1
|
Kim SJ, Cecchini MJ, Woo E, Jayawardena N, Passos DT, Dick FA, Mura M. Spatially resolved gene expression profiles of fibrosing interstitial lung diseases. Sci Rep 2024; 14:26470. [PMID: 39488596 PMCID: PMC11531500 DOI: 10.1038/s41598-024-77469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) encompass a diverse range of scarring disorders that lead to progressive lung failure. Previous gene expression profiling studies focused on idiopathic pulmonary fibrosis (IPF) and bulk tissue samples. We employed digital spatial profiling to gain new insights into the spatial resolution of gene expression across distinct lung microenvironments (LMEs) in IPF, chronic hypersensitivity pneumonitis (CHP) and non-specific interstitial pneumonia (NSIP). We identified differentially expressed genes between LMEs within each condition, and across histologically similar regions between conditions. Uninvolved regions in IPF and CHP were distinct from normal controls, and displayed potential therapeutic targets. Hallmark LMEs of each condition retained distinct gene signatures, but these could not be reproduced in matched lung tissue samples. Based on these profiles and unsupervised clustering, we grouped previously unclassified ILD cases into NSIP or CHP. Overall, our work uniquely dissects gene expression profiles between LMEs within and across different types of fibrosing ILDs.
Collapse
Affiliation(s)
- Seung J Kim
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada.
- London Health Sciences Research Institute, London, ON, Canada.
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elissa Woo
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nathashi Jayawardena
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
| | - Daniel T Passos
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Frederick A Dick
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Marco Mura
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- Division of Respirology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
2
|
Keow J, Cecchini MJ, Jayawardena N, Zompatori M, Joseph MG, Mura M. Digital quantification of p16-positive foci in fibrotic interstitial lung disease is associated with a phenotype of idiopathic pulmonary fibrosis with reduced survival. Respir Res 2022; 23:147. [PMID: 35672770 PMCID: PMC9175499 DOI: 10.1186/s12931-022-02067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is associated with increased expression of cyclin-dependent kinase inhibitors such as p16 and p21, and subsequent induction of cell cycle arrest, cellular senescence, and pro-fibrotic gene expression. We sought to link p16-expression with a diagnosis of IPF or other fibrotic interstitial lung diseases (ILDs), radiographic pattern, senescent foci-specific gene expression, antifibrotic therapy response, and lung transplant (LTx)-free survival. METHODS Eighty-six cases of fibrosing ILD were identified with surgical lung biopsy. Immunohistochemistry for p16 was performed on sections with the most active fibrosis. p16-positive foci (loose collection of p16-positive fibroblasts with overlying p16-positive epithelium) were identified on digital slides and quantified. Cases were scored as p16-low (≤ 2.1 foci per 100 mm2) or p16-high (> 2.1 foci per 100 mm2). Twenty-four areas including senescent foci, fibrotic and normal areas were characterized using in situ RNA expression analysis with digital spatial profiling (DSP) in selected cases. RESULTS The presence of p16-positive foci was specific for the diagnosis of IPF, where 50% of cases expressed any level of p16 and 26% were p16-high. There was no relationship between radiographic pattern and p16 expression. However, there was increased expression of cyclin-dependent kinase inhibitors, collagens and matrix remodeling genes within p16-positive foci, and cases with high p16 expression had shorter LTx-free survival. On the other hand, antifibrotic therapy was significantly protective. DSP demonstrated that fibroblastic foci exhibit transcriptional features clearly distinct from that of normal-looking and even fibrotic areas. CONCLUSIONS We demonstrated the potential clinical applicability of a standardized quantification of p16-positive fibroblastic foci. This method identifies an IPF phenotype associated with foci-specific upregulation of senescence-associated and matrix remodeling gene expression. While these patients have reduced LTx-free survival, good response to antifibrotic therapies was observed in those who were treated.
Collapse
Affiliation(s)
- Jonathan Keow
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Nathashi Jayawardena
- Interstitial Lung Disease Research Laboratory, Lawson Research Institute, Western University, London, ON, Canada
| | | | - Mariamma G Joseph
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Marco Mura
- Interstitial Lung Disease Research Laboratory, Lawson Research Institute, Western University, London, ON, Canada. .,Division of Respirology, Department of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
3
|
Kamp JC, Neubert L, Stark H, Hinrichs JB, Boekhoff C, Seidel AD, Ius F, Haverich A, Gottlieb J, Welte T, Braubach P, Laenger F, Hoeper MM, Kuehnel MP, Jonigk DD. Comparative Analysis of Gene Expression in Fibroblastic Foci in Patients with Idiopathic Pulmonary Fibrosis and Pulmonary Sarcoidosis. Cells 2022; 11:cells11040664. [PMID: 35203313 PMCID: PMC8870272 DOI: 10.3390/cells11040664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Fibroblastic foci (FF) are characteristic features of usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) and one cardinal feature thought to represent a key mechanism of pathogenesis. Hence, FF have a high impact on UIP/IPF diagnosis in current guidelines. However, although less frequent, these histomorphological hallmarks also occur in other fibrotic pulmonary diseases. Currently, there is therefore a gap in knowledge regarding the underlying molecular similarities and differences of FF in different disease entities. Methods: In this work, we analyzed the compartment-specific gene expression profiles of FF in IPF and sarcoidosis in order to elucidate similarities and differences as well as shared pathomechanisms. For this purpose, we used laser capture microdissection, mRNA and protein expression analysis. Biological pathway analysis was performed using two different gene expression databases. As control samples, we used healthy lung tissue that was donated but not used for lung transplantation. Results: Based on Holm Bonferroni corrected expression data, mRNA expression analysis revealed a significantly altered expression signature for 136 out of 760 genes compared to healthy controls while half of these showed a similar regulation in both groups. Immunostaining of selected markers from each group corroborated these results. However, when comparing all differentially expressed genes with the fdr-based expression data, only 2 of these genes were differentially expressed between sarcoidosis and IPF compared to controls, i.e., calcium transport protein 1 (CAT1) and SMAD specific E3 ubiquitin protein ligase 1 (SMURF1), both in the sarcoidosis group. Direct comparison of sarcoidosis and IPF did not show any differentially regulated genes independent from the statistical methodology. Biological pathway analysis revealed a number of fibrosis-related pathways pronounced in IPF without differences in the regulatory direction. Conclusions: These results demonstrate that FF of end-stage IPF and sarcoidosis lungs, although different in initiation, are similar in gene and protein expression, encouraging further studies on the use of antifibrotic agents in sarcoidosis.
Collapse
Affiliation(s)
- Jan C. Kamp
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.G.); (T.W.); (M.M.H.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Correspondence:
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| | - Helge Stark
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| | - Jan B. Hinrichs
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, 30625 Hannover, Germany
| | - Caja Boekhoff
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| | - Allison D. Seidel
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| | - Fabio Ius
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Gottlieb
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.G.); (T.W.); (M.M.H.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.G.); (T.W.); (M.M.H.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| | - Florian Laenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| | - Marius M. Hoeper
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (J.G.); (T.W.); (M.M.H.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
| | - Mark P. Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| | - Danny D. Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (L.N.); (H.S.); (J.B.H.); (F.I.); (A.H.); (P.B.); (F.L.); (M.P.K.); (D.D.J.)
