1
|
Turner A, Wolfe C, Ryan PH. Personal exposure to ultrafine particles in multiple microenvironments among adolescents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:878-885. [PMID: 38418826 DOI: 10.1038/s41370-023-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Experimental studies suggest ultrafine particles (UFPs), the smallest size fraction of particulate matter, may be more toxic than larger particles, however personal sampling studies in children are lacking. OBJECTIVE The objective of this analysis was to examine individual, housing, and neighborhood characteristics associated with personal UFP concentrations as well as the differences in exposures that occur within varying microenvironments. METHODS We measured weekly personal UFP concentrations and GPS coordinates in 117 adolescents ages 13-17 to describe exposures across multiple microenvironments. Individual, home, and neighborhood characteristics were collected by caregiver completed questionnaires. RESULTS Participants regularly exposed to secondhand tobacco smoke had significantly higher indoor concentrations of UFPs compared to participants who were not. We observed that the 'home' microenvironment dominated the relative contribution of overall UFP concentrations and sampling time, however, relative proportion of integrated UFP exposure were higher in 'other' environments. IMPACT STATEMENT In this study, we employed a novel panel study design, involving real-time measurement of UFP exposure within the multiple microenvironments of adolescents. We found a combination of personal sampling and detailed activity patterns should be used in future studies to accurately describe exposure-behavior relationships.
Collapse
Affiliation(s)
- Ashley Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Technology Advancement Commercialization Division, RTI International, Research Triangle Park, NC, USA
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Qi Q, Yu F, Nair AA, Lau SSS, Luo G, Mithu I, Zhang W, Li S, Lin S. Hidden danger: The long-term effect of ultrafine particles on mortality and its sociodemographic disparities in New York State. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134317. [PMID: 38636229 DOI: 10.1016/j.jhazmat.2024.134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Although previous studies have shown increased health risks of particulate matters, few have evaluated the long-term health impacts of ultrafine particles (UFPs or PM0.1, ≤ 0.1 µm in diameter). This study assessed the association between long-term exposure to UFPs and mortality in New York State (NYS), including total non-accidental and cause-specific mortalities, sociodemographic disparities and seasonal trends. Collecting data from a comprehensive chemical transport model and NYS Vital Records, we used the interquartile range (IQR) and high-level UFPs (≥75 % percentile) as indicators to link with mortalities. Our modified difference-in-difference model controlled for other pollutants, meteorological factors, spatial and temporal confounders. The findings indicate that long-term UFPs exposure significantly increases the risk of non-accidental mortality (RR=1.10, 95 % CI: 1.05, 1.17), cardiovascular mortality (RR=1.11, 95 % CI: 1.05, 1.18) particularly for cerebrovascular (RR=1.21, 95 % CI: 1.10, 1.35) and pulmonary heart diseases (RR=1.33, 95 % CI: 1.13, 1.57), and respiratory mortality (borderline significance, RR=1.09, 95 % CI: 1.00, 1.18). Hispanics (RR=1.13, 95 % CI: 1.00, 1.29) and non-Hispanic Blacks (RR=1.40, 95 % CI: 1.16, 1.68) experienced significantly higher mortality risk after exposure to UFPs, compared to non-Hispanic Whites. Children under five, older adults, non-NYC residents, and winter seasons are more susceptible to UFPs' effects.
Collapse
Affiliation(s)
- Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Arshad A Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Sam S S Lau
- Research Centre for Environment and Human Health & College of International Education, School of Continuing Education, Hong Kong Baptist University, Hong Kong, China; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, China
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Imran Mithu
- Community, Environment and Policy Division, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sean Li
- Rausser College of Natural Resources, University of California, Berkeley, CA, USA
| | - Shao Lin
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
3
|
Haddad P, Ogurtsova K, Lucht S, Glaubitz L, Höppe P, Nowak D, Angerer P, Hoffmann B. Short-term exposure to ultrafine and fine particulate matter with multipollutant modelling on heart rate variability among seniors and children from the CorPuScula (coronary, pulmonary, sanguis) longitudinal study in Germany. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1278506. [PMID: 38455908 PMCID: PMC10910943 DOI: 10.3389/fepid.2023.1278506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 03/09/2024]
Abstract
Background Short-term exposure particulate matter with a diameter of 10 µm or less (PM10) and fine particulate matter (PM2.5) has been associated with heart rate variability (HRV), but exposure to ultrafine particles (UFP) has been less well examined. We investigated the associations between the HRV outcomes and short-term exposure to UFP, PM10 and PM2.5 among school-aged children and seniors. Methods CorPuScula (Coronary, Pulmonary and Sanguis) is a longitudinal, repeated-measure panel study conducted in 2000-2002 in Munich, Germany including 52 seniors (58-94 years old) with 899 observations and 50 children (6-10 years old) with 925 observations. A 10-min resting electrocardiogram was performed to assess resting HRV outcomes [Standard Deviation of Normal to Normal Intervals (SDNN), Root Mean Square of Successive Differences between Normal Heartbeats (RMSSD), Low Frequency power (LF), High Frequency power (HF), ration between low and high frequency (LF/HF)]. UFP and PM exposures were measured near the care home and school yard for seniors and children, respectively. Mean exposures during the day of examination (9-21 h) as well as 3-h, 12-h, 24-h, one-day, and two-day lags were assessed. Linear mixed-effect models were used to investigate the associations between short-term air pollution and HRV outcomes separately in children and seniors. The models were adjusted for sex, age, weather conditions (temperature, precipitation, and water vapor pressure), BMI, lifestyle and medical information. Two and multipollutant models adjusted for NO2 and O3 were performed. Results Among seniors, we observed increases in SDNN, LF, HF and LF/HF ratio after short-term exposure to UFP (hourly and daily lags) in contrast to decreases in SDNN and RMSSD after exposure to PM10. Associations were generally robust to two- and multipollutant adjustment. Among children, we observed increases of the LF/HF ratio after short-term exposures to UFP at lags 12 and 24 h. In contrast, we observed decreases of the ratio after exposure to PM2.5 and PM10. Results were largely unchanged for multipollutant modelling, however we found a more pronounced increase in SDNN and LF/HF (UFP lag 12 and 24 h) after adjusting for NO2. Conclusions Overall, among seniors, we observed associations of UFP and PM10 exposure with sympathetic responses of the ANS, which play an important role in sudden heart attacks or arrhythmia. Among children we found more inconsistent associations between UFP and a delayed increase in HRV. Adjusting for co-pollutants including NO2 and O3 yielded robust results.
Collapse
Affiliation(s)
- Pascale Haddad
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katherine Ogurtsova
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Lucht
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Real-World Evidence & Insights, Cardinal Health, Dublin, OH, United States
| | - Lina Glaubitz
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Höppe
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dennis Nowak
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Angerer
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
5
|
Chen TL, Lai CH, Chen YC, Ho YH, Chen AY, Hsiao TC. Source-oriented risk and lung-deposited surface area (LDSA) of ultrafine particles in a Southeast Asia urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161733. [PMID: 36682561 DOI: 10.1016/j.scitotenv.2023.161733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Submicron and ultrafine particle (UFP) exposure may be epidemiologically and toxicologically linked to pulmonary, neurodegenerative, and cardiovascular diseases. This study explores UFP and fine particle sources using a positive matrix factorization (PMF) model based on PM2.5 chemical compositions and particle number size distributions (PNSDs). The particle chemical composition and size distribution contributions are simultaneously identified to evaluate lung deposition and excess cancer risks. High correlations between the PNSD and chemical composition apportionment results were observed. Fresh and aged traffic particles dominated the number concentrations, while heterogeneous, photochemical reactions and/or regional transport may have resulted in secondary aerosol formation. Fresh and aged road traffic particle sources mostly contributed to the lung deposition dosage in the pulmonary region (~53 %), followed by the tracheobronchial (~30.4 %) and head regions (~16.6 %). However, lung-deposited surface area (LDSA) concentrations were dominated by aged road traffic (~39.2 %) and secondary aerosol (~33.2 %) sources. The excess cancer risks caused by Cr6+, Ni, and As were also mainly contributed to by aged road traffic (~31.7 %) and secondary aerosols (~67 %). The source apportionments based on the physical and chemical properties of aerosol particles are complementary, offering a health impact benchmark of UFPs in a Southeast Asia urban city.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Chen-Hao Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsuan Ho
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Albert Y Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Matthews JC, Chompoobut C, Navasumrit P, Khan MAH, Wright MD, Ruchirawat M, Shallcross DE. Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5316. [PMID: 37047932 PMCID: PMC10094290 DOI: 10.3390/ijerph20075316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Traffic is a major source of particulate pollution in large cities, and particulate matter (PM) level in Bangkok often exceeds the World Health Organisation limits. While PM2.5 and PM10 are both measured in Bangkok regularly, the sub-micron range of PM, of specific interest in regard to possible adverse health effects, is very limited. In the study, particle number concentration (PNC) was measured on public transport in Bangkok. A travel route through Bangkok using the state railway, the mass rapid transport underground system, the Bangkok Mass Transit System (BTS) Skytrain and public buses on the road network, with walking routes between, was taken whilst measuring particle levels with a hand-held concentration particle counter. The route was repeated 19 times covering different seasons during either morning or evening rush hours. The highest particle concentrations were found on the state railway, followed by the bus, the BTS Skytrain and the MRT underground with measured peaks of 350,000, 330,000, 33,000 and 9000 cm-3, respectively, though particle numbers over 100,000 cm-3 may be an underestimation due to undercounting in the instrument. Inside each form of public transport, particle numbers would peak when stopping to collect passengers (doors opening) and decay with a half-life between 2 and 3 min. There was a weak correlation between particle concentration on bus, train and BTS and Skytrain with carbon monoxide concentration, as measured at a fixed location in the city.
Collapse
Affiliation(s)
- James C. Matthews
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Chalida Chompoobut
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - M. Anwar H. Khan
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Matthew D. Wright
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Mathuros Ruchirawat
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Dudley E. Shallcross
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7375, South Africa
| |
Collapse
|
7
|
Lyu Y, Zhang Q, Liu Y, Zhang WP, Tian FJ, Zhang HF, Hu BH, Feng J, Qian Y, Jiang Y, Zhang PH, Ma N, Tang SC, Zheng JP, Qiu YL. Nano-Calcium Carbonate Affect the Respiratory and Function Through Inducing Oxidative Stress: A Cross-sectional Study Among Occupational Exposure of Workers and a Further Research for Underlying Mechanisms. J Occup Environ Med 2023; 65:184-191. [PMID: 36165499 DOI: 10.1097/jom.0000000000002713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study is to investigate whether nano-calcium carbonate (nano-CaCO 3 ) occupational exposure could induce adverse health effects in workers. METHODS A cross-sectional study was conducted in a nano-CaCO 3 manufacturing plant in China. Then, we have studied the dynamic distribution of nano-CaCO 3 in nude mice and examined the oxidative damage biomarkers of subchronic administrated nano-CaCO 3 on Sprague-Dawley rats. RESULTS The forced vital capacity (%) and the ratio of FEV1 to FVC is the rate of one second of workers were significantly decreased than unexposed individuals. Dynamic imaging in mice of fluorescence labeled nano-CaCO 3 showed relatively high uptake and slow washout in lung. Similar to population data, the decline in serum glutathione level and elevation in serum MDA were observed in nano-CaCO 3 -infected Sprague-Dawley rats. CONCLUSIONS We found that nano-CaCO 3 exposure may result in the poor pulmonary function in workers and lead to the changes of oxidative stress indexes.
