1
|
Mullins E, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Naegeli H, Moreno FJ, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, De Sanctis G, Silvia F, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Grammatikou P, Goumperis T, Kagkli DM, Lenzi P, Lewandowska A, Camargo AM, Neri FM, Piffanelli P, Raffaello T, Xiftou K. Assessment of genetically modified maize MON 95275 (application GMFF-2022-5890). EFSA J 2024; 22:e8886. [PMID: 39099613 PMCID: PMC11292213 DOI: 10.2903/j.efsa.2024.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Genetically modified maize MON 95275 was developed to confer protection to certain coleopteran species. These properties were achieved by introducing the mpp75Aa1.1, vpb4Da2 and DvSnf7 expression cassettes. The molecular characterisation data and bioinformatic analyses reveal similarity to known toxins, which was further assessed. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 95275 and its conventional counterpart needs further assessment. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Mpp75Aa1.1 and Vpb4Da2 proteins and the DvSnf7 dsRNA and derived siRNAs as expressed in maize MON 95275 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 95275. In the context of this application, the consumption of food and feed from maize MON 95275 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 95275 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of maize MON 95275 material into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 95275. The GMO Panel concludes that maize MON 95275 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.
Collapse
|
2
|
Daniels JB, Sykes JE. Miscellaneous Gram-Positive Bacterial Infections. GREENE'S INFECTIOUS DISEASES OF THE DOG AND CAT 2021:627-642. [DOI: 10.1016/b978-0-323-50934-3.00052-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Cui X, Nolen LD, Sun J, Booth M, Donaldson L, Quinn CP, Boyer AE, Hendricks K, Shadomy S, Bothma P, Judd O, McConnell P, Bower WA, Eichacker PQ. Analysis of Anthrax Immune Globulin Intravenous with Antimicrobial Treatment in Injection Drug Users, Scotland, 2009-2010. Emerg Infect Dis 2018; 23:56-65. [PMID: 27983504 PMCID: PMC5176236 DOI: 10.3201/eid2301.160608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We studied anthrax immune globulin intravenous (AIG-IV) use from a 2009-2010 outbreak of Bacillus anthracis soft tissue infection in injection drug users in Scotland, UK, and we compared findings from 15 AIG-IV recipients with findings from 28 nonrecipients. Death rates did not differ significantly between recipients and nonrecipients (33% vs. 21%). However, whereas only 8 (27%) of 30 patients at low risk for death (admission sequential organ failure assessment score of 0-5) received AIG-IV, 7 (54%) of the 13 patients at high risk for death (sequential organ failure assessment score of 6-11) received treatment. AIG-IV recipients had surgery more often and, among survivors, had longer hospital stays than did nonrecipients. AIG-IV recipients were sicker than nonrecipients. This difference and the small number of higher risk patients confound assessment of AIG-IV effectiveness in this outbreak.
Collapse
|
5
|
Suffredini DA, Cui X, Xu W, Li Y, Eichacker PQ. The Potential Pathogenic Contributions of Endothelial Barrier and Arterial Contractile Dysfunction to Shock Due to B. anthracis Lethal and Edema Toxins. Toxins (Basel) 2017; 9:toxins9120394. [PMID: 29210983 PMCID: PMC5744114 DOI: 10.3390/toxins9120394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shock with B. anthracis infection is particularly resistant to conventional cardiovascular support and its mortality rate appears higher than with more common bacterial pathogens. As opposed to many bacteria that lack exotoxins directly depressing hemodynamic function, lethal and edema toxin (LT and ET respectively) both cause shock and likely contribute to the high lethality rate with B. anthracis. Selective inhibition of the toxins is protective in infection models, and administration of either toxin alone in animals produces hypotension with accompanying organ injury and lethality. Shock during infection is typically due to one of two mechanisms: (i) intravascular volume depletion related to disruption of endothelial barrier function; and (ii) extravasation of fluid and/or maladaptive dilation of peripheral resistance arteries. Although some data suggests that LT can produce myocardial dysfunction, growing evidence demonstrates that it may also interfere with endothelial integrity thereby contributing to the extravasation of fluid that helps characterize severe B. anthracis infection. Edema toxin, on the other hand, while known to produce localized tissue edema when injected subcutaneously, has potent vascular relaxant effects that could lead to pathologic arterial dilation. This review will examine recent data supporting a role for these two pathophysiologic mechanisms underlying the shock LT and ET produce. Further research and a better understanding of these mechanisms may lead to improved management of B. anthracis in patients.
Collapse
Affiliation(s)
- Dante A Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Does Bacillus anthracis Lethal Toxin Directly Depress Myocardial Function? A Review of Clinical Cases and Preclinical Studies. Toxins (Basel) 2015; 7:5417-34. [PMID: 26703730 PMCID: PMC4690141 DOI: 10.3390/toxins7124891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
The US outbreak of B.anthracis infection in 2001 and subsequent cases in the US and Europe demonstrate that anthrax is a continuing risk for the developed world. While several bacterial components contribute to the pathogenesis of B. anthracis, production of lethal toxin (LT) is strongly associated with the development of hypotension and lethality. However, the mechanisms underlying the cardiovascular instability LT produces are unclear. Some evidence suggests that LT causes shock by impairing the peripheral vasculature, effects consistent with the substantial extravasation of fluid in patients dying with B. anthracis. Other data suggests that LT directly depresses myocardial function. However a clinical correlate for this latter possibility is less evident since functional studies and post-mortem examination in patients demonstrate absent or minimal cardiac changes. The purposes of this review were to first present clinical studies of cardiac functional and histologic pathology with B. anthracis infection and to then examine in vivo, in vitro, and ex vivo preclinical studies of LT’s myocardial effects. Together, these data suggest that it is unclear whether that LT directly depresses cardiac function. This question is important for the clinical management and development of new therapies for anthrax and efforts should continue to be made to answer it.
