1
|
Rahman SJ, Chen SC, Wang YT, Gao Y, Schepmoes AA, Fillmore TL, Shi T, Chen H, Rodland KD, Massion PP, Grogan EL, Liu T. Validation of a Proteomic Signature of Lung Cancer Risk from Bronchial Specimens of Risk-Stratified Individuals. Cancers (Basel) 2023; 15:4504. [PMID: 37760474 PMCID: PMC10526486 DOI: 10.3390/cancers15184504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A major challenge in lung cancer prevention and cure hinges on identifying the at-risk population that ultimately develops lung cancer. Previously, we reported proteomic alterations in the cytologically normal bronchial epithelial cells collected from the bronchial brushings of individuals at risk for lung cancer. The purpose of this study is to validate, in an independent cohort, a selected list of 55 candidate proteins associated with risk for lung cancer with sensitive targeted proteomics using selected reaction monitoring (SRM). Bronchial brushings collected from individuals at low and high risk for developing lung cancer as well as patients with lung cancer, from both a subset of the original cohort (batch 1: n = 10 per group) and an independent cohort of 149 individuals (batch 2: low risk (n = 32), high risk (n = 34), and lung cancer (n = 83)), were analyzed using multiplexed SRM assays. ALDH3A1 and AKR1B10 were found to be consistently overexpressed in the high-risk group in both batch 1 and batch 2 brushing specimens as well as in the biopsies of batch 1. Validation of highly discriminatory proteins and metabolic enzymes by SRM in a larger independent cohort supported their use to identify patients at high risk for developing lung cancer.
Collapse
Affiliation(s)
- S.M. Jamshedur Rahman
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.M.J.R.); (P.P.M.)
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA; (S.-C.C.); (H.C.)
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Thomas L. Fillmore
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA; (S.-C.C.); (H.C.)
| | - Karin D. Rodland
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, USA;
| | - Pierre P. Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.M.J.R.); (P.P.M.)
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Eric L. Grogan
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| |
Collapse
|
2
|
Implementation of MALDI Mass Spectrometry Imaging in Cancer Proteomics Research: Applications and Challenges. J Pers Med 2020; 10:jpm10020054. [PMID: 32580362 PMCID: PMC7354689 DOI: 10.3390/jpm10020054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Studying the proteome–the entire set of proteins in cells, tissues, organs and body fluids—is of great relevance in cancer research, as differential forms of proteins are expressed in response to specific intrinsic and extrinsic signals. Discovering protein signatures/pathways responsible for cancer transformation may lead to a better understanding of tumor biology and to a more effective diagnosis, prognosis, recurrence and response to therapy. Moreover, proteins can act as a biomarker or potential drug targets. Hence, it is of major importance to implement proteomic, particularly mass spectrometric, approaches in cancer research, to provide new crucial insights into tumor biology. Recently, mass spectrometry imaging (MSI) approaches were implemented in cancer research, to provide individual molecular characteristics of each individual tumor while retaining molecular spatial distribution, essential in the context of personalized disease management and medicine.
Collapse
|
3
|
Sharma M, Surani S. Exploring Novel Technologies in Lung Cancer Diagnosis: Do We Have Room for Improvement? Cureus 2020; 12:e6828. [PMID: 32181072 PMCID: PMC7051117 DOI: 10.7759/cureus.6828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. Preventive strategies, mainly smoking cessation have a big impact on the reduction of lung cancer-related mortality. Screening with low dose computed tomography (LDCT) has proven to be beneficial in reducing the mortality related to lung cancer mainly based on early detection of cancer and timely initiation of treatment. Despite its beneficial effects, guideline-directed LDCT screening could lead to high false positive results, subjecting patients to harmful radiation, increase cost of healthcare and induce anxiety amongst the patients. Thus, it is imperative to look beyond the prevailing modalities of lung cancer screening and diagnosis to achieve better yield and mitigate the existent drawbacks.
Collapse
Affiliation(s)
- Munish Sharma
- Internal Medicine, Corpus Christi Medical Center, Corpus Christi, USA
| | - Salim Surani
- Internal Medicine, Texas A&M Health Science Center, Bryan, USA
| |
Collapse
|
4
|
Shankar A, Saini D, Dubey A, Roy S, Bharati SJ, Singh N, Khanna M, Prasad CP, Singh M, Kumar S, Sirohi B, Seth T, Rinki M, Mohan A, Guleria R, Rath GK. Feasibility of lung cancer screening in developing countries: challenges, opportunities and way forward. Transl Lung Cancer Res 2019; 8:S106-S121. [PMID: 31211111 PMCID: PMC6546626 DOI: 10.21037/tlcr.2019.03.03] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of all cancer deaths worldwide, comprising 18.4% of all cancer deaths. Low-dose computed tomography (LDCT) has shown mortality benefit in various trials and now a standard tool for lung cancer screening. Most researches have been carried out in developed countries where lung cancer incidence and mortality is very high. There is an increasing trend in lung cancer incidence in developing countries attributed to tobacco smoking and various environmental and occupational risk factors. Implementation of lung cancer screening is challenging, so organised lung cancer screening is practically non-existent. There are numerous challenges in implementing such programs ranging from infrastructure, trained human resources, referral algorithm to cost and psychological trauma due to over-diagnosis. Pulmonary tuberculosis and other chest infections are important issues to be addressed while planning for lung cancer screening in developing countries. Burden of these diseases is very high and can lead to over-diagnosis in view of cut off of lung nodule size in various studies. Assessment of high risk cases for lung cancer is difficult as various forms of smoking make quantification non-uniform and difficult. Lung cancer screening targets only high risk population unlike screening programs for other cancers where entire population is targeted. There is a need of lung cancer screening for high risk cases as it saves life. Tobacco control and smoking cessation remain the most important long term intervention to decrease morbidity and mortality from lung cancer in developing countries. There is no sufficient evidence supporting the introduction of population-based screening for lung cancer in public health services.