Collapse
Affiliation(s)
- Yi Lyu
- From the Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China (Ms Lyu, Ms Zhang, Ms Liu, Dr Zhang, Ms Tian, Ms Zhang, Mr Hu, Ms Feng, Ms Qian, Mr Jiang, Ms Zhang, Ms Ma, Dr Zheng, Dr Qiu); Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Shanxi Medical University, Taiyuan, China (Ms Lyu); Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China (Dr Zheng); and Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China (Dr Tang)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang S, Breitner S, Pickford R, Lanki T, Okokon E, Morawska L, Samoli E, Rodopoulou S, Stafoggia M, Renzi M, Schikowski T, Zhao Q, Schneider A, Peters A. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120245. [PMID: 36162563 DOI: 10.1016/j.envpol.2022.120245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
An increasing number of epidemiological studies have examined the association between ultrafine particles (UFP) and imbalanced autonomic control of the heart, a potential mechanism linking particulate matter air pollution to cardiovascular disease. This study systematically reviews and meta-analyzes studies on short-term effects of UFP on autonomic function, as assessed by heart rate variability (HRV). We searched PubMed and Web of Science for articles published until June 30, 2022. We extracted quantitative measures of UFP effects on HRV with a maximum lag of 15 days from single-pollutant models. We assessed the risk of bias in the included studies regarding confounding, selection bias, exposure assessment, outcome measurement, missing data, and selective reporting. Random-effects models were applied to synthesize effect estimates on HRV of various time courses. Twelve studies with altogether 1,337 subjects were included in the meta-analysis. For an increase of 10,000 particles/cm3 in UFP assessed by central outdoor measurements, our meta-analysis showed immediate decreases in the standard deviation of the normal-to-normal intervals (SDNN) by 4.0% [95% confidence interval (CI): 7.1%, -0.9%] and root mean square of successive R-R interval differences (RMSSD) by 4.7% (95% CI: 9.1%, 0.0%) within 6 h after exposure. The immediate decreases in SDNN and RMSSD associated with UFP assessed by personal measurements were smaller and borderline significant. Elevated UFP were also associated with decreases in SDNN, low-frequency power, and the ratio of low-frequency to high-frequency power when pooling estimates of lags across hours to days. We did not find associations between HRV and concurrent-day UFP exposure (daily average of at least 18 h) or exposure at lags ≥ one day. Our study indicates that short-term exposure to ambient UFP is associated with decreased HRV, predominantly as an immediate response within hours. This finding highlights that UFP may contribute to the onset of cardiovascular events through autonomic dysregulation.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enembe Okokon
- Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Qi Zhao
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany; Partner-Site Munich, German Research Center for Cardiovascular Research (DZHK), Munich, Germany
| |
Collapse
|
9
|
Jiang Y, Wingert N, Arif A, Garcia-Käufer M, Schulz SD, Hellwig E, Gminski R, Polydorou O. Cytotoxic and inflammatory response of human lung epithelial cells A549 to particles released from dental restorative materials during dry and wet grinding. Dent Mater 2022; 38:1886-1899. [DOI: 10.1016/j.dental.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
|
10
|
Zhang Q, Du X, Li H, Jiang Y, Zhu X, Zhang Y, Niu Y, Liu C, Ji J, Chillrud SN, Cai J, Chen R, Kan H. Cardiovascular effects of traffic-related air pollution: A multi-omics analysis from a randomized, crossover trial. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129031. [PMID: 35523096 DOI: 10.1016/j.jhazmat.2022.129031] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
A system-wide cardiovascular response to traffic-related air pollution (TRAP) has been rarely described. To systemically understand the mechanisms underlying cardiovascular effects of TRAP, we conducted a randomized, crossover trial in 56 young adults, who engaged in two 4-hour exposure sessions on a main road and in a park, alternately. We measured personal exposures to traffic-related air pollutants (TRAPs), including fine and ultrafine particulate matter, black carbon, nitrogen dioxide, and carbon monoxide. Lipidomics, targeted proteomics, urine metabolomics, targeted biomarkers, ambulatory blood pressure and electrocardiogram were measured. We used linear mixed-effects models to estimate the associations. The exposures to TRAPs except for fine particulate matter in the road session were 2-3 times higher. We observed elevated blood pressure and decreased heart rate variability (HRV) after TRAP exposure, accompanied by dozens of molecular alterations involving systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and lipid metabolism. Pathways like vascular smooth muscle cell proliferation and biomarkers like trimethylamine N-Oxide might also be disturbed. Some of these TRAP-related molecular biomarkers were also associated with changes of blood pressure or HRV. Our results provided systematical mechanistic profiling for the cardiovascular effects of TRAP using multi omics, which may have implications in TRAP control.
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - John Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Steven N Chillrud
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
11
|
Koo GPY, Zheng H, Pek PP, Hughes F, Lim SL, Yeo JW, Ong MEH, Ho AFW. Clustering of Environmental Parameters and the Risk of Acute Myocardial Infarction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148476. [PMID: 35886328 PMCID: PMC9318360 DOI: 10.3390/ijerph19148476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023]
Abstract
The association between days with similar environmental parameters and cardiovascular events is unknown. We investigate the association between clusters of environmental parameters and acute myocardial infarction (AMI) risk in Singapore. Using k-means clustering and conditional Poisson models, we grouped calendar days from 2010 to 2015 based on rainfall, temperature, wind speed and the Pollutant Standards Index (PSI) and compared the incidence rate ratios (IRR) of AMI across the clusters using a time-stratified case-crossover design. Three distinct clusters were formed with Cluster 1 having high wind speed, Cluster 2 high rainfall, and Cluster 3 high temperature and PSI. Compared to Cluster 1, Cluster 3 had a higher AMI incidence with IRR 1.04 (95% confidence interval 1.01–1.07), but no significant difference was found between Cluster 1 and Cluster 2. Subgroup analyses showed that increased AMI incidence was significant only among those with age ≥65, male, non-smokers, non-ST elevation AMI (NSTEMI), history of hyperlipidemia and no history of ischemic heart disease, diabetes or hypertension. In conclusion, we found that AMI incidence, especially NSTEMI, is likely to be higher on days with high temperature and PSI. These findings have public health implications for AMI prevention and emergency health services delivery during the seasonal Southeast Asian transboundary haze.
Collapse
Affiliation(s)
| | - Huili Zheng
- National Registry of Diseases Office, Health Promotion Board, Singapore 168937, Singapore;
| | - Pin Pin Pek
- Health Services & Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; (P.P.P.); (M.E.H.O.)
| | - Fintan Hughes
- Department of Anesthesiology, Duke University Hospital, Duke University, Durham, NC 27710, USA;
| | - Shir Lynn Lim
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore;
- Department of Medicine, National University Singapore, Singapore 119228, Singapore
| | - Jun Wei Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Marcus E. H. Ong
- Health Services & Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; (P.P.P.); (M.E.H.O.)
- Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore
| | - Andrew F. W. Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School Singapore, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
12
|
Long E, Carlsten C. Controlled human exposure to diesel exhaust: results illuminate health effects of traffic-related air pollution and inform future directions. Part Fibre Toxicol 2022; 19:11. [PMID: 35139881 PMCID: PMC8827176 DOI: 10.1186/s12989-022-00450-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Air pollution is an issue of increasing interest due to its globally relevant impacts on morbidity and mortality. Controlled human exposure (CHE) studies are often employed to investigate the impacts of pollution on human health, with diesel exhaust (DE) commonly used as a surrogate of traffic related air pollution (TRAP). This paper will review the results derived from 104 publications of CHE to DE (CHE-DE) with respect to health outcomes. CHE-DE studies have provided mechanistic evidence supporting TRAP’s detrimental effects on related to the cardiovascular system (e.g., vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) and respiratory system (e.g., airway inflammation, increased airway responsiveness, and clinical symptoms of asthma). Oxidative stress is thought to be the primary mechanism of TRAP-induced effects and has been supported by several CHE-DE studies. A historical limitation of some air pollution research is consideration of TRAP (or its components) in isolation, limiting insight into the interactions between TRAP and other environmental factors often encountered in tandem. CHE-DE studies can help to shed light on complex conditions, and several have included co-exposure to common elements such as allergens, ozone, and activity level. The ability of filters to mitigate the adverse effects of DE, by limiting exposure to the particulate fraction of polluted aerosols, has also been examined. While various biomarkers of DE exposure have been evaluated in CHE-DE studies, a definitive such endpoint has yet to be identified. In spite of the above advantages, this paradigm for TRAP is constrained to acute exposures and can only be indirectly applied to chronic exposures, despite the critical real-world impact of living long-term with TRAP. Those with significant medical conditions are often excluded from CHE-DE studies and so results derived from healthy individuals may not apply to more susceptible populations whose further study is needed to avoid potentially misleading conclusions. In spite of limitations, the contributions of CHE-DE studies have greatly advanced current understanding of the health impacts associated with TRAP exposure, especially regarding mechanisms therein, with important implications for regulation and policy.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
13
|
Alarabi AB, Lozano PA, Khasawneh FT, Alshbool FZ. The effect of emerging tobacco related products and their toxic constituents on thrombosis. Life Sci 2022; 290:120255. [PMID: 34953893 PMCID: PMC9118784 DOI: 10.1016/j.lfs.2021.120255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Although conventional cigarette smoking is declining, emerging tobacco related products (ETRPs) are currently gaining ground, especially among the youth. These products include electronic cigarettes, waterpipes/hookah, cigars/cigarillo, smokeless tobacco, and heat-not-burn cigarettes. The observed increase in the use of ETRPs is multifactorial and complex but appears to be mainly driven by efforts from the major tobacco companies to reinvent themselves, and present more appealing and allegedly safe(r) tobacco products. However, it is becoming apparent that these products produce substantial amounts of toxic chemicals, many of which have been shown to exert negative health effects, including in the context of the cardiovascular system. Thus, there has been research efforts, albeit limited in general, to characterize the health impact of these products on occlusive/thrombotic cardiovascular diseases (CVD). In this review, we will discuss the potential impact of ETRPs on thrombosis-based CVD. Specifically, we will review how these products and the major chemicals they produce and/or emit can trigger key players in the process of thrombosis, namely inflammation, oxidative stress, platelets, coagulation, and the vascular endothelium, and the relationship between these effects.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Patricia A Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy Texas A&M University, Kingsville, TX, USA.
| |
Collapse
|
14
|
Stojanovic N, Glisovic J, Abdullah OI, Belhocine A, Grujic I. Particle formation due to brake wear, influence on the people health and measures for their reduction: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9606-9625. [PMID: 34993797 DOI: 10.1007/s11356-021-17907-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
For achieving the desired vehicle speed, the IC engine is very important, while for further vehicle speed maintaining and adaptation to road conditions, the braking system is important. With each brake's activation, wear products are forming, which are very harmful to the environment, because they can contain heavy metals. The braking working parameters (initial speed and braking pressure) are beside the achieved temperature in contact par, the most responsible, for particle formation and their release into the air. The particles forming can be divided by size on coarse, fine, and ultrafine particles, and which were observed in the paper. However, the greatest accent was placed on coarse and fine particles. For the determination of the composition of wear products, most often, laboratory tests were used. Particle composition greatly depends on the composition of brake pads, which can consist of about 30 components, and where some of these components have very unfavourable effects on people's health. So today, many researches are focused on finding such composition for brake pads, which will wear as less as possible, without disturbing the basic tribological properties. The conclusion of this paper shows that the applied materials for manufacturing the braking system are very important, as well as the construction, for the reduction of particle emission.
