1
|
Karampitsakos T, Tourki B, Herazo-Maya JD. The Dawn of Precision Medicine in Fibrotic Interstitial Lung Disease. Chest 2025; 167:1120-1132. [PMID: 39521375 PMCID: PMC12001815 DOI: 10.1016/j.chest.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
TOPIC IMPORTANCE Interstitial lung diseases (ILDs) represent a broad group of heterogeneous parenchymal lung diseases. Some ILDs progress, causing architectural distortion and pulmonary fibrosis, and thus are called fibrotic ILDs. Recent studies have shown a beneficial effect of antifibrotic therapy in fibrotic ILDs other than idiopathic pulmonary fibrosis (IPF) that manifest progressive pulmonary fibrosis (PPF). However, it remains challenging to predict which patients with fibrotic ILDs will demonstrate PPF. Precision medicine approaches could identify patients at risk for progression and guide treatment in patients with IPF or PPF. REVIEW FINDINGS Multiple biomarkers able to highlight disease susceptibility risk, to provide an accurate diagnosis, and to prognosticate or assess treatment response have been identified. Advances in precision medicine led to the identification of endotypes that could discriminate patients with different fibrotic ILDs or patients with different disease courses. Importantly, recent studies have shown that particular compounds were efficacious only in particular endotypes. The aforementioned findings are promising. However, implementation in clinical practice remains an unmet need. SUMMARY Substantial progress has been observed in the context of precision medicine approaches in fibrotic ILDs in recent years. Nonetheless, infrastructure, financial, regulatory, and ethical challenges remain before precision medicine can be implemented in clinical practice. Overcoming such barriers and moving from a one-size-fits-all approach to patient-centered care could improve patient quality of life and survival substantially.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Bochra Tourki
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL.
| |
Collapse
|
2
|
Dasgupta S. Idiopathic Pulmonary Fibrosis: In Silico Therapeutic Potential of Doxycycline, Pirfenidone, and Nintedanib, and the Role of Next-Generation Phenomics in Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:87-95. [PMID: 39899320 DOI: 10.1089/omi.2024.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Innovation in drug discovery for human diseases stands to benefit from systems science and next-generation phenomics approaches. An example is idiopathic pulmonary fibrosis (IPF) that is a chronic pulmonary disorder leading to respiratory failure and for which preventive and therapeutic medicines are sorely needed. Matrix metalloproteinases (MMPs), particularly MMP1 and MMP7, have been associated with IPF pathogenesis and are thus relevant to IPF drug discovery. This study evaluates the comparative therapeutic potentials of doxycycline, pirfenidone, and nintedanib in relation to MMP1 and MMP7 using molecular docking, molecular dynamics simulations, and a next-generation phenomics approach. Adsorption, distribution, metabolism, excretion, and toxicity analysis revealed that doxycycline and nintedanib adhered to Lipinski's rule of five, while pirfenidone exhibited no violations. The toxicity analysis revealed favorable safety profiles, with lethal dose 50 values of doxycycline, pirfenidone, and nintedanib being 2240kg, 580, and 500 mg/kg, respectively. Homology modeling validated the accuracy of the structures of the target proteins, that is, MMP1 and MMP7. The Protein Contacts Atlas tool, a next-generation phenomics platform that broadens the scope of phenomics research, was employed to visualize protein contacts at atomic levels, revealing interaction surfaces in MMP1 and MMP7. Docking studies revealed that nintedanib exhibited superior binding affinities with the candidate proteins (-6.9 kcal/mol for MMP1 and -7.9 kcal/mol for MMP7) compared with doxycycline and pirfenidone. Molecular dynamics simulations further demonstrated the stability of protein-ligand complexes. These findings highlight the notable potential of nintedanib in relation to future IPF therapeutics innovation. By integrating in silico and a next-generation phenomics approach, this study opens up new avenues for drug discovery and development for IPF and possibly, for precision/personalized medicines that consider the molecular signatures of therapeutic candidates for each patient.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- Department of Biotechnology, Center for Multidisciplinary Research & Innovations, Brainware University, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Yang H, Wu X, Xiao X, Chen J, Yu X, Zhao W, Wang F. Elucidating the causal associations and mechanisms between circulating immune cells and idiopathic pulmonary fibrosis: new insights from Mendelian randomization and transcriptomics. Front Immunol 2025; 15:1437984. [PMID: 39896814 PMCID: PMC11782250 DOI: 10.3389/fimmu.2024.1437984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Background Growing evidence indicates an association between circulating immune cell phenotypes and idiopathic pulmonary fibrosis (IPF). Although studies have attempted to elucidate the causal relationship between the two, further clarification of the specific mechanisms and causal linkages is warranted. Objective We aimed to conduct a two-sample Mendelian randomization (MR) analysis with transcriptomics data analysis to elucidate the causal relationship between circulating immune cells and IPF and to explore potential biomarkers. Methods We first explored the bidirectional causal association between IPF and immune cell phenotypes using two-sample MR analysis. Genome-wide association studies data for immune cell phenotype and IPF were obtained from publicly available databases. A standardized instrumental variable screening process was used to select single nucleotide polymorphisms (SNPs) for inclusion in the MR. Five methods represented by IVW were used to assess causal effects. Subsequently, SNP-nearest genes combined with the transcriptomics data of IPF were subjected to multiple bioinformatics analyses such as TIMER, WGCNA, functional enrichment analysis, protein-protein interaction analysis, and ROC to identify IPF biomarkers. Finally, the single-cell RNA sequencing (scRNA-seq) data was used to validate our findings by single-cell analysis. Results The MR study identified 27 immune cell phenotypes causally associated with IPF, of which 20 were associated with a decreased risk of developing IPF and 7 were associated with an increased risk. CTSB (AUC=0.98), IL10 (AUC=0.83), and AGER (AUC=0.87) were identified as promising biomarkers of IPF. Single cell analysis showed differences in CD14+ CD16+ monocytes, CD16+ monocytes and Granulocyte-monocyte progenito between the IPF group and the healthy control group. The three hub genes were highly expressed in three immune cell subsets of IPF patients. It underscores the potential feasibility of three genes as biomarkers. Conclusions Our study demonstrates the causal associations of specific immune cell phenotypes with IPF through genetic methods and identifies CTSB, IL10, and AGER as biomarkers of IPF through bioinformatics analysis. These findings provide guidance for future clinical and basic research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Cui T, Huang Z, Luo K, Nie J, Xv Y, Zeng Z, Liao L, Yang X, Zhou H. Identification of Hub Genes and Prediction of Targeted Drugs for Rheumatoid Arthritis and Idiopathic Pulmonary Fibrosis. Biochem Genet 2024; 62:5157-5178. [PMID: 38334875 DOI: 10.1007/s10528-023-10650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
There is a potential link between rheumatoid arthritis (RA) and idiopathic pulmonary fibrosis (IPF). The aim of this study is to investigate the molecular processes that underlie the development of these two conditions by bioinformatics methods. The gene expression samples for RA (GSE77298) and IPF (GSE24206) were retrieved from the Gene Expression Omnibus (GEO) database. After identifying the overlapping differentially expressed genes (DEGs) for RA and IPF, we conducted functional annotation, protein-protein interaction (PPI) network analysis, and hub gene identification. Finally, we used the hub genes to predict potential medications for the treatment of both disorders. We identified 74 common DEGs for further analysis. Functional analysis demonstrated that cellular components, biological processes, and molecular functions all played a role in the emergence and progression of RA and IPF. Using the cytoHubba plugin, we identified 7 important hub genes, namely COL3A1, SDC1, CCL5, CXCL13, MMP1, THY1, and BDNF. As diagnostic indicators for RA, SDC1, CCL5, CXCL13, MMP1, and THY1 showed favorable values. For IPF, COL3A1, SDC1, CCL5, CXCL13, THY1, and BDNF were favorable diagnostic markers. Furthermore, we predicted 61 Chinese and 69 Western medications using the hub genes. Our research findings demonstrate a shared pathophysiology between RA and IPF, which may provide new insights for more mechanistic research and more effective treatments. These common pathways and hub genes identified in our study offer potential opportunities for developing more targeted therapies that can address both disorders.
Collapse
Affiliation(s)
- Ting Cui
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Zhican Huang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Kun Luo
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Jingwei Nie
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Yimei Xv
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Zhu Zeng
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Linghan Liao
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Xin Yang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Haiyan Zhou
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
5
|
Ding C, Guo Z, Liao Q, Zuo R, He J, Ye Z, Chen W. Network Pharmacology and Machine Learning Reveal Salidroside's Mechanisms in Idiopathic Pulmonary Fibrosis Treatment. J Inflamm Res 2024; 17:9453-9467. [PMID: 39600682 PMCID: PMC11590657 DOI: 10.2147/jir.s493171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Idiopathic pulmonary fibrosis (IPF) is an irreversible respiratory disease. In this study, we evaluated the efficacy of salidroside (SAL), the main component of Rhodiola rosea, in treating IPF. Methods The pharmacological effects of SAL against epithelial-mesenchymal transition (EMT) and IPF were assessed through in vivo and in vitro experiments. Targets for SAL in treating IPF were identified from various databases and a PPI network was constructed. Functional analyses of target genes were performed using GO, KEGG, DO, and GSEA. Core target genes were identified using LASSO logistic regression and support vector machine (SVM) analysis, followed by molecular docking simulations. Predicted targets and pathways were validated through Western blotting, qRT-PCR, and IHC. Results Our results demonstrated that SAL ameliorated alveolar epithelial cells (AECs) EMT and mitigated bleomycin -induced pulmonary fibrosis. Through network pharmacology, we identified 74 targets for SAL in the treatment of IPF (PFDR<0.05) and analyzed their biological functions. Based on these findings, we further applied machine learning techniques to narrow down 9 core targets (PFDR<0.05). Integrating the results from molecular docking, KEGG, and GSEA analyses, we selected three key targets-IGF1, hypoxia-inducible factor 1-alpha (HIF-1α), and MAPK (PFDR<0.05)-for further investigation. Our study revealed that SAL inhibits the IGF1 signaling pathway, thereby improving AECs senescence and cell cycle arrest. By inhibiting the HIF-1α pathway, SAL alleviates endoplasmic reticulum stress and reduces intracellular ROS accumulation. Moreover, SAL suppresses the activation of the MAPK signaling pathway, leading to a decrease in inflammation markers in AECs and lung tissue. Conclusion Experimental results suggest that SAL effectively ameliorates BLM-induced EMT and IPF, likely through the inhibition of IGF1, HIF-1α, and MAPK signaling pathways. This study holds potential translational prospects and may provide new perspectives and insights for the use of traditional Chinese medicine in the treatment of IPF.
