel) 2022; 14:cancers14153819. [PMID: 35954482 PMCID: PMC9367492 DOI: 10.3390/cancers14153819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tobacco smoking remains the main cause of tobacco-dependent diseases like lung cancer, chronic obstructive pulmonary disease (COPD), in addition to cardiovascular diseases and other cancers. Whilst the majority of smokers will not develop either COPD or lung cancer, they are closely related diseases, occurring as co-morbidities at a higher rate than if they were independently triggered by smoking. A patient with COPD has a four- to six-fold greater risk of developing lung cancer independent of smoking exposure, when compared to matched smokers with normal lung function. The 10 year risk is about 8.8% in the COPD group and only 2% in patients with normal lung function. COPD is not a uniform disorder: there are different phenotypes. One of them is manifested by the prevalence of emphysema and this is complicated by malignant processes most often. Here, we present and discuss the clinical problems of COPD in patients with lung cancer and against lung cancer in the course of COPD. There are common pathological pathways in both diseases. These are inflammation with participation of macrophages and neutrophils and proteases. It is known that anticancer immune regulation is distorted towards immunosuppression, while in COPD the elements of autoimmunity are described. Cytotoxic T cells, lymphocytes B and regulatory T cells with the important role of check point molecules are involved in both processes. A growing number of lung cancer patients are treated with immune check point inhibitors (ICIs), and it was found that COPD patients may have benefits from this treatment. Altogether, the data point to the necessity for deeper analysis and intensive research studies to limit the burden of these serious diseases by prevention and by elaboration of specific therapeutic options.
Collapse
Affiliation(s)
- Robert Uliński
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
7
|
Yang H, Sun D, Wu F, Xu X, Liu X, Wang Z, Zhou L. Effects of Vitamin D on Respiratory Function and Immune Status for Patients with Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2910782. [PMID: 35313462 PMCID: PMC8934228 DOI: 10.1155/2022/2910782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Many studies have demonstrated that vitamin D has clinical benefits when used to treat patients with chronic obstructive pulmonary disease (COPD). However, most of these studies have insufficient samples or inconsistent results. The aim of this meta-analysis was to evaluate the effects of vitamin D therapy in patients with COPD. METHODS We performed a comprehensive retrieval in the following electronic databases: PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Data, and Chinese Scientific Journals Database (VIP). Two trained reviewers identified relevant studies, extracted data information, and then assessed the methodical quality by the Cochrane risk of bias assessment tool, independently. Then, the meta-analyses were conducted by RevMan 5.4, binary variables were represented by risks ratio (RR), and continuous variables were represented by mean difference (MD) or standardized mean difference (SMD) to assess the efficacy of vitamin D therapy in patients with COPD. Then, publication bias assessment was conducted by funnel plot analysis. Finally, the quality of evidence was assessed by the GRADE system. RESULTS A total of 15 articles involving 1598 participants were included in this study. The overall results showed a statistical significance of vitamin D therapy in patients with COPD which can significantly improve forced expiratory volume in 1 second (FEV1) (MD: 5.69, 95% CI: 5.01-6.38,P < 0.00001,I2 = 51%) and FEV1/FVC (SMD:0.49, 95% CI: 0.39-0.60,P < 0.00001,I2 = 84%); and serum 25 (OH)D (SMD:1.21, 95% CI:1.07-1.34,P < 0.00001,I2 = 98%) also increase CD3+ Tcells (MD: 6.67, 95% CI: 5.34-8.00,P < 0.00001,I2 = 78%) and CD4+ T cells (MD: 6.00, 95% CI: 5.01-7.00,P < 0.00001,I2 = 65%); and T lymphocyte CD4+/CD8+ ratio (MD: 0.41, 95% CI: 0.20-0.61,P = 0.0001,I2 = 95%) obviously decrease CD8+ Tcells(SMD: -0.83, 95% CI: -1.05- -0.06,P < 0.00001,I2 = 82%), the times of acute exacerbation (RR: 0.40, 95% CI: 0.28-0.59,P < 0.00001,I2 = 0%), and COPD assessment test (CAT) score (MD: -3.77, 95% CI: -5.86 - -1.68,P = 0.0004,I2 = 79%). CONCLUSIONS Our analysis indicated that vitamin D used in patients with COPD could improve the lung function (FEV1 and FEV1/FVC), the serum 25(OH)D, CD3+ T cells, CD4 + T cells, and T lymphocyte CD4+/CD8+ ratio and reduce CD8+ T cells, acute exacerbation, and CAT scores.
Collapse
Affiliation(s)
- Huan Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Deyang Sun
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Fengqing Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiao Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xi Liu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Linshui Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
8
|
Takeda K, Kim SH, Joetham A, Petrache I, Gelfand EW. Therapeutic benefits of recombinant alpha1-antitrypsin IgG1 Fc-fusion protein in experimental emphysema. Respir Res 2021; 22:207. [PMID: 34271910 PMCID: PMC8283905 DOI: 10.1186/s12931-021-01784-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Alpha-1 antitrypsin (AAT) is a major serine protease inhibitor. AAT deficiency (AATD) is a genetic disorder characterized by early-onset severe emphysema. In well-selected AATD patients, therapy with plasma-derived AAT (pAAT), "augmentation therapy", provides modest clinical improvement but is perceived as cumbersome with weekly intravenous infusions. Using mouse models of emphysema, we compared the effects of a recombinant AAT-IgG1 Fc-fusion protein (AAT-Fc), which is expected to have a longer half-life following infusion, to those of pAAT. METHODS In an elastase model of emphysema, mice received a single intratracheal instillation of porcine pancreatic elastase (PPE) or human leucocyte elastase (hLE). AAT-Fc, pAAT, or vehicle was administered intraperitoneally 1 day prior to or 3 weeks following elastase instillation. Lung function and histology assessments were performed at 7 and 32 days after elastase instillation. In a cigarette smoke (CS) model of emphysema, mice were exposed to CS daily, 5 days a week, for 6 months and AAT-Fc, pAAT, or vehicle were administered every 10 days during the last 3 months of CS exposure. Assessments were performed 3 days after the last CS exposure. Immune responses to lung elastin peptide (EP) and the effects of AAT-Fc or pAAT treatment on dendritic cell (DC) function were determined ex vivo. RESULTS Both elastase instillation and CS exposure triggered emphysema-like alveolar enlargement, increased lung compliance, and increased markers of inflammation compared to controls. Administration of AAT-Fc either prior to or following elastase instillation or during CS exposure provided greater protection than pAAT against alveolar enlargement, lung dysfunction, and airway inflammation. When challenged ex vivo with EP, spleen mononuclear cells from elastase-exposed mice exhibited dose-dependent production of IFNγ and IL-17, suggesting immune reactivity. In co-culture experiments with splenic CD4+ T cells isolated from elastase-exposed mice, AAT-Fc treatment prior to EP-priming of bone marrow-derived dendritic cells inhibited the production of IFNγ and IL-17. CONCLUSIONS Compared to pAAT, AAT-Fc more effectively prevented or attenuated elastase- and CS-induced models of emphysema. These effects were associated with immunomodulatory effects on DC activity. AAT-Fc may provide a therapeutic option to individuals with AATD- and CS-induced emphysema.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Kyoritsu-Onsen Hospital, 1-39-1 Hirano, Kawanishi, 666-0121, Japan.
| | - Soo-Hyun Kim
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Irina Petrache
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
9
|
Fernandes JR, Pinto TNC, Piemonte LL, Arruda LB, Marques da Silva CCB, F Carvalho CR, Pinto RMC, S Duarte AJ, Benard G. Long-term tobacco exposure and immunosenescence: Paradoxical effects on T-cells telomere length and telomerase activity. Mech Ageing Dev 2021; 197:111501. [PMID: 34000259 DOI: 10.1016/j.mad.2021.111501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022]
Abstract
Immunosenescence are alterations on immune system that occurs throughout an individual life. The main characteristic of this process is replicative senescence, evaluated by telomere shortening. Several factors implicate on telomere shortening, such as smoking. In this study, we evaluated the influence of smoking and Chronic Obstructive Pulmonary Disease (COPD) on cytokines, telomere length and telomerase activity. Blood samples were collected from subjects aged over 60 years old: Healthy (never smokers), Smokers (smoking for over 30 years) and COPDs (ex-smokers for ≥15 years). A young group was included as control. PBMCs were cultured for assessment of telomerase activity using RT-PCR, and cytokines secretion flow cytometry. CD4+ and CD8+ purified lymphocytes were used to assess telomere length using FlowFISH. We observed that COPD patients have accelerated telomere shortening. Paradoxically, smokers without lung damage showed preserved telomere length, suggesting that tobacco smoking may affect regulatory mechanisms, such as telomerase. Telomerase activity showed diminished activity in COPDs, while Smokers showed increased activity compared to COPDs and Healthy groups. Extracellular environment reflected this unbalance, indicated by an anti-inflammatory profile in Smokers, while COPDs showed an inflammatory prone profile. Further studies focusing on telomeric maintenance may unveil mechanisms that are associated with cancer under long-term smoking.