Collapse
Affiliation(s)
- Nadica Stojanovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Jasna Glisovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Oday I Abdullah
- Dept. of Energy Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Mechanics, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040
- System Technologies and Engineering Design Methodology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Ali Belhocine
- Department of Mechanical Engineering, University of Sciences and the Technology of Oran, L.P 1505 El -MNAOUER, Usto, 31000, Oran, Algeria
| | - Ivan Grujic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
15
|
Wang X, Xing M, Zhang Z, Deng L, Han Y, Wang C, Fan R. Using UPLC-QTOF/MS and multivariate analysis to explore the mechanism of Bletilla Striata improving PM 2.5-induced lung impairment. Anal Biochem 2021; 631:114310. [PMID: 34280371 DOI: 10.1016/j.ab.2021.114310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is closely related to lung diseases and has become more and more harmful to public health. The traditional Chinese medicine of Bletilla Striata has the effect of clearing and nourishing the lungs in clinics. The purpose of the study is using metabolomics methods to explore the mechanism of PM2.5-induced lung injury and Bletilla Striata's therapeutic effect. In this article, we used an Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-QTOF/MS) method to identify the potential biomarkers. The results showed that there were 18 differential metabolites in the plasma and urine of rats with PM2.5-induced lung injury, involving the glycerophospholipid metabolism pathway, the tryptophan metabolism pathway, and the purine metabolism pathway, etc. After the administration, Bletilla Striata changed the levels of 21 metabolites, and partly corrected the changes in the level of metabolites caused by PM2.5. The results indicated that Bletilla Striata could exert a good therapeutic effect by reversing the levels of some biomarkers in the rats with PM2.5-induced lung impairment.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Meiqi Xing
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Ze Zhang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Lili Deng
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Yumo Han
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Chen Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China
| | - Ronghua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, 11034, China.
| |
Collapse
|
16
|
Martin WK, Padilla S, Kim YH, Hunter DL, Hays MD, DeMarini DM, Hazari MS, Gilmour MI, Farraj AK. Zebrafish irritant responses to wildland fire-related biomass smoke are influenced by fuel type, combustion phase, and byproduct chemistry. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:674-688. [PMID: 34006202 PMCID: PMC8237130 DOI: 10.1080/15287394.2021.1925608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human exposure to wildfire-derived particulate matter (PM) is linked to adverse health outcomes; however, little is known regarding the influence of biomass fuel type and burn conditions on toxicity. The aim of this study was to assess the irritant potential of extractable organic material (EOM) of biomass smoke condensates from five fuels (eucalyptus, pine, pine needle, peat, or red oak), representing various fire-prone regions of the USA, burned at two temperatures each [flaming (approximately 640°C) or (smoldering approximately 500°C)] using a locomotor assay in zebrafish (Danio rerio) larvae. It was postulated that locomotor responses, as measures of irritant effects, might be dependent upon fuel type and burn conditions and that these differences relate to combustion byproduct chemistry. To test this, locomotor activity was tracked for 60 min in 6-day-old zebrafish larvae (25-32/group) immediately after exposure to 0.4% dimethyl sulfoxide (DMSO) vehicle or EOM from the biomass smoke condensates (0.3-30 µg EOM/ml; half-log intervals). All EOM samples produced concentration-dependent irritant responses. Linear regression analysis to derive rank-order potency indicated that on a µg PM basis, flaming pine and eucalyptus were the most irritating. In contrast, on an emission-factor basis, which normalizes responses to the amount of PM produced/kg of fuel burned, smoldering smoke condensates induced greater irritant responses (>100-fold) than flaming smoke condensates, with smoldering pine being the most potent. Importantly, irritant responses significantly correlated with polycyclic aromatic hydrocarbon (PAH) content, but not with organic carbon or methoxyphenols. Data indicate that fuel type and burn condition influence the quantity and chemical composition of PM as well as toxicity.
Collapse
Affiliation(s)
- W Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, UNC-Chapel Hill, USA
| | - S Padilla
- Biomolecular and Computational Toxicology Division, Us Epa, Rtp, NC, US
| | - Y H Kim
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, US
| | - D L Hunter
- Biomolecular and Computational Toxicology Division, Us Epa, Rtp, NC, US
| | - M D Hays
- Air Methods & Characterization Division, Us Epa, Rtp, NC, US
| | - D M DeMarini
- Biomolecular and Computational Toxicology Division, Us Epa, Rtp, NC, US
| | - M S Hazari
- Public Health and Integrated Toxicology Division, Us Epa, Rtp, NC, US
| | - M I Gilmour
- Public Health and Integrated Toxicology Division, Us Epa, Rtp, NC, US
| | - A K Farraj
- Public Health and Integrated Toxicology Division, Us Epa, Rtp, NC, US
| |
Collapse
|
17
|
Huang F, Zhao Y, Wang P, Wang Y, Zhang L, Luo Y. Short-term exposure to particulate matter on heart rate variability in humans: a systematic review of crossover and controlled studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35528-35536. [PMID: 34031827 DOI: 10.1007/s11356-021-14494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
As an indicator of cardiac autonomic function, heart rate variability (HRV) has been proven to decrease after short-term exposure to particulate matters (PM) based on controlled animal studies. In this study, we conducted a systematic review to investigate short-term effects of exposure with different particle sizes on HRV in humans. Both crossover and controlled studies of human which were published prior to February 2020 were searched on four electronic databases. The HRV parameters included standard deviation of normal-to-normal intervals (SDNN), root mean square of successive normal-to-normal intervals (RMSSD), percent of normal-to-normal intervals that differ by more than 50 milliseconds (PNN50), low frequency (LF), high frequency (HF), and LF/HF. This review included 14 studies with 300 participants. The short-term effects of PM exposure on HRV in humans are inconclusive. For time-domain parameters, one study showed higher SDNN values with 2-h exposure to PM, whereas another one showed lower SDNN values. One study found RMSSD increased after PM exposure. One study found PNN50 decreased after PM exposure. For frequency-domain parameters, two studies showed LF increased with 2-h exposure to PM, and two studies showed an increase of LF/HF after PM exposure. Four studies showed lower HF values after PM exposure, whereas two studies showed higher HF values. Five studies did not find statistically significant results for any HRV parameters. We could not conclude that short-term exposure to PM can influence autonomic nervous function. The inconsistent changes of HRV in response to PM exposure may have complex mechanisms, which remains to be elucidated.
Collapse
Affiliation(s)
- Fangfang Huang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yuhan Zhao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
| | - Ping Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yingfang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Licheng Zhang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
18
|
Orach J, Rider CF, Carlsten C. Concentration-dependent health effects of air pollution in controlled human exposures. ENVIRONMENT INTERNATIONAL 2021; 150:106424. [PMID: 33596522 DOI: 10.1016/j.envint.2021.106424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is a leading contributor to premature mortality worldwide and is often represented by particulate matter (PM), a key contributor to its harmful health effects. Concentration-response relationships are useful for quantifying the effects of air pollution in relevant populations and in considering potential effect thresholds. Controlled human exposures can provide data on acute effects and concentration-response relationships that complement epidemiological studies. OBJECTIVES We examined PM concentration-responses after controlled human air pollution exposures to examine exposure-response markers, assess effect modifiers, and identify potential effect thresholds. METHODS We reviewed primary research from published controlled human exposure studies where responses were reported at multiple target PM concentrations or summarized per unit change in PM to identify concentration-dependent effects. RESULTS Of the 191 publications identified through PubMed and supplementary searches, 31 were eligible. Eligible studies collectively represented four pollutant models: concentrated ambient particles, engineered carbon nanoparticles, diesel exhaust, and woodsmoke. We identified concentration-dependent effects on oxidative stress markers, inflammation, and cardiovascular function that overlapped across different pollutants. Metabolic syndrome and glutathione s-transferase mu 1 genotype were identified as potential effect modifiers. DISCUSSION Improved understanding of concentration-response relationships is integral to biomonitoring and mitigation of health effects through impact assessment and policy. Although we identified potential concentration-response markers, thresholds, and modifiers, our conclusions on these relationships were limited by a dearth of eligible publications, considerable variability in methodology, and inconsistent reporting standards between studies. More research is required to validate these observations. We recommend that future studies harmonize estimate reporting to facilitate the identification of robust response markers across research and applied settings.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
19
|
Selley L, Schuster L, Marbach H, Forsthuber T, Forbes B, Gant TW, Sandström T, Camiña N, Athersuch TJ, Mudway I, Kumar A. Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics 2021; 12:371-386. [PMID: 31915771 DOI: 10.1039/c9mt00253g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Studies have emphasised the importance of combustion-derived particles in eliciting adverse health effects, especially those produced by diesel vehicles. In contrast, few investigations have explored the potential toxicity of particles derived from tyre and brake wear, despite their significant contributions to total roadside particulate mass. The objective of this study was to compare the relative toxicity of compositionally distinct brake abrasion dust (BAD) and diesel exhaust particles (DEP) in a cellular model that is relevant to human airways. Although BAD contained considerably more metals/metalloids than DEP (as determined by inductively coupled plasma mass spectrometry) similar toxicological profiles were observed in U937 monocyte-derived macrophages following 24 h exposures to 4-25 μg ml-1 doses of either particle type. Responses to the particles were characterised by dose-dependent decreases in mitochondrial depolarisation (p ≤ 0.001), increased secretion of IL-8, IL-10 and TNF-α (p ≤ 0.05 to p ≤ 0.001) and decreased phagocytosis of S. aureus (p ≤ 0.001). This phagocytic deficit recovered, and the inflammatory response resolved when challenged cells were incubated for a further 24 h in particle-free media. These responses were abrogated by metal chelation using desferroxamine. At minimally cytotoxic doses both DEP and BAD perturbed bacterial clearance and promoted inflammatory responses in U937 cells with similar potency. These data emphasise the requirement to consider contributions of abrasion particles to traffic-related clinical health effects.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Linda Schuster
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK. and German Cancer Research Center (DKFZ) & Bioquant Center, Division of Chromatin Networks, 69120, Heidelberg, Germany.
| | - Helene Marbach
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Theresa Forsthuber
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Timothy W Gant
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, OX11 0RQ, UK. and MRC-PHE Centre for Environment and Health, Imperial College, London, W2 1PG, UK.