Collapse
Affiliation(s)
- Chenchun Ding
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Quan Liao
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Renjie Zuo
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Junjie He
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Ziwei Ye
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Weibin Chen
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| |
Collapse
|
6
|
Jin H, Park SY, Lee JE, Park H, Jeong M, Lee H, Cho J, Lee YS. GTSE1-driven ZEB1 stabilization promotes pulmonary fibrosis through the epithelial-to-mesenchymal transition. Mol Ther 2024; 32:4138-4157. [PMID: 39342428 PMCID: PMC11573610 DOI: 10.1016/j.ymthe.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/06/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
G2 and S phase-expressed protein 1 (GTSE1) has been implicated in the development of pulmonary fibrosis (PF); however, its biological function, molecular mechanism, and potential clinical implications remain unknown. Here, we explored the genomic data of patients with idiopathic PF (IPF) and found that GTSE1 expression is elevated in their lung tissues, but rarely expressed in normal lung tissues. Thus, we explored the biological role and downstream events of GTSE1 using IPF patient tissues and PF mouse models. The comprehensive bioinformatics analyses suggested that the increase of GTSE1 in IPF is linked to the enhanced gene signature for the epithelial-to-mesenchymal transition (EMT), leading us to investigate the potential interaction between GTSE1 and EMT transcription factors. GTSE1 preferentially binds to the less stable form of zinc-finger E-box-binding homeobox 1 (ZEB1), the unphosphorylated form at Ser585, inhibiting ZEB1 degradation. Consistently, the ZEB1 protein level in IPF patient and PF mouse tissues correlates with the GTSE1 protein level and the amount of collagen accumulation, representing fibrosis severity. Collectively, our findings highlight the GTSE1-ZEB1 axis as a novel driver of the pathological EMT characteristic during PF development and progression, supporting further investigation into GTSE1-targeting approaches for PF treatment.
Collapse
Affiliation(s)
- Hee Jin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - So-Yeon Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea; Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji Eun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hangyeol Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Michaela Jeong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul 120-749, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
7
|
Kim SJ, Cecchini MJ, Woo E, Jayawardena N, Passos DT, Dick FA, Mura M. Spatially resolved gene expression profiles of fibrosing interstitial lung diseases. Sci Rep 2024; 14:26470. [PMID: 39488596 PMCID: PMC11531500 DOI: 10.1038/s41598-024-77469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) encompass a diverse range of scarring disorders that lead to progressive lung failure. Previous gene expression profiling studies focused on idiopathic pulmonary fibrosis (IPF) and bulk tissue samples. We employed digital spatial profiling to gain new insights into the spatial resolution of gene expression across distinct lung microenvironments (LMEs) in IPF, chronic hypersensitivity pneumonitis (CHP) and non-specific interstitial pneumonia (NSIP). We identified differentially expressed genes between LMEs within each condition, and across histologically similar regions between conditions. Uninvolved regions in IPF and CHP were distinct from normal controls, and displayed potential therapeutic targets. Hallmark LMEs of each condition retained distinct gene signatures, but these could not be reproduced in matched lung tissue samples. Based on these profiles and unsupervised clustering, we grouped previously unclassified ILD cases into NSIP or CHP. Overall, our work uniquely dissects gene expression profiles between LMEs within and across different types of fibrosing ILDs.
Collapse
Affiliation(s)
- Seung J Kim
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada.
- London Health Sciences Research Institute, London, ON, Canada.
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elissa Woo
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nathashi Jayawardena
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
| | - Daniel T Passos
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Frederick A Dick
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Marco Mura
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- Division of Respirology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
8
|
Kong J, Chen L. Gene expression profile analysis of severe influenza-based modulation of idiopathic pulmonary fibrosis. Eur J Med Res 2024; 29:501. [PMID: 39420432 PMCID: PMC11488079 DOI: 10.1186/s40001-024-02107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND It is known severe influenza infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other. Till now, no associated mechanism has been reported. METHOD We collected the genetic pattern of expression of severe influenza (GSE111368) and IPF (GSE70866) from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (C-DEGs) were identified from the two datasets, and using this data, we conducted three forms of analyses, functional annotation, protein-protein interaction (PPI) network and module construction, and hub gene identification and co-expression analysis. RESULTS In all, 174 C-DEGs were selected for additional analyses. Based on our functional analysis, these C-DEGs mediated inflammatory response and cell differentiation. Furthermore, using cytoHubba, we identified 15 genes, namely, MELK, HJURP, BIRC5, TPX2, TK1, CDT1, UBE2C, UHRF1, CCNA2, TYMS, CDCA5, CDCA8, RAD54L, CCNB2, and ITGAM, which served as hub genes to possibly contribute to severe influenza patients with IPF disease as comorbidity. The hub gene expressions were further confirmed using two stand-alone datasets (GSE101702 for severe influenza and GSE10667 for IPF). CONCLUSION Herein, we demonstrated the significance of common pathways and critical genes in severe influenza and IPF etiologies. The identified pathways and genes may be employed as possible therapeutic targets for future therapy against severe influenza patients with IPF.
Collapse
Affiliation(s)
- Jianping Kong
- Department of Nephrology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, China
| | - Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, NO 188 Lingshan North Road, Qixia District, Nanjing, 210046, China.
| |
Collapse
|
9
|
Nemeth J, Skronska-Wasek W, Keppler S, Schundner A, Groß A, Schoenberger T, Quast K, El Kasmi KC, Ruppert C, Günther A, Frick M. Adiponectin suppresses stiffness-dependent, profibrotic activation of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2024; 327:L487-L502. [PMID: 39104319 PMCID: PMC11482465 DOI: 10.1152/ajplung.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible respiratory disease with limited therapeutic options. A hallmark of IPF is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We performed an unbiased, next-generation sequencing (NGS) screen to identify signaling pathways involved in stiffness-dependent lung fibroblast activation. Adipocytokine signaling was downregulated in primary lung fibroblasts (PFs) cultured on stiff matrices. Re-activating adipocytokine signaling with adiponectin suppressed stiffness-dependent activation of human PFs. Adiponectin signaling depended on CDH13 expression and p38 mitogen-activated protein kinase gamma (p38MAPKγ) activation. CDH13 expression and p38MAPKγ activation were strongly reduced in lungs from IPF donors. Our data suggest that adiponectin-signaling via CDH13 and p38MAPKγ activation suppresses profibrotic activation of fibroblasts in the lung. Targeting of the adiponectin signaling cascade may provide therapeutic benefits in IPF.NEW & NOTEWORTHY A hallmark of idiopathic pulmonary fibrosis (IPF) is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We found that activation of the adipocytokine signaling pathway halts and reverses stiffness-induced, profibrotic fibroblast activation. Specific targeting of this signaling cascade may therefore provide therapeutic benefits in IPF.
Collapse
Affiliation(s)
- Julia Nemeth
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Sophie Keppler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Alexander Groß
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | | | - Karsten Quast
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Günther
- Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Center for Interstitial and Rare Lung Diseases, Justus-Liebig University Giessen, Giessen, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
10
|
Liu T, Ning J, Fan X, Wei H, Shi G, Fu QB. Identification of immune patterns in idiopathic pulmonary fibrosis patients driven by PLA2G7-positive macrophages using an integrated machine learning survival framework. Sci Rep 2024; 14:22369. [PMID: 39333367 PMCID: PMC11437001 DOI: 10.1038/s41598-024-73625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Patients with advanced idiopathic pulmonary fibrosis (IPF), a complex and incurable lung disease with an elusive pathology, are nearly exclusive candidates for lung transplantation. Improved identification of patient subtypes can enhance early diagnosis and intervention, ultimately leading to better prognostic outcomes for patients. The goal of this study is to identify new immune patterns and biomarkers in patients. Immune subtypes in IPF patients were identified using single-sample gene set enrichment analysis, and immune subtype-related genes were explored using the weighted correlation network analysis algorithm. A machine learning integration framework was used to establish the optimal prognostic model, known as the immune-related risk score (IRS). Single-cell sequencing was conducted to investigate the major role of macrophage-derived PLA2G7 in the immune microenvironment. We assessed the stability of celecoxib in targeting PLA2G7 through molecular docking and surface plasmon resonance. IPF patients present two distinct immune subtypes, one characterized by immune activation and inflammation, and the other by immune suppression. IRS can predict the immune status and prognosis of IPF patients. Furthermore, multi-cohort analysis and single-cell sequencing analysis demonstrated the diagnostic and prognostic value of PLA2G7 derived from macrophages and its role in shaping the inflammatory immune microenvironment in IPF patients. Celecoxib could effectively and stably bind with PLA2G7. PLA2G7, as identified through IRS, demonstrates marked stability in diagnosing and predicting the prognosis of IPF patients as well as predicting their immune status. It can serve as a novel biomarker for IPF patients.
Collapse
Affiliation(s)
- Tianxi Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jingyuan Ning
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoqing Fan
- Institute of Microbiological Testing and Inspection, Tianjin Centre for Disease Control and Prevention, Tianjin , People's Republic of China
| | - Huan Wei
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Guangsen Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, People's Republic of China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Qingshan Bill Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, People's Republic of China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Fu C, Tian X, Wu S, Chu X, Cheng Y, Wu X, Yang W. Role of telomere dysfunction and immune infiltration in idiopathic pulmonary fibrosis: new insights from bioinformatics analysis. Front Genet 2024; 15:1447296. [PMID: 39346776 PMCID: PMC11427275 DOI: 10.3389/fgene.2024.1447296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by unexplained irreversible pulmonary fibrosis. Although the etiology of IPF is unclear, studies have shown that it is related to telomere length shortening. However, the prognostic value of telomere-related genes in IPF has not been investigated. Methods We utilized the GSE10667 and GSE110147 datasets as the training set, employing differential expression analysis and weighted gene co-expression network analysis (WGCNA) to screen for disease candidate genes. Then, we used consensus clustering analysis to identify different telomere patterns. Next, we used summary data-based mendelian randomization (SMR) analysis to screen core genes. We further evaluated the relationship between core genes and overall survival and lung function in IPF patients. Finally, we performed immune infiltration analysis to reveal the changes in the immune microenvironment of IPF. Results Through differential expression analysis and WGCNA, we identified 35 significant telomere regulatory factors. Consensus clustering analysis revealed two distinct telomere patterns, consisting of cluster A (n = 26) and cluster B (n = 19). Immune infiltration analysis revealed that cluster B had a more active immune microenvironment, suggesting its potential association with IPF. Using GTEx eQTL data, our SMR analysis identified two genes with potential causal associations with IPF, including GPA33 (PSMR = 0.0013; PHEIDI = 0.0741) and MICA (PSMR = 0.0112; PHEIDI = 0.9712). We further revealed that the expression of core genes is associated with survival time and lung function in IPF patients. Finally, immune infiltration analysis revealed that NK cells were downregulated and plasma cells and memory B cells were upregulated in IPF. Further correlation analysis showed that GPA33 expression was positively correlated with NK cells and negatively correlated with plasma cells and memory B cells. Conclusion Our study provides a new perspective for the role of telomere dysfunction and immune infiltration in IPF and identifies potential therapeutic targets. Further research may reveal how core genes affect cell function and disease progression, providing new insights into the complex mechanisms of IPF.