- Institute for Pathology, Hannover Medical School, 30625 Hannover, Germany; (C.B.); (A.D.S.)
| |
Collapse
|
4
|
Wepler M, Preuss JM, Merz T, Hartmann C, Wachter U, McCook O, Vogt J, Kress S, Gröger M, Fink M, Scheuerle A, Möller P, Calzia E, Burret U, Radermacher P, Tuckermann JP, Vettorazzi S. Impaired Glucocorticoid Receptor Dimerization Aggravates LPS-Induced Circulatory and Pulmonary Dysfunction. Front Immunol 2020; 10:3152. [PMID: 32038649 PMCID: PMC6990631 DOI: 10.3389/fimmu.2019.03152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Sepsis, that can be modeled by LPS injections, as an acute systemic inflammation syndrome is the most common cause for acute lung injury (ALI). ALI induces acute respiratory failure leading to hypoxemia, which is often associated with multiple organ failure (MOF). During systemic inflammation, the hypothalamus-pituitary-adrenal axis (HPA) is activated and anti-inflammatory acting glucocorticoids (GCs) are released to overcome the inflammation. GCs activate the GC receptor (GR), which mediates its effects via a GR monomer or GR dimer. The detailed molecular mechanism of the GR in different inflammatory models and target genes that might be crucial for resolving inflammation is not completely identified. We previously observed that mice with attenuated GR dimerization (GRdim/dim) had a higher mortality in a non-resuscitated lipopolysaccharide (LPS)- and cecal ligation and puncture (CLP)-induced inflammation model and are refractory to exogenous GCs to ameliorate ALI during inflammation. Therefore, we hypothesized that impaired murine GR dimerization (GRdim/dim) would further impair organ function in LPS-induced systemic inflammation under human like intensive care management and investigated genes that are crucial for lung function in this setup. Methods: Anesthetized GRdim/dim and wildtype (GR+/+) mice were challenged with LPS (10 mg·kg−1, intraperitoneal) and underwent intensive care management (“lung-protective” mechanical ventilation, crystalloids, and norepinephrine) for 6 h. Lung mechanics and gas exchange were assessed together with systemic hemodynamics, acid-base status, and mitochondrial oxygen consumption (JO2). Western blots, immunohistochemistry, and real time quantitative polymerase chain reaction were performed to analyze lung tissue and inflammatory mediators were analyzed in plasma and lung tissue. Results: When animals were challenged with LPS and subsequently resuscitated under intensive care treatment, GRdim/dim mice had a higher mortality compared to GR+/+ mice, induced by an increased need of norepinephrine to achieve hemodynamic targets. After challenge with LPS, GRdim/dim mice also displayed an aggravated ALI shown by a more pronounced impairment of gas exchange, lung mechanics and increased osteopontin (Opn) expression in lung tissue. Conclusion: Impairment of GR dimerization aggravates systemic hypotension and impairs lung function during LPS-induced endotoxic shock in mice. We demonstrate that the GR dimer is an important mediator of hemodynamic stability and lung function, possibly through regulation of Opn, during LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Martin Wepler
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany.,Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Clair Hartmann
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany.,Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Ulrich Wachter
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Josef Vogt
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Sandra Kress
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Marina Fink
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | | | - Peter Möller
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Armstrong HF, Podolanczuk AJ, Barr RG, Oelsner EC, Kawut SM, Hoffman EA, Tracy R, Kaminski N, McClelland RL, Lederer DJ. Serum Matrix Metalloproteinase-7, Respiratory Symptoms, and Mortality in Community-Dwelling Adults. MESA (Multi-Ethnic Study of Atherosclerosis). Am J Respir Crit Care Med 2017; 196:1311-1317. [PMID: 28570100 DOI: 10.1164/rccm.201701-0254oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Matrix metalloproteinase-7 (MMP-7) has been implicated in interstitial lung disease pathobiology and proposed as a diagnostic and prognostic biomarker of idiopathic pulmonary fibrosis. OBJECTIVES To test associations between serum MMP-7 and lung function, respiratory symptoms, interstitial lung abnormalities (ILA), and all-cause mortality in community-dwelling adults sampled without regard to respiratory symptoms or disease. METHODS We measured serum MMP-7 in 1,227 participants in MESA (Multi-Ethnic Study of Atherosclerosis) at baseline. The 5-year outcome data were available for spirometry (n = 697), cough (n = 722), and dyspnea (n = 1,050). The 10-year outcome data were available for ILA (n = 561) and mortality (n = 1,227). We used linear, logistic, and Cox regression to control for potential confounders. MEASUREMENTS AND MAIN RESULTS The mean (±SD) serum MMP-7 level was 4.3 (±2.5) ng/ml (range, 1.2-24.1 ng/ml). In adjusted models, each natural log unit increment in serum MMP-7 was associated with a 3.7% absolute decrement in FVC% (95% confidence interval [CI] = 0.9-6.6%), a 1.6-fold increased odds of exertional dyspnea (95% CI = 1.3-1.9), a 1.5-fold increased odds of ILAs (95% CI = 1.1-2.1), and a 2.2-fold increased all-cause mortality rate (95% CI = 1.9-2.5). The associations with ILA and mortality tended to be stronger among never-smokers (P values for interaction 0.06 and 0.01, respectively). CONCLUSIONS Serum MMP-7 levels may be a quantitative biomarker of subclinical extracellular matrix remodeling in the lungs of community-dwelling adults, which may facilitate investigation of subclinical interstitial lung disease.
Collapse
Affiliation(s)
- Hilary F Armstrong
- 1 Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Anna J Podolanczuk
- 2 Department of Medicine, Columbia University Medical Center, New York, New York
| | - R Graham Barr
- 2 Department of Medicine, Columbia University Medical Center, New York, New York
| | - Elizabeth C Oelsner
- 2 Department of Medicine, Columbia University Medical Center, New York, New York
| | - Steven M Kawut
- 3 Department of Medicine and.,4 Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric A Hoffman
- 5 Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Russell Tracy
- 6 Department of Pathology, University of Vermont, Burlington, Vermont
| | - Naftali Kaminski
- 7 Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Robyn L McClelland
- 8 Department of Biostatistics, University of Washington, Seattle, Washington
| | - David J Lederer
- 1 Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York.,2 Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
6
|
Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. Secreted Phosphoprotein 1 and Sex-Specific Differences in Silica-Induced Pulmonary Fibrosis in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1199-207. [PMID: 26955063 PMCID: PMC4977050 DOI: 10.1289/ehp.1510335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/15/2015] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Fibrotic lung diseases occur predominantly in males, and reports describe better survival in affected females. Male mice are more sensitive to silica-induced lung fibrosis than silica-treated female mice. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) increases in pulmonary fibrosis, and Spp1 transcription may be regulated by estrogen or estrogen receptor-related receptors. OBJECTIVE We determined whether differences in silica-induced SPP1 levels contribute to sex differences in lung fibrosis. METHODS Male and female mice were treated with 0.2 g/kg intratracheal silica, and lung injury was assessed 1, 3, or 14 days post-exposure. Gene-targeted (Spp1-/-) mice, control Spp1+/+ (C57BL/6J) mice, ovariectomized (OVX) female mice, and estrogen-treated male mice were treated with silica, and lung injury was assessed. RESULTS Silica-induced SPP1 in lung tissue, bronchoalveolar lavage, and serum increased more in male than in female mice. Following silica treatment, bronchoalveolar lavage cell infiltrates decreased in female Spp1-/- mice compared with female Spp1+/+ mice, and lung hydroxyproline decreased in male Spp1-/- mice compared with male Spp1+/+ mice. OVX female mice had increased lung SPP1 expression in response to silica compared with silica-treated sham female mice. Silica-induced lung collagen and hydroxyproline (markers of fibrosis), and SPP1 levels decreased in estrogen-treated males compared with untreated males. CONCLUSION These findings suggest that sex-specific differences in SPP1 levels contribute to the differential sensitivity of male and female mice to the development of silica-induced fibrosis. CITATION Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. 2016. Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect 124:1199-1207; http://dx.doi.org/10.1289/ehp.1510335.