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden.
| | - Nuria Camiña
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
| | - Toby J Athersuch
- MRC-PHE Centre for Environment and Health, Imperial College, London, W2 1PG, UK. and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ian Mudway
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK. and Department of Analytical and Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
| | - Abhinav Kumar
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| |
Collapse
|
20
|
Chen C, Liu S, Dong W, Song Y, Chu M, Xu J, Guo X, Zhao B, Deng F. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141726. [PMID: 32889464 DOI: 10.1016/j.scitotenv.2020.141726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Ultrafine particles (UFPs) are of concern because of their high pulmonary deposition efficiency. However, present control measures are generally targeted at fine particles (PM2.5), with little effect on UFPs. The health effects of UFPs at different PM2.5 concentrations may provide a basic for controlling UFPs but remain unclear in polluted areas. School children spend the majority of their time in the classrooms. This study investigated the different short-term effects of indoor UFPs on school children in Beijing, China when indoor PM2.5 concentrations exceeded or satisfied the recently published Chinese standard for indoor PM2.5. Cardiopulmonary functions of 48 school children, of whom 46 completed, were measured three times. Indoor PM2.5 and UFPs were monitored in classrooms on weekdays. Measurements were separated into two groups according to the abovementioned standard. Mixed-effect models were used to explore the health effects of the air pollutants. Generally, UFP-associated effects on children's cardiopulmonary function persisted even at relatively low PM2.5 concentrations, especially on heart rate variability indices. The risks associated with high PM2.5 concentrations are well-known, but the effects of UFPs on children's cardiopulmonary function deserve more attention even when PM2.5 has been controlled. UFP control and standard setting should therefore be considered.
Collapse
Affiliation(s)
- Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
21
|
Gabdrashova R, Nurzhan S, Naseri M, Bekezhankyzy Z, Gimnkhan A, Malekipirbazari M, Tabesh M, Khanbabaie R, Crape B, Buonanno G, Hopke PK, Amouei Torkmahalleh A, Amouei Torkmahalleh M. The impact on heart rate and blood pressure following exposure to ultrafine particles from cooking using an electric stove. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141334. [PMID: 32846247 DOI: 10.1016/j.scitotenv.2020.141334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Cooking is a major source of indoor particulate matter (PM), especially ultrafine particles (UFPs). Long-term exposure to fine and ultrafine particles (UFPs) has been associated with adverse human health effects. Toxicological studies have demonstrated that exposure to PM2.5 (particles with aerodynamic diameter smaller than 2.5 μm) may result in increased blood pressure (BP). Some clinical studies have shown that acute exposure to PM2.5 causes changes in systolic (SBP) and diastolic blood pressure (DBP), depending on the source of particles. Studies assessing the effect of exposure to cooking PM on BP and heart rate (HR) using electric or gas stoves are not well represented in the literature. The aim of this investigation was to perform controlled studies to quantify the exposure of 50 healthy volunteer participants to fine and ultrafine particles emitted from a low-emissions recipe for frying ground beef on an electric stove. The BP and heart rate (HR) of the volunteers were monitored during exposure and after the exposure (2 h post-exposure). Maximum UFP and PM2.5 concentrations were 6.5 × 104 particles/cm3 and 0.017 mg/m3, respectively. Exposure to UFPs from frying was associated with statistically significant increases in the SBP. The lack of food and drink during the 2 h post-cooking period was also associated with a statistically significant reduction in SBP. No statistically significant changes in DBP were observed. Physiological factors, including heat stress over the stove, movements and anxiety, could be responsible for an elevation in HR at the early stages of the experiments with a subsequent drop in HR after 90 min post-cooking, when study participants were relaxed in a living room.
Collapse
Affiliation(s)
- Raikhangul Gabdrashova
- Department of Biology, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sholpan Nurzhan
- Department of Biology, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Zhibek Bekezhankyzy
- Department of Chemistry, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Aidana Gimnkhan
- Department of Chemistry, School of Humanities and Social Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Milad Malekipirbazari
- Department of Industrial Engineering, Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Mahsa Tabesh
- Department of Physics, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
| | - Reza Khanbabaie
- Department of Physics, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
| | - Byron Crape
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, Cassino 03043, Italy
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
22
|
Zhang Z, Kang J, Hong YS, Chang Y, Ryu S, Park J, Cho J, Guallar E, Shin HC, Zhao D. Long-Term Particulate Matter Exposure and Incidence of Arrhythmias: A Cohort Study. J Am Heart Assoc 2020; 9:e016885. [PMID: 33146044 PMCID: PMC7763729 DOI: 10.1161/jaha.120.016885] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Studies have shown that short-term exposure to air pollution is associated with cardiac arrhythmia hospitalization and mortality. However, the relationship between long-term particulate matter air pollution and arrhythmias is still unclear. We evaluate the prospective association between particulate matter (PM) air pollution and the risk of incident arrhythmia and its subtypes. Methods and Results Participants were drawn from a prospective cohort study of 178 780 men and women who attended regular health screening exams in Seoul and Suwon, South Korea, from 2002 to 2016. Exposure to PM with an aerodynamic diameter of ≤10 and ≤2.5 μm (PM10 and PM2.5, respectively) was estimated using a land-use regression model. The associations between long-term PM air pollution and arrhythmia were examined using pooled logistic regression models with time-varying exposure and covariables. In the fully adjusted model, the odds ratios (ORs) for any arrhythmia associated with a 10 μg/m3 increase in 12-, 36-, and 60-month PM10 exposure were 1.15 (1.09, 1.21), 1.12 (1.06, 1.18), and 1.14 (1.08, 1.20), respectively. The ORs with a 10 μg/m3 increase in 12- and 36-month PM2.5 exposure were 1.27 (1.15, 1.40) and 1.10 (0.99, 1.23). PM10 was associated with increased risk of incident bradycardia and premature atrial contraction. PM2.5 was associated with increased risk of incident bradycardia and right bundle-branch block. Conclusions In this large cohort study, long-term exposure to outdoor PM air pollution was associated with increased risk of arrhythmia. Our findings indicate that PM air pollution may be a contributor to cardiac arrhythmia in the general population.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD
| | - Jeonggyu Kang
- Center for Cohort Studies Total Healthcare Center Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Yun Soo Hong
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD
| | - Yoosoo Chang
- Center for Cohort Studies Total Healthcare Center Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Republic of Korea.,Department of Clinical Research Design and Evaluation SAIHST Seoul Republic of Korea.,Department of Occupational and Environmental Medicine Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies Total Healthcare Center Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Republic of Korea.,Department of Clinical Research Design and Evaluation SAIHST Seoul Republic of Korea.,Department of Occupational and Environmental Medicine Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Jihwan Park
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD
| | - Juhee Cho
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD.,Center for Cohort Studies Total Healthcare Center Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Republic of Korea.,Department of Clinical Research Design and Evaluation SAIHST Seoul Republic of Korea
| | - Eliseo Guallar
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD
| | - Ho Cheol Shin
- Department of Family Medicine Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Di Zhao
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD
| |
Collapse
|
23
|
Wyatt LH, Devlin RB, Rappold AG, Case MW, Diaz-Sanchez D. Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part Fibre Toxicol 2020; 17:58. [PMID: 33198760 PMCID: PMC7670817 DOI: 10.1186/s12989-020-00389-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies. METHODS To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 μg/m3, SD 6.5), and filtered air (mean: 2.1 μg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure. RESULTS Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 μg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure. CONCLUSIONS This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard. CLINICAL TRIAL REGISTRATION INFORMATION clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Martin W Case
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| |
Collapse
|
24
|
Abstract
: Potential adverse health effects associated with exposure to engineered or synthesized nanomaterials have not been reported in humans; however, there is accumulating evidence from animal studies that exposure to some nanomaterials is harmful. While there is uncertainty as to the likelihood, frequency, and intensity of exposures experienced by those working around engineered nanoparticles, the American College of Occupational and Environmental Medicine has developed this guidance document for occupational medicine physicians and their colleagues to offer prudent preventive recommendations on the topics of exposure monitoring, exposure controls, and medical surveillance.
Collapse
|
25
|
Effects of Trans, Trans-2,4-decadienal on the Ions Currents of Cardiomyocytes: Possible Mechanisms of Arrhythmogenesis Induced by Cooking-oil Fumes. Sci Rep 2020; 10:5771. [PMID: 32238829 PMCID: PMC7113283 DOI: 10.1038/s41598-020-62733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 12/03/2022] Open
Abstract
Household air pollution has adverse effects on cardiovascular health. One of the major sources of household air pollutants is the combustion of cooking oils during cooking. Trans, trans-2,4-decadienal (tt-DDE) is a type of dienaldehyde that is present in a wide range of food and food products. It is a byproduct of the peroxidation of linoleic acid following the heating of oil during cooking. The mechanisms of the associations between household air pollution and cardiac arrhythmias are currently unclear. The purpose of this study was to determine effects of tt-DDE on the ion currents in H9c2 cells. The IK and ICa,L in H9c2 cells treated with and without tt-DDE were measured using the whole-cell patch clamp method. Expressions of Kv2.1 and Cav1.2 in H9c2 cells treated with and without tt-DDE were measured by western blot analysis. After the H9c2 cells had been exposed to tt-DDE, the IK and ICa,L were significantly decreased. The expression of Kv2.1, unlike that of Cav1.2, was also significantly decreased in these cells. These changes in IK and ICa,L that were induced by tt-DDE may help to explain the association between cardiac arrhythmogenesis and cooking-oil fumes.