Collapse
Affiliation(s)
- Chenkun Fu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Tian
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuang Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaojuan Chu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiju Cheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Fourth People’s Hospital of Guiyang, Guiyang, China
| | - Xiao Wu
- Department of Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Wengting Yang
- Department of Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| |
Collapse
|
12
|
Luo X, Xiang F. Acute exacerbation of idiopathic pulmonary fibrosis a narrative review primary focus on treatments. J Thorac Dis 2024; 16:4727-4741. [PMID: 39144320 PMCID: PMC11320219 DOI: 10.21037/jtd-23-1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/17/2024] [Indexed: 08/16/2024]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial pneumonia, which is the commonest type of idiopathic interstitial pneumonia in the clinic. For most patients, the course of the disease is slow and prolonged, but a percentage of them develop an acute respiratory worsening during the disease, known as an acute exacerbation of IPF (AE-IPF). The updated guidelines define AE-IPF as an acute worsening of dyspnea in an IPF patient within 1 month and exclude other conditions such as left heart failure and pulmonary embolism. However, the prevention and treatment of AE-IPF are still unclear. Based on the high mortality rate caused by AE, in this article, we will focus on the latest research advances in AE-IPF treatment strategies and provide a comprehensive review of its pathogenesis, risk factors, clinical features, and diagnosis. Methods This study searched for relevant literature published from 2018 to 2023 in the PubMed database. The search terms used were as follows: "Acute exacerbation", "Idiopathic pulmonary fibrosis", "Biomarker", "Pathogenesis", "Treatment", "HRCT", "Antifibrotic", "Infection", "Immunosuppressant", "Autoantibody", "Oxygen therapy", "Hemoperfusion", "Inflammation". Key Content and Findings The review found that corticosteroids are still the primary treatment strategy at present, although there is some controversy regarding the dosing and tapering of corticosteroids. However, corticosteroids combined with intravenous cyclophosphamide have been shown to be detrimental to the prognosis of patients with AE-IPF. Given its deadly high mortality rate, early intervention is crucial. Pirfenidone and nintedanib have been proven to reduce incidence of AE. Meanwhile, in the future, the lung microbiome may also be a break-through. Conclusions This study reviewed the pathogenesis and risk factors of AE-IPF and updated the current and potential treatment strategies regarding AE-IPF. The pathogenesis of AE-IPF is not exact, multiple mechanisms may be involved simultaneously. Corticosteroids remain the mainstream treatment modality in the medical treatment of AE-IFP. Many other treatment modalities have been proposed in succession, but no clear conclusions can be drawn about the effectiveness and safety of these interventions.
Collapse
Affiliation(s)
- Xiaohui Luo
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiang
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Guerra X, Rennotte S, Fetita C, Boubaya M, Debray MP, Israël-Biet D, Bernaudin JF, Valeyre D, Cadranel J, Naccache JM, Nunes H, Brillet PY. U-net convolutional neural network applied to progressive fibrotic interstitial lung disease: Is progression at CT scan associated with a clinical outcome? Respir Med Res 2024; 85:101058. [PMID: 38141579 DOI: 10.1016/j.resmer.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Computational advances in artificial intelligence have led to the recent emergence of U-Net convolutional neural networks (CNNs) applied to medical imaging. Our objectives were to assess the progression of fibrotic interstitial lung disease (ILD) using routine CT scans processed by a U-Net CNN developed by our research team, and to identify a progression threshold indicative of poor prognosis. METHODS CT scans and clinical history of 32 patients with idiopathic fibrotic ILDs were retrospectively reviewed. Successive CT scans were processed by the U-Net CNN and ILD quantification was obtained. Correlation between ILD and FVC changes was assessed. ROC curve was used to define a threshold of ILD progression rate (PR) to predict poor prognostic (mortality or lung transplantation). The PR threshold was used to compare the cohort survival with Kaplan Mayer curves and log-rank test. RESULTS The follow-up was 3.8 ± 1.5 years encompassing 105 CT scans, with 3.3 ± 1.1 CT scans per patient. A significant correlation between ILD and FVC changes was obtained (p = 0.004, ρ = -0.30 [95% CI: -0.16 to -0.45]). Sixteen patients (50%) experienced unfavorable outcome including 13 deaths and 3 lung transplantations. ROC curve analysis showed an aera under curve of 0.83 (p < 0.001), with an optimal cut-off PR value of 4%/year. Patients exhibiting a PR ≥ 4%/year during the first two years had a poorer prognosis (p = 0.001). CONCLUSIONS Applying a U-Net CNN to routine CT scan allowed identifying patients with a rapid progression and unfavorable outcome.
Collapse
Affiliation(s)
- Xavier Guerra
- Department of Radiology, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, France.
| | - Simon Rennotte
- Samovar Laboratory, Télécom SudParis, Institut Polytechnique de Paris, Evry, France
| | - Catalin Fetita
- Samovar Laboratory, Télécom SudParis, Institut Polytechnique de Paris, Evry, France
| | - Marouane Boubaya
- Clinical Research Unit, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne Paris-Nord, Bobigny, France
| | - Marie-Pierre Debray
- Department of Radiology, Bichat-Claude Bernard Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Dominique Israël-Biet
- Department of Pulmonology, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France; Université Paris - Cité, Paris, France
| | - Jean-François Bernaudin
- INSERM UMR 1272 Hypoxie & Poumon SMBH, Université Sorbonne Paris - Nord, Bobigny, France; Medicine Sorbonne Université, Paris, France
| | - Dominique Valeyre
- INSERM UMR 1272 Hypoxie & Poumon SMBH, Université Sorbonne Paris - Nord, Bobigny, France; Department of Pulmonology, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, France
| | - Jacques Cadranel
- Medicine Sorbonne Université, Paris, France; Department of Pulmonology, Tenon Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean-Marc Naccache
- Department of Pulmonology, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Hilario Nunes
- INSERM UMR 1272 Hypoxie & Poumon SMBH, Université Sorbonne Paris - Nord, Bobigny, France; Department of Pulmonology, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, France
| | - Pierre-Yves Brillet
- Department of Radiology, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, France; INSERM UMR 1272 Hypoxie & Poumon SMBH, Université Sorbonne Paris - Nord, Bobigny, France
| |
Collapse
|
14
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
15
|
Liu W, Huang K, Yang XZ, Wang P. Transcriptomic and network analysis identifies shared and unique pathways and immune changes across fibrotic interstitial lung diseases. Aging (Albany NY) 2024; 16:3200-3230. [PMID: 38349858 PMCID: PMC10929820 DOI: 10.18632/aging.205530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/01/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Interstitial lung disease (ILD) encompasses a diverse group of disorders characterized by chronic inflammation and fibrosis of the pulmonary interstitium. Three ILDs, namely idiopathic pulmonary fibrosis (IPF), fibrotic hypersensitivity pneumonitis (fHP), and connective tissue disease-associated ILD (CTD-ILD), exhibit similar progressive fibrosis phenotypes, yet possess distinct etiologies, encouraging us to explore their different underlying mechanisms. METHODS Transcriptome data of fibrotic lung tissues from patients with IPF, fHP, and CTD-ILD were subjected to functional annotation, network, and pathway analyses. Additionally, we employed the xCell deconvolution algorithm to predict immune cell infiltration in patients with fibrotic ILDs and healthy controls. RESULTS We identified a shared progressive fibrosis-related module in these diseases which was related to extracellular matrix (ECM) degradation and production and potentially regulated by the p53 family transcription factors. In IPF, neuron-related processes emerged as a critical specific mechanism in functional enrichment. In fHP, we observed that B cell signaling and immunoglobulin A (IgA) production may act as predominant processes, which was further verified by B cell infiltration and the central role of CD19 gene. In CTD-ILD, active chemokine processes were enriched, and active dendritic cells (aDCs) were predicted to infiltrate the lung tissues. CONCLUSIONS This study revealed shared and specific molecular and cellular pathways among IPF, fHP, and CTD-ILD, providing a basis for understanding their pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Wenhao Liu
- Eight-Year Program of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kangping Huang
- Eight-Year Program of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Zhuang Yang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ping Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Lettieri S, Bertuccio FR, del Frate L, Perrotta F, Corsico AG, Stella GM. The Plastic Interplay between Lung Regeneration Phenomena and Fibrotic Evolution: Current Challenges and Novel Therapeutic Perspectives. Int J Mol Sci 2023; 25:547. [PMID: 38203718 PMCID: PMC10779349 DOI: 10.3390/ijms25010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of pulmonary disorders characterized by variable degrees of inflammation, interstitial thickening, and fibrosis leading to distortion of the pulmonary architecture and gas exchange impairment. Among them, idiopathic pulmonary fibrosis (IPF) displays the worst prognosis. The only therapeutic options consist of the two antifibrotic drugs, pirfenidone and nintedanib, which limit fibrosis progression but do not reverse the lung damage. The shift of the pathogenetic paradigm from inflammatory disease to epithelium-derived disease has definitively established the primary role of type II alveolar cells, which lose their epithelial phenotype and acquire a mesenchymal phenotype with production of collagen and extracellular matrix (EMC) deposition. Some predisposing environmental and genetic factors (e.g., smoke, pollution, gastroesophageal reflux, variants of telomere and surfactant genes) leading to accelerated senescence set a pro-fibrogentic microenvironment and contribute to the loss of regenerative properties of type II epithelial cells in response to pathogenic noxae. This review provides a complete overview of the different pathogenetic mechanisms leading to the development of IPF. Then, we summarize the currently approved therapies and the main clinical trials ongoing. Finally, we explore the potentialities offered by agents not only interfering with the processes of fibrosis but also restoring the physiological properties of alveolar regeneration, with a particular focus on potentialities and concerns about cell therapies based on mesenchymal stem cells (MSCs), whose anti-inflammatory and immunomodulant properties have been exploited in other fibrotic diseases, such as graft versus host disease (GVHD) and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco R. Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 80055 Naples, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
17
|
Blumhagen RZ, Kurche JS, Cool CD, Walts AD, Heinz D, Fingerlin TE, Yang IV, Schwartz DA. Spatially distinct molecular patterns of gene expression in idiopathic pulmonary fibrosis. Respir Res 2023; 24:287. [PMID: 37978501 PMCID: PMC10655274 DOI: 10.1186/s12931-023-02572-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcriptional signals compared to previous single cell or bulk RNA-Seq studies. METHODS We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia). RESULTS We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (important for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically normal-appearing tissue in IPF. CONCLUSIONS Our findings demonstrate that histologically normal-appearing regions from the IPF lung are transcriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deactivation of wound healing pathways.