Collapse
|
7
|
Booth M, Donaldson L, Cui X, Sun J, Cole S, Dailsey S, Hart A, Johns N, McConnell P, McLennan T, Parcell B, Robb H, Shippey B, Sim M, Wallis C, Eichacker PQ. Confirmed Bacillus anthracis infection among persons who inject drugs, Scotland, 2009-2010. Emerg Infect Dis 2015; 20:1452-63. [PMID: 25148307 PMCID: PMC4178387 DOI: 10.3201/eid2009.131481] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patients who died had an increased sequential organ failure assessment score and need for vasopressors.
Collapse
|
8
|
Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Expert Opin Investig Drugs 2015; 24:851-65. [PMID: 25920540 DOI: 10.1517/13543784.2015.1041587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sepsis with Bacillus anthracis infection has a very high mortality rate despite appropriate antibiotic and supportive therapies. Over the past 15 years, recent outbreaks in the US and in Europe, coupled with anthrax's bioterrorism weapon potential, have stimulated efforts to develop adjunctive therapies to improve clinical outcomes. Since lethal toxin and edema toxin (LT and ET) make central contributions to the pathogenesis of B. anthracis, these have been major targets in this effort. AREAS COVERED Here, the authors review different investigative biopharmaceuticals that have been recently identified for their therapeutic potential as inhibitors of LT or ET. Among these inhibitors are two antibody preparations that have been included in the Strategic National Stockpile (SNS) and several more that have reached Phase I testing. Presently, however, many of these candidate agents have only been studied in vitro and very few tested in bacteria-challenged models. EXPERT OPINION Although a large number of drugs have been identified as potential therapeutic inhibitors of LT and ET, in most cases their testing has been limited. The use of the two SNS antibody therapies during a large-scale exposure to B. anthracis will be difficult. Further testing and development of agents with oral bioavailability and relatively long shelf lives should be a focus for future research.
Collapse
Affiliation(s)
- Lernik Ohanjanian
- National Institutes of Health, Clinical Center, Critical Care Medicine Department , Building 10, Room 2C145, Bethesda, MD 20892 , USA +1 301 402 2914 ; +1 301 402 1213 ;
| | | | | | | | | |
Collapse
|
9
|
Kaur M, Singh S, Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev Vaccines 2014; 12:955-70. [PMID: 23984963 DOI: 10.1586/14760584.2013.814860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of anthrax remains a top priority among the biowarfare/bioterror agents. It was the Bacillus anthracis spore attack through the US mail system after the September 11, 2001, terrorist attacks in the USA that highlighted the potential of B. anthracis as a bioterrorism agent and the threat posed by its deliberate dissemination. These attacks invigorated the efforts toward understanding the anthrax pathogenesis and development of more comprehensive medical intervention strategies for its containment in case of both natural disease and manmade, accidental or deliberate infection of a non-suspecting population. Currently, efforts are directed toward the development of safe and efficacious vaccines as well as intervention tools for controlling the disease in the advanced fulminant stage when toxemia has already developed. This work presents an overview of the current understanding of anthrax pathogenesis and recent advances made, particularly after 2001, for the successful management of anthrax and outlines future perspectives.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
10
|
Arévalo MT, Navarro A, Arico CD, Li J, Alkhatib O, Chen S, Diaz-Arévalo D, Zeng M. Targeted silencing of anthrax toxin receptors protects against anthrax toxins. J Biol Chem 2014; 289:15730-8. [PMID: 24742682 DOI: 10.1074/jbc.m113.538587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.
Collapse
Affiliation(s)
- Maria T Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Ashley Navarro
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Chenoa D Arico
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Junwei Li
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Omar Alkhatib
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Shan Chen
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Diana Diaz-Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Mingtao Zeng
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
11
|
Tekin R, Sula B, Devecı O, Tekin A, Bozkurt F, Ucmak D, Kaya Ş, Bekcibasi M, Erkan ME, Ayaz C, Hosoglu S. Cutaneous anthrax in Southeast Anatolia of Turkey. Cutan Ocul Toxicol 2014; 34:7-11. [DOI: 10.3109/15569527.2014.880844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Bouzianas DG. Potential biological targets ofBacillus anthracisin anti-infective approaches against the threat of bioterrorism. Expert Rev Anti Infect Ther 2014; 5:665-84. [PMID: 17678429 DOI: 10.1586/14787210.5.4.665] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The terrorist attacks of 2001 involving anthrax underscore the imperative that safe and effective medical countermeasures should be readily available. Vaccination appears to be the most effective form of mass protection against a biological attack, but the current vaccines have drawbacks that justify the enormous amount of effort currently being put into developing more effective vaccines and other treatment modalities. After providing a comprehensive overview of the organism Bacillus anthracis as a biological weapon and its pathogenicity, this review briefly summarizes the current knowledge vital to the management of anthrax disease. This knowledge has been acquired since 2001 as a result of the progress on anthrax research and focuses on the possible development of improved human anti-infective strategies targeting B. anthracis spore components, as well as strategies based on host-pathogen interactions.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- Department of Medical Laboratories, Faculty of Health and Care Professions, University-level Technological Educational Institute of Thessaloniki, Greece.