Collapse
|
26
|
The health effects of ultrafine particles. Exp Mol Med 2020; 52:311-317. [PMID: 32203102 PMCID: PMC7156741 DOI: 10.1038/s12276-020-0403-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Ultrafine particles (PM0.1), which are present in the air in large numbers, pose a health risk. They generally enter the body through the lungs but translocate to essentially all organs. Compared to fine particles (PM2.5), they cause more pulmonary inflammation and are retained longer in the lung. Their toxicity is increased with smaller size, larger surface area, adsorbed surface material, and the physical characteristics of the particles. Exposure to PM0.1 induces cough and worsens asthma. Metal fume fever is a systemic disease of lung inflammation most likely caused by PM0.1. The disease is manifested by systemic symptoms hours after exposure to metal fumes, usually through welding. PM0.1 cause systemic inflammation, endothelial dysfunction, and coagulation changes that predispose individuals to ischemic cardiovascular disease and hypertension. PM0.1 are also linked to diabetes and cancer. PM0.1 can travel up the olfactory nerves to the brain and cause cerebral and autonomic dysfunction. Moreover, in utero exposure increases the risk of low birthweight. Although exposure is commonly attributed to traffic exhaust, monitored students in Ghana showed the highest exposures in a home near a trash burning site, in a bedroom with burning coils employed to abate mosquitos, in a home of an adult smoker, and in home kitchens during domestic cooking. The high point-source production and rapid redistribution make incidental exposure common, confound general population studies and are compounded by the lack of global standards and national reporting. The potential for PM0.1 to cause harm to health is great, but their precise role in many illnesses is still unknown and calls for more research. Tiny particles found in air pollution enter the body usually through the lungs and disperse to other organs, causing more inflammation and cellular toxicity than larger particles. Dean Schraufnagel from the University of Illinois at Chicago, USA, reviews the way by which nano-sized air pollutants threaten human health. He describes how ultrafine particles measuring less than 100 nanometres in diameter elicit greater inflammatory responses and stay in the lungs longer than larger particles. Repeated contact with extremely small particulate matter can trigger heart disease, diabetes, cancer, neurological disorders and respiratory ailments, especially among children and people with long-term occupational exposure. Much remains to be learned about the disease-causing properties of these nanoparticles and their long-term effects. Further developments in understanding remain handicapped by the lack of international standards and reporting measures.
Collapse
|
27
|
Aweimer A, Jettkant B, Monsé C, Hagemeyer O, van Kampen V, Kendzia B, Gering V, Marek EM, Bünger J, Mügge A, Brüning T, Merget R. Heart rate variability and cardiac repolarization after exposure to zinc oxide nanoparticles in healthy adults. J Occup Med Toxicol 2020; 15:4. [PMID: 32140173 PMCID: PMC7048061 DOI: 10.1186/s12995-020-00255-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
Background Exposure to airborne zinc oxide (ZnO) particles occurs in many industrial processes, especially in galvanizing and welding. Systemic inflammation after experimental inhalation of ZnO particles has been demonstrated previously, but little is known about the impact on the cardiovascular system, particularly on the autonomic cardiac system and the risk of arrhythmias. In this study we investigated the short-term effects of ZnO nanoparticles on heart rate variability (HRV) and repolarization in healthy adults in a concentration-dependent manner at rest and during exercise in a controlled experimental set-up. Methods Sixteen healthy subjects were exposed to filtered air and ZnO particles (0.5, 1.0 and 2.0 mg/m3) for 4 h, including 2 h of cycling at low workloads. Parameters were assessed before, during, immediately after, and about 24 h after each exposure. For each subject, a total number of 46 10-min-sections from electrocardiographic records were analyzed. Various parameters of HRV and QT interval were measured. Results Overall, no statistically significant effects of controlled ZnO inhalation on HRV parameters and QT interval were observed. Additionally, a concentration-response was absent. Conclusion Inhalation of ZnO nanoparticles up to 2.0 mg/m3 for 4 h does not affect HRV and cardiac repolarization in healthy adults at the chosen time points. This study supports the view that cardiac endpoints are insensitive for the assessment of adverse effects after short-term inhalation of ZnO nanoparticles.
Collapse
Affiliation(s)
- Assem Aweimer
- 1Department of Cardiology and Angiology Bergmannsheil University Hospital, Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Birger Jettkant
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Christian Monsé
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Olaf Hagemeyer
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Vera van Kampen
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Benjamin Kendzia
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Vitali Gering
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Eike-Maximilian Marek
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jürgen Bünger
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Andreas Mügge
- 1Department of Cardiology and Angiology Bergmannsheil University Hospital, Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Rolf Merget
- 2Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
28
|
Carll AP, Salatini R, Pirela SV, Wang Y, Xie Z, Lorkiewicz P, Naeem N, Qian Y, Castranova V, Godleski JJ, Demokritou P. Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Part Fibre Toxicol 2020; 17:7. [PMID: 31996220 PMCID: PMC6990551 DOI: 10.1186/s12989-019-0335-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Using engineered nanomaterial-based toners, laser printers generate aerosols with alarming levels of nanoparticles that bear high bioactivity and potential health risks. Yet, the cardiac impacts of printer-emitted particles (PEPs) are unknown. Inhalation of particulate matter (PM) promotes cardiovascular morbidity and mortality, and ultra-fine particulates (< 0.1 μm aerodynamic diameter) may bear toxicity unique from larger particles. Toxicological studies suggest that PM impairs left ventricular (LV) performance; however, such investigations have heretofore required animal restraint, anesthesia, or ex vivo preparations that can confound physiologic endpoints and/or prohibit LV mechanical assessments during exposure. To assess the acute and chronic effects of PEPs on cardiac physiology, male Sprague Dawley rats were exposed to PEPs (21 days, 5 h/day) while monitoring LV pressure (LVP) and electrocardiogram (ECG) via conscious telemetry, analyzing LVP and heart rate variability (HRV) in four-day increments from exposure days 1 to 21, as well as ECG and baroreflex sensitivity. At 2, 35, and 70 days after PEPs exposure ceased, rats received stress tests. RESULTS On day 21 of exposure, PEPs significantly (P < 0.05 vs. Air) increased LV end systolic pressure (LVESP, + 18 mmHg) and rate-pressure-product (+ 19%), and decreased HRV indicating sympathetic dominance (root means squared of successive differences [RMSSD], - 21%). Overall, PEPs decreased LV ejection time (- 9%), relaxation time (- 3%), tau (- 5%), RMSSD (- 21%), and P-wave duration (- 9%). PEPs increased QTc interval (+ 5%) and low:high frequency HRV (+ 24%; all P < 0.05 vs. Air), while tending to decrease baroreflex sensitivity and contractility index (- 15% and - 3%, P < 0.10 vs. Air). Relative to Air, at both 2 and 35 days after PEPs, ventricular arrhythmias increased, and at 70 days post-exposure LVESP increased. PEPs impaired ventricular repolarization at 2 and 35 days post-exposure, but only during stress tests. At 72 days post-exposure, PEPs increased urinary dopamine 5-fold and protein expression of ventricular repolarizing channels, Kv1.5, Kv4.2, and Kv7.1, by 50%. CONCLUSIONS Our findings suggest exposure to PEPs increases cardiovascular risk by augmenting sympathetic influence, impairing ventricular performance and repolarization, and inducing hypertension and arrhythmia. PEPs may present significant health risks through adverse cardiovascular effects, especially in occupational settings, among susceptible individuals, and with long-term exposure.
Collapse
Affiliation(s)
- Alex P. Carll
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Renata Salatini
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Yun Wang
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
- Department of Occupational and Environmental Health Sciences,School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Nazratan Naeem
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV USA
| | - John J. Godleski
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| |
Collapse
|
29
|
Wu WT, Wang CC, Liou SH. Effects of nanoparticles exposure and PON1 genotype on heart rate variability. ENVIRONMENTAL RESEARCH 2019; 176:108377. [PMID: 31374360 DOI: 10.1016/j.envres.2019.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/17/2019] [Accepted: 03/06/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES This study was to assess the association between different NPs exposure and PON1 genotype on Heart Rate Variability (HRV) parameters among workers. METHODS This study included 235 non-CVD subjects handled to nanomaterials (NM) and 185 non-exposed controls without CVD from 14 NM plants. All participants completed short-term HRV measurements, and were collected blood specimens to measure PON1 activities and the genotype of the PON1 Q192R polymorphism. RESULTS In a multivariate regression model, this study observed a positive relationship between nano-Ag exposure and HRV time-domain (RMSSD) and frequency-domain (HF). After adjusting for confounders, the results showed positive associations between RR homozygosity, PON1 paraoxonase/arylesterase activities with HRV, and was particularly noteworthy in RMSSD and HF. CONCLUSIONS This study shows a significant increment of RMSSD and HF among workers who handled Nano-Ag materials. These results imply that Nano-Ag and PON1 Q192R genotype can trigger ANS reflexes and alter cardiac frequency and function.
Collapse
Affiliation(s)
- Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan.
| | - Chung-Ching Wang
- Division of occupational medicine, Division of family medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Saou-Hsing Liou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan; Center for Aging and Health, Hualien Tzu Chi Hospital, Hualien, Taiwan.
| |
Collapse
|
30
|
Fan R, Ren Q, Zhou T, Shang L, Ma M, Wang B, Xiao C. Determination of endogenous substance change in PM 2.5-induced rat plasma and lung samples by UPLC-MS/MS method to identify potential markers for lung impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22040-22050. [PMID: 31144181 DOI: 10.1007/s11356-019-05351-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Exposure to fine particulate matter (PM2.5) could induce lung impairment aggravation. Moreover, endogenous substances are known to play a significant role in lung impairment. Therefore, the research objectives was to investigate the influence of PM2.5-induced lung impairment on the levels of the eight endogenous substances, γ-aminobutyric acid (GABA), acetylcholine (ACh), glutamate (Glu), serotonin (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), noradrenaline (NE), dopamine (DA), and 3, 4-dihydroxyphenylacetic acid (DOPAC). A sensitive UPLC-MS/MS method for the simultaneous determination of these endogenous substances in rat plasma and lung tissues was developed. The validated method was successfully applied for comparing profiles of analytes in rat plasma and lung tissues. The results indicated that five endogenous substances, namely, GABA, Ach, Glu, DA, and DOPAC, had a significant change in the rats with PM2.5-induced lung impairment.