Collapse
Affiliation(s)
- Juliana Ruiz Fernandes
- Laboratory of Dermatology and Immunodeficiencies (LIM56), School of Medicine, São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, Brazil
| | - Thalyta Nery Carvalho Pinto
- Laboratory of Dermatology and Immunodeficiencies (LIM56), School of Medicine, São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, Brazil
| | - Lucas Lopes Piemonte
- Permanent Education School, School of Medicine, São Paulo University, Av. Dr Ovidio Pires de Campo, 471, São Paulo, Brazil
| | - Liã Barbara Arruda
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, Royal Free Hospital Campus, London, United Kingdom
| | | | - Celso R F Carvalho
- Department of Physical Therapy, School of Medicine, São Paulo University, R. Dr. Ovídio Pires de Campos, 255, São Paulo, Brazil
| | - Regina Maria Carvalho Pinto
- Pulmonary Department, Heart Institute (InCor), School of Medicine, São Paulo University, Av. Dr. Enéas de Carvalho Aguiar, 44, São Paulo, Brazil
| | - Alberto J S Duarte
- Laboratory of Dermatology and Immunodeficiencies (LIM56), School of Medicine, São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, Brazil
| | - Gil Benard
- Laboratory of Dermatology and Immunodeficiencies (LIM56), School of Medicine, São Paulo University, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| |
Collapse
|
10
|
Polverino F, Kheradmand F. COVID-19, COPD, and AECOPD: Immunological, Epidemiological, and Clinical Aspects. Front Med (Lausanne) 2021; 7:627278. [PMID: 33537336 PMCID: PMC7847987 DOI: 10.3389/fmed.2020.627278] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
The newly identified severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) causes several heterogeneous clinical conditions collectively known as Coronavirus disease-19 (COVID-19). Older patients with significant cardiovascular conditions and chronic obstructive pulmonary disease (COPD) are predisposed to a more severe disease complicated with acute respiratory distress syndrome (ARDS), which is associated with high morbidity and mortality. COPD is associated with increased susceptibility to respiratory infections, and viruses are among the top causes of acute exacerbations of COPD (AECOPD). Thus, COVID-19 could represent the ultimate cause of AECOPD. This review will examine the pathobiological processes underlying SARS-CoV-2 infection, including the effects of cigarette smoke and COPD on the immune system and vascular endothelium, and the known effects of cigarette smoke on the onset and progression of COVID-19. We will also review the epidemiological data on COVID-19 prevalence and outcome in patients with COPD and analyze the pathobiological and clinical features of SARS-CoV-2 infection in the context of other known viral causes of AECOPD. Overall, SARS-CoV-2 shares common pathobiological and clinical features with other viral agents responsible for increased morbidity, thus representing a novel cause of AECOPD with the potential for a more long-term adverse impact. Longitudinal studies aimed at COPD patients surviving COVID-19 are needed to identify therapeutic targets for SARS-CoV2 and prevent the disease's burden in this vulnerable population.
Collapse
Affiliation(s)
- Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
11
|
Richmond BW, Mansouri S, Serezani A, Novitskiy S, Blackburn JB, Du RH, Fuseini H, Gutor S, Han W, Schaff J, Vasiukov G, Xin MK, Newcomb DC, Jin L, Blackwell TS, Polosukhin VV. Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunol 2021; 14:431-442. [PMID: 32968197 PMCID: PMC7946625 DOI: 10.1038/s41385-020-00344-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/04/2023]
Abstract
Although activation of adaptive immunity is a common pathological feature of chronic obstructive pulmonary disease (COPD), particularly during later stages of the disease, the underlying mechanisms are poorly understood. In small airways of COPD patients, we found that localized disruption of the secretory immunoglobulin A (SIgA)-containing mucosal immunobarrier correlated with lymphocyte accumulation in airway walls and development of tertiary lymphoid structures (TLS) around small airways. In SIgA-deficient mice, we observed bacterial invasion into the airway epithelial barrier with lymphocytic infiltration and TLS formation, which correlated with the progression of COPD-like pathology with advanced age. Depletion of either CD4+ or CD8+ T lymphocytes reduced the severity of emphysema in SIgA-deficient mice, indicating that adaptive immune activation contributes to progressive lung destruction. Further studies revealed that lymphocyte infiltration into the lungs of SIgA-deficient mice was dependent on monocyte-derived dendritic cells (moDCs), which were recruited through a CCR2-dependent mechanism in response to airway bacteria. Consistent with these results, we found that moDCs were increased in lungs of COPD patients, along with CD4+ and CD8+ effector memory T cells. Together, these data indicate that endogenous bacteria in SIgA-deficient airways orchestrate a persistent and pathologic T lymphocyte response through monocyte recruitment and moDC differentiation.
Collapse
Affiliation(s)
- Bradley W. Richmond
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Samira Mansouri
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Ana Serezani
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Novitskiy
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jessica B. Blackburn
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Rui-Hong Du
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Hubaida Fuseini
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Gutor
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Wei Han
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jacob Schaff
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Georgii Vasiukov
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Matthew K. Xin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Dawn C. Newcomb
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Lei Jin
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Timothy S. Blackwell
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Vasiliy V. Polosukhin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
12
|
Li X, Xu J, Li P. Rat bone mesenchymal stem cells exert antiproliferative effects on nicotine‑exposed T cells via iNOS production. Mol Med Rep 2020; 21:2267-2275. [PMID: 32186760 DOI: 10.3892/mmr.2020.11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/14/2020] [Indexed: 11/05/2022] Open
Abstract
Adoptive transfer of bone marrow‑derived mesenchymal stem cells (BMSCs) significantly alleviates smoking‑induced chronic obstructive pulmonary disease (COPD) in rats. Considering the critical roles of T cells during COPD development, the present study aimed to further identify the molecular mechanisms underlying the antiproliferative effect of BMSCs on splenic T cells isolated from rats following chronic exposure to nicotine. Splenic T cells were co‑cultured with rat BMSCs at various ratios and subsequently, T‑cell proliferation was measured using the Cell Counting Kit‑8 assay. The effects of the inducible nitric oxide synthase (iNOS) inhibitor N‑nitro‑L‑arginine methylester (L‑NAME) and short hairpin (sh)RNA‑lentivirus‑mediated knockdown of iNOS in BMSCs on T‑cell proliferation were evaluated. The expression levels of iNOS and STAT5 phosphorylation in BMSCs and T cells, respectively, were assessed by reverse transcription‑quantitative PCR and western blotting. A higher ratio of BMSCs to T cells resulted in increased inhibition of T‑cell proliferation; therefore, the ratio of 1:20 was selected for further in vitro experiments. At a dose of 5 µM, L‑NAME displayed the strongest ability to reverse the antiproliferative effects of BMSCs in the co‑culture system. Both L‑NAME treatment and shRNA‑mediated knockdown of iNOS expression significantly decreased the suppressive effects of BMSCs, downregulated iNOS expression at the mRNA and protein levels in BMSCs, and enhanced STAT5 phosphorylation in T cells. BMSCs inhibited the proliferation of nicotine‑exposed T cells, which was associated with iNOS expression in BMSCs and decreased STAT5 phosphorylation in T cells. The present study indicated the potential mechanisms underlying the beneficial effects of BMSC infusion in patients with chronic smoking‑induced COPD and emphysema.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Respiratory and Critical Care Medicine, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jianying Xu
- Department of Respiratory and Critical Care Medicine, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Pingping Li
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030009, P.R. China
| |
Collapse
|
13
|
Bu T, Wang LF, Yin YQ. How Do Innate Immune Cells Contribute to Airway Remodeling in COPD Progression? Int J Chron Obstruct Pulmon Dis 2020; 15:107-116. [PMID: 32021149 PMCID: PMC6966950 DOI: 10.2147/copd.s235054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, the therapeutic potential of immune-modulation during the progression of chronic obstructive pulmonary disease (COPD) has been attracting increasing interest. However, chronic inflammatory response has been over-simplified in descriptions of the mechanism of COPD progression. As a form of first-line airway defense, epithelial cells exhibit phenotypic alteration, and participate in epithelial layer disorganization, mucus hypersecretion, and extracellular matrix deposition. Dendritic cells (DCs) exhibit attenuated antigen-presenting capacity in patients with advanced COPD. Immature DCs migrate into small airways, where they promote a pro-inflammatory microenvironment and bacterial colonization. In response to damage-associated molecular patterns (DAMPs) in lung tissue affected by COPD, neutrophils are excessively recruited and activated, where they promote a proteolytic microenvironment and fibrotic repair in small airways. Macrophages exhibit decreased phagocytosis in the large airways, while they demonstrate high pro-inflammatory potential in the small airways, and mediate alveolar destruction and chronic airway inflammation. Natural killer T (NKT) cells, eosinophils, and mast cells also play supplementary roles in COPD progression; however, their cellular activities are not yet entirely clear. Overall, during COPD progression, “exhausted” innate immune responses can be observed in the large airways. On the other hand, the innate immune response is enhanced in the small airways. Approaches that inhibit the inflammatory cascade, chemotaxis, or the activation of inflammatory cells could possibly delay the progression of airway remodeling in COPD, and may thus have potential clinical significance.
Collapse
Affiliation(s)
- Tegeleqi Bu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Li Fang Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yi Qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
14
|
Majka SM, Rojas M, Petrache I, Foronjy RF. Mesenchymal Regulation of the Microvascular Niche in Chronic Lung Diseases. Compr Physiol 2019; 9:1431-1441. [PMID: 31688970 DOI: 10.1002/cphy.c180043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The adult lung is comprised of diverse vascular, epithelial, and mesenchymal progenitor cell populations that reside in distinct niches. Mesenchymal progenitor cells (MPCs) are intimately associated with both the epithelium and the vasculature, and new evidence is emerging to describe their functional roles in these niches. Also emerging, following lineage analysis and single cell sequencing, is a new understanding of the diversity of mesenchymal cell subpopulations in the lung. However, several gaps in knowledge remain, including how newly defined MPC lineages interact with cells in the vascular niche and the role of adult lung MPCs during lung repair and regeneration following injury, especially in chronic lung diseases. Here we summarize how the current evidence on MPC regulation of the microvasculature during tissue homeostasis and injury may inform studies on understanding their role in chronic lung disease pathogenesis or repair. © 2019 American Physiological Society. Compr Physiol 9:1431-1441, 2019.