| |
Collapse
|
13
|
Hicks CW, Sweeney DA, Cui X, Li Y, Eichacker PQ. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 2012; 38:1092-104. [PMID: 22527064 DOI: 10.1007/s00134-012-2541-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 02/06/2023]
Abstract
PURPOSE Bacillus anthracis infection (anthrax) can be highly lethal. Two recent outbreaks related to contaminated mail in the USA and heroin in the UK and Europe and its potential as a bioterrorist weapon have greatly increased concerns over anthrax in the developed world. METHODS This review summarizes the microbiology, pathogenesis, diagnosis, and management of anthrax. RESULTS AND CONCLUSIONS Anthrax, a gram-positive bacterium, has typically been associated with three forms of infection: cutaneous, gastrointestinal, and inhalational. However, the anthrax outbreak among injection drug users has emphasized the importance of what is now considered a fourth disease form (i.e., injectional anthrax) that is characterized by severe soft tissue infection. While cutaneous anthrax is most common, its early stages are distinct and prompt appropriate treatment commonly produces a good outcome. However, early symptoms with the other three disease forms can be nonspecific and mistaken for less lethal conditions. As a result, patients with gastrointestinal, inhalational, or injectional anthrax may have advanced infection at presentation that can be highly lethal. Once anthrax is suspected, the diagnosis can usually be made with gram stain and culture from blood or tissue followed by confirmatory testing (e.g., PCR). While antibiotics are the mainstay of anthrax treatment, use of adjunctive therapies such as anthrax toxin antagonists are a consideration. Prompt surgical therapy appears to be important for successful management of injectional anthrax.
Collapse
Affiliation(s)
- Caitlin W Hicks
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44122, USA
| | | | | | | | | |
Collapse
|
14
|
Barochia AV, Cui X, Sun J, Li Y, Solomon SB, Migone TS, Subramanian GM, Bolmer SD, Eichacker PQ. Protective antigen antibody augments hemodynamic support in anthrax lethal toxin shock in canines. J Infect Dis 2012; 205:818-29. [PMID: 22223857 DOI: 10.1093/infdis/jir834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anthrax-associated shock is closely linked to lethal toxin (LT) release and is highly lethal despite conventional hemodynamic support. We investigated whether protective antigen-directed monoclonal antibody (PA-mAb) treatment further augments titrated hemodynamic support. METHODS AND RESULTS Forty sedated, mechanically ventilated, instrumented canines challenged with anthrax LT were assigned to no treatment (controls), hemodynamic support alone (protocol-titrated fluids and norepinephrine), PA-mAb alone (administered at start of LT infusion [0 hours] or 9 or 12 hours later), or both, and observed for 96 hours. Although all 8 controls died, 2 of 8 animals receiving hemodynamic support alone survived (median survival times 65 vs 85 hours, respectively; P = .03). PA-mAb alone at 0 hour improved survival (5 of 5 animals survived), but efficacy decreased progressively with delayed treatment (9 hours, 2 of 3 survived; 12 hours, 0 of 4 survived) (P = .004 comparing survival across treatment times). However, combined treatment increased survival irrespective of PA-mAb administration time (0 hours, 4 of 5 animals; 9 hours, 3 of 3 animals; and 12 hours, 4 of 5 animals survived) (P = .95 comparing treatment times). Compared to hemodynamic support alone, when combined over PA-mAb treatment times (0, 9, and 12 hours), combination therapy produced higher survival (P = .008), central venous pressures, and left ventricular ejection fractions, and lower heart rates, norepinephrine requirements and fluid retention (P ≤ .03). CONCLUSIONS PA-mAb may augment conventional hemodynamic support during anthrax LT-associated shock.
Collapse
Affiliation(s)
- Amisha V Barochia
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Garcia AA, Fels RJ, Mosher LJ, Kenney MJ. Bacillus anthracis lethal toxin alters regulation of visceral sympathetic nerve discharge. J Appl Physiol (1985) 2011; 112:1033-40. [PMID: 22114180 DOI: 10.1152/japplphysiol.01105.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacillus anthracis infection is a pathophysiological condition that is complicated by progressive decreases in mean arterial pressure (MAP). Lethal toxin (LeTx) is central to the pathogenesis of B. anthracis infection, and the sympathetic nervous system plays a critical role in physiological regulation of acute stressors. However, the effect of LeTx on sympathetic nerve discharge (SND), a critical link between central sympathetic neural circuits and MAP regulation, remains unknown. We determined visceral (renal, splenic, and adrenal) SND responses to continuous infusion of LeTx [lethal factor (100 μg/kg) + protective antigen (200 μg/kg) infused at 0.5 ml/h for ≤6 h] and vehicle (infused at 0.5 ml/h) in anesthetized, baroreceptor-intact and baroreceptor (sinoaortic)-denervated (SAD) Sprague-Dawley rats. LeTx infusions produced an initial state of cardiovascular and sympathetic nervous system activation in intact and SAD rats. Subsequent to peak LeTx-induced increases in arterial blood pressure, intact rats demonstrated a marked hypotension that was accompanied by significant reductions in SND (renal and splenic) and heart rate (HR) from peak levels. After peak LeTx-induced pressor and sympathoexcitatory responses in SAD rats, MAP, SND (renal, splenic, and adrenal), and HR were progressively and significantly reduced, supporting the hypothesis that LeTx alters the central regulation of sympathetic nerve outflow. These findings demonstrate that the regulation of visceral SND is altered in a complex manner during continuous anthrax LeTx infusions and suggest that sympathetic nervous system dysregulation may contribute to the marked hypotension accompanying B. anthracis infection.