Collapse
Affiliation(s)
- Abhishek Shankar
- Preventive Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Deepak Saini
- Indian Society of Clinical Oncology, Delhi, India
| | - Anusha Dubey
- Indian Society of Clinical Oncology, Delhi, India
| | - Shubham Roy
- Indian Society of Clinical Oncology, Delhi, India
| | - Sachidanand Jee Bharati
- Oncoanaesthesia and Palliative Medicine, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Navneet Singh
- Pulmonary Medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Chandra Prakash Prasad
- Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Mayank Singh
- Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Sunil Kumar
- Surgical Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Bhawna Sirohi
- Medical Oncology, Max Institute of Cancer Care, Delhi, India
| | - Tulika Seth
- Clinical Hematology, All India Institute of Medical Sciences, Delhi, India
| | - Minakshi Rinki
- Biotechnology, Swami Shraddhanand College, Delhi University, Delhi, India
| | - Anant Mohan
- Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, Delhi, India
| | - Randeep Guleria
- Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, Delhi, India
| | - Goura Kishor Rath
- Radiation Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
5
|
Lu Z, Chen Y, Jing X, Hu C. Diagnostic accuracy of MALDI-TOF mass spectrometry for non-small cell lung cancer: a meta-analysis. Biomarkers 2018; 23:245-252. [PMID: 29264950 DOI: 10.1080/1354750x.2017.1420822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhaolian Lu
- School of Graduate, Second Military Medical University, Shanghai, China
- Department of Laboratory Medicine, General Hospital of Jinan Military Command Region, Jinan, China
| | - Yingjian Chen
- Department of Laboratory Medicine, General Hospital of Jinan Military Command Region, Jinan, China
| | - Xinyan Jing
- School of Graduate, Weifang Medical University, Weifang, China
| | - Chengjin Hu
- Department of Laboratory Medicine, General Hospital of Jinan Military Command Region, Jinan, China
| |
Collapse
|
6
|
Ağababaoğlu İ, Önen A, Demir AB, Aktaş S, Altun Z, Ersöz H, Şanlı A, Özdemir N, Akkoçlu A. Chaperonin (HSP60) and annexin-2 are candidate biomarkers for non-small cell lung carcinoma. Medicine (Baltimore) 2017; 96:e5903. [PMID: 28178129 PMCID: PMC5312986 DOI: 10.1097/md.0000000000005903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung cancer is responsible of 12.4% and 17.6% of all newly diagnosed cancer cases and mortality due to cancer, respectively, and 5-year survival rate despite all improved treatment options is 15%. This survival rate reaches 66% in the Stage 1 and surgically treated patients. Early diagnosis which could not be definitely and commonly achieved yet is extremely critical in obtaining high survival rate in this disease. For this reason; proteomic differences were evaluated using matrix assisted laser desorption ionization (MALDI) mass spectrometry in the subgroups of lung adenocarcinoma and squamous cell carcinoma. METHODS Fresh tissue samples of 36 malignant cases involving 83.3% (n = 30) men and 16.7% (n = 6) women patients were distributed into 2 groups as early and end stage lung cancer and each group were composed of subgroups including 18 squamous cell carcinoma (9 early stage cases, 9 end stage cases) and 18 adenocarcinoma cases (9 early stage cases, 9 end stage cases). The fresh tissues obtained from the tumoral and matched normal sites after surgical intervention. The differences in protein expression levels were determined by comparing proteomic changes in each patient. RESULTS In the subgroups of advanced stage adenocarcinoma; tumoral tissue revealed differences in expression of 2 proteins compared with normal parenchymal tissue. Of those; difference in protein expression in heat shock protein 60 (HSP60) was found statistically significant (P = 0.0001). Subgroups of early and advanced stage squamos cell carcinoma have differed in certain 20 protein expression of normal tissue and diseased squamos cell carcinoma. Of those, increased protein expression level of only annexin-2 protein was found statistically significant (P = 0.002). No significant difference was detected in early and advanced stage protein expressions of the tumoral tissues in the subgroups of adenocarcinoma and squamous cell carcinoma. CONCLUSIONS We conclude that with respect to early diagnosis of lung cancer that HSP60 and annexin-2 proteins are the important biomarkers in the subgroups of adenocarcinoma and squamous cell carcinoma. We also consider that these 2 proteins are molecules which may provide critical contribution in evaluation of prognosis, metastatic potential, response to treatment, and in establishment of differential diagnosis between adenocarcinoma and squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Ahmet Önen
- Department of Thoracic Surgery, Dokuz Eylül University
| | - Ayşe Banu Demir
- Department of Medical Biology, Izmir University of Economics Faculty of Medicine
| | - Safiye Aktaş
- Department of Basic Oncology, Dokuz Eylül University Institute of Oncology
| | - Zekiye Altun
- Department of Basic Oncology, Dokuz Eylül University Institute of Oncology
| | - Hasan Ersöz
- Department of Thoracic Surgery, Dokuz Eylül University
| | - Aydın Şanlı
- Department of Thoracic Surgery, Dokuz Eylül University
| | - Nezih Özdemir
- Department of Thoracic Surgery, Dokuz Eylül University
| | - Atila Akkoçlu
- Department of Chest Diseases, Dokuz Eylül University Medicine School, İzmir, Turkey
| |
Collapse
|
7
|
Rahman SMJ, Ji X, Zimmerman LJ, Li M, Harris BK, Hoeksema MD, Trenary IA, Zou Y, Qian J, Slebos RJ, Beane J, Spira A, Shyr Y, Eisenberg R, Liebler DC, Young JD, Massion PP. The airway epithelium undergoes metabolic reprogramming in individuals at high risk for lung cancer. JCI Insight 2016; 1:e88814. [PMID: 27882349 DOI: 10.1172/jci.insight.88814] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The molecular determinants of lung cancer risk remain largely unknown. Airway epithelial cells are prone to assault by risk factors and are considered to be the primary cell type involved in the field of cancerization. To investigate risk-associated changes in the bronchial epithelium proteome that may offer new insights into the molecular pathogenesis of lung cancer, proteins were identified in the airway epithelial cells of bronchial brushing specimens from risk-stratified individuals by shotgun proteomics. Differential expression of selected proteins was validated by parallel reaction monitoring mass spectrometry in an independent set of individual bronchial brushings. We identified 2,869 proteins, of which 312 proteins demonstrated a trend in expression. Pathway analysis revealed enrichment of carbohydrate metabolic enzymes in high-risk individuals. Glucose consumption and lactate production were increased in human bronchial epithelial BEAS2B cells treated with cigarette smoke condensate for 7 months. Increased lipid biosynthetic capacity and net reductive carboxylation were revealed by metabolic flux analyses of [U-13C5] glutamine in this in vitro model, suggesting profound metabolic reprogramming in the airway epithelium of high-risk individuals. These results provide a rationale for the development of potentially new chemopreventive strategies and selection of patients for surveillance programs.
Collapse
Affiliation(s)
- S M Jamshedur Rahman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center
| | - Xiangming Ji
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center
| | | | - Ming Li
- Department of Biostatistics, and
| | - Bradford K Harris
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center
| | - Megan D Hoeksema
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yong Zou
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center
| | - Jun Qian
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center
| | | | - Jennifer Beane
- Pulmonary Center and Section of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Avrum Spira
- Pulmonary Center and Section of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Yu Shyr
- Department of Biostatistics, and
| | | | | | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, and
| | - Pierre P Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Schwamborn K, Kriegsmann M, Weichert W. MALDI imaging mass spectrometry - From bench to bedside. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:776-783. [PMID: 27810414 DOI: 10.1016/j.bbapap.2016.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Today, pathologists face many challenges in defining the precise morphomolecular diagnosis and in guiding clinicians to the optimal patients' treatment. To achieve this goal, increasingly, classical histomorphological methods have to be supplemented by high throughput molecular assays. Since MALDI imaging mass spectrometry (IMS) enables the assessment of spatial molecular arrangements in tissue sections, it goes far beyond microscopy in providing hundreds of different molecular images from a single scan without the need of target-specific reagents. Thus, this technology has the potential to uncover new markers for diagnostic purposes or markers that correlate with disease severity as well as prognosis and therapeutic response. Additionally, in the future MALDI IMS based classifiers measured with this technology in real time in the diagnostic setting might be applicable in the routine diagnostic setting. In this review, recently published studies that show the usefulness, advantages, and applicability of MALDI IMS in different fields of pathology (diagnosis, prognosis and treatment response) are highlighted. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Kristina Schwamborn
- Institute of Pathology, Technische Universität München (TUM), Munich, Germany.
| | - Mark Kriegsmann
- University of Heidelberg, Department of Pathology, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technische Universität München (TUM), Munich, Germany
| |
Collapse
|
9
|
Sharma D, Newman TG, Aronow WS. Lung cancer screening: history, current perspectives, and future directions. Arch Med Sci 2015; 11:1033-1043. [PMID: 26528348 PMCID: PMC4624749 DOI: 10.5114/aoms.2015.54859] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/07/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022] Open
Abstract
Lung cancer has remained the leading cause of death worldwide among all cancers. The dismal 5-year survival rate of 16% is in part due to the lack of symptoms during early stages and lack of an effective screening test until recently. Chest X-ray and sputum cytology were studied extensively as potential screening tests for lung cancer and were conclusively proven to be of no value. Subsequently, a number of studies compared computed tomography (CT) with the chest X-ray. These studies did identify lung cancer in earlier stages. However, they were not designed to prove a reduction in mortality. Later trials have focused on low-dose CT (LDCT) as a screening tool. The largest US trial - the National Lung Screening Trial (NLST) - enrolled approximately 54,000 patients and revealed a 20% reduction in mortality. While a role for LDCT in lung cancer screening has been established, the issues of high false positive rates, radiation risk, and cost effectiveness still need to be addressed. The guidelines of the international organizations that now include LDCT in lung cancer screening are reviewed. Other methods that may improve earlier detection such as positron emission tomography, autofluorescence bronchoscopy, and molecular biomarkers are also discussed.
Collapse
Affiliation(s)
- Divakar Sharma
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York Medical College, Metropolitan Hospital Center, New York, NY, USA
| | - Thomas G. Newman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York Medical College, Metropolitan Hospital Center, New York, NY, USA
| | - Wilbert S. Aronow
- Divisions of Cardiology, and Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York Medical College, Westchester Medical Center, Valhalla NY, USA
- Divisions of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York Medical College, Westchester Medical Center, Valhalla NY, USA
| |
Collapse
|
10
|
Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int J Oncol 2014; 46:893-906. [PMID: 25482502 DOI: 10.3892/ijo.2014.2788] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.