Collapse
Affiliation(s)
- Rachel Z Blumhagen
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St, Office M222D, Denver, CO, 80206, USA.
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO, 80045, USA
- Medical Service, Rocky Mountain Regional Veterans Administration Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
| | - Carlyne D Cool
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO, 80045, USA
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO, 80206, USA
| | - Avram D Walts
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO, 80045, USA
| | - David Heinz
- Pathology Laboratory, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St, Office M222D, Denver, CO, 80206, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO, 80045, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO, 80045, USA
- Medical Service, Rocky Mountain Regional Veterans Administration Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
| |
Collapse
|
18
|
Hadi DD, Marsool MDM, Marsool ADM, Vora N, Al‐Badri SG, Al‐Fatlawi NHK, Abbas Al Wssawi AF, Al‐Ibraheem AMT, Hamza KA, Prajjwal P, Mateen MA, Amir O. Idiopathic pulmonary fibrosis: Addressing the current and future therapeutic advances along with the role of Sotatercept in the management of pulmonary hypertension. Immun Inflamm Dis 2023; 11:e1079. [PMID: 38018591 PMCID: PMC10632947 DOI: 10.1002/iid3.1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating lung disease characterized by irreversible scarring of the lungs. The cause of IPF is unknown, but it is thought to involve a combination of genetic and environmental factors. There is no cure for IPF, and treatment is focused on slowing disease progression and relieving symptoms. AIMS We aimed in this review to investigate and provide the latest insights into IPF management modalities, including the potential of Saracatinibas a substitute for current IPF drugs. We also investigated the therapeutic potential of Sotatercept in addressing pulmonary hypertension associated with IPF. MATERIALS AND METHODS We conducted a comprehensive literature review of relevant studies on IPF management. We searched electronic databases, including PubMed, Scopus, Embase, and Web of science. RESULTS The two Food and Drug Administration-approved drugs for IPF, Pirfenidone, and Nintedanib, have been pivotal in slowing disease progression, yet experimental evidence suggests that Saracatinib surpasses their efficacy. Preclinical trials investigating the potential of Saracatinib, a tyrosine kinase inhibitor, have shown to be more effective than current IPF drugs in slowing disease progression in preclinical studies. Also, Sotatercept,a fusion protein, has been shown to reduce pulmonary vascular resistance and improve exercise tolerance in patients with PH associated with IPF in clinical trials. CONCLUSIONS The advancements discussed in this review hold the promise of improving the quality of life for IPF patients and enhancing our understanding of this condition. There remains a need for further research to confirm the efficacy and safety of new IPF treatments and to develop more effective strategies for managing exacerbations.
Collapse
Affiliation(s)
- Dalia D. Hadi
- Department of Internal MedicineAl‐Kindy College of Medicine, University of BaghdadBaghdadIraq
| | | | | | - Neel Vora
- Department Internal MedicineB.J. Medical CollegeAhmedabadIndia
| | - Sajjad G. Al‐Badri
- Department of Internal MedicineUniversity of Baghdad, College of MedicineBaghdadIraq
| | | | | | | | - Khadija A. Hamza
- Department of Internal MedicineAl‐Kindy College of Medicine, University of BaghdadBaghdadIraq
| | - Priyadarshi Prajjwal
- Department of Internal MedicineBharati Vidyapeeth University Medical CollegePuneIndia
| | - Mohammed A. Mateen
- Department of Internal MedicineShadan Institute of Medical Sciences Teaching Hospital and Research CenterHyderabadIndia
| | - Omniat Amir
- Department of Internal MedicineAl Manhal AcademyKhartoumSudan
| |
Collapse
|
19
|
Ma C, Meng K, Shi S, Zhao T, Chen S, Zhou X, Shu R, Ma M, Tian M, Ding J. Clinical significance of interleukin-6, total bilirubin, CD3 + CD4 + T cells counts in the acute exacerbation of connective tissue disease-associated interstitial lung disease: a cross-sectional study. Eur J Med Res 2023; 28:393. [PMID: 37773193 PMCID: PMC10543318 DOI: 10.1186/s40001-023-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Interstitial lung disease (ILD) is a severe complication of connective tissue disease (CTD) that can significantly impact patients' prognosis and quality of life. However, the current diagnostic arena lacks reliable biomarkers for detecting and monitoring the progression and exacerbation of CTD-ILD. This study aimed to investigate the clinical value of 12 serum cytokines in the diagnosis of CTD-ILD and prediction of the risk of acute exacerbation (AE) in this disease. METHODS This study was a cross-sectional investigation. Ninety-one hospitalized CTD patients were allocated into two groups: CTD-ILD group (n = 61) and CTD-non-ILD group (n = 30), and 30 sex-age matched healthy volunteers were enrolled as controls. The serum concentrations of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17A, and IL-1β were measured by Luminex suspension arrays. Logistic regression was employed to determine the significance of variables in the occurrence of AE-CTD-ILD. A nomogram was constructed to visualize the independent variables. RESULTS Elevated levels of IL-6, IL-8, and TNF-α were observed and compared in the CTD-ILD group with CTD-non-ILD (all P < 0.05). Similarly, the levels of IL-6, IL-8 and TNF-α were higher in the acute exacerbation (AE-CTD-ILD) group compared with stable CTD-ILD (S-CTD-ILD) (P < 0.001, P < 0.001, and P = 0.022). Significant correlations between serum IL-6 and PaO2/FiO2 ratio (r = - 0.463, P < 0.001), percent predicted forced vital capacity (FVC%; r = - 0.362, P < 0.05), and total ground-glass opacity (GGO) score (r = 0.439, P < 0.001) were observed in CTD-ILD patients. Multivariate logistic regression analysis revealed that elevated IL-6 levels, total bilirubin (TBil), and decreased CD3 + CD4 + T cells counts were independent risk factors for the occurrence of AE-CTD-ILD (OR = 1.121, P = 0.024; OR = 1.865, P = 0.047; OR = 0.983, P = 0.037, respectively). Furthermore, by employing these three variables in combination for the prediction of AE status, their collective impact surpasses the independent effects of any single biomarker. CONCLUSIONS Elevated levels of serum IL-6, IL-8, and TNF-α were associated with the complication of ILD in CTD patients and the occurrence of AE in CTD-ILD patients. IL-6 could be a promising serum biomarker of severity and the occurrence of AE in CTD-ILD patients. The combination of the three variables (IL-6 level, TBil and CD3 + CD4 + T cells) predicted the AE-CTD-ILD better.
Collapse
Affiliation(s)
- Chengxing Ma
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Kaifang Meng
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shenyun Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tingting Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Shanshan Chen
- Department of Rheumatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruilu Shu
- Department of Rheumatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Miao Ma
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Mi Tian
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Jingjing Ding
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Yang F, Wendusubilige, Kong J, Zong Y, Wang M, Jing C, Ma Z, Li W, Cao R, Jing S, Gao J, Li W, Wang J. Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA J 2023; 14:417-442. [PMID: 37605652 PMCID: PMC10439879 DOI: 10.1007/s13167-023-00334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00334-4.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wendusubilige
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqing Jing
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, China
| | - Renshuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuwen Jing
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Karampitsakos T, Juan-Guardela BM, Tzouvelekis A, Herazo-Maya JD. Precision medicine advances in idiopathic pulmonary fibrosis. EBioMedicine 2023; 95:104766. [PMID: 37625268 PMCID: PMC10469771 DOI: 10.1016/j.ebiom.2023.104766] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Kim MK, Lee JU, Lee SJ, Chang HS, Park JS, Park CS. The Role of Erythrocyte Membrane Protein Band 4.1-like 3 in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10182. [PMID: 37373330 DOI: 10.3390/ijms241210182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Novel genetic and epigenetic factors involved in the development and prognosis of idiopathic pulmonary fibrosis (IPF) have been identified. We previously observed that erythrocyte membrane protein band 4.1-like 3 (EPB41L3) increased in the lung fibroblasts of IPF patients. Thus, we investigated the role of EPB41L3 in IPF by comparing the EPB41L3 mRNA and protein expression of lung fibroblast between patients with IPF and controls. We also investigated the regulation of epithelial-mesenchymal transition (EMT) in an epithelial cell line (A549) and fibroblast-to-myofibroblast transition (FMT) in a fibroblast cell line (MRC5) by overexpressing and silencing EPB41L3. EPB41L3 mRNA and protein levels, as measured using RT-PCR, real-time PCR, and Western blot, were significantly higher in fibroblasts derived from 14 IPF patients than in those from 10 controls. The mRNA and protein expression of EPB41L3 was upregulated during transforming growth factor-β-induced EMT and FMT. Overexpression of EPB41L3 in A549 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of N-cadherin and COL1A1. Treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of N-cadherin. Overexpression of EPB41L3 in MRC5 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of fibronectin and α-SMA. Finally, treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of FN1, COL1A1, and VIM. In conclusion, these data strongly support an inhibitory effect of EPB41L3 on the process of fibrosis and suggest the therapeutic potential of EPB41L3 as an anti-fibrotic mediator.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jong-Uk Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sun Ju Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hun Soo Chang
- Department of Microbiology and BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
23
|
Drakopanagiotakis F, Markart P, Steiropoulos P. Acute Exacerbations of Interstitial Lung Diseases: Focus on Biomarkers. Int J Mol Sci 2023; 24:10196. [PMID: 37373339 DOI: 10.3390/ijms241210196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a large group of pulmonary disorders characterized histologically by the cardinal involvement of the pulmonary interstitium. The prototype of ILDs is idiopathic pulmonary fibrosis (IPF), an incurable disease characterized by progressive distortion and loss of normal lung architecture through unchecked collagen deposition. Acute exacerbations are dramatic events during the clinical course of ILDs, associated with high morbidity and mortality. Infections, microaspiration, and advanced lung disease might be involved in the pathogenesis of acute exacerbations. Despite clinical scores, the prediction of the onset and outcome of acute exacerbations is still inaccurate. Biomarkers are necessary to characterize acute exacerbations better. We review the evidence for alveolar epithelial cell, fibropoliferation, and immunity molecules as potential biomarkers for acute exacerbations of interstitial lung disease.