Collapse
Affiliation(s)
- Susan M Majka
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Mauricio Rojas
- McGowan Institute for Regenerative Medicine, Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Robert F Foronjy
- Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
15
|
Gu BH, Sprouse ML, Madison MC, Hong MJ, Yuan X, Tung HY, Landers CT, Song LZ, Corry DB, Bettini M, Kheradmand F. A Novel Animal Model of Emphysema Induced by Anti-Elastin Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:349-359. [PMID: 31182478 PMCID: PMC6688643 DOI: 10.4049/jimmunol.1900113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Loss of immune tolerance to self-antigens can promote chronic inflammation and disrupt the normal function of multiple organs, including the lungs. Degradation of elastin, a highly insoluble protein and a significant component of the lung structural matrix, generates proinflammatory molecules. Elastin fragments (EFs) have been detected in the serum of smokers with emphysema, and elastin-specific T cells have also been detected in the peripheral blood of smokers with emphysema. However, an animal model that could recapitulate T cell-specific autoimmune responses by initiating and sustaining inflammation in the lungs is lacking. In this study, we report an animal model of autoimmune emphysema mediated by the loss of tolerance to elastin. Mice immunized with a combination of human EFs plus rat EFs but not mouse EFs showed increased infiltration of innate and adaptive immune cells to the lungs and developed emphysema. We cloned and expanded mouse elastin-specific CD4+ T cells from the lung and spleen of immunized mice. Finally, we identified TCR sequences from the autoreactive T cell clones, suggesting possible pathogenic TCRs that can cause loss of immune tolerance against elastin. This new autoimmune model of emphysema provides a useful tool to examine the immunological factors that promote loss of immune tolerance to self.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Maran L Sprouse
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Matthew C Madison
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Monica J Hong
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Xiaoyi Yuan
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Hui-Ying Tung
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Cameron T Landers
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Li-Zhen Song
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - David B Corry
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Maria Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030;
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030;
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
16
|
Qi X, Chen H, Fu B, Huang Z, Mou Y, Liu J, Xu Y, Xiong W, Cao Y. LncRNAs NR-026690 and ENST00000447867 are upregulated in CD4 + T cells in patients with acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:699-711. [PMID: 30988604 PMCID: PMC6440447 DOI: 10.2147/copd.s191815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The aim of the study was to determine the expression profile of long noncoding RNAs (lncRNAs) in CD4+ T cells from COPD patients and explore the clinical value of the lncRNAs. Methods First, microarray analysis was performed. Differentially expressed lncRNAs were validated by quantitative real-time reverse transcription-PCR (qRT-PCR) in samples from 56 patients with acute exacerbations of COPD (AECOPD), 56 patients with stable COPD, and 35 healthy controls. Meanwhile, the clinical value was tested by receiver operating characteristic curve analysis. The functions of lncRNAs were analyzed by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database. The potential target genes that might be regulated by NR-026690 and ENST00000447867 were identified by the lncRNA-mRNA network and competing endogenous RNA network. The transcriptional expression level of rap guanine nucleotide exchange factor 3 (RAPGEF3) was tested by qRT-PCR. The correlation of the expression between NR-026690, ENST00000447867, and RAPGEF3 was analyzed by Spearman's correlation test. Results We found that the relative expression levels of ENST00000447867 and NR-026690 in the CD4+ T cells of AECOPD patients were significantly higher than in the stable COPD patients and control subjects by microarray and qRT-PCR validation. The transcriptional expression level of RAPGEF3 in the CD4+ T cells was significantly higher in the AECOPD group compared to the control group (P<0.01) and the stable COPD group (P<0.05). RAPGEF3 expression was positively associated with NR-026690 (r=0.4925, P<0.01) and ENST00000447867 (r=0.4065, P<0.01). Conclusion NR-026690 and ENST00000447867 might be potential biomarkers for COPD. They might affect RAPGEF3 as miRNA sponges to regulate COPD development.
Collapse
Affiliation(s)
- Xuefei Qi
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Huilong Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Bohua Fu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Zhenli Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Yong Mou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Juan Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| | - Yong Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, China,
| |
Collapse
|
17
|
Poggio HA, Antunes MA, Rocha NN, Kitoko JZ, Morales MM, Olsen PC, Lopes-Pacheco M, Cruz FF, Rocco PRM. Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Res Ther 2018; 9:296. [PMID: 30409216 PMCID: PMC6225700 DOI: 10.1186/s13287-018-1043-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background A single administration of mesenchymal stromal cells (MSCs) has been shown to reduce lung inflammation in experimental elastase-induced emphysema; however, effects were limited in terms of lung-tissue repair and cardiac function improvement. We hypothesized that two doses of MSCs could induce further lung and cardiovascular repair by mitigating inflammation and remodeling in a model of emphysema induced by multiple elastase instillations. We aimed to comparatively investigate the effects of one versus two doses of MSCs, administered 1 week apart, in a murine model of elastase-induced emphysema. Methods C57BL/6 mice were randomly divided into control (CTRL) and emphysema (E) groups. Mice in the E group received porcine pancreatic elastase (0.2 IU, 50 μL) intratracheally once weekly for four consecutive weeks; the CTRL animals received sterile saline (50 μL) using the same protocol. Three hours after the last instillation, the E group was further randomized to receive either saline (SAL) or murine MSCs (105 cells) intratracheally, in one or two doses (1 week apart). Fourteen days later, mice were euthanized, and all data analyzed. Results Both one and two doses of MSCs improved lung mechanics, reducing keratinocyte-derived chemokine and transforming growth factor-β levels in lung homogenates, total cell and macrophage counts in bronchoalveolar lavage fluid (BALF), and collagen fiber content in airways and blood vessels, as well as increasing vascular endothelial growth factor in lung homogenates and elastic fiber content in lung parenchyma. However, only the two-dose group exhibited reductions in tumor necrosis factor-α in lung tissue, BALF neutrophil and lymphocyte count, thymus weight, and total cellularity, as well as CD8+ cell counts and cervical lymph node CD4+ and CD8+ T cell counts, as well as further increased elastic fiber content in the lung parenchyma and reduced severity of pulmonary arterial hypertension. Conclusions Two doses of MSCs enhanced lung repair and improvement in cardiac function, while inducing T cell immunosuppression, mainly of CD8+ cells, in elastase-induced emphysema.
Collapse
Affiliation(s)
- Hananda A Poggio
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Caramori G, Ruggeri P, Di Stefano A, Mumby S, Girbino G, Adcock IM, Kirkham P. Autoimmunity and COPD. Chest 2018; 153:1424-1431. [DOI: 10.1016/j.chest.2017.10.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/21/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023] Open
|
19
|
Jaat FG, Hasan SF, Perry A, Cookson S, Murali S, Perry JD, Lanyon CV, De Soyza A, Todryk SM. Anti-bacterial antibody and T cell responses in bronchiectasis are differentially associated with lung colonization and disease. Respir Res 2018; 19:106. [PMID: 29848315 PMCID: PMC5977760 DOI: 10.1186/s12931-018-0811-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND As a way to determine markers of infection or disease informing disease management, and to reveal disease-associated immune mechanisms, this study sought to measure antibody and T cell responses against key lung pathogens and to relate these to patients' microbial colonization status, exacerbation history and lung function, in Bronchiectasis (BR) and Chronic Obstructive Pulmonary Disease (COPD). METHODS One hundred nineteen patients with stable BR, 58 with COPD and 28 healthy volunteers were recruited and spirometry was performed. Bacterial lysates were used to measure specific antibody responses by ELISA and T cells by ELIspot. Cytokine secretion by lysate-stimulated T cells was measured by multiplex cytokine assay whilst activation phenotype was measured by flow cytometry. RESULTS Typical colonization profiles were observed in BR and COPD, dominated by P.aeruginosa, H.influenzae, S.pneumoniae and M.catarrhalis. Colonization frequency was greater in BR, showing association with increased antibody responses against P.aeruginosa compared to COPD and HV, and with sensitivity of 73% and specificity of 95%. Interferon-gamma T cell responses against P.aeruginosa and S.pneumoniae were reduced in BR and COPD, whilst reactive T cells in BR had similar markers of homing and senescence compared to healthy volunteers. Exacerbation frequency in BR was associated with increased antibodies against P. aeruginosa, M.catarrhalis and S.maltophilia. T cell responses against H.influenzae showed positive correlation with FEV1% (r = 0.201, p = 0.033) and negative correlation with Bronchiectasis Severity Index (r = - 0.287, p = 0.0035). CONCLUSION Our findings suggest a difference in antibody and T cell immunity in BR, with antibody being a marker of exposure and disease in BR for P.aeruginosa, M.catarrhalis and H.influenzae, and T cells a marker of reduced disease for H.influenzae.