Collapse
Affiliation(s)
- A A Garcia
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
16
|
Rudenko NV, Abbasova SG, Grishin EV. [Preparation and characterization of monoclonal antibodies to Bacillus anthracis protective antigen]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:354-60. [PMID: 21899050 DOI: 10.1134/s1068162011030162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anthrax is the widespread acute infection disease, affecting animals and humans, refers to the bioterrorist threat agents of category A, because of the high resistance of Bacillus anthracis spores to adverse environmental factors and the ease of receiving them. We obtain a representative panel of 20 monoclonal antibodies against the key component of pathogenic exotoxins, anthrax protective antigen. Quantitative sandwich-ELISA for protective antigen with antibody obtained was developed. Six pairs of monoclonal antibodies showed the detection limit up to 1 ng/ml concentration of the protective antigen in blood serum.
Collapse
|
17
|
Hicks CW, Cui X, Sweeney DA, Li Y, Barochia A, Eichacker PQ. The potential contributions of lethal and edema toxins to the pathogenesis of anthrax associated shock. Toxins (Basel) 2011; 3:1185-202. [PMID: 22069762 PMCID: PMC3202877 DOI: 10.3390/toxins3091185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 12/22/2022] Open
Abstract
Outbreaks of Bacillus anthracis in the US and Europe over the past 10 years have emphasized the health threat this lethal bacteria poses even for developed parts of the world. In contrast to cutaneous anthrax, inhalational disease in the US during the 2001 outbreaks and the newly identified injectional drug use form of disease in the UK and Germany have been associated with relatively high mortality rates. One notable aspect of these cases has been the difficulty in supporting patients once shock has developed. Anthrax bacilli produce several different components which likely contribute to this shock. Growing evidence indicates that both major anthrax toxins may produce substantial cardiovascular dysfunction. Lethal toxin (LT) can alter peripheral vascular function; it also has direct myocardial depressant effects. Edema toxin (ET) may have even more pronounced peripheral vascular effects than LT, including the ability to interfere with the actions of conventional vasopressors. Additionally, ET also appears capable of interfering with renal sodium and water retention. Importantly, the two toxins exert their actions via quite different mechanisms and therefore have the potential to worsen shock and outcome in an additive fashion. Finally, both toxins have the ability to inhibit host defense and microbial clearance, possibly contributing to the very high bacterial loads noted in patients dying with anthrax. This last point is clinically relevant since emerging data has begun to implicate other bacterial components such as anthrax cell wall in the shock and organ injury observed with infection. Taken together, accumulating evidence regarding the potential contribution of LT and ET to anthrax-associated shock supports efforts to develop adjunctive therapies that target both toxins in patients with progressive shock.
Collapse
Affiliation(s)
- Caitlin W. Hicks
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA;
- Howard Hughes Medical Institute-National Institutes of Health Research Scholar, National Institutes of Health, Bethesda, MD 20814, USA
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
| | - Daniel A. Sweeney
- Medical Intensivist Program, Washington Hospital, Fremont, CA 94538, USA;
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
| | - Amisha Barochia
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
| | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (X.C.); (Y.L.); (A.B.)
- Author to whom correspondence should be addressed; ; Tel.: +1-301-496-9320; Fax: +1-301-402-1213
| |
Collapse
|
18
|
Guichard A, Nizet V, Bier E. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect 2011; 14:97-118. [PMID: 21930233 DOI: 10.1016/j.micinf.2011.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
19
|
Abstract
Bacillus anthracis infection is rare in developed countries. However, recent outbreaks in the United States and Europe and the potential use of the bacteria for bioterrorism have focused interest on it. Furthermore, although anthrax was known to typically occur as one of three syndromes related to entry site of (i.e., cutaneous, gastrointestinal, or inhalational), a fourth syndrome including severe soft tissue infection in injectional drug users is emerging. Although shock has been described with cutaneous anthrax, it appears much more common with gastrointestinal, inhalational (5 of 11 patients in the 2001 outbreak in the United States), and injectional anthrax. Based in part on case series, the estimated mortalities of cutaneous, gastrointestinal, inhalational, and injectional anthrax are 1%, 25 to 60%, 46%, and 33%, respectively. Nonspecific early symptomatology makes initial identification of anthrax cases difficult. Clues to anthrax infection include history of exposure to herbivore animal products, heroin use, or clustering of patients with similar respiratory symptoms concerning for a bioterrorist event. Once anthrax is suspected, the diagnosis can usually be made with Gram stain and culture from blood or surgical specimens followed by confirmatory testing (e.g., PCR or immunohistochemistry). Although antibiotic therapy (largely quinolone-based) is the mainstay of anthrax treatment, the use of adjunctive therapies such as anthrax toxin antagonists is a consideration.
Collapse
Affiliation(s)
- Daniel A Sweeney
- Medical Intensivist Program, Washington Hospital, Fremont, California, USA
| | | | | | | | | |
Collapse
|
20
|
Knox D, Murray G, Millar M, Hamilton D, Connor M, Ferdinand RD, Jones GA. Subcutaneous anthrax in three intravenous drug users: a new clinical diagnosis. ACTA ACUST UNITED AC 2011; 93:414-7. [PMID: 21357967 DOI: 10.1302/0301-620x.93b3.25976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anthrax is extremely rare in the western world but is endemic to areas of south and central Asia. In early 2010 an outbreak was identified in heroin-injecting intravenous drug users in the United Kingdom and Europe. Afghanistan is currently the principal source of heroin which reaches the United Kingdom. When anthrax occurs, cutaneous disease accounts for over 95% of cases. At least 47 cases with 13 deaths have been confirmed so far. We present three cases presenting during this time with marked swelling, one resulting in compartment syndrome but all with an absence of the expected cutaneous appearances. We suggest that rather than cutaneous anthrax, these patients represent a new subcutaneous presentation of anthrax.