Collapse
Affiliation(s)
- Jörg Kriegsmann
- MVZ for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Mark Kriegsmann
- Institute for Pathology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
11
|
Harris FT, Rahman SMJ, Hassanein M, Qian J, Hoeksema MD, Chen H, Eisenberg R, Chaurand P, Caprioli RM, Shiota M, Massion PP. Acyl-coenzyme A-binding protein regulates Beta-oxidation required for growth and survival of non-small cell lung cancer. Cancer Prev Res (Phila) 2014; 7:748-57. [PMID: 24819876 DOI: 10.1158/1940-6207.capr-14-0057] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We identified acyl-coenzyme A-binding protein (ACBP) as part of a proteomic signature predicting the risk of having lung cancer. Because ACBP is known to regulate β-oxidation, which in turn controls cellular proliferation, we hypothesized that ACBP contributes to regulation of cellular proliferation and survival of non-small cell lung cancer (NSCLC) by modulating β-oxidation. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) and immunohistochemistry (IHC) to confirm the tissue localization of ABCP in pre-invasive and invasive NSCLCs. We correlated ACBP gene expression levels in NSCLCs with clinical outcomes. In loss-of-function studies, we tested the effect of the downregulation of ACBP on cellular proliferation and apoptosis in normal bronchial and NSCLC cell lines. Using tritiated-palmitate ((3)H-palmitate), we measured β-oxidation levels and tested the effect of etomoxir, a β-oxidation inhibitor, on proliferation and apoptosis. MALDI-IMS and IHC analysis confirmed that ACBP is overexpressed in pre-invasive and invasive lung cancers. High ACBP gene expression levels in NSCLCs correlated with worse survival (HR = 1.73). We observed a 40% decrease in β-oxidation and concordant decreases in proliferation and increases in apoptosis in ACBP-depleted NSCLC cells as compared with bronchial airway epithelial cells. Inhibition of β-oxidation by etomoxir in ACBP-overexpressing cells produced dose-dependent decrease in proliferation and increase in apoptosis (P = 0.01 and P < 0.001, respectively). These data suggest a role for ACBP in controlling lung cancer progression by regulating β-oxidation.
Collapse
Affiliation(s)
- Fredrick T Harris
- Authors' Affiliations: Department of Biochemistry and Cancer Biology, Meharry Medical College; Division of Allergy, Pulmonary and Critical Care Medicine, Departments of
| | | | - Mohamed Hassanein
- Division of Allergy, Pulmonary and Critical Care Medicine, Departments of
| | - Jun Qian
- Division of Allergy, Pulmonary and Critical Care Medicine, Departments of
| | - Megan D Hoeksema
- Division of Allergy, Pulmonary and Critical Care Medicine, Departments of
| | | | | | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, Quebec, Canada
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine
| | | | - Pierre P Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Departments of Veterans Affairs Medical Center, Nashville, Tennessee; and
| |
Collapse
|
12
|
Li QK, Gabrielson E, Askin F, Chan DW, Zhang H. Glycoproteomics using fluid-based specimens in the discovery of lung cancer protein biomarkers: promise and challenge. Proteomics Clin Appl 2014; 7:55-69. [PMID: 23112109 DOI: 10.1002/prca.201200105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cancer in the United States and worldwide. In spite of the rapid progression in personalized treatments, the overall survival rate of lung cancer patients is still suboptimal. Over the past decade, tremendous efforts have been focused on the discovery of protein biomarkers to facilitate the early detection and monitoring of lung cancer progression during treatment. In addition to tumor tissues and cancer cell lines, a variety of biological material has been studied. Particularly in recent years, studies using fluid-based specimen or so-called "fluid-biopsy" specimens have progressed rapidly. Fluid specimens are relatively easier to collect than tumor tissue, and they can be repeatedly sampled during the disease progression. Glycoproteins are the major content of fluid specimens and have long been recognized to play fundamental roles in many physiological and pathological processes. In this review, we focus the discussion on recent advances of glycoproteomics, particularly in the identification of potential glyco protein biomarkers using fluid-based specimens in lung cancer. The purpose of this review is to summarize current strategies, achievements, and perspectives in the field. This insight will highlight the discovery of tumor-associated glycoprotein biomarkers in lung cancer and their potential clinical applications.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
During the last decade, a major breakthrough in the field of proteomics has been achieved. This review describes available techniques for proteomic analyses, both gel and non-gel based, particularly concentrating on relative quantification techniques. The principle of the different techniques is discussed, highlighting the advantages and drawbacks of recently available visualization methods in gel-based assays. In addition, recent developments for quantitative analysis in non-gel-based approaches are summarized. This review focuses on applications in Type 1 diabetes. These mainly include proteomic studies on pancreatic islets in animal models and in the human situation. Also discussed are mass spectrometry-based studies on T-cells, and studies on the development of diagnostic markers for diabetic nephropathology by capillary electrophoresis coupled to mass spectrometry.
Collapse
Affiliation(s)
- Wannes D'Hertog
- Laboratory for Experimental Medicine & Endocrinology (LEGENDO), University Hospital Gasthuisberg, Herestraat 49, Catholic University of Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
14
|
Li C, Hong W. Research status and funding trends of lung cancer biomarkers. J Thorac Dis 2013; 5:698-705. [PMID: 24255784 DOI: 10.3978/j.issn.2072-1439.2013.10.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
Lung cancer is one of malignant tumors with the highest morbidity and mortality in the world. At present, research of early diagnosis, treatment, prognosis, and metastasis associated biomarkers is most active. This article reviewed the research status of lung cancer biomarkers and analyzed the funding situation in the field of lung cancer markers in recent 10 years in China and abroad, to provide a reference for the future basic and clinical translational research of lung cancer biomarkers.
Collapse
Affiliation(s)
- Cui Li
- Department of Health Science, National Natural Science Fundation of China, Beijing 100083, China
| | | |
Collapse
|
15
|
Abstract
BACKGROUND This is an updated version of the original review published in The Cochrane Library in 1999 and updated in 2004 and 2010. Population-based screening for lung cancer has not been adopted in the majority of countries. However it is not clear whether sputum examinations, chest radiography or newer methods such as computed tomography (CT) are effective in reducing mortality from lung cancer. OBJECTIVES To determine whether screening for lung cancer, using regular sputum examinations, chest radiography or CT scanning of the chest, reduces lung cancer mortality. SEARCH METHODS We searched electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 5), MEDLINE (1966 to 2012), PREMEDLINE and EMBASE (to 2012) and bibliographies. We handsearched the journal Lung Cancer (to 2000) and contacted experts in the field to identify published and unpublished trials. SELECTION CRITERIA Controlled trials of screening for lung cancer using sputum examinations, chest radiography or chest CT. DATA COLLECTION AND ANALYSIS We performed an intention-to-screen analysis. Where there was significant statistical heterogeneity, we reported risk ratios (RRs) using the random-effects model. For other outcomes we used the fixed-effect model. MAIN RESULTS We included nine trials in the review (eight randomised controlled studies and one controlled trial) with a total of 453,965 subjects. In one large study that included both smokers and non-smokers comparing annual chest x-ray screening with usual care there was no reduction in lung cancer mortality (RR 0.99, 95% CI 0.91 to 1.07). In a meta-analysis of studies comparing different frequencies of chest x-ray screening, frequent screening with chest x-rays was associated with an 11% relative increase in mortality from lung cancer compared with less frequent screening (RR 1.11, 95% CI 1.00 to 1.23); however several of the trials included in this meta-analysis had potential methodological weaknesses. We observed a non-statistically significant trend to reduced mortality from lung cancer when screening with chest x-ray and sputum cytology was compared with chest x-ray alone (RR 0.88, 95% CI 0.74 to 1.03). There was one large methodologically rigorous trial in high-risk smokers and ex-smokers (those aged 55 to 74 years with ≥ 30 pack-years of smoking and who quit ≤ 15 years prior to entry if ex-smokers) comparing annual low-dose CT screening with annual chest x-ray screening; in this study the relative risk of death from lung cancer was significantly reduced in the low-dose CT group (RR 0.80, 95% CI 0.70 to 0.92). AUTHORS' CONCLUSIONS The current evidence does not support screening for lung cancer with chest radiography or sputum cytology. Annual low-dose CT screening is associated with a reduction in lung cancer mortality in high-risk smokers but further data are required on the cost effectiveness of screening and the relative harms and benefits of screening across a range of different risk groups and settings.