Collapse
Affiliation(s)
- Ronghua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, 11034, Liaoning Province, China
| | - Qingquan Ren
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, 11034, Liaoning Province, China
| | - Tao Zhou
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, 11034, Liaoning Province, China
| | - Lei Shang
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, Shenyang, 11034, Liaoning Province, China
| | - Mingyue Ma
- Department of Toxicology, College of Public Health, Shenyang Medical College, Shenyang, 11034, Liaoning Province, China
| | - Bolun Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, 11034, Liaoning Province, China
| | - Chunling Xiao
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, Shenyang, 11034, Liaoning Province, China.
| |
Collapse
|
31
|
Xu H, Chen J, Zhao Q, Zhang Y, Wang T, Feng B, Wang Y, Liu S, Yi T, Liu S, Wu R, Zhang Q, Fang J, Song X, Rajagopalan S, Li J, Brook RD, Huang W. Ambient air pollution is associated with cardiac repolarization abnormalities in healthy adults. ENVIRONMENTAL RESEARCH 2019; 171:239-246. [PMID: 30690270 DOI: 10.1016/j.envres.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Ambient air pollution has been associated with acute cardiovascular events; however, the underlying mechanisms remain incompletely understood. We aimed to examine the impacts of ambient air pollutants on cardiac ventricular repolarization in a highly polluted urban region. METHODS Seventy-three healthy non-smoking young adults (66% female, mean age of 23.3 ± 5.4 years) were followed with four repeated 24-h electrocardiogram recordings in 2014-2016 in Beijing, China. Continuous concentrations of ambient particulates in size fractions of 5-560 nm diameter, black carbon (BC), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) were measured at a fixed-location air pollution monitoring station. Generalized linear mixed models, with adjustment for individual risk factors, time-varying factors and meteorological parameters, were used to evaluate the effects of air pollution on 5-min segments of heart rate-corrected QT interval (QTc), an index of cardiac ventricular repolarization. RESULTS During the study period, the mean levels of number concentrations of particulates in size range of 5-560 nm (PNC5-560) were 20,711 particles/cm3. Significant increases in QTc of 0.56% (95% CI: 0.27, 0.84) to 1.76% (95% CI: 0.73, 2.79) were associated with interquartile range increases in PNC50-560 at prior 1-5 moving average days. Significant increases in QTc were also associated with increases in exposures to traffic-related air pollutants (BC, NO2 and CO), a combustion pollutant SO2, and the secondary pollutant O3. The associations were stronger in participants who were male, overweight, with abdominal obesity, and with higher levels of high-sensitivity C-reactive protein. CONCLUSIONS Our findings suggest that exposures to higher levels of ambient particulates in small size fractions and traffic pollutants were associated with cardiac repolarization abnormalities in healthy adults, and the cardio-metabolic risks may modify the adverse cardiac effects attributable to air pollution.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Jie Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Tong Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Baihuan Feng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Yang Wang
- Department of Prevention and Health Care, Hospital of Health Science Center, Peking University, Beijing 100191, China
| | - Shengcong Liu
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Tieci Yi
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Shuo Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Qiaochi Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Case Western Reserve University, OH 10900, USA
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing 100034, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, MI 48109, USA
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Health Science Center, Peking University Medicine, Beijing 100191, China.
| |
Collapse
|
32
|
Xu X, Shang Y, Tian L, Weng W, Tu J. Fate of the inhaled smoke particles from fire scenes in the nasal airway of a realistic firefighter: A simulation study. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:273-285. [PMID: 30668285 DOI: 10.1080/15459624.2019.1572900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the inhalation, transport and deposition of smoke particles during fire missions are important to evaluating the health risks for firefighters. In this study, measurements from Underwriters Laboratories' large-scale fire experiments on smoke particle size distribution and concentration in three residential fire scenes were incorporated into models to investigate the fate of inhaled toxic ultrafine particulates in a realistic firefighter nasal cavity model. Deposition equations were developed, and the actual particle dosimetry (in mass, number and surface area) was evaluated. A strong monotonic growth of nasal airway dosages of simulated smoke particles was identified for airflow rates and fire duration across all simulated residential fire scene conditions. Even though the "number" dosage of arsenic in the limited ventilation living room fire was similar to the "number" dosage of chromium in the living room, particle mass and surface area dosages simulated in the limited living room were 90-200 fold higher than that in the ventilated living room. These were also confirmed when comparing the dosimetry in the living room and the kitchen. This phenomenon implied that particles with larger size were the dominant factors in mass and surface area dosages. Firefighters should not remove the self-contained breathing apparatus (SCBA) during fire suppression and overhaul operations, especially in smoldering fires with limited ventilation.
Collapse
Affiliation(s)
- Xiaoyu Xu
- a Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University , Beijing , China
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
- c School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , New South Wales , Australia
| | - Yidan Shang
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
| | - Lin Tian
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
| | - Wenguo Weng
- a Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University , Beijing , China
| | - Jiyuan Tu
- b School of Engineering - Mechanical and Automotive , RMIT University , Bundoora , Victoria , Australia
- c School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , New South Wales , Australia
- d Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety , Institute of Nuclear and New Energy Technology, Tsinghua University , Beijing , China
| |
Collapse
|
33
|
Lee S, Park H, Kim S, Lee EK, Lee J, Hong YS, Ha E. Fine particulate matter and incidence of metabolic syndrome in non-CVD patients: A nationwide population-based cohort study. Int J Hyg Environ Health 2019; 222:533-540. [PMID: 30797734 DOI: 10.1016/j.ijheh.2019.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND It has been reported that particulate matter (PM) is associated with cardiovascular diseases (CVD) while metabolic syndrome is also an important risk factor for CVD. However, few studies have investigated the epidemiological association between PM and metabolic syndrome. OBJECTIVE To investigate the association between one-year exposure to PM with an aerodynamic diameter <2.5 μm (PM2.5) and the risk of metabolic syndrome in Korean adults without CVD. METHODS Exposure to PM2.5 was assessed using a Community Multiscale Air Quality (CMAQ) model. Metabolic syndrome was defined by National Cholesterol Education Program Adult Treatment Panel III. Andersen and Gill model with time-varying covariates, considering recurrent events, was used to investigate the association between one-year average PM2.5 and the risk of incident metabolic syndrome in 119,998 adults from the national health screening cohort provided by Korea National Health Insurance from 2009 to 2013. RESULTS Higher risk of metabolic syndrome, waist-based obesity, hypertension, hypertriglyceridemia, low HDL cholesterol, and hyperglycemia were significantly associated with a 10-μg/m3 increase in PM2.5 [adjusted hazard ratio (HR): 1.070, 1.510, 1.499, 1.468, 1.627 and 1.380, respectively]. In addition, the risk of metabolic syndrome associated with PM2.5 exposure was significant in the consistently obese group (obese at baseline and endpoint). CONCLUSION Exposure to one-year average PM2.5 is associated with an increased risk of metabolic syndrome and its components in adults without CVD. These associations are particularly prominent in the consistently obese group (obese at baseline and endpoint). Our findings indicate that PM2.5 affects the onset of MS and its components which may lead to increase the risk of CVD.
Collapse
Affiliation(s)
- Seulbi Lee
- Department of Medical Science, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Eun-Kyung Lee
- Department of Statistics, Ewha Womans University, Seoul, Republic of Korea
| | - Jiyoung Lee
- Department of Occupational and Environment Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Young Sun Hong
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| | - Eunhee Ha
- Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Occupational and Environment Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Research Institute for Human Health Information, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Rizza V, Stabile L, Vistocco D, Russi A, Pardi S, Buonanno G. Effects of the exposure to ultrafine particles on heart rate in a healthy population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2403-2410. [PMID: 30292996 DOI: 10.1016/j.scitotenv.2018.09.385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
The correlation amongst exposure to ultrafine particle concentrations and heart rate in a large healthy population was investigated. The study was conducted by continuously monitoring for seven days fifty volunteers in terms of exposure to particle concentrations, heart rate and physical activity performed through portable monitors. Data were analyzed adopting a linear mixed model able to manage the obtained repeated measures and to recognize a general trend resulting from the subject-specific patterns. Results show that the short-term exposure to ultrafine particle concentrations is positively associated with the heart rate for the different physical activities of the subject investigated (laying down, sitting, standing positions). In particular, a logarithmic correlation was recognized with a sharper increase of about 4-6 bpm for a variation of the particle number concentration of 2 × 104 part/cm3 and a slighter effect for further increases of about 0.1-0.2 × 10-4 bpm/(part/cm). CAPSULE: A positive correlation can be associated between the exposure to ultrafine particles and the heart rate.
Collapse
Affiliation(s)
- Valeria Rizza
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy.
| | - Domenico Vistocco
- Department of Economics and Law, University of Cassino and Southern Lazio, Italy
| | - Aldo Russi
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy
| | | | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy; Department of Engineering, University "Parthenope", Naples, Italy; Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
35
|
Martin WK, Tennant AH, Conolly RB, Prince K, Stevens JS, DeMarini DM, Martin BL, Thompson LC, Gilmour MI, Cascio WE, Hays MD, Hazari MS, Padilla S, Farraj AK. High-Throughput Video Processing of Heart Rate Responses in Multiple Wild-type Embryonic Zebrafish per Imaging Field. Sci Rep 2019; 9:145. [PMID: 30644404 PMCID: PMC6333808 DOI: 10.1038/s41598-018-35949-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Heart rate assays in wild-type zebrafish embryos have been limited to analysis of one embryo per video/imaging field. Here we present for the first time a platform for high-throughput derivation of heart rate from multiple zebrafish (Danio rerio) embryos per imaging field, which is capable of quickly processing thousands of videos and ideal for multi-well platforms with multiple fish/well. This approach relies on use of 2-day post fertilization wild-type embryos, and uses only bright-field imaging, circumventing requirement for anesthesia or restraint, costly software/hardware, or fluorescently-labeled animals. Our original scripts (1) locate the heart and record pixel intensity fluctuations generated by each cardiac cycle using a robust image processing routine, and (2) process intensity data to derive heart rate. To demonstrate assay utility, we exposed embryos to the drugs epinephrine and clonidine, which increased or decreased heart rate, respectively. Exposure to organic extracts of air pollution-derived particulate matter, including diesel or biodiesel exhausts, or wood smoke, all complex environmental mixtures, decreased heart rate to varying degrees. Comparison against an established lower-throughput method indicated robust assay fidelity. As all code and executable files are publicly available, this approach may expedite cardiotoxicity screening of compounds as diverse as small molecule drugs and complex chemical mixtures.
Collapse
Affiliation(s)
- W Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alan H Tennant
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Joey S Stevens
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - David M DeMarini
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brandi L Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Leslie C Thompson
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Wayne E Cascio
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael D Hays
- National Risk Management Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mehdi S Hazari
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
36
|
Habre R, Zhou H, Eckel SP, Enebish T, Fruin S, Bastain T, Rappaport E, Gilliland F. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. ENVIRONMENT INTERNATIONAL 2018; 118:48-59. [PMID: 29800768 PMCID: PMC6368339 DOI: 10.1016/j.envint.2018.05.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to ultrafine particles (UFP, particles with aerodynamic diameter < 100 nm) is associated with reduced lung function and airway inflammation in individuals with asthma. Recently, elevated UFP number concentrations (PN) from aircraft landing and takeoff activity were identified downwind of the Los Angeles International Airport (LAX) but little is known about the health impacts of airport-related UFP exposure. METHODS We conducted a randomized crossover study of 22 non-smoking adults with mild to moderate asthma in Nov-Dec 2014 and May-Jul 2015 to investigate short-term effects of exposure to LAX airport-related UFPs. Participants conducted scripted, mild walking activity on two occasions in public parks inside (exposure) and outside (control) of the high UFP zone. Spirometry, multiple flow exhaled nitric oxide, and circulating inflammatory cytokines were measured before and after exposure. Personal UFP PN and lung deposited surface area (LDSA) and stationary UFP PN, black carbon (BC), particle-bound PAHs (PB-PAH), ozone (O3), carbon dioxide (CO2) and particulate matter (PM2.5) mass were measured. Source apportionment analysis was conducted to distinguish aircraft from roadway traffic related UFP sources. Health models investigated within-subject changes in outcomes as a function of pollutants and source factors. RESULTS A high two-hour walking period average contrast of ~34,000 particles·cm-3 was achieved with mean (std) PN concentrations of 53,342 (25,529) and 19,557 (11,131) particles·cm-3 and mean (std) particle size of 28.7 (9.5) and 33.2 (11.5) at the exposure and control site, respectively. Principal components analysis differentiated airport UFPs (PN), roadway traffic (BC, PB-PAH), PM mass (PM2.5, PM10), and secondary photochemistry (O3) sources. A standard deviation increase in the 'Airport UFPs' factor was significantly associated with IL-6, a circulating marker of inflammation (single-pollutant model: 0.21, 95% CI = 0.08-0.34; multi-pollutant model: 0.18, 0.04-0.32). The 'Traffic' factor was significantly associated with lower Forced Expiratory Volume in 1 s (FEV1) (single-pollutant model: -1.52, -2.28 to -0.77) and elevated sTNFrII (single-pollutant model: 36.47; 6.03-66.91; multi-pollutant model: 64.38; 6.30-122.46). No consistent associations were observed with exhaled nitric oxide. CONCLUSIONS To our knowledge, our study is the first to demonstrate increased acute systemic inflammation following exposure to airport-related UFPs. Health effects associated with roadway traffic exposure were distinct. This study emphasizes the importance of multi-pollutant measurements and modeling techniques to disentangle sources of UFPs contributing to the complex urban air pollution mixture and to evaluate population health risks.