Collapse
Affiliation(s)
- Fathia G Jaat
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.,Zawia University, Zawia, Libya
| | - Sajidah F Hasan
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.,College of Pharmacy, University of Kerbala, Kerbala, Iraq
| | - Audrey Perry
- Department of Microbiology, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Sharon Cookson
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Santosh Murali
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - John D Perry
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.,Department of Microbiology, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Clare V Lanyon
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Anthony De Soyza
- Adult Bronchiectasis Service, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephen M Todryk
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK. .,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
20
|
Sakornsakolpat P, Morrow JD, Castaldi PJ, Hersh CP, Bossé Y, Silverman EK, Manichaikul A, Cho MH. Integrative genomics identifies new genes associated with severe COPD and emphysema. Respir Res 2018; 19:46. [PMID: 29566699 PMCID: PMC5863845 DOI: 10.1186/s12931-018-0744-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified several genetic risk loci for severe chronic obstructive pulmonary disease (COPD) and emphysema. However, these studies do not fully explain disease heritability and in most cases, fail to implicate specific genes. Integrative methods that combine gene expression data with GWAS can provide more power in discovering disease-associated genes and give mechanistic insight into regulated genes. METHODS We applied a recently described method that imputes gene expression using reference transcriptome data to genome-wide association studies for two phenotypes (severe COPD and quantitative emphysema) and blood and lung tissue gene expression datasets. We further tested the potential causality of individual genes using multi-variant colocalization. RESULTS We identified seven genes significantly associated with severe COPD, and five genes significantly associated with quantitative emphysema in whole blood or lung. We validated results in independent transcriptome databases and confirmed colocalization signals for PSMA4, EGLN2, WNT3, DCBLD1, and LILRA3. Three of these genes were not located within previously reported GWAS loci for either phenotype. We also identified genetically driven pathways, including those related to immune regulation. CONCLUSIONS An integrative analysis of GWAS and gene expression identified novel associations with severe COPD and quantitative emphysema, and also suggested disease-associated genes in known COPD susceptibility loci. TRIAL REGISTRATION NCT00608764 , Registry: ClinicalTrials.gov, Date of Enrollment of First Participant: November 2007, Date Registered: January 28, 2008 (retrospectively registered); NCT00292552 , Registry: ClinicalTrials.gov, Date of Enrollment of First Participant: December 2005, Date Registered: February 14, 2006 (retrospectively registered).
Collapse
Affiliation(s)
- Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
- Division of General Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA
| | - Ani Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics and Biostatistics Section, University of Virginia, Charlottesville, VA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Room 451, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Mark NM, Kargl J, Busch SE, Yang GHY, Metz HE, Zhang H, Hubbard JJ, Pipavath SNJ, Madtes DK, Houghton AM. Chronic Obstructive Pulmonary Disease Alters Immune Cell Composition and Immune Checkpoint Inhibitor Efficacy in Non-Small Cell Lung Cancer. Am J Respir Crit Care Med 2018; 197:325-336. [PMID: 28934595 PMCID: PMC5803651 DOI: 10.1164/rccm.201704-0795oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) are interrelated diseases with substantial mortality, and the pathogenesis of both involves aberrant immune functioning. OBJECTIVES To profile immune cell composition and function in patients with NSCLC and describe the effects of COPD on lung and tumor microenvironments. METHODS We profiled resected lung and tumor tissue using flow cytometry and T-cell receptor sequencing in patients with and without COPD from a prospective cohort of patients undergoing resection of NSCLC. A murine cigarette smoke exposure model was used to evaluate the effect on pulmonary immune populations. A separate retrospective cohort of patients who received immune checkpoint inhibitors (ICIs) was analyzed, and their survival was quantified. MEASUREMENTS AND MAIN RESULTS We observed an increased number of IFN-γ-producing CD8+ and CD4+ (T-helper cell type 1 [Th1]) lymphocytes in the lungs of patients with COPD. In both humans and mice, increased Th17 content was seen with smoke exposure, but was not associated with the development or severity of COPD. COPD-affected lung tissue displayed increased Th1 differentiation that was recapitulated in the matching tumor sample. PD-1 (programmed cell death protein 1) expression was increased in tumors of patients with COPD, and the presence of COPD was associated with progression-free survival in patients treated with ICIs. CONCLUSIONS In patients with COPD, Th1 cell populations were expanded in both lung and tumor microenvironments, and the presence of COPD was associated with longer progression-free intervals in patients treated with ICIs. This has implications for understanding the immune mediators of COPD and developing novel therapies for NSCLC.
Collapse
Affiliation(s)
- Nicholas M. Mark
- Division of Pulmonary and Critical Care, and
- Clinical Research Division and
| | - Julia Kargl
- Clinical Research Division and
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | - David K. Madtes
- Division of Pulmonary and Critical Care, and
- Clinical Research Division and
| | - A. McGarry Houghton
- Division of Pulmonary and Critical Care, and
- Clinical Research Division and
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; and
| |
Collapse
|
22
|
Yadava K, Pattaroni C, Sichelstiel AK, Trompette A, Gollwitzer ES, Salami O, von Garnier C, Nicod LP, Marsland BJ. Microbiota Promotes Chronic Pulmonary Inflammation by Enhancing IL-17A and Autoantibodies. Am J Respir Crit Care Med 2017; 193:975-87. [PMID: 26630356 DOI: 10.1164/rccm.201504-0779oc] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease (COPD). Whether there is a causal relationship between these changes and disease progression remains unknown. OBJECTIVES To investigate the link between an altered microbiota and disease, we used a murine model of chronic lung inflammation that is characterized by key pathological features found in COPD and compared responses in specific pathogen-free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). METHODS Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage, and decline in lung function were quantified. MEASUREMENTS AND MAIN RESULTS Similar to human disease, the composition of the pulmonary microbiota was altered in diseased animals. We found that the microbiota richness and diversity were decreased in LPS/elastase-treated mice, with an increased representation of the genera Pseudomonas and Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted, or devoid, of microbiota exhibited an improvement in lung function, reduced inflammation, and lymphoid neogenesis. The absence of microbial cues markedly decreased the production of IL-17A, whereas intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic-treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. CONCLUSIONS Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.
Collapse
Affiliation(s)
- Koshika Yadava
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland.,2 Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Céline Pattaroni
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland
| | - Anke K Sichelstiel
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland
| | - Aurélien Trompette
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland
| | - Eva S Gollwitzer
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland
| | - Olawale Salami
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland
| | - Christophe von Garnier
- 3 Department of Respiratory Medicine, Inselspital, Bern University Hospital, Bern, Switzerland; and.,4 Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Laurent P Nicod
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland
| | - Benjamin J Marsland
- 1 Service de Pneumologie, Faculté de Biologie et de Médecine, Centre Hospitalier Universitaire Vaudoise-Université Lausanne Lausanne, Switzerland
| |
Collapse
|
23
|
Faner R, Cruz T, Casserras T, López-Giraldo A, Noell G, Coca I, Tal-Singer R, Miller B, Rodriguez-Roisin R, Spira A, Kalko SG, Agustí A. Network Analysis of Lung Transcriptomics Reveals a Distinct B-Cell Signature in Emphysema. Am J Respir Crit Care Med 2017; 193:1242-53. [PMID: 26735770 DOI: 10.1164/rccm.201507-1311oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation caused by a combination of airways disease (bronchiolitis) and parenchymal destruction (emphysema), whose relative proportion varies from patient to patient. OBJECTIVES To explore and contrast the molecular pathogenesis of emphysema and bronchiolitis in COPD. METHODS We used network analysis of lung transcriptomics (Affymetrix arrays) in 70 former smokers with COPD to compare differential expression and gene coexpression in bronchiolitis and emphysema. MEASUREMENTS AND MAIN RESULTS We observed that in emphysema (but not in bronchiolitis) (1) up-regulated genes were enriched in ontologies related to B-cell homing and activation; (2) the immune coexpression network had a central core of B cell-related genes; (3) B-cell recruitment and immunoglobulin transcription genes (CXCL13, CCL19, and POU2AF1) correlated with emphysema severity; (4) there were lymphoid follicles (CD20(+)IgM(+)) with active B cells (phosphorylated nuclear factor-κB p65(+)), proliferation markers (Ki-67(+)), and class-switched B cells (IgG(+)); and (5) both TNFRSF17 mRNA and B cell-activating factor protein were up-regulated. These findings were by and large reproduced in a group of patients with incipient emphysema and when patients with emphysema were matched for the severity of airflow limitation of those with bronchiolitis. CONCLUSIONS Our study identifies enrichment in B cell-related genes in patients with COPD with emphysema that is absent in bronchiolitis. These observations contribute to a better understanding of COPD pathobiology and may open new therapeutic opportunities for patients with COPD.
Collapse
Affiliation(s)
- Rosa Faner
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Tamara Cruz
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Teresa Casserras
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alejandra López-Giraldo
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Guillaume Noell
- 2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ignacio Coca
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | | | | | - Roberto Rodriguez-Roisin
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| | - Avrum Spira
- 6 Boston University School of Medicine, Boston, Massachusetts
| | - Susana G Kalko
- 3 Bioinformatics Platform Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alvar Agustí
- 1 Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain.,2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain.,5 Respiratory Institute, Pulmonary Service, Hospital Clinic, Institut d'investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; and
| |
Collapse
|
24
|
Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet 2017; 389:1931-1940. [PMID: 28513453 DOI: 10.1016/s0140-6736(17)31222-9] [Citation(s) in RCA: 679] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) kills more than 3 million people worldwide every year. Despite progress in the treatment of symptoms and prevention of acute exacerbations, few advances have been made to ameliorate disease progression or affect mortality. A better understanding of the complex disease mechanisms resulting in COPD is needed. Smoking cessation programmes, increasing physical activity, and early detection and treatment of comorbidities are further key components to reduce the burden of the disease. However, without a global political and economic effort to reduce tobacco use, to regulate environmental exposure, and to find alternatives to the massive use of biomass fuel, COPD will remain a major health-care problem for decades to come.