Collapse
Affiliation(s)
- Renée Manser
- Department of Haematology and Medical Oncology, Peter MacCallum Cancer Institute, St Andrew's Place, East Melbourne 3002, Victoria, and Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Maier SK, Hahne H, Gholami AM, Balluff B, Meding S, Schoene C, Walch AK, Kuster B. Comprehensive identification of proteins from MALDI imaging. Mol Cell Proteomics 2013; 12:2901-10. [PMID: 23782541 DOI: 10.1074/mcp.m113.027599] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful tool for the visualization of proteins in tissues and has demonstrated considerable diagnostic and prognostic value. One main challenge is that the molecular identity of such potential biomarkers mostly remains unknown. We introduce a generic method that removes this issue by systematically identifying the proteins embedded in the MALDI matrix using a combination of bottom-up and top-down proteomics. The analyses of ten human tissues lead to the identification of 1400 abundant and soluble proteins constituting the set of proteins detectable by MALDI IMS including >90% of all IMS biomarkers reported in the literature. Top-down analysis of the matrix proteome identified 124 mostly N- and C-terminally fragmented proteins indicating considerable protein processing activity in tissues. All protein identification data from this study as well as the IMS literature has been deposited into MaTisse, a new publically available database, which we anticipate will become a valuable resource for the IMS community.
Collapse
Affiliation(s)
- Stefan K Maier
- Chair for Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A. Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery. MASS SPECTROMETRY REVIEWS 2013; 32:129-142. [PMID: 22829143 DOI: 10.1002/mas.21355] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Lung cancer is the leading cause of cancer death in men and women in Western nations, and is among the deadliest cancers with a 5-year survival rate of 15%. The high mortality caused by lung cancer is attributable to a late-stage diagnosis and the lack of effective treatments. So, it is crucial to identify new biomarkers that could function not only to detect lung cancer at an early stage but also to shed light on the molecular mechanisms that underlie cancer development and serve as the basis for the development of novel therapeutic strategies. Considering that DNA-based biomarkers for lung cancer showed inadequate sensitivity, specificity, and reproducibility, proteomics could represent a better tool for the identification of useful biomarkers and therapeutic targets for this cancer type. Among the proteomics technologies, the most powerful tool is mass spectrometry. In this review, we describe studies that use mass spectrometry-based proteomics technologies to analyze tumor proteins and peptides, which might represent new diagnostic, prognostic, and predictive markers for lung cancer. We focus in particular on those findings that hold promise to impact significantly on the clinical management of this disease.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers/blood
- Biomarkers/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/metabolism
- Chromatography, High Pressure Liquid
- Glycosylation/drug effects
- Humans
- Lung Neoplasms/blood
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Pleural Effusion, Malignant/blood
- Pleural Effusion, Malignant/drug therapy
- Pleural Effusion, Malignant/metabolism
- Prognosis
- Protein Processing, Post-Translational/drug effects
- Proteomics/methods
- Saliva/chemistry
- Saliva/drug effects
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Pass HI, Beer DG, Joseph S, Massion P. Biomarkers and molecular testing for early detection, diagnosis, and therapeutic prediction of lung cancer. Thorac Surg Clin 2013; 23:211-24. [PMID: 23566973 DOI: 10.1016/j.thorsurg.2013.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The search for biomarkers in the management of lung cancer involves the use of multiple platforms to examine changes in gene, protein, and microRNA expression. Multiple studies have been published in an attempt to describe early detection, diagnostic, prognostic, and predictive biomarkers using chiefly tissues and blood elements. Studies are characterized by a lack of commonality of specific biomarkers, and a lack of validated, clinically useful markers. The future of biomarker discovery as a means of tailoring therapy for patients with lung cancer will involve next-generation sequencing along with collaborative efforts to integrate and validate candidate markers.
Collapse
Affiliation(s)
- Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, 530 First Avenue, 9V, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
19
|
Li QK, Gabrielson E, Zhang H. Application of glycoproteomics for the discovery of biomarkers in lung cancer. Proteomics Clin Appl 2012; 6:244-56. [PMID: 22641610 DOI: 10.1002/prca.201100042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States. Approximately 40-60% of lung cancer patients present with locally advanced or metastatic disease at the time of diagnosis. Lung cancer development and progression are a multistep process that is characterized by abnormal gene and protein expressions ultimately leading to phenotypic change. Glycoproteins have long been recognized to play fundamental roles in many physiological and pathological processes, particularly in cancer genesis and progression. In order to improve the survival rate of lung cancer patients, the discovery of early diagnostic and prognostic biomarkers is urgently needed. Herein, we reviewed the recent technological developments of glycoproteomics and published data in the field of glycoprotein biomarkers in lung cancer, and discussed their utility and limitations for the discovery of potential biomarkers in lung cancer. Although numerous papers have already acknowledged the importance of the discovery of cancer biomarkers, the systemic study of glycoproteins in lung cancer using glycoproteomic approaches is still suboptimal. Recent development in the glycoproteomics will provide new platforms for identification of potential protein biomarkers in lung cancers.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
20
|
Imaging mass spectrometry in biomarker discovery and validation. J Proteomics 2012; 75:4990-4998. [PMID: 22749859 DOI: 10.1016/j.jprot.2012.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/27/2022]
Abstract
Biomarker discovery and validation involves the consideration of many issues and challenges in order to be effectively used for translation from bench to bedside. Imaging mass spectrometry (IMS) is a new technology to assess spatial molecular arrangements in tissue sections, going far beyond microscopy in providing hundreds of different molecular images from a single scan without the need of target-specific reagents. The possibility to correlate distribution maps of multiple analytes with histological and clinical features makes it an ideal tool to discover diagnostic and prognostic markers of diseases. Some recently published studies that show the usefulness and advantages of this technology in the field of cancer research are highlighted.
Collapse
|
21
|
Hassanein M, Callison JC, Callaway-Lane C, Aldrich MC, Grogan EL, Massion PP. The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev Res (Phila) 2012; 5:992-1006. [PMID: 22689914 DOI: 10.1158/1940-6207.capr-11-0441] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using biomarkers to select the most at-risk population, to detect the disease while measurable and yet not clinically apparent has been the goal of many investigations. Recent advances in molecular strategies and analytic platforms, including genomics, epigenomics, proteomics, and metabolomics, have identified increasing numbers of potential biomarkers in the blood, urine, exhaled breath condensate, bronchial specimens, saliva, and sputum, but none have yet moved to the clinical setting. Therefore, there is a recognized gap between the promise and the product delivery in the cancer biomarker field. In this review, we define clinical contexts where risk and diagnostic biomarkers may have use in the management of lung cancer, identify the most relevant candidate biomarkers of early detection, provide their state of development, and finally discuss critical aspects of study design in molecular biomarkers for early detection of lung cancer.
Collapse
Affiliation(s)
- Mohamed Hassanein
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Nashville TN 37232, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zeng GQ, Zhang PF, Deng X, Yu FL, Li C, Xu Y, Yi H, Li MY, Hu R, Zuo JH, Li XH, Wan XX, Qu JQ, He QY, Li JH, Ye X, Chen Y, Li JY, Xiao ZQ. Identification of candidate biomarkers for early detection of human lung squamous cell cancer by quantitative proteomics. Mol Cell Proteomics 2012; 11:M111.013946. [PMID: 22298307 DOI: 10.1074/mcp.m111.013946] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To discover novel biomarkers for early detection of human lung squamous cell cancer (LSCC) and explore possible mechanisms of LSCC carcinogenesis, iTRAQ-tagging combined with two dimensional liquid chromatography tandem MS analysis was used to identify differentially expressed proteins in human bronchial epithelial carcinogenic process using laser capture microdissection-purified normal bronchial epithelium (NBE), squamous metaplasia (SM), atypical hyperplasia (AH), carcinoma in situ (CIS) and invasive LSCC. As a result, 102 differentially expressed proteins were identified, and three differential proteins (GSTP1, HSPB1 and CKB) showing progressively expressional changes in the carcinogenic process were selectively validated by Western blotting. Immunohistochemistry was performed to detect the expression of the three proteins in an independent set of paraffin-embedded archival specimens including various stage tissues of bronchial epithelial carcinogenesis, and their ability for early detection of LSCC was evaluated by receiver operating characteristic analysis. The results showed that the combination of the three proteins could perfectly discriminate NBE from preneoplastic lesions (SM, AH and CIS) from invasive LSCC, achieving a sensitivity of 96% and a specificity of 92% in discriminating NBE from preneoplatic lesions, a sensitivity of 100% and a specificity of 98% in discriminating NBE from invasive LSCC, and a sensitivity of 92% and a specificity of 91% in discriminating preneoplastic lesions from invasive LSCC, respectively. Furthermore, we knocked down GSTP1 in immortalized human bronchial epithelial cell line 16HBE cells, and then measured their susceptibility to carcinogen benzo(a)pyrene-induced cell transformation. The results showed that GSTP1 knockdown significantly increased the efficiency of benzo(a)pyrene-induced 16HBE cell transformation. The present data first time show that GSTP1, HSPB1 and CKB are novel potential biomarkers for early detection of LSCC, and GSTP1 down-regulation is involved in human bronchial epithelial carcinogenesis.