Collapse
Affiliation(s)
- Fotios Drakopanagiotakis
- Department of Respiratory Medicine, Medical School, Democritus University, 68100 Alexandroupolis, Greece
| | - Philipp Markart
- Department of Respiratory Medicine, Klinikum Fulda and University Medicine Campus Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University, 68100 Alexandroupolis, Greece
| |
Collapse
|
24
|
Wang Q, Xie Z, Wan N, Yang L, Jin Z, Jin F, Huang Z, Chen M, Wang H, Feng J. Potential biomarkers for diagnosis and disease evaluation of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2023; 136:1278-1290. [PMID: 37130223 PMCID: PMC10309524 DOI: 10.1097/cm9.0000000000002171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 05/04/2023] Open
Abstract
ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by progressive lung fibrogenesis and histological features of usual interstitial pneumonia. IPF has a poor prognosis and presents a spectrum of disease courses ranging from slow evolving disease to rapid deterioration; thus, a differential diagnosis remains challenging. Several biomarkers have been identified to achieve a differential diagnosis; however, comprehensive reviews are lacking. This review summarizes over 100 biomarkers which can be divided into six categories according to their functions: differentially expressed biomarkers in the IPF compared to healthy controls; biomarkers distinguishing IPF from other types of interstitial lung disease; biomarkers differentiating acute exacerbation of IPF from stable disease; biomarkers predicting disease progression; biomarkers related to disease severity; and biomarkers related to treatment. Specimen used for the diagnosis of IPF included serum, bronchoalveolar lavage fluid, lung tissue, and sputum. IPF-specific biomarkers are of great clinical value for the differential diagnosis of IPF. Currently, the physiological measurements used to evaluate the occurrence of acute exacerbation, disease progression, and disease severity have limitations. Combining physiological measurements with biomarkers may increase the accuracy and sensitivity of diagnosis and disease evaluation of IPF. Most biomarkers described in this review are not routinely used in clinical practice. Future large-scale multicenter studies are required to design and validate suitable biomarker panels that have diagnostic utility for IPF.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Zhaoliang Xie
- Respiratory Department of Sanming Yong’an General Hospital, Sanming, Fujian 366000, China
| | - Nansheng Wan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lei Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhixian Jin
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Fang Jin
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoming Huang
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Huiming Wang
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
25
|
Liu J, Jin Z, Wang X, Jakoš T, Zhu J, Yuan Y. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023; 323:121713. [PMID: 37088412 DOI: 10.1016/j.lfs.2023.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.
Collapse
Affiliation(s)
- Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Xiaolong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| |
Collapse
|
26
|
Principi L, Ferrini E, Ciccimarra R, Pagani L, Chinello C, Previtali P, Smith A, Villetti G, Zoboli M, Ravanetti F, Stellari FF, Magni F, Piga I. Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model. Int J Mol Sci 2023; 24:ijms24054410. [PMID: 36901840 PMCID: PMC10002924 DOI: 10.3390/ijms24054410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy.
Collapse
Affiliation(s)
- Lucrezia Principi
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Lisa Pagani
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Paolo Previtali
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Gino Villetti
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | | | - Franco Fabio Stellari
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
- Correspondence: (F.F.S.); (I.P.)
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
- Correspondence: (F.F.S.); (I.P.)
| |
Collapse
|
27
|
Huang Y, Guzy R, Ma SF, Bonham CA, Jou J, Schulte JJ, Kim JS, Barros AJ, Espindola MS, Husain AN, Hogaboam CM, Sperling AI, Noth I. Central lung gene expression associates with myofibroblast features in idiopathic pulmonary fibrosis. BMJ Open Respir Res 2023; 10:10/1/e001391. [PMID: 36725082 PMCID: PMC9896241 DOI: 10.1136/bmjresp-2022-001391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Contribution of central lung tissues to pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unknown. OBJECTIVE To ascertain the relationship between cell types of IPF-central and IPF-peripheral lung explants using RNA sequencing (RNA-seq) transcriptome. METHODS Biopsies of paired IPF-central and IPF-peripheral along with non-IPF lungs were selected by reviewing H&E data. Criteria for differentially expressed genes (DEG) were set at false discovery rate <5% and fold change >2. Computational cell composition deconvolution was performed. Signature scores were computed for each cell type. FINDINGS Comparison of central IPF versus non-IPF identified 1723 DEG (1522 upregulated and 201 downregulated). Sixty-two per cent (938/1522) of the mutually upregulated genes in central IPF genes were also upregulated in peripheral IPF versus non-IPF. Moreover, 85 IPF central-associated genes (CAG) were upregulated in central IPF versus both peripheral IPF and central non-IPF. IPF single-cell RNA-seq analysis revealed the highest CAG signature score in myofibroblasts and significantly correlated with a previously published activated fibroblasts signature (r=0.88, p=1.6×10-4). CAG signature scores were significantly higher in IPF than in non-IPF myofibroblasts (p=0.013). Network analysis of central-IPF genes identified a module significantly correlated with the deconvoluted proportion of myofibroblasts in central IPF and anti-correlated with inflammation foci trait in peripheral IPF. The module genes were over-represented in idiopathic pulmonary fibrosis signalling pathways. INTERPRETATION Gene expression in central IPF lung regions demonstrates active myofibroblast features that contributes to disease progression. Further elucidation of pathological transcriptomic state of cells in the central regions of the IPF lung that are relatively spared from morphological rearrangements may provide insights into molecular changes in the IPF progression.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Rob Guzy
- Section of Pulmonary & Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - Shwu-Fan Ma
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A Bonham
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Jou
- Department of Surgery, University of Illinois, Peoria, Illinois, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John S Kim
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew J Barros
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Milena S Espindola
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Cory M Hogaboam
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anne I Sperling
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Imre Noth
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
28
|
Wu Y, Zhong L, Qiu L, Dong L, Yang L, Chen L. A potential three-gene-based diagnostic signature for idiopathic pulmonary fibrosis. Front Genet 2023; 13:985217. [PMID: 36685820 PMCID: PMC9857386 DOI: 10.3389/fgene.2022.985217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/30/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease whose etiology remains unknown. This study aims to explore diagnostic biomarkers and pathways involved in IPF using bioinformatics analysis. Methods: IPF-related gene expression datasets were retrieved and downloaded from the NCBI Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened, and weighted correlation network analysis (WGCNA) was performed to identify key module and genes. Functional enrichment analysis was performed on genes in the clinically significant module. Then least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were run to screen candidate biomarkers. The expression and diagnostic value of the biomarkers in IPF were further validated in external test datasets (GSE110147). Results: 292 samples and 1,163 DEGs were screened to construct WGCNA. In WGCNA, the blue module was identified as the key module, and 59 genes in this module correlated highly with IPF. Functional enrichment analysis of blue module genes revealed the importance of extracellular matrix-associated pathways in IPF. IL13RA2, CDH3, and COMP were identified as diagnostic markers of IPF via LASSO and SVM-RFE. These genes showed good diagnostic value for IPF and were significantly upregulated in IPF. Conclusion: This study indicates that IL13RA2, CDH3, and COMP could serve as diagnostic signature for IPF and might offer new insights in the underlying diagnosis of IPF.
Collapse
Affiliation(s)
- Yi Wu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Lin Zhong
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Li Qiu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Liqun Dong
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Lin Yang
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China,*Correspondence: Lin Yang, ; Lina Chen,
| | - Lina Chen
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China,*Correspondence: Lin Yang, ; Lina Chen,
| |
Collapse
|
29
|
Enomoto N. Pathological Roles of Pulmonary Cells in Acute Lung Injury: Lessons from Clinical Practice. Int J Mol Sci 2022; 23:ijms232315027. [PMID: 36499351 PMCID: PMC9736972 DOI: 10.3390/ijms232315027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Interstitial lung diseases (ILD) are relatively rare and sometimes become life threatening. In particular, rapidly progressive ILD, which frequently presents as acute lung injury (ALI) on lung histopathology, shows poor prognosis if proper and immediate treatments are not initiated. These devastating conditions include acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF), clinically amyopathic dermatomyositis (CADM), epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced lung injury, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection named coronavirus disease 2019 (COVID-19). In this review, clinical information, physical findings, laboratory examinations, and findings on lung high-resolution computed tomography and lung histopathology are presented, focusing on majorly damaged cells in each disease. Furthermore, treatments that should be immediately initiated in clinical practice for each disease are illustrated to save patients with these diseases.