Collapse
Affiliation(s)
- Klaus F Rabe
- LungenClinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, Grosshansdorf, Germany; Department of Medicine, Christian Albrechts University Kiel, Kiel, Germany.
| | - Henrik Watz
- Pulmonary Research Institute, Airway Research Centre North, German Centre for Lung Research, Grosshansdorf, Germany
| |
Collapse
|
25
|
Neutrophilic Inflammation in the Immune Responses of Chronic Obstructive Pulmonary Disease: Lessons from Animal Models. J Immunol Res 2017; 2017:7915975. [PMID: 28536707 PMCID: PMC5426078 DOI: 10.1155/2017/7915975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation.
Collapse
|
26
|
Thayaparan D, Shen P, Stämpfli MR, Morissette MC. Induction of pulmonary antibodies against oxidized lipids in mice exposed to cigarette smoke. Respir Res 2016; 17:97. [PMID: 27488019 PMCID: PMC4973059 DOI: 10.1186/s12931-016-0416-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chronic cigarette smoke exposure is known to activate the adaptive immune system; however, the functional role of these processes is currently unknown. Given the role of oxidized lipids in driving innate inflammatory responses to cigarette smoke, we investigated whether an adaptive immune response against damaged lipids was induced following chronic cigarette smoke exposure. METHODS AND RESULTS Using a well-established mouse model, we showed that cigarette smoke exposure led to a progressive increase in pulmonary antibodies against oxidized low-density lipoprotein (OxLDL). Functionally, we found that intranasal delivery of an antibody against oxidized phosphatidylcholine (anti-OxPC; clone E06) increased lipid and particle uptake by pulmonary macrophages without exacerbating cigarette smoke-induced neutrophilia. We also found that anti-OxPC treatment increased particle uptake following smoking cessation. Finally, the frequency of pulmonary macrophages with internalized particles was increased after prolonged smoke exposure, at which time lung anti-OxPC responses were highest. CONCLUSIONS Altogether, this is the first report to demonstrate a non-pathogenic, and possibly protective, function of a newly identified autoantibody induced by chronic cigarette smoke exposure.
Collapse
Affiliation(s)
- Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Pamela Shen
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Mathieu C Morissette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725, Chemin Ste-Foy, G1V 4G5, Quebec City, PQ, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
27
|
Chen Y, Bai P, Liu L, Han J, Zeng H, Sun Y. Increased RANKL expression in peripheral T cells is associated with decreased bone mineral density in patients with COPD. Int J Mol Med 2016; 38:585-93. [PMID: 27279356 DOI: 10.3892/ijmm.2016.2629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/20/2016] [Indexed: 11/05/2022] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL)-expressing adaptive T cells contribute to bone damage in autoimmune arthritis, although their role in chronic obstructive pulmonary disease (COPD)-associated osteoporosis is unknown. In the present study, the functional expression of RANKL in CD4+/CD8+ T cells and Th17 cells, and the potential role of these cells in COPD-associated bone loss was investigated. A total of 36 non-smokers, 38 smokers with normal lung function and 57 patients with COPD were enrolled. Femoral and vertebral bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. RANKL expression in peripheral CD4+ and CD8+ T cells and Th17 cells was evaluated by flow cytometry. For in vitro experiments, CD4+ and CD8+ T cells from 17 non-smokers were evaluated for RANKL expression following dose-dependent culture with cigarette smoke extract (CSE) for 5 days. The frequencies of RANKL-positive CD4+ and CD8+ T cells were higher in the patients with COPD than in the non-smokers (P=0.001 and P=0.002, respectively). The proportion of CD4+ T cells positive for both RANKL and interleukin-17 (IL-17) was higher in the patients with COPD than in the non-smokers (P=0.010). However, the frequency of RANKL-expressing Th17 cells was similar among all groups (P=0.508). The frequency of RANKL+CD4+ T cells inversely correlated with BMD of the lumbar vertebrae (P=0.01, r=-0.229), and that of the femoral neck (P<0.001, r=-0.350). The results of our in vitro experiments revealed that CSE increased RANKL expression in CD4+ T cells only. The percentages of RANKL-positive CD4+ T cells and RANKL- and IL-17 double-positive CD4+ T cells were increased in the peripheral blood of patients with COPD, and the former were associated with BMD. These observations suggest that RANKL+CD4+ T cells may be mechanistically linked to diseases of the lung and bone in patients with COPD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Peng Bai
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Lili Liu
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Junyan Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yongchang Sun
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
28
|
Solleiro-Villavicencio H, Quintana-Carrillo R, Falfán-Valencia R, Vargas-Rojas MI. Chronic obstructive pulmonary disease induced by exposure to biomass smoke is associated with a Th2 cytokine production profile. Clin Immunol 2015; 161:150-5. [PMID: 26220216 DOI: 10.1016/j.clim.2015.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 01/25/2023]
Abstract
Smoking and exposure to biomass smoke induce the release of pro-inflammatory mediators and the activation of T helper cells. The resulting inflammatory response contributes to the development of COPD. Clinical heterogeneity exists among COPD patients, particularly between patients with disease associated with tobacco smoking (TS-COPD) and those exposed to biomass smoke (BE-COPD). The aim of this study was to identify whether exposure to tobacco and biomass smokes promotes different Th responses that contribute to clinical variability. The study only included women. The frequency of Th17 cells in patients with TS-COPD was significantly higher than in patients with BE-COPD and healthy controls (HC). In contrast, patients with BE-COPD had higher levels of Th2 cells than TS-COPD and HC. In accordance, IL-4 serum concentration was higher in BE-COPD than in TS-COPD. Our data indicates that the different responses induced by these two irritants may underlie the clinical heterogeneity between TS- and BE-COPD patients.
Collapse
Affiliation(s)
- Helena Solleiro-Villavicencio
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México,Mexico City, Mexico.
| | - Roger Quintana-Carrillo
- Departamento de Investigación sobre Tabaco, Instituto Nacional de Salud Pública, Cuernavaca, Mexico.
| | - Ramcés Falfán-Valencia
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.
| | - María Inés Vargas-Rojas
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México,Mexico City, Mexico; Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.
| |
Collapse
|
29
|
King PT, Bardin PG, Holdsworth SR. The lung immune response to bacteria in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 192:902-3. [PMID: 26426789 DOI: 10.1164/rccm.201506-1117le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Paul T King
- 1 Monash Medical Centre Melbourne, Australia and.,2 Monash University Melbourne, Australia
| | - Philip G Bardin
- 1 Monash Medical Centre Melbourne, Australia and.,2 Monash University Melbourne, Australia
| | - Stephen R Holdsworth
- 1 Monash Medical Centre Melbourne, Australia and.,2 Monash University Melbourne, Australia
| |
Collapse
|
30
|
Newton AH, Danahy DB, Chan MA, Benedict SH. Timely blockade of ICAM-1.LFA-1 interaction prevents disease onset in a mouse model of emphysema. Immunotherapy 2015; 7:621-9. [PMID: 26098520 DOI: 10.2217/imt.15.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM It is becoming apparent that emphysema is partly driven by self-reactive T cells inducing inflammatory damage. Thus, T cells become targets for therapy similar to other autoimmune diseases. Costimulatory blockade therapy targets disease-specific T cells, rendering them ineffective by blocking a necessary costimulatory event on the T-cell surface. This therapy is tested here in mouse emphysema. MATERIALS & METHODS Peptides representing contact domains of counter receptors LFA-1 and ICAM-1 were used as blockade therapy in elastase-induced emphysema. RESULTS When administered during the first week after disease induction, blockade prevented lung destruction, reduced leukocyte infiltration and inhibited the decrease in T-cell CD4:CD8 ratio, also common in human emphysema. CONCLUSION Costimulatory blockade therapy can affect the progress of emphysema.
Collapse
Affiliation(s)
- Amy H Newton
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA.,Present address: Beirne B Carter Center for Immunology Research, Department of Microbiology, University of Virginia, VA, USA
| | - Derek B Danahy
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA.,Present address: Graduate Program in Immunology, University of Iowa, IA, USA
| | - Marcia A Chan
- Division of Allergy, Asthma & Immunology, Children's Mercy Hospitals & Clinics, MO, USA
| | - Stephen H Benedict
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
31
|
Daffa NI, Tighe PJ, Corne JM, Fairclough LC, Todd I. Natural and disease-specific autoantibodies in chronic obstructive pulmonary disease. Clin Exp Immunol 2015; 180:155-63. [PMID: 25469980 PMCID: PMC4367103 DOI: 10.1111/cei.12565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 12/01/2022] Open
Abstract
Autoimmunity may contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Studies have identified disease-specific autoantibodies (DSAAbs) in COPD patients, but natural autoantibodies (NAAbs) may also play a role. Previous studies have concentrated on circulating autoantibodies, but lung-associated autoantibodies may be most important. Our aim was to investigate NAAbs and DSAAbs in the circulation and lungs of COPD smoking (CS) patients compared to smokers (S) without airway obstruction and subjects who have never smoked (NS). Immunoglobulin (Ig)G antibodies that bind to lung tissue components were significantly lower in the circulation of CS patients than NS (with intermediate levels in S), as detected by enzyme-linked immunosorbent assay (ELISA). The levels of antibodies to collagen-1 (the major lung collagen) detected by ELISA were also reduced significantly in CS patients’ sera compared to NS. The detection of these antibodies in NS subjects indicates that they are NAAbs. The occurrence of DSAAbs in some CS patients and S subjects was indicated by high levels of serum IgG antibodies to cytokeratin-18 and collagen-5; furthermore, antibodies to collagen-5 eluted from homogenized lung tissue exposed to low pH (0·1 M glycine, pH 2·8) were raised significantly in CS compared to S and NS. Thus, this study supports a role in COPD for both NAAbs and DSAAbs.