Collapse
Affiliation(s)
- Gu-Qing Zeng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gopal J, Lee CH, Wu HF. Rapid and direct detection of Invivo kinetics of pathogenic bacterial infection from mouse blood and urine. J Proteomics 2011; 75:2972-82. [PMID: 22193515 DOI: 10.1016/j.jprot.2011.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 12/29/2022]
Abstract
This study demonstrates the first use of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to trace the Invivo infection kinetics of the well known deadly pathogen Staphylococcus aureus in Swiss albino mice. The growth curve of the bacteria from the point of injection (200μL of bacterial suspension (10(8)cfu/mL)) into the mouse blood till mortality (death) was periodically analyzed using the plate counting method and MALDI-MS. Bacterial counts of 10(3)cfu/mL were observed in the log phase of the growth curve in the blood and 10(2)cfu/mL were observed in the urine samples. Death occurred in the log phase of the growth curve, where the bacterial counts showed steady increase. In other cases, the bacteria counts started decreasing after 48h and by 96h the bacteria got totally eliminated from the mouse and these mice survived. Direct MALDI-MS was not feasible for tracking the bacteria in the infected blood. However, ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate was successful in enabling bacterial detection amidst the strong blood peaks. But, in the case of the urine analysis, it was observed that direct MALDI-MS was adequate to enable detection. The results obtained prove the efficacy of MALDI-MS for analyzing pathogenic bacteria in clinical samples. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | | | | |
Collapse
|
24
|
Abstract
Since the advent of the new proteomics era more than a decade ago, large-scale studies of protein profiling have been exploited to identify the distinctive molecular signatures in a wide array of biological systems spanning areas of basic biological research, various disease states, and biomarker discovery directed toward therapeutic applications. Recent advances in protein separation and identification techniques have significantly improved proteomics approaches, leading to enhancement of the depth and breadth of proteome coverage. Proteomic signatures specific for invasive lung cancer and preinvasive lesions have begun to emerge. In this review we provide a critical assessment of the state of recent advances in proteomic approaches and the biological lessons they have yielded, with specific emphasis on the discovery of biomarker signatures for the early detection of lung cancer.
Collapse
|
25
|
Seeley EH, Schwamborn K, Caprioli RM. Imaging of intact tissue sections: moving beyond the microscope. J Biol Chem 2011; 286:25459-66. [PMID: 21632549 PMCID: PMC3138310 DOI: 10.1074/jbc.r111.225854] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MALDI-imaging MS is a new molecular imaging technology for direct in situ analysis of thin tissue sections. Multiple analytes can be monitored simultaneously without prior knowledge of their identities and without the need for target-specific reagents such as antibodies. Imaging MS provides important insights into biological processes because the native distributions of molecules are minimally disturbed, and histological features remain intact throughout the analysis. A wide variety of molecules can be imaged, including proteins, peptides, lipids, drugs, and metabolites. Several specific examples are presented to highlight the utility of the technology.
Collapse
Affiliation(s)
- Erin H. Seeley
- From the Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristina Schwamborn
- From the Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | - Richard M. Caprioli
- From the Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
26
|
Rahman SMJ, Gonzalez AL, Li M, Seeley EH, Zimmerman LJ, Zhang XJ, Manier ML, Olson SJ, Shah RN, Miller AN, Putnam JB, Miller YE, Franklin WA, Blot WJ, Carbone DP, Shyr Y, Caprioli RM, Massion PP. Lung cancer diagnosis from proteomic analysis of preinvasive lesions. Cancer Res 2011; 71:3009-17. [PMID: 21487035 PMCID: PMC3110721 DOI: 10.1158/0008-5472.can-10-2510] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early detection may help improve survival from lung cancer. In this study, our goal was to derive and validate a signature from the proteomic analysis of bronchial lesions that could predict the diagnosis of lung cancer. Using previously published studies of bronchial tissues, we selected a signature of nine matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) mass-to-charge ratio features to build a prediction model diagnostic of lung cancer. The model was based on MALDI MS signal intensity (MALDI score) from bronchial tissue specimens from our 2005 published cohort of 51 patients. The performance of the prediction model in identifying lung cancer was tested in an independent cohort of bronchial specimens from 60 patients. The probability of having lung cancer based on the proteomic analysis of the bronchial specimens was characterized by an area under the receiver operating characteristic curve of 0.77 (95% CI 0.66-0.88) in this validation cohort. Eight of the nine features were identified and validated by Western blotting and immunohistochemistry. These results show that proteomic analysis of endobronchial lesions may facilitate the diagnosis of lung cancer and the monitoring of high-risk individuals for lung cancer in surveillance and chemoprevention trials.
Collapse
Affiliation(s)
- S M Jamshedur Rahman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6838, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gomperts BN, Spira A, Massion PP, Walser TC, Wistuba II, Minna JD, Dubinett SM. Evolving concepts in lung carcinogenesis. Semin Respir Crit Care Med 2011; 32:32-43. [PMID: 21500122 DOI: 10.1055/s-0031-1272867] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung carcinogenesis is a complex, stepwise process that involves the acquisition of genetic mutations and epigenetic changes that alter cellular processes, such as proliferation, differentiation, invasion, and metastasis. Here, we review some of the latest concepts in the pathogenesis of lung cancer and highlight the roles of inflammation, the "field of cancerization," and lung cancer stem cells in the initiation of the disease. Furthermore, we review how high throughput genomics, transcriptomics, epigenomics, and proteomics are advancing the study of lung carcinogenesis. Finally, we reflect on the potential of current in vitro and in vivo models of lung carcinogenesis to advance the field and on the areas of investigation where major breakthroughs will lead to the identification of novel chemoprevention strategies and therapies for lung cancer.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Seeley EH, Caprioli RM. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol 2011; 29:136-43. [PMID: 21292337 DOI: 10.1016/j.tibtech.2010.12.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 01/11/2023]
Abstract
The molecular complexity of biological tissue and the spatial and temporal variation in the biological processes involved in human disease requires new technologies and new approaches to provide insight into disease processes. Imaging mass spectrometry is an effective tool that provides molecular images of tissues in the molecular discovery process. The analysis of human tissue presents special challenges and limitations because the heterogeneity among human tissues and diseases is much greater than that observed in animal models, and discoveries made in animal tissues might not translate well to their human counterparts. In this article, we briefly review the challenges of imaging human tissue using mass spectrometry and suggest approaches to address these issues.
Collapse
Affiliation(s)
- Erin H Seeley
- Vanderbilt University School of Medicine, Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, 465 21st Avenue S. MRB III Suite 9160, Nashville, TN 37232, USA
| | | |
Collapse
|
29
|
Gustafsson JOR, Oehler MK, Ruszkiewicz A, McColl SR, Hoffmann P. MALDI Imaging Mass Spectrometry (MALDI-IMS)-application of spatial proteomics for ovarian cancer classification and diagnosis. Int J Mol Sci 2011; 12:773-94. [PMID: 21340013 PMCID: PMC3039979 DOI: 10.3390/ijms12010773] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 01/28/2023] Open
Abstract
MALDI imaging mass spectrometry (MALDI-IMS) allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review.
Collapse
Affiliation(s)
- Johan O. R. Gustafsson
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, SA 5005, Adelaide, Australia; E-Mails: (J.O.R.G.); (S.R.M.)
| | - Martin K. Oehler
- Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, SA 5005, Adelaide, Australia; E-Mail:
| | | | - Shaun R. McColl
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, SA 5005, Adelaide, Australia; E-Mails: (J.O.R.G.); (S.R.M.)