Collapse
Affiliation(s)
- Rima Habre
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hui Zhou
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temuulen Enebish
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott Fruin
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward Rappaport
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank Gilliland
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Talovskaya AV, Yazikov EG, Filimonenko EA, Lata JC, Kim J, Shakhova TS. Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia). ENVIRONMENTAL TECHNOLOGY 2018; 39:2288-2303. [PMID: 28691580 DOI: 10.1080/09593330.2017.1354075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Recognition and detailed characterization of solid particles emitted from thermal power plants into the environment is highly important due to their potential detrimental effects on human health. Snow cover is used for the identification of anthropogenic emissions in the environment. However, little is known about types, physical and chemical properties of solid airborne particles (SAP) deposited in snow around thermal power plants. The purpose of this study is to quantify and characterize in detail the traceable SAP deposited in snow near fossil fuel thermal power plant in order to identify its emissions into the environment. Applying the scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, mineral and anthropogenic phase groups in SAP deposited in snow near the plant and in fly ash were observed. We identified quartz, albite and mullite as most abundant mineral phases and carbonaceous matter, slag and spherical particles as dominate anthropogenic phases. This is the first study reporting that zircon and anthropogenic sulphide-bearing, metal oxide-bearing, intermetallic compound-bearing and rare-earth element-bearing particles were detected in snow deposits near thermal power plant. The identified mineral and anthropogenic phases can be used as tracers for fossil fuel combustion emissions, especially with regard to their possible effect on human health.
Collapse
Affiliation(s)
- A V Talovskaya
- a Department of Geoecology and Geochemistry , National Research Tomsk Polytechnic University , Tomsk , Russia
| | - E G Yazikov
- a Department of Geoecology and Geochemistry , National Research Tomsk Polytechnic University , Tomsk , Russia
| | - E A Filimonenko
- a Department of Geoecology and Geochemistry , National Research Tomsk Polytechnic University , Tomsk , Russia
| | - J-C Lata
- b Department of Community Diversity and Ecosystem Functioning , Institut d´écologie et des sciences de l´environnement de Paris (iEES-Paris), Sorbonne Universités, UPMC Univ Paris 06, IRD, CNRS, UPEC, INRA, Univ Paris Diderot , Paris , France
| | - J Kim
- c CREIDD Research Centre on Environmental Studies and Sustainability , University of Technology of Troyes , Troyes Cedax , France
| | - T S Shakhova
- a Department of Geoecology and Geochemistry , National Research Tomsk Polytechnic University , Tomsk , Russia
| |
Collapse
|
38
|
Hazari MS, Stratford KM, Krantz T, King C, Krug J, Farraj AK, Gilmour I. Comparative Cardiopulmonary Effects of Particulate Matter- And Ozone-Enhanced Smog Atmospheres in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3071-3080. [PMID: 29388764 PMCID: PMC6089361 DOI: 10.1021/acs.est.7b04880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study was conducted to compare the cardiac effects of particulate matter (PM)- (SA-PM) and ozone(O3)-enhanced (SA-O3) smog atmospheres in mice. Based on our previous findings of filtered diesel exhaust we hypothesized that SA-O3 would cause greater cardiac dysfunction than SA-PM. Radiotelemetered mice were exposed to either SA-PM, SA-O3, or filtered air (FA) for 4 h. Heart rate (HR) and electrocardiogram were recorded continuously before, during and after exposure. Both SA-PM and SA-O3 increased heart rate variability (HRV) but only SA-PM increased HR. Normalization of responses to total hydrocarbons, gas-only hydrocarbons and PM concentration were performed to assess the relative contribution of each phase given the compositional variability. Normalization to PM concentration revealed that SA-O3 was more potent in increasing HRV, arrhythmogenesis, and causing ventilatory changes. However, there were no differences when the responses were normalized to total or gas-phase only hydrocarbons. Thus, this study demonstrates that a single exposure to smog causes cardiac effects in mice. Although the responses of SA-PM and SA-O3 are similar, the latter is more potent in causing electrical disturbances and breathing changes potentially due to the effects of irritant gases, which should therefore be accounted for more rigorously in health assessments.
Collapse
Affiliation(s)
- Mehdi S. Hazari
- Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Kimberly M. Stratford
- Curriculum in Toxicology, University of North Carolina – Chapel Hill, Chapel Hill, NC, 27599
| | - Todd Krantz
- Inhalation Toxicology Facilities Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Charly King
- Inhalation Toxicology Facilities Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Jonathan Krug
- Exposure Methods and Measurement Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Aimen K. Farraj
- Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| | - Ian Gilmour
- Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
| |
Collapse
|
39
|
Ruprecht AA, De Marco C, Pozzi P, Munarini E, Mazza R, Angellotti G, Turla F, Boffi R. Comparison between Particulate Matter and Ultrafine Particle Emission by Electronic and Normal Cigarettes in Real-life Conditions. TUMORI JOURNAL 2018. [DOI: 10.1177/1430.15833] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ario Alberto Ruprecht
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
- SIMG (Società Italiana di Medicina Generale), Sondrio
| | - Cinzia De Marco
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - Paolo Pozzi
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - Elena Munarini
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - Roberto Mazza
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
- Patient Information Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgia Angellotti
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - Francesca Turla
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - Roberto Boffi
- Tobacco Control Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| |
Collapse
|
40
|
An Z, Jin Y, Li J, Li W, Wu W. Impact of Particulate Air Pollution on Cardiovascular Health. Curr Allergy Asthma Rep 2018; 18:15. [PMID: 29470659 DOI: 10.1007/s11882-018-0768-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Air pollution is established as an independent risk factor for cardiovascular diseases (CVDs). Ambient particulate matter (PM), a principal component of air pollutant, has been considered as a main culprit of the adverse effects of air pollution on human health. RECENT FINDINGS Extensive epidemiological and toxicological studies have demonstrated particulate air pollution is positively associated with the development of CVDs. Short-term PM exposure can trigger acute cardiovascular events while long-term exposure over years augments cardiovascular risk to an even greater extent and can reduce life expectancy by a few years. Inhalation of PM affects heart rate variability, blood pressure, vascular tone, blood coagulability, and the progression of atherosclerosis. The potential molecular mechanisms of PM-caused CVDs include direct toxicity to the cardiovascular system or indirect injury by inducing systemic inflammation and oxidative stress in circulation. This review mainly focuses on the acute and chronic effects of ambient PM exposure on the development of cardiovascular diseases and the possible mechanisms for PM-induced increases in cardiovascular morbidity and mortality. Additionally, we summarized some appropriate interventions to attenuate PM air pollution-induced cardiovascular adverse effects, which may promote great benefits to public health.
Collapse
Affiliation(s)
- Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wen Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
41
|
Dabass A, Talbott EO, Rager JR, Marsh GM, Venkat A, Holguin F, Sharma RK. Systemic inflammatory markers associated with cardiovascular disease and acute and chronic exposure to fine particulate matter air pollution (PM 2.5) among US NHANES adults with metabolic syndrome. ENVIRONMENTAL RESEARCH 2018; 161:485-491. [PMID: 29223110 DOI: 10.1016/j.envres.2017.11.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND There has been no investigation to date of adults with metabolic syndrome examining the association of short and long-term exposure to fine particulate matter (PM2.5) air pollution with cardiovascular-disease related inflammatory marker (WBC and CRP) levels in a nationally representative sample. The goal of this study is to assess the susceptibility of adults with metabolic syndrome to PM2.5 exposure as suggested by increased cardiovascular-disease related inflammatory marker levels. METHODS A cross sectional analysis of adult National Health and Nutrition Examination Survey (NHANES) participants (2000-2008) was carried out with linkage of CDC WONDER meteorological data and downscaler modeled USEPA air pollution data for census tracts in the continental United States. Participants were non-pregnant NHANES adults (2000-2008) with complete data for evaluating presence of metabolic syndrome and laboratory data on WBC and CRP. Exposures studied included short (lags 0-3 days and their averages), long-term (30 and 60 day moving and annual averages) PM2.5 exposure levels at the census tract level in the continental United States. The main outcomes included CRP and WBC levels the day of NHANES study visit analyzed using multiple linear regression, adjusting for age, gender, race, education, smoking status, history of any cardiovascular disease, maximum apparent temperature and ozone level, for participants with and without metabolic syndrome. RESULTS A total of 7134 NHANES participants (35% with metabolic syndrome) met the inclusion criteria. After adjusting for confounders, we observed a significant effect of PM2.5 acutely at lag day 0 on CRP level; a 10µg/m3 rise in lag day 0 PM2.5 level was associated with a 10.1% increase (95% CI: 2.2-18.6%) in CRP levels for participants with metabolic syndrome. For those without metabolic syndrome, the change in CRP was -1.3% (95% CI -8.8%, 6.8%). There were no significant associations for WBC count. In this first national study of the effect of PM2.5 air pollution on levels of cardiovascular-disease related inflammatory markers in adults with metabolic syndrome, CRP levels were found to be significantly increased in those with this condition with increased fine particulate matter levels at lag day 0. With one third of US adults with metabolic syndrome, the health impact of PM2.5 in this sensitive population may be significant.