Collapse
Affiliation(s)
- Joseph D. Latoche
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Chukwuma Ufelle
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fabrizio Fazzi
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Koustav Ganguly
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- SRM (Sri Ramaswamy Memorial) Research Institute, SRM University, Chennai, India
| | - George D. Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cheryl L. Fattman
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Chang JH, Hung WY, Bai KJ, Yang SF, Chien MH. Utility of Plasma Osteopontin Levels in Management of Community-Acquired Pneumonia. Int J Med Sci 2016; 13:673-9. [PMID: 27647996 PMCID: PMC5027185 DOI: 10.7150/ijms.16175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is an essential cytokine involved in immune cell recruitment and an important regulator of inflammation. The purpose of this study was to examine differences in OPN plasma levels between before and after antibiotic treatment in hospitalized adult patients with community-acquired pneumonia (CAP). OPN levels were measured in 93 patients with CAP and 54 healthy controls using a commercial enzyme-linked immunosorbent assay (ELISA). The CURB-65, Pneumonia Severity Index (PSI), and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were used to determine the CAP severity in patients upon initial hospitalization. A decline in the number of white blood cells (WBCs) and neutrophils, and decreases in the levels of OPN and C-reactive protein (CRP) were observed after antibiotic treatment. Only the plasma level of OPN, but not CRP, was correlated with the severity of CAP based on the PSI (r = 0.514, p < 0.001), CURB-65 (r = 0.396, p < 0.001), and APACHE II scores (r = 0.473, p < 0.001). The OPN level also showed a significant correlation with the length of hospital stay (r = 0.210, p = 0.044). In conclusion, plasma level of OPN may act as diagnostic adjuvant biomarkers for CAP and further play a role in clinical assessment of the severity of CAP, which could potentially guide the development of treatment strategies.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan;; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Jen Bai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan;; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan;; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan;; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Oh K, Seo MW, Kim YW, Lee DS. Osteopontin Potentiates Pulmonary Inflammation and Fibrosis by Modulating IL-17/IFN-γ-secreting T-cell Ratios in Bleomycin-treated Mice. Immune Netw 2015; 15:142-9. [PMID: 26140046 PMCID: PMC4486777 DOI: 10.4110/in.2015.15.3.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
Lung fibrosis is a life-threatening disease caused by overt or insidious inflammatory responses. However, the mechanism of tissue injury-induced inflammation and subsequent fibrogenesis remains unclear. Recently, we and other groups reported that Th17 responses play a role in amplification of the inflammatory phase in a murine model induced by bleomycin (BLM). Osteopontin (OPN) is a cytokine and extracellular-matrix-associated signaling molecule. However, whether tissue injury causes inflammation and consequent fibrosis through OPN should be determined. In this study, we observed that BLM-induced lung inflammation and subsequent fibrosis was ameliorated in OPN-deficient mice. OPN was expressed ubiquitously in the lung parenchymal and bone-marrow-derived components and OPN from both components contributed to pathogenesis following BLM intratracheal instillation. Th17 differentiation of CD4+ αβ T cells and IL-17-producing γδ T cells was significantly reduced in OPN-deficient mice compared to WT mice. In addition, Th1 differentiation of CD4+ αβ T cells and the percentage of IFN-γ-producing γδ T cells increased. T helper cell differentiation in vitro revealed that OPN was preferentially upregulated in CD4+ T cells under Th17 differentiation conditions. OPN expressed in both parenchymal and bone marrow cell components and contributed to BLM-induced lung inflammation and fibrosis by affecting the ratio of pathogenic IL-17/protective IFN-γ T cells.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Myung Won Seo
- Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Young Whan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Dong-Sup Lee
- Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
9
|
Kato A, Okura T, Hamada C, Miyoshi S, Katayama H, Higaki J, Ito R. Cell stress induces upregulation of osteopontin via the ERK pathway in type II alveolar epithelial cells. PLoS One 2014; 9:e100106. [PMID: 24963635 PMCID: PMC4070890 DOI: 10.1371/journal.pone.0100106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 05/21/2014] [Indexed: 11/23/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional protein that plays important roles in cell growth, differentiation, migration and tissue fibrosis. In human idiopathic pulmonary fibrosis and murine bleomycin-induced lung fibrosis, OPN is upregulated in type II alveolar epithelial cells (AEC II). However, the mechanism of OPN induction in AEC II is not fully understood. In this study, we demonstrate the molecular mechanism of OPN induction in AEC II and elucidate the functions of OPN in AEC II and lung fibroblasts. Human lung adenocarcinoma cells (A549) and mouse alveolar epithelial cells (MLE12), used as type II alveolar epithelial cell lines for in vitro assays, and human pulmonary alveolar epithelial cells (HPAEpiC) were treated with either bleomycin, doxorubicin or tunicamycin. The mechanism of OPN induction in these cells and its function as a pro-fibrotic cytokine on A549 and lung fibroblasts were analyzed. The DNA damaging reagents bleomycin and doxorubicin were found to induce OPN expression in A549, MLE12 and HPAEpiC. OPN expression was induced via activation of the extracellular signal-regulated protein kinase (ERK)-dependent signaling pathway in A549 and MLE12. The endoplasmic reticulum (ER) stress-inducing reagent tunicamycin induced OPN mRNA expression in A549, MLE12 and HPAEpiC, and OPN mRNA expression was induced via activation of the ERK-dependent signaling pathway in A549 and MLE12. Another ER stress-inducing reagent thapsigargin induced the expression of OPN mRNA as well as the subsequent production of OPN in A549 and MLE12. Furthermore, OPN promoted the proliferation of A549 and the migration of normal human lung fibroblasts. Inhibition of OPN by small interference RNA or neutralizing antibody suppressed both of these responses. The results of this study suggest that cell stress induces the upregulation of OPN in AEC II by signaling through the ERK pathway, and that upregulated OPN may play a role in fibrogenesis of the lung.
Collapse
Affiliation(s)
- Aki Kato
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takafumi Okura
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Chizuru Hamada
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seigo Miyoshi
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hitoshi Katayama
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Jitsuo Higaki
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Ryoji Ito
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
10
|
Kinnula VL, Ishikawa N, Bergmann U, Ohlmeier S. Proteomic approaches for studying human parenchymal lung diseases. Expert Rev Proteomics 2014; 6:619-29. [DOI: 10.1586/epr.09.80] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Activated alveolar epithelial cells initiate fibrosis through secretion of mesenchymal proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1559-1570. [PMID: 24012677 DOI: 10.1016/j.ajpath.2013.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/10/2013] [Accepted: 07/23/2013] [Indexed: 12/29/2022]
Abstract
Fibrosis is characterized by accumulation of activated fibroblasts and pathological deposition of fibrillar collagens. Activated fibroblasts overexpress matrix proteins and release factors that promote further recruitment of activated fibroblasts, leading to progressive fibrosis. The contribution of epithelial cells to this process remains unknown. Epithelium-directed injury may lead to activation of epithelial cells with phenotypes and functions similar to activated fibroblasts. Prior reports that used a reporter gene fate-mapping strategy are limited in their ability to investigate the functional significance of epithelial cell-derived mesenchymal proteins during fibrogenesis. We found that lung epithelial cell-derived collagen I activates fibroblast collagen receptor discoidin domain receptor-2, contributes significantly to fibrogenesis, and promotes resolution of lung inflammation. Alveolar epithelial cells undergoing transforming growth factor-β-mediated mesenchymal transition express several other secreted profibrotic factors and are capable of activating lung fibroblasts. These studies provide direct evidence that activated epithelial cells produce mesenchymal proteins that initiate a cycle of fibrogenic effector cell activation, leading to progressive fibrosis. Therapy targeted at epithelial cell production of type I collagen offers a novel pathway for abrogating this progressive cycle and for limiting tissue fibrosis but may lead to sustained lung injury/inflammation.