Collapse
Affiliation(s)
- Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; ; Tel.: +81-53-435-2263; Fax: +81-53-435-2354
- Health Administration Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
30
|
Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: Diagnosis, biomarkers and newer treatment protocols. Dis Mon 2022:101484. [DOI: 10.1016/j.disamonth.2022.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Yang F, Ma Z, Li W, Kong J, Zong Y, Wendusu B, Wu Q, Li Y, Dong G, Zhao X, Wang J. Identification and immune characteristics of molecular subtypes related to fatty acid metabolism in idiopathic pulmonary fibrosis. Front Nutr 2022; 9:992331. [PMID: 36211517 PMCID: PMC9537386 DOI: 10.3389/fnut.2022.992331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Although fatty acid metabolism has been confirmed to be involved in the pathological process of idiopathic pulmonary fibrosis (IPF), systematic analyses on the immune process mediated by fatty acid metabolism-related genes (FAMRGs) in IPF remain lacking. Methods The gene expression data of 315 patients with IPF were obtained from Gene Expression Omnibus database and were divided into the training and verification sets. The core FAMRGs of the training set were identified through weighted gene co-expression network analysis. Then, the fatty acid metabolism-related subtypes in IPF were identified on the basis of k-means unsupervised clustering. The scores of fatty acid metabolism and the expression of the fibrosis biomarkers in different subtypes were compared, and functional enrichment analysis was carried out on the differentially expressed genes between subtypes. A random forest model was used to select important FAMRGs as diagnostic markers for distinguishing between subtypes, and a line chart model was constructed and verified by using other datasets and rat models with different degrees of pulmonary fibrosis. The difference in immune cell infiltration among subtypes was evaluated with CIBERSORT, and the correlation between core diagnostic markers and immune cells were analyzed. Results Twenty-four core FAMRGs were differentially expressed between the training set and normal samples, and IPF was divided into two subtypes. Significant differences were observed between the two subtypes in biological processes, such as linoleic acid metabolism, cilium movement, and natural killer (NK) cell activation. The subtype with high fatty acid metabolism had more severe pulmonary fibrosis than the other subtype. A reliable construction line chart model based on six diagnostic markers was constructed, and ABCA3 and CYP24A1 were identified as core diagnostic markers. Significant differences in immune cell infiltration were found between the two subtypes, and ABCA3 and CYP24A1 were closely related to NK cells. Conclusion Fatty acid metabolism and the immune process that it mediates play an important role in the occurrence and development of IPF. The analysis of the role of FAMRGs in IPF may provide a new potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bilige Wendusu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qinglu Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangda Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
32
|
Negrete-García MC, de Jesús Ramos-Abundis J, Alvarado-Vasquez N, Montes-Martínez E, Montaño M, Ramos C, Sommer B. Exosomal Micro-RNAs as Intercellular Communicators in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11047. [PMID: 36232350 PMCID: PMC9569972 DOI: 10.3390/ijms231911047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Communication between neighboring or distant cells is made through a complex network that includes extracellular vesicles (EVs). Exosomes, which are a subgroup of EVs, are released from most cell types and have been found in biological fluids such as urine, plasma, and airway secretions like bronchoalveolar lavage (BAL), nasal lavage, saliva, and sputum. Mainly, the cargo exosomes are enriched with mRNAs and microRNAs (miRNAs), which can be transferred to a recipient cell consequently modifying and redirecting its biological function. The effects of miRNAs derive from their role as gene expression regulators by repressing or degrading their target mRNAs. Nowadays, various types of research are focused on evaluating the potential of exosomal miRNAs as biomarkers for the prognosis and diagnosis of different pathologies. Nevertheless, there are few reports on their role in the pathophysiology of idiopathic pulmonary fibrosis (IPF), a chronic lung disease characterized by progressive lung scarring with no cure. In this review, we focus on the role and effect of exosomal miRNAs as intercellular communicators in the onset and progression of IPF, as well as discussing their potential utility as therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Javier de Jesús Ramos-Abundis
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
- Higher School of Medicine Instituto Politécnico Nacional, Salvador Díaz Mirón esquina Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Noé Alvarado-Vasquez
- Biochemistry Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Martha Montaño
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Carlos Ramos
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas” Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
33
|
Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Fujitaka K, Hamada H, Hattori N. Association of the RAGE/RAGE-ligand axis with interstitial lung disease and its acute exacerbation. Respir Investig 2022; 60:531-542. [PMID: 35504814 DOI: 10.1016/j.resinv.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The receptor for advanced glycation end product (RAGE) is a transmembrane receptor highly expressed in type 1 pneumocytes of healthy lungs. RAGE is considered to play a homeostatic role in the lung, as RAGE knockout mice develop lung fibrosis as they age. In contrast, RAGE can bind numerous ligands, including high-mobility group box 1 (HMGB1). These interactions initiate pro-inflammatory signaling associated with the pathogenesis of lung injury and interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF). ILD is a broad category of diffuse parenchymal lung disease characterized by various extents of lung fibrosis and inflammation, and IPF is a common and progressive ILD of unknown cause. The prognosis of patients with IPF is poor, and acute exacerbation of IPF (AE-IPF) is one of the main causes of death. Recent reports indicate that acute exacerbations can occur in other ILDs (AE-ILD). Notably, ILD is frequently observed in patients with lung cancer, and AE-ILD after surgical procedures or the initiation of chemotherapy for concomitant lung cancer are clinically important due to their association with increased mortality. In this review, we summarize the associations of RAGE/soluble RAGE (sRAGE)/RAGE ligands with the pathogenesis and clinical course of ILD, including IPF and AE-IPF. Additionally, the potential use of sRAGE and RAGE ligands as predictive markers of AE-IPF and cancer treatment-triggered AE-ILD is also discussed.
Collapse
Affiliation(s)
- Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan.
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| |
Collapse
|
34
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
35
|
Consensus Gene Co-Expression Network Analysis Identifies Novel Genes Associated with Severity of Fibrotic Lung Disease. Int J Mol Sci 2022; 23:ijms23105447. [PMID: 35628257 PMCID: PMC9141193 DOI: 10.3390/ijms23105447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease characterized by irreversible scarring of the lung parenchyma leading to dyspnea, progressive decline in lung function, and respiratory failure. We analyzed lung transcriptomic data from independent IPF cohorts using weighted gene co-expression network analysis (WGCNA) to identify gene modules based on their preservation status in these cohorts. The consensus gene modules were characterized by leveraging existing clinical and molecular data such as lung function, biological processes, pathways, and lung cell types. From a total of 32 consensus gene modules identified, two modules were found to be significantly correlated with the disease, lung function, and preserved in other IPF datasets. The upregulated gene module was enriched for extracellular matrix, collagen metabolic process, and BMP signaling while the downregulated module consisted of genes associated with tube morphogenesis, blood vessel development, and cell migration. Using a combination of connectivity-based and trait-based significance measures, we identified and prioritized 103 "hub" genes (including 25 secretory candidate biomarkers) by their similarity to known IPF genetic markers. Our validation studies demonstrate the dysregulated expression of CRABP2, a retinol-binding protein, in multiple lung cells of IPF, and its correlation with the decline in lung function.
Collapse
|
36
|
RNA Sequencing of Epithelial Cell/Fibroblastic Foci Sandwich in Idiopathic Pulmonary Fibrosis: New Insights on the Signaling Pathway. Int J Mol Sci 2022; 23:ijms23063323. [PMID: 35328744 PMCID: PMC8954546 DOI: 10.3390/ijms23063323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by irreversible scarring of the distal lung. IPF is best described by its histopathological pattern of usual interstitial pneumonia (UIP), characterized by spatial heterogeneity with alternating interstitial fibrosis and areas of normal lung, and temporal heterogeneity of fibrosis characterized by scattered fibroblastic foci (FF), dense acellular collagen and honeycomb changes. FF, comprising aggregated fibroblasts/myofibroblasts surrounded by metaplastic epithelial cells (EC), are the cardinal pathological lesion and their presence strongly correlates with disease progression and mortality. We hypothesized that the EC/FF sandwich from patients with UIP/IPF has a distinct molecular signature which could offer new insights into the crosstalk of these two crucial actors in the disease. Laser capture microdissection with RNAseq was used to investigate the transcriptome of the EC/FF sandwich from IPF patients versus controls (primary spontaneous pneumothorax). Differentially expressed gene analysis identified 23 up-regulated genes mainly related to epithelial dysfunction. Gene ontology analysis highlighted the activation of different pathways, mainly related to EC, immune response and programmed cell death. This study provides novel insights into the IPF pathogenetic pathways and suggests that targeting some of these up-regulated pathways (particularly those related to secreto-protein/mucin dysfunction) may be beneficial in IPF. Further studies in a larger number of lung samples, ideally from patients with early and advanced disease, are needed to validate these findings.
Collapse
|
37
|
He J, Li X. Identification and Validation of Aging-Related Genes in Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:780010. [PMID: 35211155 PMCID: PMC8863089 DOI: 10.3389/fgene.2022.780010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aging plays a significant role in the occurrence and development of idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify and verify potential aging-associated genes involved in IPF using bioinformatic analysis. The mRNA expression profile dataset GSE150910 available in the Gene Expression Omnibus (GEO) database and R software were used to identify the differentially expressed aging-related genes involved in IPF. Hub gene expression was validated by other GEO datasets. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed aging-related genes. Subsequently, aging-related genes were further screened using three techniques (least absolute shrinkage and selection operator (LASSO) regression, support vector machine, and random forest), and the receiver operating characteristic curves were plotted based on screening results. Finally, real-time quantitative polymerase chain reaction (qRT-PCR) was performed to verify the RNA expression of the six differentially expressed aging-related genes using the blood samples of patients with IPF and healthy individuals. Sixteen differentially expressed aging-related genes were detected, of which the expression of 12 were upregulated and four were downregulated. GO and KEGG enrichment analyses indicated the presence of several enriched terms related to senescence and apoptotic mitochondrial changes. Further screening by LASSO regression, support vector machine, and random forest identified six genes (IGF1, RET, IGFBP2, CDKN2A, JUN, and TFAP2A) that could serve as potential diagnostic biomarkers for IPF. Furthermore, qRT-PCR analysis indicated that among the above-mentioned six aging-related genes, only the expression levels of IGF1, RET, and IGFBP2 in patients with IPF and healthy individuals were consistent with the results of bioinformatic analysis. In conclusion, bioinformatics analysis identified 16 potential aging-related genes associated with IPF, and clinical sample validation suggested that among these, IGF1, RET, and IGFBP2 might play a role in the incidence and prognosis of IPF. Our findings may help understand the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
38
|
Li Y, He Y, Chen S, Wang Q, Yang Y, Shen D, Ma J, Wen Z, Ning S, Chen H. S100A12 as Biomarker of Disease Severity and Prognosis in Patients With Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:810338. [PMID: 35185901 PMCID: PMC8854978 DOI: 10.3389/fimmu.2022.810338] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is one of interstitial lung diseases (ILDs) with poor prognosis. S100 calcium binding protein A12 (S100A12) has been reported as a prognostic serum biomarker in the IPF, but its correlation with IPF remains unclear in the lung tissue and bronchoalveolar lavage fluids (BALF). Methods Datasets were collected from the Gene Expression Omnibus (GEO) database. Person correlation coefficient, Kaplan–Meier analysis, Cox regression analysis, functional enrichment analysis and so on were used. And single cell RNA-sequencing (scRNA-seq) analysis was also used to explore the role of S100A12 and related genes in the IPF. Results S100A12 was mainly and highly expressed in the monocytes, and its expression was downregulated in the lung of patients with IPF according to scRNA-seq and the transcriptome analysis. However, S100A12 expression was upregulated both in blood and BALF of patients with IPF. In addition, 10 genes were found to interact with S100A12 according to protein–protein interaction (PPI) network, and the first four transcription factors (TF) targeted these genes were found according to hTFtarget database. Two most significant co-expression genes of S100A12 were S100A8 and S100A9. The 3 genes were significantly negatively associated with lung function and positively associated with the St. George’s Respiratory Questionnaire (SGRQ) scores in the lung of patients with IPF. And, high expression of the 3 genes was associated with higher mortality in the BALF, and shorter transplant-free survival (TFS) and progression-free survival (PFS) time in the blood. Prognostic predictive value of S100A12 was more superior to S100A8 and S100A9 in patients with IPF, and the composited variable [S100A12 + GAP index (gender, age, and physiological index)] may be a more effective predictive index. Conclusion These results imply that S100A12 might be an efficient disease severity and prognostic biomarker in patients with IPF.