Collapse
Affiliation(s)
- D Knox
- Department of Orthopaedics, Dumfries and Galloway Royal Infirmary, Dumfries, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hicks CW, Li Y, Okugawa S, Solomon SB, Moayeri M, Leppla SH, Mohanty A, Subramanian GM, Mignone TS, Fitz Y, Cui X, Eichacker PQ. Anthrax edema toxin has cAMP-mediated stimulatory effects and high-dose lethal toxin has depressant effects in an isolated perfused rat heart model. Am J Physiol Heart Circ Physiol 2011; 300:H1108-18. [PMID: 21217068 PMCID: PMC3064307 DOI: 10.1152/ajpheart.01128.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/04/2011] [Indexed: 12/23/2022]
Abstract
While anthrax edema toxin produces pronounced tachycardia and lethal toxin depresses left ventricular (LV) ejection fraction in in vivo models, whether these changes reflect direct cardiac effects as opposed to indirect ones related to preload or afterload alterations is unclear. In the present study, the effects of edema toxin and lethal toxin were investigated in a constant pressure isolated perfused rat heart model. Compared with control hearts, edema toxin at doses comparable to or less than a dose that produced an 80% lethality rate (LD(80)) in vivo in rats (200, 100, and 50 ng/ml) produced rapid increases in heart rate (HR), coronary flow (CF), LV developed pressure (LVDP), dP/dt(max), and rate-pressure product (RPP) that were most pronounced and persisted with the lowest dose (P ≤ 0.003). Edema toxin (50 ng/ml) increased effluent and myocardial cAMP levels (P ≤ 0.002). Compared with dobutamine, edema toxin produced similar myocardial changes, but these occurred more slowly and persisted longer. Increases in HR, CF, and cAMP with edema toxin were inhibited by a monoclonal antibody blocking toxin uptake and by adefovir, which inhibits the toxin's intracellular adenyl cyclase activity (P ≤ 0.05). Lethal toxin at an LD(80) dose (50 ng/ml) had no significant effect on heart function but a much higher dose (500 ng/ml) reduced all parameters (P ≤ 0.05). In conclusion, edema toxin produced cAMP-mediated myocardial chronotropic, inotropic, and vasodilatory effects. Vasodilation systemically with edema toxin could contribute to shock during anthrax while masking potential inotropic effects. Although lethal toxin produced myocardial depression, this only occurred at high doses, and its relevance to in vivo findings is unclear.
Collapse
Affiliation(s)
- Caitlin W Hicks
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sweeney DA, Cui X, Solomon SB, Vitberg DA, Migone TS, Scher D, Danner RL, Natanson C, Subramanian GM, Eichacker PQ. Anthrax lethal and edema toxins produce different patterns of cardiovascular and renal dysfunction and synergistically decrease survival in canines. J Infect Dis 2010; 202:1885-96. [PMID: 21067373 DOI: 10.1086/657408] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High mortality in the 2001 US and recent European anthrax outbreaks suggests that better understanding of the effects of the toxins produced by this bacterium is needed to improve treatment. METHODS AND RESULTS Here, 24-h edema (ETx) and lethal (LeTx) toxin infusions were investigated for 96 hin sedated canines receiving mechanical ventilation. The initial study compared similarly lethal doses of ETx (n=8) or LeTx (n=15) alone. ETx was 24 times less lethal than LeTx, and the median time to death in nonsurvivors (n=6 and n=9, respectively) was shorter with ETx (42 vs 67 h; P=.04). Compared with controls(n=9), both toxins decreased arterial and central venous pressures and systemic vascular resistance and increased heart rate, cardiac index, blood urea nitrogen (BUN) level, creatinine (Cr) concentration, BUN:Cr ratio, and hepatic transaminase levels (P ≤ .05 for toxin effect or time interaction). However, ETx stimulated early diuresis,reduced serum sodium levels, and had more pronounced vasodilatory effects, compared with LeTx, as reflected by greater or earlier central venous pressures, systemic vascular resistance, and changes in the BUN:Cr ratio(P ≤ .01). LeTx progressively decreased the left ventricular ejection fraction (P ≤ .002). In a subsequent study, a lethal dose of LeTx with an equimolar nonlethal ETx dose (n=8) increased mortality, compared with LeTx alone (n=8; P= .05). CONCLUSION Shock with ETx or LeTx may require differing supportive therapies, whereas toxin antagonists should likely target both toxins.
Collapse
Affiliation(s)
- Daniel A Sweeney
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
24
|
Bromberg-White J, Lee CS, Duesbery N. Consequences and utility of the zinc-dependent metalloprotease activity of anthrax lethal toxin. Toxins (Basel) 2010; 2:1038-53. [PMID: 22069624 PMCID: PMC3153234 DOI: 10.3390/toxins2051038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/29/2010] [Accepted: 05/05/2010] [Indexed: 01/13/2023] Open
Abstract
Anthrax is caused by the gram-positive bacterium Bacillus anthracis. The pathogenesis of this disease is dependent on the presence of two binary toxins, edema toxin (EdTx) and lethal toxin (LeTx). LeTx, the major virulence factor contributing to anthrax, contains the effector moiety lethal factor (LF), a zinc-dependent metalloprotease specific for targeting mitogen-activated protein kinase kinases. This review will focus on the protease-specific activity and function of LF, and will include a discussion on the implications and consequences of this activity, both in terms of anthrax disease, and how this activity can be exploited to gain insight into other pathologic conditions.