Collapse
|
12
|
Krafft E, Laurila HP, Peters IR, Bureau F, Peeters D, Day MJ, Rajamäki MM, Clercx C. Analysis of gene expression in canine idiopathic pulmonary fibrosis. Vet J 2013; 198:479-86. [PMID: 24120450 DOI: 10.1016/j.tvjl.2013.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/13/2013] [Accepted: 08/17/2013] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) in dogs is a rare disease of unknown aetiology, seen in terrier breeds, particularly the West Highland white terrier (WHWT). The aim of this study was to determine pulmonary gene expression in canine IPF in order to gain insights into the pathogenesis of the disease and to identify possible biomarkers. Microarray analyses were conducted to determine gene expression profiles in the lungs of dogs with IPF and control dogs of various breeds. More than 700 genes were identified as having greater than two-fold difference in expression between the two groups. The significant biological functions associated with these genes were related to cellular growth and proliferation, developmental processes, cellular movement, cell to cell signalling and interaction, and antigen presentation. Altered levels of expression were confirmed by quantitative reverse transcriptase PCR for genes encoding chemokine (C-C) ligand (CCL) 2 (+4.9 times), CCL7 (+6.8 times), interleukin 8 (+4.32 times), chemokine (C-X-C) ligand 14 (+3.4 times), fibroblast activation protein (+4.7 times) and the palate, lung and nasal associated protein (PLUNC, -25 times). Serum CCL2 concentrations were significantly higher in WHWTs with IPF (mean 628.1 pg/mL, interquartile range 460.3-652.7 pg/mL) than unaffected WHWTs (mean 344.0 pg/mL, interquartile range 254.5-415.5 pg/mL; P=0.001). The results support CCL2 as a candidate biomarker for IPF in dogs.
Collapse
Affiliation(s)
- E Krafft
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hasan SA, Eksteen B, Reid D, Paine HV, Alansary A, Johannson K, Gwozd C, Goring KAR, Vo T, Proud D, Kelly MM. Role of IL-17A and neutrophils in fibrosis in experimental hypersensitivity pneumonitis. J Allergy Clin Immunol 2013; 131:1663-73. [DOI: 10.1016/j.jaci.2013.01.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 11/15/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
|
14
|
MMP expression in rheumatoid inflammation: the rs11568818 polymorphism is associated with MMP-7 expression at an extra-articular site. Genes Immun 2013; 14:162-9. [PMID: 23343931 DOI: 10.1038/gene.2012.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix metalloproteinases (MMPs) contribute to the joint damage in rheumatoid arthritis (RA). Less is known of the involvement of MMPs at extra-articular sites of rheumatoid inflammation. We assessed the relative contribution from MMP-1, MMP-3, MMP-7 and MMP-12 to joint and extra-articular tissue destruction and inflammation by comparing gene expression in joint synovia and subcutaneous rheumatoid nodules from RA patients. Expression of MMP-1 and MMP-3 predominated in synovia, whereas MMP-12 expression was significantly higher in rheumatoid nodules. Markedly higher MMP-7 expression distinguished a subgroup of nodules that featured infiltrating monocyte/macrophage-producing MMP-7 protein. The high MMP-7 expression in nodules was associated with the single-nucleotide polymorphism (SNP) rs11568818 (-181A>G, MMP-7 promoter) and more active inflammation within the nodule lesions. Patients with such nodules had significantly earlier age of RA onset. Our findings indicate that the expression of MMP-1 and MMP-3 occurs relatively independent of the tissue microenvironment with substantial expression also at extra-articular sites. MMP-12 expression reflects the involvement of monocyte/macrophages in rheumatoid inflammation. Evidence for the association between the rs11568818 SNP and increased MMP-7 expression is restricted to nodules, which indicates that consequences of the MMP-7 polymorphism are likely to manifest within aspects of immune/inflammatory activity that are monocyte/macrophage-mediated.
Collapse
|
15
|
Yu G, Kovkarova-Naumovski E, Jara P, Parwani A, Kass D, Ruiz V, Lopez-Otín C, Rosas IO, Gibson KF, Cabrera S, Ramírez R, Yousem SA, Richards TJ, Chensny LJ, Selman M, Kaminski N, Pardo A. Matrix metalloproteinase-19 is a key regulator of lung fibrosis in mice and humans. Am J Respir Crit Care Med 2012; 186:752-62. [PMID: 22859522 DOI: 10.1164/rccm.201202-0302oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by epithelial phenotypic changes and fibroblast activation. Based on the temporal heterogeneity of IPF, we hypothesized that hyperplastic alveolar epithelial cells regulate the fibrotic response. OBJECTIVES To identify novel mediators of fibrosis comparing the transcriptional signature of hyperplastic epithelial cells and conserved epithelial cells in the same lung. METHODS Laser capture microscope and microarrays analysis were used to identify differentially expressed genes in IPF lungs. Bleomycin-induced lung fibrosis was evaluated in Mmp19-deficient and wild-type (WT) mice. The role of matrix metalloproteinase (MMP)-19 was additionally studied by transfecting the human MMP19 in alveolar epithelial cells. MEASUREMENTS AND MAIN RESULTS Laser capture microscope followed by microarray analysis revealed a novel mediator, MMP-19, in hyperplastic epithelial cells adjacent to fibrotic regions. Mmp19(-/-) mice showed a significantly increased lung fibrotic response to bleomycin compared with WT mice. A549 epithelial cells transfected with human MMP19 stimulated wound healing and cell migration, whereas silencing MMP19 had the opposite effect. Gene expression microarray of transfected A549 cells showed that PTGS2 (prostaglandin-endoperoxide synthase 2) was one of the highly induced genes. PTGS2 was overexpressed in IPF lungs and colocalized with MMP-19 in hyperplastic epithelial cells. In WT mice, PTGS2 was significantly increased in bronchoalveolar lavage and lung tissues after bleomycin-induced fibrosis, but not in Mmp19(-/-) mice. Inhibition of Mmp-19 by siRNA resulted in inhibition of Ptgs2 at mRNA and protein levels. CONCLUSIONS Up-regulation of MMP19 induced by lung injury may play a protective role in the development of fibrosis through the induction of PTGS2.