Collapse
Affiliation(s)
- Yupeng Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaowu He
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibin Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Yang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Danting Shen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Wen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Hong Chen, ; Shangwei Ning,
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Hong Chen, ; Shangwei Ning,
| |
Collapse
|
39
|
Clements D, Miller S, Babaei-Jadidi R, Adam M, Potter SS, Johnson SR. Cross talk between LAM cells and fibroblasts may influence alveolar epithelial cell behavior in lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L283-L293. [PMID: 34936509 DOI: 10.1152/ajplung.00351.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in the patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared with parenchymal AT2 cells, demonstrated by increased Ki67 expression. Furthermore, nodular AT2 cells express proteins associated with epithelial activation in other disease states including matrix metalloproteinase 7, and fibroblast growth factor 7 (FGF7). In vitro, LAF-conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair, and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, a potential mediator of fibroblast-epithelial cross talk, in a mechanistic target of rapamycin (mTOR)-dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behavior. Fibroblast-derived FGF7 may contribute to the cross talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.
Collapse
Affiliation(s)
- Debbie Clements
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suzanne Miller
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Roya Babaei-Jadidi
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Simon R Johnson
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
40
|
Qian W, Xia S, Yang X, Yu J, Guo B, Lin Z, Wei R, Mao M, Zhang Z, Zhao G, Bai J, Han Q, Wang Z, Luo Q. Complex Involvement of the Extracellular Matrix, Immune Effect, and Lipid Metabolism in the Development of Idiopathic Pulmonary Fibrosis. Front Mol Biosci 2022; 8:800747. [PMID: 35174208 PMCID: PMC8841329 DOI: 10.3389/fmolb.2021.800747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background and objective: Idiopathic pulmonary fibrosis (IPF) is an aggressive fibrotic pulmonary disease with spatially and temporally heterogeneous alveolar lesions. There are no early diagnostic biomarkers, limiting our understanding of IPF pathogenesis. Methods: Lung tissue from surgical lung biopsy of patients with early-stage IPF (n = 7), transplant-stage IPF (n = 2), and healthy controls (n = 6) were subjected to mRNA sequencing and verified by real-time quantitative PCR (RT-qPCR), immunohistochemistry, Western blot, and single-cell RNA sequencing (scRNA-Seq). Results: Three hundred eighty differentially expressed transcripts (DETs) were identified in IPF that were principally involved in extracellular matrix (ECM) remodeling, lipid metabolism, and immune effect. Of these DETs, 21 (DMD, MMP7, POSTN, ECM2, MMP13, FASN, FADS1, SDR16C5, ACAT2, ACSL1, CYP1A1, UGT1A6, CXCL13, CXCL5, CXCL14, IL5RA, TNFRSF19, CSF3R, S100A9, S100A8, and S100A12) were selected and verified by RT-qPCR. Differences in DMD, FASN, and MMP7 were also confirmed at a protein level. Analysis of scRNA-Seq was used to trace their cellular origin to determine which lung cells regulated them. The principal cell sources of DMD were ciliated cells, alveolar type I/II epithelial cells (AT cells), club cells, and alveolar macrophages (AMs); MMP7 derives from AT cells, club cells, and AMs, while FASN originates from AT cells, ciliated cells, and AMs. Conclusion: Our data revealed a comprehensive transcriptional mRNA profile of IPF and demonstrated that ECM remodeling, lipid metabolism, and immune effect were collaboratively involved in the early development of IPF.
Collapse
Affiliation(s)
- Weiping Qian
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Shu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xiaoyun Yang
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaying Yu
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bingpeng Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhengfang Lin
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Wei
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Mengmeng Mao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ziyi Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Gui Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Junye Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Han
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- *Correspondence: Qian Han, ; Zhongfang Wang, ; Qun Luo,
| | - Zhongfang Wang
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qian Han, ; Zhongfang Wang, ; Qun Luo,
| | - Qun Luo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- *Correspondence: Qian Han, ; Zhongfang Wang, ; Qun Luo,
| |
Collapse
|
41
|
Wang E, Wang Y, Zhou S, Xia X, Han R, Fei G, Zeng D, Wang R. Identification of three hub genes related to the prognosis of idiopathic pulmonary fibrosis using bioinformatics analysis. Int J Med Sci 2022; 19:1417-1429. [PMID: 36035368 PMCID: PMC9413564 DOI: 10.7150/ijms.73305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by peripheral distribution of bilateral pulmonary fibrosis that is more pronounced at the base. IPF has a short median survival time and a poor prognosis. Therefore, it is necessary to identify effective prognostic indicators to guide the treatment of patients with IPF. Methods: We downloaded microarray data of bronchoalveolar lavage cells from the Gene Expression Omnibus (GEO), containing 176 IPF patients and 20 controls. The top 5,000 genes in the median absolute deviation were classified into different color modules using weighted gene co-expression network analysis (WGCNA), and the modules significantly associated with both survival time and survival status were identified as prognostic modules. We used Lasso Cox regression and multivariate Cox regression to search for hub genes related to prognosis from the differentially expressed genes (DEGs) in the prognostic modules and constructed a risk model and nomogram accordingly. Moreover, based on the risk model, we divided IPF patients into high-risk and low-risk groups to determine the biological functions and immune cell subtypes associated with the prognosis of IPF using gene set enrichment analysis and immune cell infiltration analysis. Results: A total of 153 DEGs located in the prognostic modules, three (TPST1, MRVI1, and TM4SF1) of which were eventually defined as prognostic hub genes. A risk model was constructed based on the expression levels of the three hub genes, and the accuracy of the model was evaluated using time-dependent receiver operating characteristic (ROC) curves. The areas under the curve for 1-, 2-, and 3-year survival rates were 0.862, 0.885, and 0.833, respectively. The results of enrichment analysis showed that inflammation and immune processes significantly affected the prognosis of patients with IPF. The degree of mast and natural killer (NK) cell infiltration also increases the prognostic risk of IPF. Conclusions: We identified three hub genes as independent molecular markers to predict the prognosis of patients with IPF and constructed a prognostic model that may be helpful in promoting therapeutic gains for IPF patients.
Collapse
Affiliation(s)
- Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Yue Wang
- Department of Infectious Diseases, Hefei second people's hospital, Hefei 230001, China
| | - Sijing Zhou
- Department of occupational medicine, Hefei third clinical college of Anhui Medical University, Hefei 230022, China
| | - Xingyuan Xia
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Rui Han
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Guanghe Fei
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Suzhou Dushu Lake Hospital, Suzhou, 215006, China.,Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| |
Collapse
|
42
|
Abstract
Acute exacerbation is a major cause of morbidity and mortality in patients with idiopathic pulmonary fibrosis. Although the real nature of it is still not clear and there is no proven effective therapy, progress has been made since the consensus definition and diagnostic criteria were proposed. The trial results of several new innovative therapies in idiopathic pulmonary fibrosis have suggested a potential for benefit in acute exacerbation of idiopathic pulmonary fibrosis, leading to double blind randomized clinical trials in this area. This article reviews the present knowledge on acute exacerbation of idiopathic pulmonary fibrosis, focusing on the triggering factors and treatment.
Collapse
|
43
|
Ghandikota S, Jegga AG. gene2gauss: A multi-view gaussian gene embedding learner for analyzing transcriptomic networks. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2022:206-215. [PMID: 35854722 PMCID: PMC9285176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Analyzing gene co-expression networks can help in the discovery of biological processes and regulatory mechanisms underlying normal or perturbed states. Unlike standard differential analysis, network-based approaches consider the interactions between the genes involved leading to biologically relevant results. Applying such network-based methods to jointly analyze multiple transcriptomic networks representing independent disease cohorts or studies could lead to the identification of more robust gene modules or gene regulatory networks. We present gene2gauss, a novel feature learning framework that is capable of embedding genes as multivariate gaussian distributions by taking into account their long-range interaction neighborhoods across multiple transcriptomic studies. Using multiple gene co-expression networks from idiopathic pulmonary fibrosis, we demonstrate that these multi-dimensional gaussian features are suitable for identifying regulons of known transcription factors (TF). Using standard TF-target libraries, we demonstrate that the features from our method are highly relevant in comparison with other feature learning approaches on transcriptomic data.
Collapse
Affiliation(s)
- Sudhir Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering, Cincinnati, Ohio, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
44
|
Kim SK, Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of idiopathic pulmonary fibrosis. BMC Pulm Med 2021; 21:404. [PMID: 34876074 PMCID: PMC8650281 DOI: 10.1186/s12890-021-01749-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a high clinical burden. The molecular signatures of IPF were analyzed to distinguish molecular subgroups and identify key driver genes and therapeutic targets. Methods Thirteen datasets of lung tissue transcriptomics including 585 IPF patients and 362 normal controls were obtained from the databases and subjected to filtration of differentially expressed genes (DEGs). A functional enrichment analysis, agglomerative hierarchical clustering, network-based key driver analysis, and diffusion scoring were performed, and the association of enriched pathways and clinical parameters was evaluated. Results A total of 2,967 upregulated DEGs was filtered during the comparison of gene expression profiles of lung tissues between IPF patients and healthy controls. The core molecular network of IPF featured p53 signaling pathway and cellular senescence. IPF patients were classified into two molecular subgroups (C1, C2) via unsupervised clustering. C1 was more enriched in the p53 signaling pathway and ciliated cells and presented a worse prognostic score, while C2 was more enriched for cellular senescence, profibrosing pathways, and alveolar epithelial cells. The p53 signaling pathway was closely correlated with a decline in forced vital capacity and carbon monoxide diffusion capacity and with the activation of cellular senescence. CDK1/2, CKDNA1A, CSNK1A1, HDAC1/2, FN1, VCAM1, and ITGA4 were the key regulators as evidence by high diffusion scores in the disease module. Currently available and investigational drugs showed differential diffusion scores in terms of their target molecules. Conclusions An integrative molecular analysis of IPF lungs identified two molecular subgroups with distinct pathobiological characteristics and clinical prognostic scores. Inhibition against CDKs or HDACs showed great promise for controlling lung fibrosis. This approach provided molecular insights to support the prediction of clinical outcomes and the selection of therapeutic targets in IPF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01749-3.