Collapse
Affiliation(s)
- Jennifer Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, The Van Andel Research Institute, 333 Bostwick NE Grand Rapids, MI, 49503, USA; (J.B.-W.); (C.-S.L.)
| | - Chih-Shia Lee
- Laboratory of Cancer and Developmental Cell Biology, The Van Andel Research Institute, 333 Bostwick NE Grand Rapids, MI, 49503, USA; (J.B.-W.); (C.-S.L.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824, USA
| | - Nicholas Duesbery
- Laboratory of Cancer and Developmental Cell Biology, The Van Andel Research Institute, 333 Bostwick NE Grand Rapids, MI, 49503, USA; (J.B.-W.); (C.-S.L.)
- Author to whom correspondence should be addressed; ; Tel.: 616-234-5258; Fax: 616-234-5259
| |
Collapse
|
25
|
Bouzianas DG. Medical countermeasures to protect humans from anthrax bioterrorism. Trends Microbiol 2009; 17:522-8. [PMID: 19781945 DOI: 10.1016/j.tim.2009.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/25/2009] [Accepted: 08/24/2009] [Indexed: 12/27/2022]
Abstract
The deliberate dissemination of Bacillus anthracis spores via the US mail system in 2001 confirmed their potential use as a biological weapon for mass human casualties. This dramatically highlighted the need for specific medical countermeasures to enable the authorities to protect individuals from a future bioterrorism attack. Although vaccination appears to be the most effective and economical form of mass protection, current vaccines have significant drawbacks that justify the immense research effort to develop improved treatment modalities. After eight years and an expenditure of more than $50 billion, only marginal progress has been made in developing effective therapeutics. This article summarizes the most important medical countermeasures that have mostly been developed since the 2001 events, and highlights current problems and possible avenues for future research.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- Technological Educational Institute of Thessaloniki, Department of Medical Laboratories, Laboratory of Immunology and Microbiology, PO Box 145-61, Thessaloniki 541-01, Macedonia, Greece.
| |
Collapse
|
26
|
Cui X, Su J, Li Y, Shiloach J, Solomon S, Kaufman JB, Mani H, Fitz Y, Weng J, Altaweel L, Besch V, Eichacker PQ. Bacillus anthracis cell wall produces injurious inflammation but paradoxically decreases the lethality of anthrax lethal toxin in a rat model. Intensive Care Med 2009; 36:148-56. [PMID: 19756496 DOI: 10.1007/s00134-009-1643-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The in vivo inflammatory effects of the Bacillus anthracis cell wall are unknown. We therefore investigated these effects in rats and, for comparison, those of known inflammatory stimulants, Staphylococcus aureus cell wall or lipopolysaccharide (LPS). METHOD AND RESULTS Sprague-Dawley rats (n = 103) were challenged with increasing B. anthracis cell wall doses (10, 20, 40, 80, or 160 mg/kg) or diluent (control) as a bolus or 24-h infusion. The three highest bolus doses were lethal (20-64% lethality rates) as were the two highest infused doses (13% with each). Comparisons among lethal or nonlethal doses on other measured parameters were not significantly different, and these were combined for analysis. Over the 24 h after challenge initiation with lethal bolus or infusion, compared to controls, ten inflammatory cytokines and NO levels were increased and circulating neutrophils and platelets decreased (P <or= 0.05). Changes with lethal doses were greater than changes with nonlethal doses (P <or= 0.01). Lethal bolus or infusion doses produced hypotension or hypoxemia, respectively (P <or= 0.05). The effects with B. anthracis cell wall were similar to those of S. aureus cell wall or LPS. However, paradoxically administration of B. anthracis cell wall or LPS decreased the lethality of concurrently administered B. anthracis lethal toxin (P < 0.0001 and 0.04, respectively). CONCLUSION B. anthracis cell wall has the potential to produce inflammatory injury during anthrax infection clinically. However, understanding why cell wall or LPS paradoxically reduced lethality with lethal toxin may help understand this toxin's pathogenic effects.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C148, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bromberg-White JL, Boguslawski E, Duesbery NS. Perturbation of mouse retinal vascular morphogenesis by anthrax lethal toxin. PLoS One 2009; 4:e6956. [PMID: 19750016 PMCID: PMC2737623 DOI: 10.1371/journal.pone.0006956] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/29/2009] [Indexed: 12/21/2022] Open
Abstract
Lethal factor, the enzymatic moiety of anthrax lethal toxin (LeTx) is a protease that inactivates mitogen activated protein kinase kinases (MEK or MKK). In vitro and in vivo studies demonstrate LeTx targets endothelial cells. However, the effects of LeTx on endothelial cells are incompletely characterized. To gain insight into this process we used a developmental model of vascularization in the murine retina. We hypothesized that application of LeTx would disrupt normal retinal vascularization, specifically during the angiogenic phase of vascular development. By immunoblotting and immunofluorescence microscopy we observed that MAPK activation occurs in a spatially and temporally regulated manner during retinal vascular development. Intravitreal administration of LeTx caused an early delay (4 d post injection) in retinal vascular development that was marked by reduced penetration of vessels into distal regions of the retina as well as failure of sprouting vessels to form the deep and intermediate plexuses within the inner retina. In contrast, later stages (8 d post injection) were characterized by the formation of abnormal vascular tufts that co-stained with phosphorylated MAPK in the outer retinal region. We also observed a significant increase in the levels of secreted VEGF in the vitreous 4 d and 8 d after LeTx injection. In contrast, the levels of over 50 cytokines other cytokines, including bFGF, EGF, MCP-1, and MMP-9, remained unchanged. Finally, co-injection of VEGF-neutralizing antibodies significantly decreased LeTx-induced neovascular growth. Our studies not only reveal that MAPK signaling plays a key role in retinal angiogenesis but also that perturbation of MAPK signaling by LeTx can profoundly alter vascular morphogenesis.