Collapse
Affiliation(s)
- N I Daffa
- School of Life Sciences, University of Nottingham, Nottingham, UK; Medical Microbiology Department, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
32
|
Dima E, Koltsida O, Katsaounou P, Vakali S, Koutsoukou A, Koulouris NG, Rovina N. Implication of Interleukin (IL)-18 in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cytokine 2015; 74:313-7. [PMID: 25922275 DOI: 10.1016/j.cyto.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-18 is a pro-inflammatory cytokine that was firstly described as an interferon (IFN)-γ-inducing factor. Similar to IL-1β, IL-18 is synthesized as an inactive precursor requiring processing by caspase-1 into an active cytokine. The platform for activating caspase-1 is known as the inflammasome, a multiple protein complex. Macrophages and dendritic cells are the primary sources for the release of active IL-18, whereas the inactive precursor remains in the intracellular compartment of mesenchymal cells. Finally, the IL-18 precursor is released from dying cells and processed extracellularly. IL-18 has crucial host defense and antitumor activities, and gene therapy to increase IL-18 levels in tissues protects experimental animals from infection and tumor growth and metastasis. Moreover, multiple studies in experimental animal models have shown that IL-18 over-expression results to emphysematous lesions in mice. The published data prompt to the hypothesis that IL-18 induces a broad spectrum of COPD-like inflammatory and remodeling responses in the murine lung and also induces a mixed type 1, type 2, and type 17 cytokine responses. The majority of studies identify IL-18 as a potential target for future COPD therapeutics to limit both the destructive and remodeling processes occurring in COPD lungs.
Collapse
Affiliation(s)
- Efrossini Dima
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Ourania Koltsida
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Paraskevi Katsaounou
- Pumonary Department, Intensive Care Medicine, Evaggelismos Hospital, Medical School, University of Athens, Greece
| | - Sofia Vakali
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Antonia Koutsoukou
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Nikolaos G Koulouris
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and "Sotiria" Chest Disease Hospital, 11527 Athens, Greece.
| |
Collapse
|
33
|
Baraldo S, Turato G, Lunardi F, Bazzan E, Schiavon M, Ferrarotti I, Molena B, Cazzuffi R, Damin M, Balestro E, Luisetti M, Rea F, Calabrese F, Cosio MG, Saetta M. Immune Activation in α1-Antitrypsin-Deficiency Emphysema. Beyond the Protease–Antiprotease Paradigm. Am J Respir Crit Care Med 2015; 191:402-9. [DOI: 10.1164/rccm.201403-0529oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
34
|
Freeman CM, Crudgington S, Stolberg VR, Brown JP, Sonstein J, Alexis NE, Doerschuk CM, Basta PV, Carretta EE, Couper DJ, Hastie AT, Kaner RJ, O'Neal WK, Paine R, Rennard SI, Shimbo D, Woodruff PG, Zeidler M, Curtis JL. Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). J Transl Med 2015; 13:19. [PMID: 25622723 PMCID: PMC4314767 DOI: 10.1186/s12967-014-0374-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/26/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a multi-center longitudinal, observational study to identify novel phenotypes and biomarkers of chronic obstructive pulmonary disease (COPD). In a subset of 300 subjects enrolled at six clinical centers, we are performing flow cytometric analyses of leukocytes from induced sputum, bronchoalveolar lavage (BAL) and peripheral blood. To minimize several sources of variability, we use a "just-in-time" design that permits immediate staining without pre-fixation of samples, followed by centralized analysis on a single instrument. METHODS The Immunophenotyping Core prepares 12-color antibody panels, which are shipped to the six Clinical Centers shortly before study visits. Sputum induction occurs at least two weeks before a bronchoscopy visit, at which time peripheral blood and bronchoalveolar lavage are collected. Immunostaining is performed at each clinical site on the day that the samples are collected. Samples are fixed and express shipped to the Immunophenotyping Core for data acquisition on a single modified LSR II flow cytometer. Results are analyzed using FACS Diva and FloJo software and cross-checked by Core scientists who are blinded to subject data. RESULTS Thus far, a total of 152 sputum samples and 117 samples of blood and BAL have been returned to the Immunophenotyping Core. Initial quality checks indicate useable data from 126 sputum samples (83%), 106 blood samples (91%) and 91 BAL samples (78%). In all three sample types, we are able to identify and characterize the activation state or subset of multiple leukocyte cell populations (including CD4+ and CD8+ T cells, B cells, monocytes, macrophages, neutrophils and eosinophils), thereby demonstrating the validity of the antibody panel. CONCLUSIONS Our study design, which relies on bi-directional communication between clinical centers and the Core according to a pre-specified protocol, appears to reduce several sources of variability often seen in flow cytometric studies involving multiple clinical sites. Because leukocytes contribute to lung pathology in COPD, these analyses will help achieve SPIROMICS aims of identifying subgroups of patients with specific COPD phenotypes. Future analyses will correlate cell-surface markers on a given cell type with smoking history, spirometry, airway measurements, and other parameters. TRIAL REGISTRATION This study was registered with ClinicalTrials.gov as NCT01969344 .
Collapse
Affiliation(s)
- Christine M Freeman
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Sean Crudgington
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Valerie R Stolberg
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| | - Jeanette P Brown
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Joanne Sonstein
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, Chapel Hill, NC, 27599, USA.
| | - Claire M Doerschuk
- Center for Airways Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Patricia V Basta
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Elizabeth E Carretta
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - David J Couper
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Annette T Hastie
- Center for Genomics and Personalized Medicine, Wake Forest University, Winston-Salem, NC, 27157, USA.
| | - Robert J Kaner
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Genetic Medicine, Weill Cornell Medical College, New York, NY, 10021, USA.
| | - Wanda K O'Neal
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Robert Paine
- Division of Pulmonary, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, 84112, USA.
| | - Stephen I Rennard
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Daichi Shimbo
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California at San Francisco, San Francisco, CA, 94143, USA.
| | - Michelle Zeidler
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jeffrey L Curtis
- Pulmonary & Critical Care Medicine Section, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
- Pulmonary and Critical Care Medicine Section (506/111G), Department of Veterans Affairs Healthsystem, 2215 Fuller Road, Ann Arbor, MI, 48105-2303, USA.
| |
Collapse
|
35
|
Li X, Wang J, Cao J, Ma L, Xu J. Immunoregulation of Bone Marrow-Derived Mesenchymal Stem Cells on the Chronic Cigarette Smoking-Induced Lung Inflammation in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:932923. [PMID: 26665150 PMCID: PMC4667063 DOI: 10.1155/2015/932923] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 12/29/2022]
Abstract
Impact of bone mesenchymal stem cell (BMSC) transfusion on chronic smoking-induced lung inflammation is poorly understood. In this study, a rat model of smoking-related lung injury was induced and the rats were treated with vehicle or BMSCs for two weeks. Different subsets of CD4+ T cells, cytokines, and anti-elastin in the lungs as well as the lung injury were characterized. Serum and lung inducible nitric oxide synthase (iNOS) and STAT5 phosphorylation in lymphocytes from lung tissue were also analyzed. Results indicated that transfusion of BMSCs significantly reduced the chronic smoking-induced lung injury, inflammation, and levels of lung anti-elastin in rats. The frequency of Th1 and Th17 cells and the levels of IL-2, IL-6, IFN-γ, TNF-α, IL-17, IP-10, and MCP-1 increased, but the frequency of Tregs and IL-10 decreased. Transfusion of BMSCs significantly modulated the imbalance of immune responses by mitigating chronic smoking-increased Th1 and Th17 responses, but enhancing Treg responses in the lungs of rats. Transfusion of BMSCs limited chronic smoking-related reduction in the levels of serum and lung iNOS and mitigated smoking-induced STAT5 phosphorylation in lymphocytes from lung tissue. BMSCs negatively regulated smoking-induced autoimmune responses in the lungs of rats and may be promising for the intervention of chronic smoking-related lung injury.