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, SA 5005, Adelaide, Australia; E-Mails: (J.O.R.G.); (S.R.M.)
| |
Collapse
|
30
|
Friedman DB. An Introduction to Proteomics Technologies for the Genomics Scientist. Genomics 2010. [DOI: 10.1002/9780470711675.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Oppenheimer SR, Mi D, Sanders ME, Caprioli RM. Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J Proteome Res 2010; 9:2182-90. [PMID: 20141219 DOI: 10.1021/pr900936z] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rate of tumor recurrence post resection suggests that there are underlying molecular changes in nearby histologically normal tissue that go undetected by conventional diagnostic methods that utilize contrast agents and immunohistochemistry. MALDI MS is a molecular technology that has the specificity and sensitivity to monitor and identify molecular species indicative of these changes. The current study utilizes this technology to assess molecular distributions within a tumor and adjacent normal tissue in clear cell renal cell carcinoma biopsies. Results indicate that the histologically normal tissue adjacent to the tumor expresses many of the molecular characteristics of the tumor. Proteins of the mitochondrial electron transport system are examples of such distributions. This work demonstrates the utility of MALDI MS for the analysis of tumor tissue in the elucidation of aberrant molecular changes in the tumor microenvironment.
Collapse
|
32
|
Abstract
Proteomics has the goal of defining the complete protein complement of biological systems, which can then be analyzed in a comparative fashion to generate informative data regarding protein expression and function. Proteomic analyses can also facilitate the discovery of biomarkers that can be used to diagnose and monitor disease severity, activity and therapeutic response, as well as to identify new targets for drug development. A major challenge for proteomics, however, has been detecting low-abundance proteins in complex biological fluids. This review summarizes how proteomic analyses have advanced lung cell biology and facilitated the identification of new mechanisms of disease pathogenesis in respiratory disorders, such as asthma, cystic fibrosis, lung cancer, acute lung injury and sarcoidosis. The impact of nanotechnology and microfluidics, as well as studies of post-translational modifications and protein-protein interactions (the interactome), are considered. Furthermore, the application of systems-biology approaches to organize and analyze data regarding the lung proteome, interactome, genome, transcriptome, metabolome, glycome and small RNAome (regulatory RNAs), should facilitate future conceptual advances regarding lung cell biology, disease pathogenesis, biomarker discovery and drug development.
Collapse
Affiliation(s)
- Stewart J Levine
- National Institutes of Health, Pulmonary-Critical Care Medicine Branch, NHLBI, Building 10, Room 6D03, MSC 1590, Bethesda, MD 0892-1590, USA.
| |
Collapse
|
33
|
Lung cancer proteomics, clinical and technological considerations. J Proteomics 2010; 73:1851-63. [PMID: 20685322 DOI: 10.1016/j.jprot.2010.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/23/2022]
Abstract
The overall survival of lung cancer patients is disappointingly low. This is due to several factors, including the lack of an effective screening strategy to detect tumors at a potentially curable early stage, a marked resistance of lung cancer cells to drug treatment and a still superficial knowledge about the multifactorial cellular networks that are activated or suppressed during cancer progression. Furthermore, the armamentarium of clinicians and researchers in the field does not yet include reliable biomarkers to predict tumor response to treatment and foresee the natural history of the disease. In the present situation, a potential breakthrough is presented by proteomics technologies with the potential to discover relevant biomarkers which can be accurately quantified in multiplexed assays. Proteomics field can also contribute greatly in the understanding of mechanisms in tumor progression and treatment response. In this review we will describe the work that is being done in the field of lung cancer proteomics, focusing on clinically relevant questions that need to be addressed and on the possible applications of novel technologies.
Collapse
|
34
|
De Petris L, Pernemalm M, Elmberger G, Bergman P, Orre L, Lewensohn R, Lehtiö J. A novel method for sample preparation of fresh lung cancer tissue for proteomics analysis by tumor cell enrichment and removal of blood contaminants. Proteome Sci 2010; 8:9. [PMID: 20187940 PMCID: PMC2847553 DOI: 10.1186/1477-5956-8-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 02/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In-depth proteomics analyses of tumors are frequently biased by the presence of blood components and stromal contamination, which leads to large experimental variation and decreases the proteome coverage. We have established a reproducible method to prepare freshly collected lung tumors for proteomics analysis, aiming at tumor cell enrichment and reduction of plasma protein contamination. We obtained enriched tumor-cell suspensions (ETS) from six lung cancer cases (two adenocarcinomas, two squamous-cell carcinomas, two large-cell carcinomas) and from two normal lung samples. The cell content of resulting ETS was evaluated with immunocytological stainings and compared with the histologic pattern of the original specimens. By means of a quantitative mass spectrometry-based method we evaluated the reproducibility of the sample preparation protocol and we assessed the proteome coverage by comparing lysates from ETS samples with the direct lysate of corresponding fresh-frozen samples. RESULTS Cytological analyses on cytospin specimens showed that the percentage of tumoral cells in the ETS samples ranged from 20% to 70%. In the normal lung samples the percentage of epithelial cells was less then 10%. The reproducibility of the sample preparation protocol was very good, with coefficient of variation at the peptide level and at the protein level of 13% and 7%, respectively. Proteomics analysis led to the identification of a significantly higher number of proteins in the ETS samples than in the FF samples (244 vs 109, respectively). Albumin and hemoglobin were among the top 5 most abundant proteins identified in the FF samples, showing a high contamination with blood and plasma proteins, whereas ubiquitin and the mitochondrial ATP synthase 5A1 where among the top 5 most abundant proteins in the ETS samples. CONCLUSION The method is feasible and reproducible. We could obtain a fair enrichment of cells but the major benefit of the method was an effective removal of contaminants from red blood cells and plasma proteins resulting in larger proteome coverage compared to the direct lysis of frozen samples. This sample preparation method may be successfully implemented for the discovery of lung cancer biomarkers on tissue samples using mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Luigi De Petris
- Karolinska Biomics Center, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Chung CH, Seeley EH, Roder H, Grigorieva J, Tsypin M, Roder J, Burtness BA, Argiris A, Forastiere AA, Gilbert J, Murphy B, Caprioli RM, Carbone DP, Cohen EEW. Detection of tumor epidermal growth factor receptor pathway dependence by serum mass spectrometry in cancer patients. Cancer Epidemiol Biomarkers Prev 2010; 19:358-65. [PMID: 20086114 DOI: 10.1158/1055-9965.epi-09-0937] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We hypothesized that a serum proteomic profile predictive of survival benefit in non-small cell lung cancer patients treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) reflects tumor EGFR dependency regardless of site of origin or class of therapeutic agent. METHODS Pretreatment serum or plasma from 230 patients treated with cetuximab, EGFR-TKIs, or chemotherapy for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) or colorectal cancer (CRC) were analyzed by mass spectrometry. Each sample was classified into "good" or "poor" groups using VeriStrat, and survival analyses of each cohort were done based on this classification. For the CRC cohort, this classification was correlated with the tumor EGFR ligand levels and KRAS mutation status. RESULTS In the EGFR inhibitor-treated cohorts, the classification predicted survival (HNSCC: gefitinib, P = 0.007 and erlotinib/bevacizumab, P = 0.02; CRC: cetuximab, P = 0.0065) whereas the chemotherapy cohort showed no survival difference. For CRC patients, tumor EGFR ligand RNA levels were significantly associated with the proteomic classification, and combined KRAS and proteomic classification provided improved survival classification. CONCLUSIONS Serum proteomic profiling can detect clinically significant tumor dependence on the EGFR pathway in non-small cell lung cancer, HNSCC, and CRC patients treated with either EGFR-TKIs or cetuximab. This classification is correlated with tumor EGFR ligand levels and provides a clinically practical way to identify patients with diverse cancer types most likely to benefit from EGFR inhibitors. Prospective studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Christine H Chung
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-6307, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ocak S, Sos ML, Thomas RK, Massion PP. High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications. Eur Respir J 2009; 34:489-506. [PMID: 19648524 DOI: 10.1183/09031936.00042409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the last decade, high-throughput technologies including genomic, epigenomic, transcriptomic and proteomic have been applied to further our understanding of the molecular pathogenesis of this heterogeneous disease, and to develop strategies that aim to improve the management of patients with lung cancer. Ultimately, these approaches should lead to sensitive, specific and noninvasive methods for early diagnosis, and facilitate the prediction of response to therapy and outcome, as well as the identification of potential novel therapeutic targets. Genomic studies were the first to move this field forward by providing novel insights into the molecular biology of lung cancer and by generating candidate biomarkers of disease progression. Lung carcinogenesis is driven by genetic and epigenetic alterations that cause aberrant gene function; however, the challenge remains to pinpoint the key regulatory control mechanisms and to distinguish driver from passenger alterations that may have a small but additive effect on cancer development. Epigenetic regulation by DNA methylation and histone modifications modulate chromatin structure and, in turn, either activate or silence gene expression. Proteomic approaches critically complement these molecular studies, as the phenotype of a cancer cell is determined by proteins and cannot be predicted by genomics or transcriptomics alone. The present article focuses on the technological platforms available and some proposed clinical applications. We illustrate herein how the "-omics" have revolutionised our approach to lung cancer biology and hold promise for personalised management of lung cancer.