Collapse
Affiliation(s)
- Guoying Yu
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico DF, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kelly MM, King EM, Rider CF, Gwozd C, Holden NS, Eddleston J, Zuraw B, Leigh R, O'Byrne PM, Newton R. Corticosteroid-induced gene expression in allergen-challenged asthmatic subjects taking inhaled budesonide. Br J Pharmacol 2012; 165:1737-1747. [PMID: 21827450 PMCID: PMC3372826 DOI: 10.1111/j.1476-5381.2011.01620.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 06/01/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhaled corticosteroids (ICS) are the cornerstone of asthma pharmacotherapy and, acting via the glucocorticoid receptor (GR), reduce inflammatory gene expression. While this is often attributed to a direct inhibitory effect of the GR on inflammatory gene transcription, corticosteroids also induce the expression of anti-inflammatory genes in vitro. As there are no data to support this effect in asthmatic subjects taking ICS, we have assessed whether ICS induce anti-inflammatory gene expression in subjects with atopic asthma. EXPERIMENTAL APPROACH Bronchial biopsies from allergen-challenged atopic asthmatic subjects taking inhaled budesonide or placebo were subjected to gene expression analysis using real-time reverse transcriptase-PCR for the corticosteroid-inducible genes (official gene symbols with aliases in parentheses): TSC22D3 [glucocorticoid-induced leucine zipper (GILZ)], dual-specificity phosphatase-1 (MAPK phosphatase-1), both anti-inflammatory effectors, and FKBP5 [FK506-binding protein 51 (FKBP51)], a regulator of GR function. Cultured pulmonary epithelial and smooth muscle cells were also treated with corticosteroids before gene expression analysis. KEY RESULTS Compared with placebo, GILZ and FKBP51 mRNA expression was significantly elevated in budesonide-treated subjects. Budesonide also increased GILZ expression in human epithelial and smooth muscle cells in culture. Immunostaining of bronchial biopsies revealed GILZ expression in the airways epithelium and smooth muscle of asthmatic subjects. CONCLUSIONS AND IMPLICATIONS Expression of the corticosteroid-induced genes, GILZ and FKBP51, is up-regulated in the airways of allergen-challenged asthmatic subjects taking inhaled budesonide. Consequently, the biological effects of corticosteroid-induced genes should be considered when assessing the actions of ICS. Treatment modalities that increase or decrease GR-dependent transcription may correspondingly affect corticosteroid efficacy.
Collapse
Affiliation(s)
- M M Kelly
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - E M King
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - C F Rider
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - C Gwozd
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - N S Holden
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - J Eddleston
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - B Zuraw
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - R Leigh
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - P M O'Byrne
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - R Newton
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Kass DJ, Kaminski N. Evolving genomic approaches to idiopathic pulmonary fibrosis: moving beyond genes. Clin Transl Sci 2012; 4:372-9. [PMID: 22029812 DOI: 10.1111/j.1752-8062.2011.00287.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A little more than 10 years ago, the completed sequencing of the human genome boldly promised to usher in an era of enhanced understanding and accelerated development of treatments for most human diseases. Ten years later, many of these therapeutic goals have not been reached, but genomic technologies have dramatically enhanced our understanding of how genes and gene networks contribute to the pathogenesis of disease. In this review, we describe how genomic technologies have shaped our study of idiopathic pulmonary fibrosis (IPF), a devastating, progressive scarring of the lung parenchyma, a disease without a known cause, or treatment. We frame the important genomic discoveries in IPF of the previous decade in the clinical context of establishing a diagnosis of IPF and predicting the prognosis. Gene expression profiling of peripheral blood will help identify potential biomarkers for assessing the clinical severity of IPF. We highlight the growth of epigenetic research in IPF, including the contribution of microRNAs to the pathogenesis of disease. We suggest that the full power of genomic discoveries in IPF will be realized when researchers apply these techniques prospectively in large collaborative studies across institutions, support the training of young investigators in genomics, and employ systems biology approaches to the interpretation of genomic data.
Collapse
Affiliation(s)
- Daniel J Kass
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
18
|
Wygrecka M, Kwapiszewska G, Jablonska E, Gerlach SV, Henneke I, Zakrzewicz D, Guenther A, Preissner KT, Markart P. Role of Protease-activated Receptor-2 in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2011; 183:1703-14. [DOI: 10.1164/rccm.201009-1479oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
19
|
van der Windt GJW, Hoogendijk AJ, Schouten M, Hommes TJ, de Vos AF, Florquin S, van der Poll T. Osteopontin Impairs Host Defense During Pneumococcal Pneumonia. J Infect Dis 2011; 203:1850-8. [DOI: 10.1093/infdis/jir185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
20
|
Konno S, Kurokawa M, Uede T, Nishimura M, Huang SK. Role of osteopontin, a multifunctional protein, in allergy and asthma. Clin Exp Allergy 2011; 41:1360-6. [PMID: 21623969 DOI: 10.1111/j.1365-2222.2011.03775.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteopontin (OPN) is an extracellular matrix protein and immune modulator with a wide range of functions. OPN is recognized as a key cytokine in Th1 immune responses, yet its potential involvement in allergic/asthmatic responses has been investigated only recently. Current data from molecular and cellular studies and studies of OPN-deficient mice provide evidence that OPN plays multiple roles in the regulation of allergic responses, including regulation of IgE response, inflammatory cell migration, and the development of airway fibrosis and angiogenesis. These results suggest that OPN is a pleiotropic cytokine that functions both systemically and locally in tissue mucosa. Notably, OPN is able to exert its effects through different functional domains, and the secreted and intracellular forms of OPN may have distinct functions. Future research to elucidate all aspects of OPN function is needed to ultimately establish its role in the regulation of immune responses and various disease processes, including those critically involved in the development of allergies and asthma.
Collapse
Affiliation(s)
- S Konno
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
21
|
Mastrangelo G, Marangi G, Ballarin MN, Michilin S, Fabricio ASC, Valentini F, Lange JH, Fedeli U, Cegolon L, Gion M. Osteopontin, asbestos exposure and pleural plaques: a cross-sectional study. BMC Public Health 2011; 11:220. [PMID: 21477289 PMCID: PMC3094241 DOI: 10.1186/1471-2458-11-220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 04/08/2011] [Indexed: 11/14/2022] Open
Abstract
Background Osteopontin (OPN) is a plasma protein/cytokine produced in excess in several malignancies. In a recent study OPN was reported as being related to the duration of asbestos exposure and presence of benign asbestos-related diseases; however, it was unclear whether this protein was an indicator of exposure or effect. Methods In 193 workers, 50 with pleural plaques (PP), in whom different indicators of past asbestos exposure were estimated, OPN plasma levels were assessed using commercial quantitative sandwich enzyme immunoassays according to the manufacturer's instructions. Results Osteopontin increased with increasing age and several aspects of asbestos exposure, without differences related to the presence of pleural plaques. At multivariable regression analysis, the explanatory variables with a significant independent influence on OPN were length of exposure (positive correlation) and time elapsed since last exposure (positive correlation). Conclusions Since asbestos in lung tissue tends to wane over time, OPN should decrease (rather than increase) with time since last exposure. Therefore, OPN cannot be a reliable biomarker of exposure nor effect (presence of pleural plaques).