Collapse
Affiliation(s)
- Jennifer L. Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Elissa Boguslawski
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas S. Duesbery
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chung MC, Jorgensen SC, Popova TG, Tonry JH, Bailey CL, Popov SG. Activation of plasminogen activator inhibitor implicates protease InhA in the acute-phase response to Bacillus anthracis infection. J Med Microbiol 2009; 58:737-744. [PMID: 19429749 DOI: 10.1099/jmm.0.007427-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anthrax is a zoonotic disease caused by Bacillus anthracis. The infection is associated with inflammation and sepsis, but little is known about the acute-phase response during disease and the nature of the bacterial factors causing it. In this study, we examined the levels of the acute-phase proteins (APPs) in comparative experiments using mice challenged with spores and a purified B. anthracis protease InhA as a possible factor mediating the response. A strong increase in the plasma levels of APPs such as haptoglobin and serum amyloid A was observed during infection. Protein and mRNA levels of plasminogen activator inhibitor (PAI)-1 in the liver were also increased concurrently with bacterial dissemination at 72 h post-infection. Similar effects were observed at 6 h post injection with InhA. Induction of hepatic transforming growth factor-beta1, a PAI-1 inducer, was also found in the liver of InhA-injected mice. PAI-1 elevation by InhA resulted in an increased level of urokinase-type plasminogen activator complex with PAI-1 and a decreased level of D-dimers indicating inhibition of blood fibrinolysis. These results reveal an acute liver response to anthrax infection and provide a plausible pathophysiological link between the host inflammatory response and the pro-thrombotic haemostatic imbalance in the course of disease through PAI-1 induction in the liver.
Collapse
Affiliation(s)
- Myung-Chul Chung
- National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Shelley C Jorgensen
- National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Taissia G Popova
- National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Jessica H Tonry
- National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Charles L Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Serguei G Popov
- National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| |
Collapse
|
29
|
Li Y, Cui X, Su J, Haley M, Macarthur H, Sherer K, Moayeri M, Leppla SH, Fitz Y, Eichacker PQ. Norepinephrine increases blood pressure but not survival with anthrax lethal toxin in rats. Crit Care Med 2009; 37:1348-54. [PMID: 19242337 PMCID: PMC3401929 DOI: 10.1097/ccm.0b013e31819cee38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The response of anthrax lethal toxin (LeTx) induced shock and lethality to conventional therapies has received little study. Previously, fluids worsened outcome in LeTx-challenged rats in contrast to its benefit with lipopolysaccharide (LPS) or Escherichia coli. The current study investigated norepinephrine treatment. MEASUREMENTS AND MAIN RESULTS Sprague-Dawley rats (n = 232) weighing between 230 and 250 g were challenged with similar lethal (80%) 24-hour infusions of either LPS or LeTx, or with diluent only. Toxin-challenged animals were also randomized to receive 24-hour infusions with one of three doses of norepinephrine (0.03, 0.3, or 3.0 microg/kg/min) or placebo started 1 hour after initiation of challenge. All toxin animals received similar volumes of fluid over the 24 hours (equivalent to 4.0-4.3 mL/kg/hr). Although the intermediate norepinephrine dose (0.3 microg/kg/min for 24 hours) improved survival with LPS (p = 0.04) and increased blood pressure before the onset of lethality with LeTx (p < 0.0001), it did not improve survival with the latter (p = ns). Furthermore, neither increasing nor decreasing norepinephrine doses improved survival with LeTx. CONCLUSION Hypotension with LeTx may not be a primary cause of lethality in this model. Rather, LeTx may cause direct cellular injury insensitive to vasopressors. These findings suggest that during anthrax infection and shock, along with hemodynamic support, toxin-directed treatments may be necessary as well.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Junwu Su
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Michael Haley
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Carolinas Medical Center, Department of Internal Medicine, Charlotte, NC 28232
| | - Heather Macarthur
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Kevin Sherer
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Mahtab Moayeri
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen H. Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
30
|
Andreeva-Kovalevskaya ZI, Solonin AS, Sineva EV, Ternovsky VI. Pore-forming proteins and adaptation of living organisms to environmental conditions. BIOCHEMISTRY (MOSCOW) 2009; 73:1473-92. [DOI: 10.1134/s0006297908130087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Abstract
Bacillus anthracis represents a formidable bioterrorism and biowarfare threat for which new vaccines are needed with improved safety and efficacy over current options. Toward this end, we created recombinant adeno-associated virus type 1 (rAAV1) vectors containing synthetic genes derived from the protective antigen (PA) or lethal factor (LF) of anthrax lethal toxin (LeTx) and tested them for immunogenicity and induction of toxin-neutralizing antibodies in rabbits. Codon-optimized segments encoding activated PA (PA63), or LF, were synthesized and cloned into optimized rAAV1 vectors containing a human cytomegalovirus (hCMV) promoter and synthetic optimized leader. Serum from rabbits immunized intramuscularly with rAAV1/PA (monovalent), rAAV1/LF (monovalent), rAAV1/PA + rAAV1/LF (bivalent), or rAAV1/enhanced green fluorescent protein (control) exhibited substantial PA- and LF-specific antibody responses at 4 weeks by both western blot (> 1:10,000 dilution) and enzyme-linked immunosorbent assay (ELISA) (mean end-point titer: 32,000-260,000), and contained anthrax LeTx-neutralizing activity in vitro, with peak titers approximating those of a rabbit hyperimmune antisera raised against soluble PA and LF. Compared to the monovalent groups (rAAV1/PA or rAAV1/LF), the bivalent group (rAAV1/PA + rAAV1/LF) exhibited marginally higher ELISA and neutralization activity with dual specificity for both PA and LF. The finding of robust neutralizing antibody responses after a single injection of these rAAV1-based vectors supports their further development as candidate anthrax vaccines.