Collapse
Affiliation(s)
- Sung Kyoung Kim
- Division of Pulmonology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
45
|
Konigsberg IR, Borie R, Walts AD, Cardwell J, Rojas M, Metzger F, Hauck SM, Fingerlin TE, Yang IV, Schwartz DA. Molecular Signatures of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:430-441. [PMID: 34038697 PMCID: PMC8525208 DOI: 10.1165/rcmb.2020-0546oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate < 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (|r| > 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.
Collapse
Affiliation(s)
- Iain R. Konigsberg
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Raphael Borie
- Department of Medicine, Bichat Hospital, Paris, France
| | - Avram D. Walts
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Jonathan Cardwell
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fabian Metzger
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine and Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado
| | - Ivana V. Yang
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - David A. Schwartz
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
46
|
Perkins TN, Oury TD. The perplexing role of RAGE in pulmonary fibrosis: causality or casualty? Ther Adv Respir Dis 2021; 15:17534666211016071. [PMID: 34275342 PMCID: PMC8293846 DOI: 10.1177/17534666211016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, S-784 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Arai T, Matsuoka H, Hirose M, Kida H, Yamamoto S, Ogata Y, Mori M, Hatsuda K, Sugimoto C, Tachibana K, Akira M, Inoue Y. Prognostic significance of serum cytokines during acute exacerbation of idiopathic interstitial pneumonias treated with thrombomodulin. BMJ Open Respir Res 2021; 8:e000889. [PMID: 34326155 PMCID: PMC8323382 DOI: 10.1136/bmjresp-2021-000889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Acute exacerbation (AE) has been reported to herald a poor prognosis in idiopathic pulmonary fibrosis and is now thought to do so in idiopathic interstitial pneumonias (IIPs). However, the pathophysiology of AE-IIPs is not sufficiently understood. In our previously reported SETUP trial, we found better survival in patients with AE-IIPs treated with corticosteroids and thrombomodulin than in those treated with corticosteroids alone. In that study, we collected serum samples to evaluate changes in cytokine levels and retrospectively examined the prognostic significance and pathophysiological role of serum cytokines in patients with AE-IIPs. METHODS This study included 28 patients from the SETUP trial for whom serial serum samples had been prospectively obtained. AE-IIPs were diagnosed using the Japanese Respiratory Society criteria. All patients were treated with intravenous thrombomodulin and corticosteroids from 2014 to 2016. Serum levels of 27 cytokines were measured using Bio-Plex. The high-resolution CT pattern at the time of diagnosis of AE was classified as diffuse or non-diffuse. RESULTS Univariate analysis revealed that higher serum levels of interleukin (IL)-2, IL-7, IL-9, IL-12, IL13, basic fibroblast growth factor, granulocyte-macrophage colony-stimulating factor, interferon-γ inducible protein-10, platelet-derived growth factor and regulated on activation, normal T cell expressed and secreted (RANTES) at AE were significant predictors of 90-day survival. The HRCT pattern was also a significant clinical predictor of 90-day survival. Multivariate analysis with stepwise selection identified a higher serum RANTES level at AE to be a significant predictor of 90-day survival, including after adjustment for HRCT pattern. Multivariate analysis with stepwise selection suggested that a marked increase in the serum IL-10 level on day 8 could predict 90-day mortality. CONCLUSIONS A higher serum RANTES level at AE the time of diagnosis predicted a good survival outcome, and an elevated serum IL-10 level on day 8 predicted a poor survival outcome. TRIAL REGISTRATION NUMBER UMIN000014969.
Collapse
Affiliation(s)
- Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Hiroto Matsuoka
- Department of Respiratory Medicine, Osaka Prefectural Hospital Organization Osaka Habikino Medical Center, Habikino City, Japan
| | - Masaki Hirose
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka City, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Japan
| | - Suguru Yamamoto
- Department of Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Kawachinagano City, Japan
| | - Yoshitaka Ogata
- Department of Critical Care Medicine, Yao Tokushukai Hospital, Yao City, Japan
| | - Masahide Mori
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka City, Japan
| | - Kazuyoshi Hatsuda
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Chikatoshi Sugimoto
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Kazunobu Tachibana
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Masanori Akira
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| |
Collapse
|
48
|
Son JH, Lee JU, Chin S, Go ES, Park JS, Shin HK, Chang HS, Park JS, Park CS. Upregulation of receptor tyrosine kinase-like orphan receptor 2 in idiopathic pulmonary fibrosis. Korean J Intern Med 2021; 36:914-923. [PMID: 32951408 PMCID: PMC8273837 DOI: 10.3904/kjim.2019.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/18/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND/AIMS Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a major regulator of Wnt signaling, which is involved in fibroblast dysfunction. Because its role has not been evaluated in idiopathic pulmonary fibrosis (IPF), we examined the clinical implications of ROR2 expression. METHODS ROR2 mRNA expression was measured using reverse transcription polymerase chain reaction in lung tissue-derived fibroblasts from IPF patients (n = 14) and from controls (n = 10). ROR2 protein was measured using enzyme-linked immunosorbent assay in primary fibroblasts from IPF patients (n = 14) and controls (n = 10), and in bronchoalveolar lavage (BAL) fluids obtained from normal controls (NC; n = 30). IPF patients (n = 84), and other patients with interstitial lung diseases, including nonspecific interstitial pneumonia (NSIP; n = 10), hypersensitivity pneumonitis (HP; n = 10), and sarcoidosis (n = 10). RESULTS ROR2 mRNA and protein levels were significantly higher in IPF fibroblasts than in controls (p = 0.003, p = 0.0017, respectively). ROR2 protein levels in BAL fluids from patients with IPF were significantly higher than in those from NC (p < 0.001), and from patients with NSIP (p = 0.006), HP (p = 0.004), or sarcoidosis (p = 0.004). Receiver operating characteristic curves showed a clear difference between IPF and NC in ROR2 protein level (area under the curve, 0.890; confidence interval, 0.829 to 0.950; p < 0.001). ROR2 protein levels were significantly higher in GAP stage III than in GAP stages I and II (p = 0.016). CONCLUSION ROR2 may be related to the development of IPF, and its protein level may be a useful and severity-dependent candidate marker for IPF.
Collapse
Affiliation(s)
- Ji-Hye Son
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan, Korea
| | - Jong-Uk Lee
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Susie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Eun-Suk Go
- Department of Pathology, Soonchunhyang University College of Medicine, Asan, Korea
| | - Jai-Seong Park
- Department of Radiology, Soonchunhyang University College of Medicine, Asan, Korea
| | - Hwa-Kyun Shin
- Department of Thoracic Surgery, Soonchunhyang University College of Medicine, Asan, Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan, Korea
| | - Jong-Sook Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Correspondence to Jong-Sook Park, M.D. Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon 14584, Korea Tel: +82-32-621-5105 Fax: +82-32-621-5023 E-mail:
| | - Choon-Sik Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
49
|
Furukawa H, Oka S, Higuchi T, Shimada K, Hashimoto A, Matsui T, Tohma S. Biomarkers for interstitial lung disease and acute-onset diffuse interstitial lung disease in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211022506. [PMID: 34211592 PMCID: PMC8216360 DOI: 10.1177/1759720x211022506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Interstitial lung disease (ILD) is frequently a complication of rheumatoid arthritis (RA) as an extra-articular manifestation which has a poor prognosis. Acute-onset diffuse ILD (AoDILD) occasionally occurs in RA and includes acute exacerbation of ILD, drug-induced ILD, and Pneumocystis pneumonia. AoDILD also confers a poor prognosis in RA. Previously-established biomarkers for ILD include Krebs von den lungen-6 and surfactant protein-D originally defined in patients with idiopathic pulmonary fibrosis; the sensitivity of these markers for RA-associated ILD (RA-ILD) is low. Although many studies on ILD markers have been performed in idiopathic pulmonary fibrosis, only a few validation studies in RA-ILD or AoDILD have been reported. Biomarkers for RA-ILD and AoDILD are thus still required. Recently, genomic, cytokine, antibody, and metabolomic profiles of RA-ILD or AoDILD have been investigated with the aim of improving biomarkers. In this review, we summarize current preliminary data on these potential biomarkers for RA-ILD or AoDILD. The development of biomarkers on RA-ILD has only just begun. When validated, such candidate biomarkers will provide valuable information on pathogenesis, prognosis, and drug responses in RA-ILD in future.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose 204-8585, Japan
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| | - Shomi Oka
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| | - Takashi Higuchi
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
- Department of Nephrology, Ushiku Aiwa General Hospital, Ushiku, Japan
| | - Kota Shimada
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| | - Atsushi Hashimoto
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
- Department of Internal Medicine, Sagami Seikyou Hospital, Minami-ku, Sagamihara, Japan
| | - Toshihiro Matsui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| | - Shigeto Tohma
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Minami-ku, Sagamihara, Japan
| |
Collapse
|
50
|
Stainer A, Faverio P, Busnelli S, Catalano M, Della Zoppa M, Marruchella A, Pesci A, Luppi F. Molecular Biomarkers in Idiopathic Pulmonary Fibrosis: State of the Art and Future Directions. Int J Mol Sci 2021; 22:6255. [PMID: 34200784 PMCID: PMC8230407 DOI: 10.3390/ijms22126255] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the most lethal form of interstitial pneumonia of unknown cause, is associated with a specific radiological and histopathological pattern (the so-called "usual interstitial pneumonia" pattern) and has a median survival estimated to be between 3 and 5 years after diagnosis. However, evidence shows that IPF has different clinical phenotypes, which are characterized by a variable disease course over time. At present, the natural history of IPF is unpredictable for individual patients, although some genetic factors and circulating biomarkers have been associated with different prognoses. Since in its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. Two drugs, pirfenidone and nintedanib, have been shown to modify the disease course by slowing down the decline in lung function. It is also known that 5-10% of the IPF patients may be affected by episodes of acute and often fatal decline. The acute worsening of disease is sometimes attributed to identifiable conditions, such as pneumonia or heart failure; but many of these events occur without an identifiable cause. These idiopathic acute worsenings are termed acute exacerbations of IPF. To date, clinical biomarkers, diagnostic, prognostic, and theranostic, are not well characterized. However, they could become useful tools helping facilitate diagnoses, monitoring disease progression and treatment efficacy. The aim of this review is to cover molecular mechanisms underlying IPF and research into new clinical biomarkers, to be utilized in diagnosis and prognosis, even in patients treated with antifibrotic drugs.
Collapse
Affiliation(s)
- Anna Stainer
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Paola Faverio
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Sara Busnelli
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Martina Catalano
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
| | - Matteo Della Zoppa
- Pulmonology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Alberto Pesci
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Fabrizio Luppi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| |
Collapse
|