Collapse
Affiliation(s)
- Giuseppe Mastrangelo
- Department of Environmental Medicine and Public Health, Padua University, Padua, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Borchers AT, Chang C, Keen CL, Gershwin ME. Idiopathic pulmonary fibrosis-an epidemiological and pathological review. Clin Rev Allergy Immunol 2011; 40:117-34. [PMID: 20838937 DOI: 10.1007/s12016-010-8211-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) affecting the pulmonary interstitium. Other forms of interstitial lung disease exist, and in some cases, an environmental etiology can be delineated. The diagnosis of IPF is typically established by high-resolution CT scan. IPF tends to have a worse prognosis than other forms of ILD. Familial cases of IPF also exist, suggesting a genetic predisposition; telomerase mutations have been observed to occur in familial IPF, which may also explain the increase in IPF with advancing age. Alveolar epithelial cells are believed to be the primary target of environmental agents that have been putatively associated with IPF. These agents may include toxins, viruses, or the autoantibodies found in collagen vascular diseases. The mechanism of disease is still unclear in IPF, but aberrations in fibroblast differentiation, activation, and proliferation may play a role. Epithelial-mesenchymal transition may also be an important factor in the pathogenesis, as it may lead to accumulation of fibroblasts in the lung and a disruption of normal tissue structure. Abnormalities in other components of the immune system, including T cells, B cells, and dendritic cells, as well as the development of ectopic lymphoid tissue, have also been observed to occur in IPF and may play a role in the stimulation of fibrosis that is a hallmark of the disease. It is becoming increasingly clear that the pathogenesis of IPF is indeed a complex and convoluted process that involves numerous cell types and humoral factors.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 95616, USA
| | | | | | | |
Collapse
|
23
|
Korfei M, Schmitt S, Ruppert C, Henneke I, Markart P, Loeh B, Mahavadi P, Wygrecka M, Klepetko W, Fink L, Bonniaud P, Preissner KT, Lochnit G, Schaefer L, Seeger W, Guenther A. Comparative proteomic analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and lung transplant donor lungs. J Proteome Res 2011; 10:2185-205. [PMID: 21319792 DOI: 10.1021/pr1009355] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which no effective therapy exists to date. To identify the molecular mechanisms underlying IPF, we performed comparative proteome analysis of lung tissue from patients with sporadic IPF (n = 14) and human donor lungs (controls, n = 10) using two-dimensional gel electrophoresis and MALDI-TOF-MS. Eighty-nine differentially expressed proteins were identified, from which 51 were up-regulated and 38 down-regulated in IPF. Increased expression of markers for the unfolded protein response (UPR), heat-shock proteins, and DNA damage stress markers indicated a chronic cell stress-response in IPF lungs. By means of immunohistochemistry, induction of UPR markers was encountered in type-II alveolar epithelial cells of IPF but not of control lungs. In contrast, up-regulation of heat-shock protein 27 (Hsp27) was exclusively observed in proliferating bronchiolar basal cells and associated with aberrant re-epithelialization at the bronchiolo-alveolar junctions. Among the down-regulated proteins in IPF were antioxidants, members of the annexin family, and structural epithelial proteins. In summary, our results indicate that IPF is characterized by epithelial cell injury, apoptosis, and aberrant epithelial proliferation.
Collapse
Affiliation(s)
- Martina Korfei
- University of Giessen Lung Center, Department of Internal Medicine II, Klinikstrasse 36, Justus-Liebig-University Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Venkatesan N, Ouzzine M, Kolb M, Netter P, Ludwig MS. Increased deposition of chondroitin/dermatan sulfate glycosaminoglycan and upregulation of β1,3-glucuronosyltransferase I in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 300:L191-203. [PMID: 21056957 DOI: 10.1152/ajplung.00214.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis (PF) is characterized by increased deposition of proteoglycans (PGs), in particular core proteins. Glycosaminoglycans (GAGs) are key players in tissue repair and fibrosis, and we investigated whether PF is associated with changes in the expression and structure of GAGs as well as in the expression of β1,3-glucuronosyltransferase I (GlcAT-I), a rate-limiting enzyme in GAG synthesis. Lung biopsies from idiopathic pulmonary fibrosis (IPF) patients and lung tissue from a rat model of bleomycin (BLM)-induced PF were immunostained for chondroitin sulfated-GAGs and GlcAT-I expression. Alterations in disaccharide composition and sulfation of chondroitin/dermatan sulfate (CS/DS) were evaluated by fluorophore-assisted carbohydrate electrophoresis (FACE) in BLM rats. Lung fibroblasts isolated from control (saline-instilled) or BLM rat lungs were assessed for GAG structure and GlcAT-I expression. Disaccharide analysis showed that 4- and 6-sulfated disaccharides were increased in the lungs and lung fibroblasts obtained from fibrotic rats compared with controls. Fibrotic lung fibroblasts and transforming growth factor-β(1) (TGF-β(1))-treated normal lung fibroblasts expressed increased amounts of hyaluronan and 4- and 6-sulfated chondroitin, and neutralizing anti-TGF-β(1) antibody diminished the same. TGF-β(1) upregulated GlcAT-I and versican expression in lung fibroblasts, and signaling through TGF-β type I receptor/p38 MAPK was required for TGF-β(1)-mediated GlcAT-I and CS-GAG expression in fibroblasts. Our data show for the first time increased expression of CS-GAGs and GlcAT-I in IPF, fibrotic rat lungs, and fibrotic lung fibroblasts. These data suggest that alterations of sulfation isomers of CS/DS and upregulation of GlcAT-I contribute to the pathological PG-GAG accumulation in PF.
Collapse
|
25
|
Bronchiolitis obliterans organizing pneumonia in Swine associated with porcine circovirus type 2 infection. J Biomed Biotechnol 2010; 2011:245728. [PMID: 20976305 PMCID: PMC2952812 DOI: 10.1155/2011/245728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/11/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
Bronchiolitis obliterans organizing pneumonia (BOOP) is a chronic respiratory disease. Although the pathogenesis of BOOP is still incompletely understood, BOOP is responsive to steroids and has a good prognosis. In our five pigs with chronic postweaning multisystemic wasting syndrome (PMWS), typical BOOP lesions were revealed. All five porcine lungs showed typical intraluminal plugs, and porcine circovirus type 2 (PCV2) was identified. They also exhibited similar pathologic findings such as proliferation of type II pneumocytes and myofibroblasts (MFBs), extracellular collagen matrix (ECM) deposition, and fragmentation of elastic fibers. MFBs migration correlative molecules, for instance, gelatinase A, B and osteopontin, appeared strongly in the progressing marginal area of polypoid intraluminal plugs of fibrotic lesion. These molecules colocalized with the active MFBs. Both gelatinase activity and intercellular level of active MFBs were significantly increased (P < .05). Porcine chronic bronchopneumonia leads to BOOP and it is associated with PCV2 persistent infection. Swine BOOP demonstrates similar cellular constituents with human BOOP. Perhaps their molecular mechanisms of pathogenesis operate in a similar way. Thus we infer that the swine BOOP can be considered as a potential animal model for human BOOP associated with natural viral infection. Moreover, it is more convenient to obtain samples.