Collapse
Affiliation(s)
- S Ocak
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-6838, USA
| | | | | | | |
Collapse
|
37
|
Gámez-Pozo A, Sánchez-Navarro I, Nistal M, Calvo E, Madero R, Díaz E, Camafeita E, de Castro J, López JA, González-Barón M, Espinosa E, Fresno Vara JÁ. MALDI profiling of human lung cancer subtypes. PLoS One 2009; 4:e7731. [PMID: 19890392 PMCID: PMC2767501 DOI: 10.1371/journal.pone.0007731] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/08/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Proteomics is expected to play a key role in cancer biomarker discovery. Although it has become feasible to rapidly analyze proteins from crude cell extracts using mass spectrometry, complex sample composition hampers this type of measurement. Therefore, for effective proteome analysis, it becomes critical to enrich samples for the analytes of interest. Despite that one-third of the proteins in eukaryotic cells are thought to be phosphorylated at some point in their life cycle, only a low percentage of intracellular proteins is phosphorylated at a given time. METHODOLOGY/PRINCIPAL FINDINGS In this work, we have applied chromatographic phosphopeptide enrichment techniques to reduce the complexity of human clinical samples. A novel method for high-throughput peptide profiling of human tumor samples, using Parallel IMAC and MALDI-TOF MS, is described. We have applied this methodology to analyze human normal and cancer lung samples in the search for new biomarkers. Using a highly reproducible spectral processing algorithm to produce peptide mass profiles with minimal variability across the samples, lineal discriminant-based and decision tree-based classification models were generated. These models can distinguish normal from tumor samples, as well as differentiate the various non-small cell lung cancer histological subtypes. CONCLUSIONS/SIGNIFICANCE A novel, optimized sample preparation method and a careful data acquisition strategy is described for high-throughput peptide profiling of small amounts of human normal lung and lung cancer samples. We show that the appropriate combination of peptide expression values is able to discriminate normal lung from non-small cell lung cancer samples and among different histological subtypes. Our study does emphasize the great potential of proteomics in the molecular characterization of cancer.
Collapse
Affiliation(s)
- Angelo Gámez-Pozo
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | - Iker Sánchez-Navarro
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | - Manuel Nistal
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Unidad de Proteómica, Madrid, Spain
| | - Rosario Madero
- Unidad de Bioestadística, Hospital Universitario La Paz, Madrid, Spain
| | - Esther Díaz
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Unidad de Proteómica, Madrid, Spain
| | - Javier de Castro
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Unidad de Proteómica, Madrid, Spain
| | - Manuel González-Barón
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | - Enrique Espinosa
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Laboratory of Molecular Pathology and Oncology, Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
38
|
The Future of Cancer Screening. Prim Care 2009; 36:623-39. [DOI: 10.1016/j.pop.2009.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Abstract
This perspective on Kadara et al. (beginning on p. 702 in this issue of the journal) examines the critical development of genomic and proteomic signatures of lung cancer risk, prognosis, and sensitivity to chemoprevention or chemotherapy. The novel work of Kadara et al. represents the first demonstration that a molecular signature developed in a premalignancy model (in this case, cultured normal human bronchial epithelial cells and increasingly transformed derivative cells) is clinically relevant to invasive lung cancer.
Collapse
Affiliation(s)
- David P Carbone
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 685 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
40
|
Abstract
In an effort to further our understanding of lung cancer biology and to identify new candidate biomarkers to be used in the management of lung cancer, we need to probe these tissues and biological fluids with tools that address the biology of lung cancer directly at the protein level. Proteins are responsible of the function and phenotype of cells. Cancer cells express proteins that distinguish them from normal cells. Proteomics is defined as the study of the proteome, the complete set of proteins produced by a species, using the technologies of large-scale protein separation and identification. As a result, new technologies are being developed to allow the rapid and systematic analysis of thousands of proteins. The analytical advantages of mass spectrometry (MS), including sensitivity and high-throughput, promise to make it a mainstay of novel biomarker discovery to differentiate cancer from normal cells and to predict individuals likely to develop or recur with lung cancer. In this review, we summarize the progress made in clinical proteomics as it applies to the management of lung cancer. We will focus our discussion on how MS approaches may advance the areas of early detection, response to therapy, and prognostic evaluation.
Collapse
|
41
|
Massion PP, Zou Y, Uner H, Kiatsimkul P, Wolf HJ, Baron AE, Byers T, Jonsson S, Lam S, Hirsch FR, Miller YE, Franklin WA, Varella-Garcia M. Recurrent genomic gains in preinvasive lesions as a biomarker of risk for lung cancer. PLoS One 2009; 4:e5611. [PMID: 19547694 PMCID: PMC2699220 DOI: 10.1371/journal.pone.0005611] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 04/17/2009] [Indexed: 12/12/2022] Open
Abstract
Lung carcinoma development is accompanied by field changes that may have diagnostic significance. We have previously shown the importance of chromosomal aneusomy in lung cancer progression. Here, we tested whether genomic gains in six specific loci, TP63 on 3q28, EGFR on 7p12, MYC on 8q24, 5p15.2, and centromeric regions for chromosomes 3 (CEP3) and 6 (CEP6), may provide further value in the prediction of lung cancer. Bronchial biopsy specimens were obtained by LIFE bronchoscopy from 70 subjects (27 with prevalent lung cancers and 43 individuals without lung cancer). Twenty six biopsies were read as moderate dysplasia, 21 as severe dysplasia and 23 as carcinoma in situ (CIS). Four-micron paraffin sections were submitted to a 4-target FISH assay (LAVysion, Abbott Molecular) and reprobed for TP63 and CEP 3 sequences. Spot counts were obtained in 30-50 nuclei per specimen for each probe. Increased gene copy number in 4 of the 6 probes was associated with increased risk of being diagnosed with lung cancer both in unadjusted analyses (odds ratio = 11, p<0.05) and adjusted for histology grade (odds ratio = 17, p<0.05). The most informative 4 probes were TP63, MYC, CEP3 and CEP6. The combination of these 4 probes offered a sensitivity of 82% for lung cancer and a specificity of 58%. These results indicate that specific cytogenetic alterations present in preinvasive lung lesions are closely associated with the diagnosis of lung cancer and may therefore have value in assessing lung cancer risk.
Collapse
Affiliation(s)
- Pierre P Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt Ingram Cancer Center, Veterans Administration Medical Center, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Steiling K, Kadar AY, Bergerat A, Flanigon J, Sridhar S, Shah V, Ahmad QR, Brody JS, Lenburg ME, Steffen M, Spira A. Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers. PLoS One 2009; 4:e5043. [PMID: 19357784 PMCID: PMC2664466 DOI: 10.1371/journal.pone.0005043] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/15/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although prior studies have demonstrated a smoking-induced field of molecular injury throughout the lung and airway, the impact of smoking on the airway epithelial proteome and its relationship to smoking-related changes in the airway transcriptome are unclear. METHODOLOGY/PRINCIPAL FINDINGS Airway epithelial cells were obtained from never (n = 5) and current (n = 5) smokers by brushing the mainstem bronchus. Proteins were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE). After in-gel digestion, tryptic peptides were processed via liquid chromatography/ tandem mass spectrometry (LC-MS/MS) and proteins identified. RNA from the same samples was hybridized to HG-U133A microarrays. Protein detection was compared to RNA expression in the current study and a previously published airway dataset. The functional properties of many of the 197 proteins detected in a majority of never smokers were similar to those observed in the never smoker airway transcriptome. LC-MS/MS identified 23 proteins that differed between never and current smokers. Western blotting confirmed the smoking-related changes of PLUNC, P4HB1, and uteroglobin protein levels. Many of the proteins differentially detected between never and current smokers were also altered at the level of gene expression in this cohort and the prior airway transcriptome study. There was a strong association between protein detection and expression of its corresponding transcript within the same sample, with 86% of the proteins detected by LC-MS/MS having a detectable corresponding probeset by microarray in the same sample. Forty-one proteins identified by LC-MS/MS lacked detectable expression of a corresponding transcript and were detected in CONCLUSIONS/SIGNIFICANCE 1D-PAGE coupled with LC-MS/MS effectively profiled the airway epithelium proteome and identified proteins expressed at different levels as a result of cigarette smoke exposure. While there was a strong correlation between protein and transcript detection within the same sample, we also identified proteins whose corresponding transcripts were not detected by microarray. This noninvasive approach to proteomic profiling of airway epithelium may provide additional insights into the field of injury induced by tobacco exposure.