Collapse
|
32
|
Stommel E. TERRESTRIAL BIOTOXINS. Continuum (Minneap Minn) 2008. [DOI: 10.1212/01.con.0000337994.00915.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Sherer K, Li Y, Cui X, Li X, Subramanian M, Laird MW, Moayeri M, Leppla SH, Fitz Y, Su J, Eichacker PQ. Fluid support worsens outcome and negates the benefit of protective antigen-directed monoclonal antibody in a lethal toxin-infused rat Bacillus anthracis shock model. Crit Care Med 2007; 35:1560-7. [PMID: 17452924 DOI: 10.1097/01.ccm.0000266535.95770.a2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to test the effects of normal saline treatment either alone or in combination with protective antigen-directed monoclonal antibody in a lethal toxin-infused rat model of anthrax sepsis. DESIGN Prospective controlled animal study. SETTING Animal research laboratory. SUBJECTS Sprague-Dawley rats (n = 539). INTERVENTIONS We initially tested the efficacy of three normal saline doses (5, 10, or 20 mL/kg/hr intravenously for 24 hrs) or none (controls) started when rats were treated with either lethal toxin (24-hr infusion) or, for comparison, lipopolysaccharide (24-hr infusion) or Escherichia coli (intravenous bolus). We then investigated delaying normal saline for 6 hrs or combining it with protective antigen-directed monoclonal antibody following lethal toxin challenge. MEASUREMENTS AND MAIN RESULTS Dose did not alter the effects of normal saline with any challenge (p not significant for all) or when combined with protective antigen-directed monoclonal antibody, so this variable was averaged in analysis. In initial studies, normal saline decreased mortality (mean hazards ratio of survival +/- SE) significantly with E. coli challenge (-0.66 +/- 0.25, p = .009 averaged over normal saline dose) but not lipopolysaccharide (-0.17 +/- 0.20). In contrast, normal saline increased mortality significantly with lethal toxin (0.69 +/- 0.20, p = .001) in a pattern different from E. coli and lipopolysaccharide (p <or= .002 for each). In subsequent studies, normal saline alone once again increased mortality (0.8 +/- 0.3, p = .006), protective antigen-directed monoclonal antibody alone reduced it (-1.7 +/- 0.8, p = .03), and the combination had intermediate effects that were not significant (0.04 +/- 0.3). CONCLUSIONS These findings raise the possibility that normal saline treatment may actually worsen outcome with anthrax lethal toxin. Furthermore, lethal toxin-directed therapies may not be as beneficial when used in combination with this type of fluid support.
Collapse
Affiliation(s)
- Kevin Sherer
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Y, Sherer K, Cui X, Eichacker PQ. New insights into the pathogenesis and treatment of anthrax toxin-induced shock. Expert Opin Biol Ther 2007; 7:843-54. [PMID: 17555370 DOI: 10.1517/14712598.7.6.843] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inhalational Bacillus anthracis infection is a leading bioterrorist health threat in the US today. Lethal (LeTx) and edema toxin production are key to the virulent effects of this lethal bacteria. Recent insights into the structure and function of these toxins have increased the understanding of both the pathogenesis and treatment of anthrax. These are binary type toxins comprised of protective antigen necessary for their cellular uptake and either lethal or edema factors, the toxigenic moieties. Primary cellular receptors for protective antigen have been identified and the processing of the completed toxins clarified. Consistent with the ability of lethal factor to cleave mitogen activated protein kinase kinases, the evidence indicates that an excessive inflammatory response does not contribute to shock with LeTx. Rather, the immunosuppressive effects of LeTx could promote infection; however, direct endothelial dysfunction may have an important role in shock due to LeTx. Recent studies show that edema factor, a potent adenyl cyclase, may have a major role in shock during anthrax and that it may also be immunosuppresive. Therapies under development which target several steps in the cellular uptake and function of these two toxins have been effective in both in vitro and in vivo systems. Understanding how best to apply these agents in combination with conventional treatments should be a goal of future research.
Collapse
MESH Headings
- Adenylyl Cyclases/immunology
- Adenylyl Cyclases/metabolism
- Animals
- Anthrax/complications
- Anthrax/drug therapy
- Anthrax/metabolism
- Anthrax Vaccines/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacillus anthracis/immunology
- Bacillus anthracis/metabolism
- Bacillus anthracis/pathogenicity
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/physiopathology
- Humans
- Receptors, Peptide/metabolism
- Shock, Septic/drug therapy
- Shock, Septic/metabolism
- Shock, Septic/microbiology
- Shock, Septic/physiopathology
- Virulence
Collapse
Affiliation(s)
- Yan Li
- National Institutes of Health, Critical Care Medicine Department, Clinical Center, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
35
|
|