Collapse
|
26
|
Fujishima S, Shiomi T, Yamashita S, Yogo Y, Nakano Y, Inoue T, Nakamura M, Tasaka S, Hasegawa N, Aikawa N, Ishizaka A, Okada Y. Production and activation of matrix metalloproteinase 7 (matrilysin 1) in the lungs of patients with idiopathic pulmonary fibrosis. Arch Pathol Lab Med 2010; 134:1136-42. [PMID: 20670133 DOI: 10.5858/2009-0144-oa.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Idiopathic pulmonary fibrosis (IPF) is characterized by diffuse interstitial inflammation and fibroblast proliferation with accelerated remodeling of extracellular matrix, which result in irreversible destruction of the lung's architecture. OBJECTIVE To elucidate the production levels, tissue localization, and activation of matrix metalloproteinase 7 (MMP-7) in the lungs of patients with IPF. DESIGN Bronchoalveolar lavage analysis was performed in 17 IPF patients and 6 healthy volunteers. Levels of MMP-7 in blood were assayed in 23 IPF patients and 20 controls. Histologic and immunohistochemical analyses were performed on paraffin sections of the lung tissues from patients with IPF, interstitial pneumonia associated with rheumatoid arthritis, or nonspecific interstitial pneumonia. RESULTS The proMMP-7 levels in bronchoalveolar lavage fluids from IPF patients were significantly higher than those from healthy controls, although there was no difference in the serum levels between the 2 groups. By immunohistochemistry, proMMP-7 was localized mainly to the hyperplastic alveolar and metaplastic bronchiolar epithelial cells in the lung tissues from IPF patients. Active MMP-7 was immunolocalized on alveolar macrophages and hyperplastic epithelial cells, which were also immunostained with antibody against CD151, a molecule associated with activation of proMMP-7. Immunoblot analysis indicated the overproduction of proMMP-7 together with a small amount of active MMP-7 in bronchoalveolar lavage fluids from IPF patients. The MMP-7 activity was detected in a cross-linked carboxymethylated transferrin film assay. CONCLUSIONS proMMP-7 is excessively produced by hyperplastic alveolar and metaplastic bronchiolar epithelial cells and activated locally in the lungs of IPF patients, suggesting that MMP-7 may contribute to the pathology of IPF.
Collapse
Affiliation(s)
- Seitaro Fujishima
- Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
KAARTEENAHO RIITTA, SORMUNEN RAIJA, PÄÄKKÖ PAAVO. Variable expression of tenascin-C, osteopontin and fibronectin in inflammatory myofibroblastic tumour of the lung. APMIS 2010; 118:91-100. [DOI: 10.1111/j.1600-0463.2009.02566.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Kaarteenaho-Wiik R, Paakko P, Sormunen R. Ultrastructural features of lung fibroblast differentiation into myofibroblasts. Ultrastruct Pathol 2009; 33:6-15. [PMID: 19191196 DOI: 10.1080/01913120802608430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fibroblast differentiation into myofibroblast in transforming growth factor-beta1-exposed human lung fibroblasts and the immunolocalizations of alpha-smooth muscle actin, fibronectin, tenascin-C, and osteopontin in exposed cells were studied by conventional transmission electron microscopy and immunoelectron microscopy. Ultrastructural features of myofibroblasts were detected after exposure, e.g., alpha-smooth muscle actin positive bundles in the cytoplasm of cells and extracellular fibronectin-containing structures on the surface of the cell forming fibronexus structure, osteopontin adjacent to rough endoplastic reticulum and extracellular tenascin-C in the vicinity of the cell. The authors concluded that exposure to transforming growth factor-beta1 can differentiate lung fibroblasts into ultrastructurally typical myofibroblasts.
Collapse
Affiliation(s)
- Riitta Kaarteenaho-Wiik
- Institute of Clinical Medicine, Department of Internal Medicine, Centre of Excellence in Research, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | | | | |
Collapse
|
29
|
Yamashita M, Yamauchi K, Chiba R, Iwama N, Date F, Shibata N, Kumagai H, Risteli J, Sato S, Takahashi T, Ono M. The definition of fibrogenic processes in fibroblastic foci of idiopathic pulmonary fibrosis based on morphometric quantification of extracellular matrices. Hum Pathol 2009; 40:1278-87. [PMID: 19386353 DOI: 10.1016/j.humpath.2009.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 11/28/2022]
Abstract
There is limited information regarding the process of tissue remodeling in fibroblastic foci associated with idiopathic pulmonary fibrosis. The aim of this study was to identify the different pathologic stages of tissue remodeling in fibroblastic foci based on the histopathologic differences in the glycosaminoglycan distribution and collagen deposition. In addition, we also aimed at clarifying the stage-specific characteristics by taking into consideration the expression pattern of matrix metalloproteinase and angiogenesis. Lung biopsies of 16 patients with idiopathic pulmonary fibrosis were used. The presence of glycosaminoglycans was detected by Alcian blue staining, and type I collagen was detected by immunohistochemical analysis with a primary antibody specific to the cross-linked carboxyterminal telopeptide of type I collagen. The fibroblastic foci characterized by the expression intensity of Alcian blue and telopeptide of type I collagen were divided into 3 groups, namely, Alcian blue(+)telopeptide of type I collagen(weak), Alcian blue(+)telopeptide of type I collagen(+), and Alcian blue(weak)telopeptide of type I collagen(+); consequently, 3 new stages were defined--stages I, II, and III, respectively. A significant inverse correlation was observed between the area densities of Alcian blue(+) and telopeptide of type I collagen(+) in fibroblastic foci. Stage I was characterized by the expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloprotease-2 in fibroblasts and the overlying epithelium of fibroblastic foci, and also the absence of capillary angiogenesis. In contrast, the expression of these proteins was attenuated in stage III, except for that of matrix metalloproteinase-2 in fibroblasts. In stages II and III, capillary angiogenesis was observed. Lymphangiogenesis was undetected in all the 3 stages. Thus, pathologic staging helps understand the roles of the factors involved in tissue remodeling in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kohan M, Breuer R, Berkman N. Osteopontin induces airway remodeling and lung fibroblast activation in a murine model of asthma. Am J Respir Cell Mol Biol 2009; 41:290-6. [PMID: 19151319 DOI: 10.1165/rcmb.2008-0307oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway remodeling is a central feature of asthma; however, the mechanisms underlying its development have not been fully elucidated. We have demonstrated that osteopontin, an inflammatory cytokine and an extracellular matrix glycoprotein with profibrotic properties, is up-regulated in a murine model of allergen-induced airway remodeling. In the present study, we determined whether osteopontin plays a functional role in airway remodeling. Osteopontin (OPN)-deficient (OPN(-/-)) and wild-type mice were sensitized and exposed to inhaled ovalbumin (OVA) or saline for 5 weeks. Collagen production, peribronchial smooth muscle area, mucus-producing cell number, and bronchoalveolar cell counts were assessed. The functional behavior and phenotype of lung fibroblasts from OVA-treated OPN(-/-) and from wild-type mice were studied using ex vivo cultures. OVA-treated OPN(-/-) mice exhibited reduced lung collagen content, smooth muscle area, mucus-producing cells, and inflammatory cell accumulation as compared with wild-type mice. Reduced matrix metalloproteinase-2 activity and expression of transforming growth factor-beta1 and vascular endothelial growth factor were observed in OVA-treated OPN(-/-) mice. Lung fibroblasts from OVA-treated OPN(-/-) mice showed reduced proliferation, migration, collagen deposition, and alpha-smooth muscle actin expression in comparison with OVA-treated wild-type lung fibroblasts. Thus, OPN is key for the development of allergen-induced airway remodeling in mice. In response to allergen, OPN induces the switching of lung fibroblasts to a pro-fibrogenic myofibroblast phenotype.