Collapse
Affiliation(s)
- Katrina Steiling
- The Pulmonary Center, Boston University Medical Center, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Steiling K, Ryan J, Brody JS, Spira A. The field of tissue injury in the lung and airway. Cancer Prev Res (Phila) 2009; 1:396-403. [PMID: 19138985 DOI: 10.1158/1940-6207.capr-08-0174] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The concept of field cancerization was first introduced over 6 decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, nonneoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potential molecular origins of field cancerization and the field of injury following cigarette smoke exposure in lung and airway epithelia are critical to understanding their potential impact on clinical diagnostics and therapeutics for smoking-induced lung disease.
Collapse
Affiliation(s)
- Katrina Steiling
- The Pulmonary Center, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
44
|
Groseclose MR, Massion PP, Chaurand P, Caprioli RM. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 2008; 8:3715-24. [PMID: 18712763 DOI: 10.1002/pmic.200800495] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel method for high-throughput proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue microarrays (TMA) is described using on-tissue tryptic digestion followed by MALDI imaging MS. A TMA section containing 112 needle core biopsies from lung-tumor patients was analyzed using MS and the data were correlated to a serial hematoxylin and eosin (H&E)-stained section having various histological regions marked, including cancer, non-cancer, and normal ones. By correlating each mass spectrum to a defined histological region, statistical classification models were generated that can sufficiently distinguish biopsies from adenocarcinoma from squamous cell carcinoma biopsies. These classification models were built using a training set of biopsies in the TMA and were then validated on the remaining biopsies. Peptide markers of interest were identified directly from the TMA section using MALDI MS/MS sequence analysis. The ability to detect and characterize tumor marker proteins for a large cohort of FFPE samples in a high-throughput approach will be of significant benefit not only to investigators studying tumor biology, but also to clinicians for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- M Reid Groseclose
- Mass Spectrometry Research Center and Department of Chemistry and Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-8575, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Staphylococcus aureus elicits marked alterations in the airway proteome during early pneumonia. Infect Immun 2008; 76:5862-72. [PMID: 18852243 DOI: 10.1128/iai.00865-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pneumonia caused by Staphylococcus aureus is a growing concern in the health care community. We hypothesized that characterization of the early innate immune response to bacteria in the lungs would provide insight into the mechanisms used by the host to protect itself from infection. An adult mouse model of Staphylococcus aureus pneumonia was utilized to define the early events in the innate immune response and to assess the changes in the airway proteome during the first 6 h of pneumonia. S. aureus actively replicated in the lungs of mice inoculated intranasally under anesthesia to cause significant morbidity and mortality. By 6 h postinoculation, the release of proinflammatory cytokines caused effective recruitment of neutrophils to the airway. Neutrophil influx, loss of alveolar architecture, and consolidated pneumonia were observed histologically 6 h postinoculation. Bronchoalveolar lavage fluids from mice inoculated with phosphate-buffered saline (PBS) or S. aureus were depleted of overabundant proteins and subjected to strong cation exchange fractionation followed by liquid chromatography and tandem mass spectrometry to identify the proteins present in the airway. No significant changes in response to PBS inoculation or 30 min following S. aureus inoculation were observed. However, a dramatic increase in extracellular proteins was observed 6 h postinoculation with S. aureus, with the increase dominated by inflammatory and coagulation proteins. The data presented here provide a comprehensive evaluation of the rapid and vigorous innate immune response mounted in the host airway during the earliest stages of S. aureus pneumonia.
Collapse
|
47
|
Nana-Sinkam SP, Hunter MG, Nuovo GJ, Schmittgen TD, Gelinas R, Galas D, Marsh CB. Integrating the MicroRNome into the study of lung disease. Am J Respir Crit Care Med 2008; 179:4-10. [PMID: 18787215 DOI: 10.1164/rccm.200807-1042pp] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Over the last 15 years, investigators have identified small noncoding RNAs as regulators of gene expression. One type of noncoding RNAs are termed microRNAs (miRNAs). miRNAs are evolutionary conserved, approximately 22-nucleotide single-stranded RNAs that target genes by inducing mRNA degradation or by inhibiting translation. miRNAs are implicated in many critical cellular processes, including apoptosis, proliferation, and differentiation. Furthermore, it is estimated that miRNAs may be responsible for regulating the expression of nearly one-third of the human genome. Despite the identification of greater than 500 mature miRNAs, very little is known about their biological functions and functional targets. In the last 5 years, researchers have increasingly focused on the functional relevance and role that miRNAs play in the pathogenesis of human disease. miRNAs are known to be important in solid organ and hematological malignancies, heart disease, as potential modulators of the immune response, and organ development. It is anticipated that miRNA analysis will emerge as an important complement to proteomic and genomic studies to further our understanding of disease pathogenesis. Despite the application of genomics and proteomics to the study of human lung disease, few studies have examined miRNA expression. This perspective is not meant to be an exhaustive review of miRNA biology but will provide an overview of both miRNA biogenesis and our current understanding of the role of miRNAs in lung disease as well as a perspective on the importance of integrating this analysis as a tool for identifying and understanding the biological pathways in lung-disease pathogenesis.
Collapse
Affiliation(s)
- Serge P Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Xu BJ, Gonzalez AL, Kikuchi T, Yanagisawa K, Massion PP, Wu H, Mason SE, Olson SJ, Shyr Y, Carbone DP, Caprioli RM. MALDI-MS derived prognostic protein markers for resected non-small cell lung cancer. Proteomics Clin Appl 2008; 2:1508-17. [PMID: 21136798 DOI: 10.1002/prca.200800094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Indexed: 11/10/2022]
Abstract
Protein signals obtained directly from frozen lung tissue sections using MALDI-MS were used to predict nodal involvement and survival in resected non-small cell lung cancer (NSCLC). We have identified a list of these protein signals and further evaluated their prognostic values for NSCLC using immunohistochemistry (IHC). Kaplan-Meier analysis was used to assess the mortality risk associated with the prognostic protein IHC-staining intensities. The combined IHC scores of calmodulin, thymosin β4, and thymosin β10 were found to be correlated with NSCLC patient survival (p = 0.004). Furthermore, low cofilin-1 IHC-staining intensity was found to be correlated with a better outcome for patients with negative lymph node status (p = 0.006) while high cofilin-1 IHC-staining intensity was found to be correlated with a better outcome for patients with positive node status (p = 0.034). In conclusion, the prognostic protein signals selected using MALDI-MS can be identified and tested by IHC in formalin-fixed tissue samples. MALDI-MS-derived protein signals can be potentially translated to a conventional clinical setting to aid in the prognosis of patients with NSCLC at the molecular level.
Collapse
Affiliation(s)
- Baogang J Xu
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Imaging MS (IMS) is an emerging technology that permits the direct analysis and determination of the distribution of molecules in tissue sections. Biological molecules such as proteins, peptides, lipids, xenobiotics, and metabolites can be analyzed in a high-throughput manner with molecular specificity not readily achievable through other means. Tissues are analyzed intact and thus spatial localization of molecules within a tissue is preserved. Several studies are presented that focus on the unique types of information obtainable by IMS, such as Abeta isoform distributions in Alzheimer's plaques, protein maps in mouse brain, and spatial protein distributions in human breast carcinoma. The analysis of a biopsy taken 100 years ago from a patient with amyloidosis illustrates the use of IMS with formalin-fixed tissues. Finally, the registration and correlation of IMS with MRI is presented.
Collapse
|
50
|
Lemarié E, Scherpereel A. Nouveaux bio-marqueurs pour le diagnostic précoce du cancer bronchique. Rev Mal Respir 2008. [DOI: 10.1016/s0761-8425(08)74079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|