Collapse
Affiliation(s)
- Xiaoyan Li
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Respiratory Medicine, Shanxi DAYI Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Junyan Wang
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Cao
- Department of Respiratory Medicine, Shanxi DAYI Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Lijuan Ma
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Jianying Xu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Respiratory Medicine, Shanxi DAYI Hospital of Shanxi Medical University, Taiyuan 030032, China
- *Jianying Xu:
| |
Collapse
|
36
|
Bi H, Zhou J, Wu D, Gao W, Li L, Yu L, Liu F, Huang M, Adcock IM, Barnes PJ, Yao X. Microarray analysis of long non-coding RNAs in COPD lung tissue. Inflamm Res 2014; 64:119-26. [DOI: 10.1007/s00011-014-0790-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022] Open
|
37
|
Human CD56+ cytotoxic lung lymphocytes kill autologous lung cells in chronic obstructive pulmonary disease. PLoS One 2014; 9:e103840. [PMID: 25078269 PMCID: PMC4117545 DOI: 10.1371/journal.pone.0103840] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/05/2014] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED CD56+ natural killer (NK) and CD56+ T cells, from sputum or bronchoalveolar lavage of subjects with chronic obstructive pulmonary disease (COPD) are more cytotoxic to highly susceptible NK targets than those from control subjects. Whether the same is true in lung parenchyma, and if NK activity actually contributes to emphysema progression are unknown. To address these questions, we performed two types of experiments on lung tissue from clinically-indicated resections (n = 60). First, we used flow cytometry on fresh single-cell suspension to measure expression of cell-surface molecules (CD56, CD16, CD8, NKG2D and NKp44) on lung lymphocytes and of the 6D4 epitope common to MICA and MICB on lung epithelial (CD326+) cells. Second, we sequentially isolated CD56+, CD8+ and CD4+ lung lymphocytes, co-cultured each with autologous lung target cells, then determined apoptosis of individual target cells using Annexin-V and 7-AAD staining. Lung NK cells (CD56+ CD3-) and CD56+ T cells (CD56+ CD3+) were present in a range of frequencies that did not differ significantly between smokers without COPD and subjects with COPD. Lung NK cells had a predominantly "cytotoxic" CD56+ CD16+ phenotype; their co-expression of CD8 was common, but the percentage expressing CD8 fell as FEV1 % predicted decreased. Greater expression by autologous lung epithelial cells of the NKG2D ligands, MICA/MICB, but not expression by lung CD56+ cells of the activating receptor NKG2D, correlated inversely with FEV1 % predicted. Lung CD56+ lymphocytes, but not CD4+ or CD8+ conventional lung T cells, rapidly killed autologous lung cells without additional stimulation. Such natural cytotoxicity was increased in subjects with severe COPD and was unexplained in multiple regression analysis by age or cancer as indication for surgery. These data show that as spirometry worsens in COPD, CD56+ lung lymphocytes exhibit spontaneous cytotoxicity of autologous structural lung cells, supporting their potential role in emphysema progression. TRIAL REGISTRATION ClinicalTrials.gov NCT00281229.
Collapse
|
38
|
Faner R, Cruz T, Agusti A. Immune response in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:821-33. [PMID: 24070046 DOI: 10.1586/1744666x.2013.828875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major public health problem because of its high prevalence, rising incidence and associated socio-economic cost. The inhalation of toxic particles and gases, mostly tobacco smoke, is the main risk factor for COPD. Yet, not all smokers are equally susceptible to these toxic effects and only a percentage of them develop the disease (so-called 'susceptible smokers'). This, in combination with the observation that COPD shows familial aggregation, suggests that the genetic background of the smoker is a key element in the pathogenesis of the disease. On the other hand, it is well established that 'susceptible' smokers exhibit an enhanced inflammatory response of the lung parenchyma as compared with 'resistant' smokers (i.e., those who manage to maintain lung function within the normal age range despite their habit). Importantly, in COPD patients this inflammatory response does not resolve after quitting smoking, again at variance with resistant smokers. All in all, these observations suggest that the pathogenesis of COPD may involve, in some patients, an autoimmune component which contributes to the enhanced and persistent inflammatory response that characterizes the disease. Here we: i) review briefly the pathobiology of COPD; ii) present the available scientific evidence supporting a potential role for autoimmunity in COPD; iii) propose a three-step pathogenic hypothesis in the transition from smoking to COPD; and iv) discuss potential implications for the diagnosis and treatment of this frequent, growing, devastating and costly disease.
Collapse
Affiliation(s)
- Rosa Faner
- FISIB, CIBER Enfermedades Respiratorias (CIBERES), Mallorca, Spain
| | | | | |
Collapse
|
39
|
Freeman CM, McCubbrey AL, Crudgington S, Nelson J, Martinez FJ, Han MK, Washko GR, Chensue SW, Arenberg DA, Meldrum CA, McCloskey L, Curtis JL. Basal gene expression by lung CD4+ T cells in chronic obstructive pulmonary disease identifies independent molecular correlates of airflow obstruction and emphysema extent. PLoS One 2014; 9:e96421. [PMID: 24805101 PMCID: PMC4013040 DOI: 10.1371/journal.pone.0096421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022] Open
Abstract
Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD) progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a) stimulation induced minimal IFN-γ or other inflammatory mediators, but many subjects produced more CCL2; (b) the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-γ production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry); by contrast, unstimulated IFN-γ transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent). Aberrant lung CD4+ T cells polarization appears to be common in advanced COPD, but also exists in some smokers with normal spirometry, and may contribute to development and progression of specific COPD phenotypes.
Collapse
Affiliation(s)
- Christine M. Freeman
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Alexandra L. McCubbrey
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sean Crudgington
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Joshua Nelson
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Fernando J. Martinez
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - MeiLan K. Han
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham & Womans Hospital and Harvard University, Boston, Massachusetts, United States of America
| | - Stephen W. Chensue
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Pathology and Laboratory Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Douglas A. Arenberg
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Catherine A. Meldrum
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Lisa McCloskey
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Jeffrey L. Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Pulmonary and Critical Care Medicine Section, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
40
|
Antal M, Braunitzer G, Mattheos N, Gyulai R, Nagy K. Smoking as a permissive factor of periodontal disease in psoriasis. PLoS One 2014; 9:e92333. [PMID: 24651659 PMCID: PMC3961310 DOI: 10.1371/journal.pone.0092333] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/21/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Population-based studies have identified smoking as a pathogenetic factor in chronic periodontitis. At the same time, chronic periodontal disease has also been found to occur more often in persons suffering from psoriasis than in controls with no psoriasis. It is known that smoking aggravates both periodontal disease and psoriasis, but so far it has not been investigated how smoking influences the occurrence and severity of periodontal disease in psoriasis. METHODS A hospital-based study was conducted to investigate this question. The study population consisted of 82 psoriasis patients and 89 controls. All patients received a full-mouth periodontal examination, and a published classification based on bleeding on probing, clinical attachment level and probing depth was utilized for staging. Both patients and controls were divided into smoker and non-smoker groups, and the resulting groups were compared in terms of periodontal status. Beyond the descriptive statistics, odds ratios were computed. RESULTS Psoriasis in itself increased the likelihood of severe periodontal disease to 4.373 (OR, as compared to non-smoker controls, p<0.05), while smoking increased it to 24.278 (OR, as compared to non-smoker controls, p<0.001) in the studied population. In other words, the risk of severe periodontal disease in psoriasis turned out to be six times higher in smokers than in non-smokers. CONCLUSIONS The results of this study corroborate those of other studies regarding the link between psoriasis and periodontal disease, but they also seem to reveal a powerful detrimental effect of smoking on the periodontal health of psoriasis patients, whereby the authors propose that smoking may have a permissive effect on the development of severe periodontal disease in psoriasis.
Collapse
Affiliation(s)
- Márk Antal
- University of Szeged, Faculty of Dentistry, Department of Operative and Esthetic Dentistry, Szeged, Hungary
| | - Gábor Braunitzer
- University of Szeged, Faculty of Dentistry, Department of Oral Surgery, Szeged, Hungary
| | - Nikos Mattheos
- The University of Hong Kong, Faculty of Dentistry, Department of Oral Rehabilitation, Hong Kong, SAR PR China
| | - Rolland Gyulai
- University of Szeged, Faculty of Medicine, Department of Dermatology and Allergology, Szeged, Hungary and University of Pécs, Department of Dermatology, Venerology and Oncodermatology, Pécs, Hungary
| | - Katalin Nagy
- University of Szeged, Faculty of Dentistry, Department of Oral Surgery, Szeged, Hungary
| |
Collapse
|
41
|
Chronic obstructive pulmonary disease (COPD): evaluation from clinical, immunological and bacterial pathogenesis perspectives. J Microbiol 2014; 52:211-26. [PMID: 24585052 DOI: 10.1007/s12275-014-4068-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/08/2014] [Indexed: 01/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), a disease manifested by significantly impaired airflow, afflicts ∼14.2 million cases in the United States alone with an estimated 63 million people world-wide. Although there are a number of causes, the predominant cause is excessive tobacco smoke. In fact, in China, there have been estimates of 315,000,000 people that smoke. Other less frequent causes are associated with indirect cigarette smoke, air pollutants, biomass fuels, and genetic mutations. COPD is often associated with heart disease, lung cancer, osteoporosis and conditions can worsen in patients with sudden falls. COPD also affects both innate and adaptive immune processes. Cigarette smoke increases the expression of matrix metalloproteases and proinflammatory chemokines and increases lung titers of natural killer cells and neutrophils. Yet, neutrophil reactive oxygen species (ROS) mediated by the phagocytic respiratory burst and phagocytosis is impaired by nicotine. In contrast to innate immunity in COPD, dendritic cells represent leukocytes recruited to the lung that link the innate immune responses to adaptive immune responses by activating naïve T cells through antigen presentation. The autoimmune process that is also a significant part of inflammation associated with COPD. Moreover, coupled with restricted FEV1 values, are the prevalence of patients with single or multiple infections by bacteria, viruses and fungi. Finally, we focus on one of the more problematic infectious agents, the Gram-negative opportunistic pathogenic bacterium, Pseudomonas aeruginosa. Specifically, we delve into the development of highly problematic biofilm infections that are highly refractory to conventional antibiotic therapies in COPD. We offer a non-conventional, biocidal treatment that may be effective for COPD airway infections as well as with combinations of current antibiotic regimens for more effective treatment outcomes and relief for patients with COPD.