Collapse
Affiliation(s)
- Arvind Dabass
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, Pittsburgh, PA, USA
| | - Evelyn O Talbott
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, Pittsburgh, PA, USA.
| | - Judith R Rager
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, Pittsburgh, PA, USA
| | - Gary M Marsh
- University of Pittsburgh, Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, USA
| | - Arvind Venkat
- Allegheny Health Network, Department of Emergency Medicine, Pittsburgh, PA, USA
| | - Fernando Holguin
- University of Colorado, School of Medicine, Pulmonary Disease and Critical Care Medicine, Aurora, CO, USA
| | - Ravi K Sharma
- University of Pittsburgh, Graduate School of Public Health, Department of Behavioral and Community Health Sciences, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Robertson S, Miller MR. Ambient air pollution and thrombosis. Part Fibre Toxicol 2018; 15:1. [PMID: 29298690 PMCID: PMC5753450 DOI: 10.1186/s12989-017-0237-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM2.5) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially susceptible groups to healthy individuals.
Collapse
Affiliation(s)
- Sarah Robertson
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0RQ, UK.
| | - Mark R Miller
- University/BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
43
|
Emmerechts J, De Vooght V, Haenen S, Loyen S, Van kerckhoven S, Hemmeryckx B, Vanoirbeek JAJ, Hoet PH, Nemery B, Hoylaerts MF. Thrombogenic changes in young and old mice upon subchronic exposure to air pollution in an urban roadside tunnel. Thromb Haemost 2017; 108:756-68. [DOI: 10.1160/th12-03-0161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/31/2012] [Indexed: 11/05/2022]
Abstract
SummaryEpidemiological studies indicate that elderly persons are particularly susceptible to the cardiovascular health complications of air pollution, but pathophysiological mechanisms behind the increased susceptibility remain unclear. Therefore, we investigated how continuous traffic-related air pollution exposure affects haemostasis parameters in young and old mice. Young (10 weeks) and old (20 months) mice were placed in an urban roadside tunnel or in a clean environment for 25 or 26 days and markers of inflammation and endothelial cells or blood platelet activation were measured, respectively. Plasma microvesicles and pro/ anticoagulant factors were analysed, and thrombin generation analysis was performed. Despite elevated macrophage carbon load, tunnel mice showed no overt pulmonary or systemic inflammation, yet manifested reduced pulmonary thrombomudulin expression and elevated endothelial von Willebrand factor (VWF) expression in lung capillaries. In young mice, soluble P-selectin (sP-sel) increased with exposure and correlated with soluble E-selectin and VWF. Baseline plasma factor VIII (FVIII), sP-sel and VWF were higher in old mice, but did not pronouncedly increase further with exposure. Traffic-related air pollution markedly raised red blood cell and blood platelet numbers in young and old mice and procoagulant blood platelet-derived microvesicle numbers in old animals. Changes in coagulation factors and thrombin generation were mild or absent. Hence, continuous traffic-related air pollution did not trigger overt lung inflammation, yet modified pulmonary endothelial cell function and enhanced platelet activity. In old mice, subchronic exposure to polluted air raised platelet numbers, VWF, sP-sel and microvesicles to the highest values presently recorded, collectively substantiating a further elevation of thrombogenicity, already high at old age.
Collapse
|
44
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
45
|
Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicol Appl Pharmacol 2017; 335:1-5. [PMID: 28942003 DOI: 10.1016/j.taap.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
Fused deposition modeling (FDM™), or three-dimensional (3D) printing has become routine in industrial, occupational and domestic environments. We have recently reported that 3D printing emissions (3DPE) are complex mixtures, with a large ultrafine particulate matter component. Additionally, we and others have reported that inhalation of xenobiotic particles in this size range is associated with an array of cardiovascular dysfunctions. Sprague-Dawley rats were exposed to 3DPE aerosols via nose-only exposure for ~3h. Twenty-four hours later, intravital microscopy was performed to assess microvascular function in the spinotrapezius muscle. Endothelium-dependent and -independent arteriolar dilation were stimulated by local microiontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). At the time of experiments, animals exposed to 3DPE inhalation presented with a mean arterial pressure of 125±4mmHg, and this was significantly higher than that for the sham-control group (94±3mmHg). Consistent with this pressor response in the 3DPE group, was an elevation of ~12% in resting arteriolar tone. Endothelium-dependent arteriolar dilation was significantly impaired after 3DPE inhalation across all iontophoretic ejection currents (0-27±15%, compared to sham-control: 15-120±21%). Endothelium-independent dilation was not affected by 3DPE inhalation. These alterations in peripheral microvascular resistance and reactivity are consistent with elevations in arterial pressure that follow 3DPE inhalation. Future studies must identify the specific toxicants generated by FDM™ that drive this acute pressor response.
Collapse
|
46
|
Gorr MW, Falvo MJ, Wold LE. Air Pollution and Other Environmental Modulators of Cardiac Function. Compr Physiol 2017; 7:1479-1495. [PMID: 28915333 PMCID: PMC7249238 DOI: 10.1002/cphy.c170017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in developed regions and a worldwide health concern. Multiple external causes of CVD are well known, including obesity, diabetes, hyperlipidemia, age, and sedentary behavior. Air pollution has been linked with the development of CVD for decades, though the mechanistic characterization remains unknown. In this comprehensive review, we detail the background and epidemiology of the effects of air pollution and other environmental modulators on the heart, including both short- and long-term consequences. Then, we provide the experimental data and current hypotheses of how pollution is able to cause the CVD, and how exposure to pollutants is exacerbated in sensitive states. Published 2017. Compr Physiol 7:1479-1495, 2017.
Collapse
Affiliation(s)
- Matthew W. Gorr
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | - Michael J. Falvo
- War Related Illness and Injury Study Center, Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey, USA
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
47
|
Hassanvand MS, Naddafi K, Kashani H, Faridi S, Kunzli N, Nabizadeh R, Momeniha F, Gholampour A, Arhami M, Zare A, Pourpak Z, Hoseini M, Yunesian M. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:695-704. [PMID: 28190687 DOI: 10.1016/j.envpol.2017.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 05/23/2023]
Abstract
Systemic inflammation biomarkers have been associated with risk of cardiovascular morbidity and mortality. We aimed to clarify associations of acute exposure to particulate matter (PM10 (PM < 10 μm), PM2.5-10 (PM 2.5-10 μm), PM2.5 (PM < 2.5 μm), PM1-2.5 (PM 1-2.5 μm), and PM1 (PM < 1 μm)) with systemic inflammation using panels of elderly subjects and healthy young adults. We followed a panel of 44 nonsmoking elderly subjects living in a retirement home and a panel of 40 healthy young adults living in a school dormitory in Tehran city, Iran from May 2012 to May 2013. Blood biomarkers were measured one every 7-8 weeks and included white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). We measured hourly indoor and outdoor exposure to PM10, PM2.5-10, PM2.5, PM1-2.5, and PM1 mass concentration to derive weighted averages of personal exposure based on simultaneously collected time-activity data. The random intercept linear mixed effects model was used for data analysis. We observed significant positive associations for WBC and IL-6 with exposure to PM10, PM2.5-10, PM2.5, PM1-2.5, and PM1; sTNF-RII with PM2.5, PM1-2.5, and PM1; hsCRP with PM2.5 and PM1; and vWF with PM10 and PM2.5-10, PM2.5, and PM1-2.5 mass concentration in elderly subjects from the current-day and multiday averages. For healthy young adults, we found significant positive associations for WBC and IL-6 with exposure to PM10, PM2.5-10, PM2.5, and PM1-2.5, but no with PM1. The results showed that increase of hsCRP, sTNF-RII, and vWF were not significantly associated with any of the PM sizes investigated in the healthy young subjects. Our results provided some evidence that short-term exposure to PM10, PM2.5-10, PM2.5, PM1-2.5, and PM1 was associated with inflammation and coagulation blood markers, but associations were depended on PM size and also differed across the various time lag.
Collapse
Affiliation(s)
- Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Faridi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nino Kunzli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ramin Nabizadeh
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Gholampour
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Arhami
- Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahad Zare
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Fars, Iran
| | - Masud Yunesian
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Fischer HJ, Zhang Q, Zhu Y, Weiss RE. Functional time series models for ultrafine particle distributions. Ann Appl Stat 2017. [DOI: 10.1214/16-aoas1004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Johnson DR. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:67-79. [PMID: 27513371 DOI: 10.1016/j.jhazmat.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Municipal waste incinerators (MWI) are beneficial alternatives to landfills for waste management. A recent constituent of concern in emissions from these facilities is incidental nanometer-sized particles (INPMWI), i.e., particles smaller than 1 micrometer in size that may deposit in the deepest parts of the lungs, cross into the bloodstream, and affect different regions of the body. With limited data, the public may fear INPMWI due to uncertainty, which may affect public acceptance, regulatory permitting, and the increased lowering of air quality standards. Despite limited data, a qualitative risk assessment paradigm can be applied to determine the relative risk due to INPMWI emissions. This review compiles existing data on nanometer-sized particle generation by MWIs, emissions control technologies used at MWIs, emission releases into the atmosphere, human population exposure, and adverse health effects of nanometer-sized particles to generate a qualitative risk assessment and identify data gaps. The qualitative risk assessment conservatively concludes that INPMWI pose a low to moderate risk to individuals, primarily due to the lack of relevant toxicological data on INPMWI mixtures in ambient particulate matter.
Collapse
Affiliation(s)
- David R Johnson
- GHD, 1755 Wittington Place, Suite 500, Dallas, TX 75234, USA.
| |
Collapse
|
50
|
Zhang Y, Ji X, Ku T, Sang N. Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO 2 , NO 2 , and PM 2.5. ENVIRONMENTAL TOXICOLOGY 2016; 31:1996-2005. [PMID: 26417707 DOI: 10.1002/tox.22200] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
SO2 , NO2 , and PM2.5 are typical air pollutants produced during the combustion of coal. Increasing evidence indicates that air pollution has contributed to the development and progression of heart-related diseases over the past decades. However, little experimental data and few studies of SO2 , NO2 , and PM2.5 co-exposure in animals exist; therefore, the relevant mechanisms underlying this phenomenon are unclear. An important characteristic of air pollution is that co-exposure persists at a low concentration throughout a lifetime. In the present study, we treated adult mice with SO2 , NO2 , and PM2.5 at various concentrations (0.5 mg/m3 SO2 , 0.2 mg/m3 NO2 6 h/d, with intranasal instillation of 1 mg/kg PM2.5 every other day during these exposures; or 3.5 mg/m3 SO2 , 2 mg/m3 NO2 6 h/d, and 10 mg/kg PM2.5 for 28 d). Blood pressure (BP), heart rate (HR), histopathological damage, and inflammatory and endothelial cytokines in the heart were assessed. The results indicate that co-exposure caused endothelial dysfunction by elevating endothelin-1 (ET-1) expression and repressing the endothelial nitric oxide synthase (eNOS) level as well as stimulating the inflammatory response by increasing the levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Additionally, these alterations were confirmed by histological staining. Furthermore, we observed decreased BP and increased HR after co-exposure. Our results indicate that co-exposure to SO2 , NO2 , and PM2.5 may be a major risk factor for cardiac disease and may induce injury to the hearts of mammals and contribute to heart disease. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1996-2005, 2016.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| |
Collapse
|