Collapse
Affiliation(s)
- Martin Kohan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
31
|
Dual-immunohistochemistry provides little evidence for epithelial–mesenchymal transition in pulmonary fibrosis. Histochem Cell Biol 2008; 129:453-62. [DOI: 10.1007/s00418-008-0388-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2008] [Indexed: 12/21/2022]
|
32
|
Yin Q, Brody AR, Sullivan DE. Laser capture microdissection reveals dose-response of gene expression in situ consequent to asbestos exposure. Int J Exp Pathol 2007; 88:415-25. [PMID: 18039278 DOI: 10.1111/j.1365-2613.2007.00545.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The genes that mediate fibroproliferative lung disease remain to be defined. Prior studies from our laboratory showed by in situ hybridization and immunohistochemistry that the genes coding for tumour necrosis factor alpha, transforming growth factor beta, the platelet-derived growth factor A and B isoforms, and alpha-1 pro-collagen are expressed in fibroproliferative lesions that develop quickly after asbestos inhalation. These five genes, along with matrix metalloproteinase 9, a collagenase found to be increased in several lung diseases, are known to control matrix production and cell proliferation in humans and animals. Here we show by laser capture microdissection that (i) The six genes are expressed at significantly higher levels in the asbestos-exposed mice when comparing the same anatomic regions 'captured' in unexposed mice. (ii) The bronchiolar-alveolar duct (BAD) junctions, where the greatest number of fibres initially deposit, were always significantly higher than the other anatomic regions for each gene. The first alveolar duct bifurcation (ADB) generally was higher than the second ADB, the ADBs were always significantly higher than the airway walls and pleura, and the airway walls and pleura were generally higher than the unexposed tissues. (iii) Animals exposed for 3 days always exhibited significantly higher levels of gene expression at the BAD junctions and ADBs than animals exposed for 2 days. To our knowledge, this is the first demonstration of a dose-response to a toxic particle in situ, and this response appears to be dependent on the number of fibres that deposits at the individual anatomic site.
Collapse
Affiliation(s)
- Qi Yin
- Department of Pathology, Tulane University Health Sciences Centers, New Orleans, LA, USA
| | | | | |
Collapse
|
33
|
Marchal-Sommé J, Uzunhan Y, Marchand-Adam S, Kambouchner M, Valeyre D, Crestani B, Soler P. Dendritic Cells Accumulate in Human Fibrotic Interstitial Lung Disease. Am J Respir Crit Care Med 2007; 176:1007-14. [PMID: 17717200 DOI: 10.1164/rccm.200609-1347oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE There is growing evidence that resident cells, such as fibroblasts and epithelial cells, can drive the persistent accumulation of dendritic cells (DCs) in chronically inflamed tissue, leading to the organization and the maintenance of ectopic lymphoid aggregates. This phenomenon, occurring through a chemokine-mediated retention mechanism, has been documented in various disorders, but not in fibrotic interstitial lung disorders in which the presence of organized lymphoid follicles has been documented. OBJECTIVES To characterize the distribution of DCs in fibrotic lung, and to analyze the expression of the main chemokines known to regulate DC recruitment. METHODS Lung resection tissue (lungs with idiopathic pulmonary fibrosis; n = 12; lungs with nonspecific interstitial pneumonia, n = 5; control lungs, n = 5) was snap-frozen for subsequent immunohistochemical techniques on serial sections and reverse transcriptase-polymerase chain reaction analysis. MEASUREMENTS AND MAIN RESULTS Results were similar in idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia lungs, which were heavily infiltrated by immature DCs in established fibrosis and in areas of epithelial hyperplasia. Altered epithelial cells and fibroblasts, particularly in fibroblastic foci, frankly expressed all chemokines (CCL19, CCL20, CCL22, and CXCL12) susceptible to favor the recruitment of immune cells. Lymphoid follicles were infiltrated by maturing DCs, which could originate from the pool of DCs accumulating in their vicinity. CONCLUSIONS These findings suggest that resident cells in pulmonary fibrosis can sustain chronic inflammation by driving the accumulation of DCs with the potential to mature locally within ectopic lymphoid follicles. Future strategies should consider DCs or chemokines as therapeutic targets in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Joëlle Marchal-Sommé
- Inserm, U 700, and Faculté de Médecine Paris-Nord, site Bichat, Université Paris 7, Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Vuorinen K, Myllärniemi M, Lammi L, Piirilä P, Rytilä P, Salmenkivi K, Kinnula VL. Elevated matrilysin levels in bronchoalveolar lavage fluid do not distinguish idiopathic pulmonary fibrosis from other interstitial lung diseases. APMIS 2007; 115:969-75. [PMID: 17696954 DOI: 10.1111/j.1600-0463.2007.apm_697.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microarray studies have shown that matrilysin or matrix metalloproteinase (MMP)-7 is highly upregulated in the lungs of patients with idiopathic pulmonary fibrosis (IPF), but MMP-7 protein expression has not been systematically compared between IPF and other interstitial lung diseases. MMP-7 levels in bronchoalveolar lavage fluid (BALF) were compared to corresponding samples from nonspecific interstitial pneumonia (NSIP), sarcoidosis, and healthy controls. MMP-7 levels in the BALF were determined by ELISA and localization of MMP-7 in the lung tissue by immunohistochemistry. MMP-7 was similarly elevated in the BALF of all these disorders compared to healthy controls (p=0.007). Even control subjects with prolonged cough displayed a tendency towards elevated MMP-7 expression. There was a negative correlation between BALF MMP-7 levels and forced expiratory vital capacity (r=-0.348, p=0.02, n=42). In IPF lung, MMP-7 immunoreactivity appeared predominantly in the fibrotic parenchyma and arterial wall. In sarcoidosis and NSIP, prominent MMP-7 immunoreactivity was found in areas of inflammation. These results demonstrate that elevated BALF MMP-7 is not restricted to IPF alone but is also observed in other interstitial lung diseases and cannot be used as a differential diagnostic marker for IPF.
Collapse
Affiliation(s)
- Kirsi Vuorinen
- Department of Medicine and Division of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
35
|
Hardie WD, Korfhagen TR, Sartor MA, Prestridge A, Medvedovic M, Le Cras TD, Ikegami M, Wesselkamper SC, Davidson C, Dietsch M, Nichols W, Whitsett JA, Leikauf GD. Genomic profile of matrix and vasculature remodeling in TGF-alpha induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2007; 37:309-21. [PMID: 17496152 PMCID: PMC1994231 DOI: 10.1165/rcmb.2006-0455oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression of transforming growth factor alpha (TGF-alpha) in the respiratory epithelium of transgenic mice caused pulmonary fibrosis, cachexia, pulmonary hypertension, and altered lung function. To identify genes and molecular pathways mediating lung remodeling, mRNA microarray analysis was performed at multiple times after TGF-alpha expression and revealed changes consistent with a role for TGF-alpha in the regulation of extracellular matrix and vasculogenesis. Transcripts for extracellular matrix proteins were augmented along with transcripts for genes previously identified to have roles in pulmonary fibrosis, including tenascin C, osteopontin, and serine (or cysteine) peptidase inhibitor, clade F, member 1. Transcripts regulating vascular processes including endothelin receptor type B, endothelial-specific receptor tyrosine kinase, and caveolin, caveolae protein 1 were decreased. When TGF-alpha expression was no longer induced, lung remodeling partially reversed and lung function and pulmonary hypertension normalized. Transcripts increased during resolution included midkine, matrix metalloproteinase 2, and hemolytic complement. Hierarchical clustering revealed that genes regulated by TGF-alpha were similar to those altered in the lungs of patients with idiopathic pulmonary fibrosis. These studies support a role for epithelial cell-derived TGF-alpha in the regulation of processes that alter the airway and vascular architecture and function.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Doxycycline/pharmacology
- Extracellular Matrix/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Lung/blood supply
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/genetics
- Pulmonary Fibrosis/pathology
- Pulmonary Fibrosis/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Respiratory Mechanics
- Transforming Growth Factor alpha/genetics
- Transforming Growth Factor alpha/physiology
Collapse
Affiliation(s)
- William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| | | |
Collapse
|
37
|
|