Collapse
|
42
|
Study of anti nuclear and anti smooth muscle antibodies in patients with chronic obstructive pulmonary disease. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2013.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
The role of macrophages in obstructive airways disease: chronic obstructive pulmonary disease and asthma. Cytokine 2013; 64:613-25. [PMID: 24084332 DOI: 10.1016/j.cyto.2013.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/15/2022]
Abstract
Macrophages are a major cellular component of the innate immune system, and play an important role in the recognition of microbes, particulates, and immunogens and to the regulation of inflammatory responses. In the lung, macrophages react with soluble proteins that bind microbial products in order to remove pathogens and particles and to maintain the sterility of the airway tract. Chronic obstructive pulmonary disease and asthma are both obstructive airway diseases that involve chronic inflammation of the respiratory tract which contributes to disease progression. In the case of COPD, there is increasing evidence that lung macrophages orchestrate inflammation through the release of chemokines that attract neutrophils, monocytes and T cells and the release of several proteases. On the other hand, in asthma, it seems that alveolar macrophages are inappropriately activated and are implicated in the development and progression of the disease. In this review we summarize the current basic and clinical research studies which highlight the role of macrophages in asthma and COPD.
Collapse
|
44
|
Inflammation and immune response in COPD: where do we stand? Mediators Inflamm 2013; 2013:413735. [PMID: 23956502 PMCID: PMC3728539 DOI: 10.1155/2013/413735] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.
Collapse
|
45
|
Infectious Mechanisms Regulating Susceptibility to Acute Exacerbations of COPD. SMOKING AND LUNG INFLAMMATION 2013. [PMCID: PMC7115011 DOI: 10.1007/978-1-4614-7351-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acute exacerbations of COPD (AECOPD) are defined by clinical criteria, outlined in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines [1]. These include an acute increase in one or more of the following cardinal symptoms, beyond day to day variability: dyspnea, increased frequency or severity of cough and increased volume or change in character of sputum, which represent an acute increase in airway inflammation. The role of infection in the pathogenesis of COPD, acute exacerbation and disease progression has been a clinical and research question for many years, and the pendulum has swung from infection as a major cause of acute exacerbation and COPD (British Hypothesis) [2], to infection as an unrelated epiphomenon in acute exacerbation [3–5], and back again to infection as integral in the development of AECOPD and likely an important contributor to COPD progression [6–19]. Upwards of 80 % of AECOPD are driven by infectious stimuli, with 40–50 % associated with bacterial infection and 30–50 % associated with acute viral infection, with some exacerbations having dual bacterial and viral causation [20]. Much of the advancement in our understanding of the role of infection is AECOPD is due to the advancement of clinical and research tools that have allowed researchers to accurately characterize the microbial pathogens, and better understand the host-pathogen interactions (Table 1).
Collapse
|
46
|
Hoetzenecker K, Mitterbauer A, Guenova E, Schweiger T, Altmann P, Zimmermann M, Hofbauer H, Beer L, Klepetko W, Ankersmit HJ. High levels of lung resident CD4+CD28null cells in COPD: implications of autoimmunity. Wien Klin Wochenschr 2013; 125:150-5. [DOI: 10.1007/s00508-013-0340-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/22/2013] [Indexed: 12/01/2022]
|
47
|
Faner R, Nuñez B, Sauleda J, Garcia-Aymerich J, Pons J, Crespí C, Milà J, González JR, Maria Antó J, Agusti A. HLA distribution in COPD patients. COPD 2013; 10:138-46. [PMID: 23514216 DOI: 10.3109/15412555.2012.729621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Auto-immunity may contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD), particularly to the presence of emphysema. Auto-immune diseases are characterized by an abnormal distribution of HLA class II alleles (DR and DQ). The distribution of DRB1 and DQB1 alleles has not been investigated in COPD. METHODS To this end, HLA medium-low resolution typing was performed following standardized protocols in 320 clinically stable COPD patients included in the PAC-COPD study. Results were compared with controls of the same geographical and ethnic origin, and potential relationships with the severity of airflow limitation and lung diffusing capacity impairment were explored in patients with COPD. RESULTS The distribution of DRB1 and DQB1 alleles in COPD was similar to that of controls except for a significantly higher prevalence of DRB1*14 in patients with severe airflow limitation and low diffusing capacity. CONCLUSIONS By and large, HLA distribution was similar in COPD patients and controls, but the HLA class II allele DRB1*14 may contribute to the pathogenesis of severe COPD with emphysema.
Collapse
Affiliation(s)
- Rosa Faner
- Fundació Investigació Sanitaria Illes Balears (FISIB), Palma de Mallorca, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Podolin PL, Foley JP, Carpenter DC, Bolognese BJ, Logan GA, Long E, Harrison OJ, Walsh PT. T cell depletion protects against alveolar destruction due to chronic cigarette smoke exposure in mice. Am J Physiol Lung Cell Mol Physiol 2013; 304:L312-23. [DOI: 10.1152/ajplung.00152.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of T cells in chronic obstructive pulmonary disease (COPD) is not well understood. We have previously demonstrated that chronic cigarette smoke exposure can lead to the accumulation of CD4+ and CD8+ T cells in the alveolar airspaces in a mouse model of COPD, implicating these cells in disease pathogenesis. However, whether specific inhibition of T cell responses represents a therapeutic strategy has not been fully investigated. In this study inhibition of T cell responses through specific depleting antibodies, or the T cell immunosuppressant drug cyclosporin A, prevented airspace enlargement and neutrophil infiltration in a mouse model of chronic cigarette smoke exposure. Furthermore, individual inhibition of either CD4+ T helper or CD8+ T cytotoxic cells prevented airspace enlargement to a similar degree, implicating both T cell subsets as critical mediators of the adaptive immune response induced by cigarette smoke exposure. Importantly, T cell depletion resulted in significantly decreased levels of the Th17-associated cytokine IL-17A, and of caspase 3 and caspase 7 gene expression and activity, induced by cigarette smoke exposure. Finally, inhibition of T cell responses in a therapeutic manner also inhibited cigarette smoke-induced airspace enlargement, IL-17A expression, and neutrophil influx in mice. Together these data demonstrate for the first time that therapeutic inhibition of T cell responses may be efficacious in the treatment of COPD. Given that broad immunosuppression may be undesirable in COPD patients, this study provides proof-of-concept for more targeted approaches to inhibiting the role of T cells in emphysema development.
Collapse
Affiliation(s)
- Patricia L. Podolin
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
| | - Joseph P. Foley
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
| | - Donald C. Carpenter
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
| | - Brian J. Bolognese
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
| | - Gregory A. Logan
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
| | - Edward Long
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
| | - Oliver J. Harrison
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
| | - Patrick T. Walsh
- Respiratory Therapeutic Area, GlaxoSmithKline, King Of Prussia, Pennsylvania; and
- School of Medicine, Trinity College Dublin, National Childrens Research Centre, Our Ladys Childrens Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
49
|
Mikko M, Forsslund H, Cui L, Grunewald J, Wheelock Å, Wahlström J, Sköld C. Increased intraepithelial (CD103+) CD8+ T cells in the airways of smokers with and without chronic obstructive pulmonary disease. Immunobiology 2013; 218:225-31. [DOI: 10.1016/j.imbio.2012.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 12/11/2022]
|
50
|
Eppert BL, Wortham BW, Flury JL, Borchers MT. Functional characterization of T cell populations in a mouse model of chronic obstructive pulmonary disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1331-40. [PMID: 23264660 PMCID: PMC3552128 DOI: 10.4049/jimmunol.1202442] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cigarette smoke (CS) exposure is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic peribronchial, perivascular, and alveolar inflammation. The inflammatory cells consist primarily of macrophage, neutrophils, and lymphocytes. Although myeloid cells are well studied, the role of lymphocyte populations in pathogenesis of COPD remains unclear. Using a mouse model of CS-induced emphysema, our laboratory has previously demonstrated that CS exposure causes changes in the TCR repertoire suggestive of an Ag-specific response and triggers a pathogenic T cell response sufficient to cause alveolar destruction and inflammation. We extend these findings to demonstrate that T cells from CS-exposed mice of the BALB/cJ or C57B6 strain are sufficient to transfer pulmonary pathology to CS-naive, immunosufficient mice. CS exposure causes a proinflammatory phenotype among pulmonary T cells consistent with those from COPD patients. We provide evidence that donor T cells from CS-exposed mice depend on Ag recognition to transfer alveolar destruction using MHC class I-deficient recipient mice. Neither CD4(+) nor CD8(+) T cells from donor mice exposed to CS alone are sufficient to cause inflammation or pathology in recipient mice. We found no evidence of impaired suppression of T cell proliferation among regulatory T cells from CS-exposed mice. These results suggest that CS exposure initiates an Ag-specific response that leads to pulmonary destruction and inflammation that involves both CD8(+) and CD4(+) T cells. These results are direct evidence for an autoimmune response initiated by CS exposure.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigen Presentation
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/transplantation
- Female
- Freund's Adjuvant
- Gene Rearrangement, T-Lymphocyte
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class II/immunology
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/pathology
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Pulmonary Alveoli/immunology
- Pulmonary Alveoli/pathology
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/pathology
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Tobacco Smoke Pollution/adverse effects
Collapse
Affiliation(s)
- Bryan L. Eppert
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Brian W. Wortham
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jennifer L. Flury
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Michael T. Borchers
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|